151 research outputs found

    Time-varying nonlinear causality detection using regularized orthogonal least squares and multi-wavelets with applications to EEG

    Get PDF
    A new transient Granger causality detection method is proposed based on a time-varying parametric modelling framework, and is applied to real EEG signals to reveal the causal information flow during motor imagery (MI) tasks. The time-varying parametric modelling approach employs a nonlinear autoregressive with external input (NARX) model, whose parameters are approximated by a set of multiwavelet basis functions. A regularized orthogonal least squares (ROLS) algorithm is then used to produce a parsimonious or sparse regression model and estimate the associated model parameters. The time-varying Granger causality between nonstationary signals can be detected accurately by making use of both the good approximation properties of multi-wavelets and the good generalization performance of the ROLS in the presence of high-level noise. Two simulation examples are presented to demonstrate the effectiveness of the proposed method for both linear and nonlinear causal detection respectively. The proposed method is then applied to real EEG signals of MI tasks. It follows that transient causal information flow over the time course between various sensorimotor related channels can be successfully revealed during the whole reaction processes. Experiment results from these case studies confirm the applicability of the proposed scheme and show its utility for the understanding of the associated neural mechanism and the potential significance for developing MI tasks based brain-computer interface (BCI) systems

    The effect of media professionalization on cognitive neurodynamics during audiovisual cuts

    Get PDF
    Experts apply their experience to the proper development of their routine activities. Their acquired expertise or professionalization is expected to help in the development of those recurring tasks. Media professionals spend their daily work watching narrative contents on screens, so learning how they manage visual perception of those contents could be of interest in an increasingly audiovisual society. Media works require not only the understanding of the storytelling, but also the decoding of the formal rules and presentations. We recorded electroencephalographic (EEG) signals from 36 participants (18 media professionals and 18 non-media professionals) while they were watching audiovisual contents, and compared their eyeblink rate and their brain activity and connectivity. We found that media professionals decreased their blink rate after the cuts, suggesting that they can better manage the loss of visual information that blinks entail by sparing them when new visual information is being presented. Cuts triggered similar activation of basic brain processing in the visual cortex of the two groups, but different processing in medial and frontal cortical areas, where media professionals showed a lower activity. Effective brain connectivity occurred in a more organized way in media professionals-possibly due to a better communication between cortical areas that are coordinated for decoding new visual content after cuts

    Causality from Cz to C3/C4 or between C3 and C4 revealed by granger causality and new causality during motor imagery

    No full text
    corecore