
Single-trial Effective Brain Connectivity Patterns
Enhance Discriminability of Mental Imagery Tasks

Dheeraj Rathee, Hubert Cecotti, Girijesh Prasad

Intelligent Systems Research Centre, School of Computing & Intelligent
Systems, Ulster University, Derry ∼ Londonderry, N. Ireland, UK.

E-mail: rathee-d@email.ulster.ac.uk

October 2016

Abstract.
Objective: The majority of the current approaches of connectivity based BCI
systems focus on distinguishing between different motor imagery (MI) tasks.
Brain regions associated with MI are anatomically close to each other, hence these
BCI systems suffer from low performances. Our objective is to introduce single-
trial connectivity feature based BCI system for cognition imagery (CI) based tasks
wherein the associated brain regions are located relatively far away as compared
to those for MI.
Approach: We implemented time-domain partial granger causality (PGC) for the
estimation of the connectivity features in a BCI setting. The proposed hypothesis
has been verified with two publically available datasets involving MI and CI tasks.
Main results: The results support the conclusion that connectivity based features
can provide a better performance than a classical signal processing framework
based on bandpass features coupled with spatial filtering for CI tasks, including
word generation, subtraction, and spatial navigation. These results show for
the first time that connectivity features can provide a reliable performance for
imagery-based BCI system.
Significance: We show that single-trial connectivity features for mixed imagery
tasks (i.e. combination of CI and MI) can outperform the features obtained by
current state-of-the-art method and hence can be successfully applied for BCI
applications.

Keywords: Brain-Computer Interface, Mental Imagery, Effective Connectivity, Partial
Granger Causality.
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List of Abbreviations

AIC Akaike Information Criterion

BCI Brain-computer Interface

BLDA Bayesian Linear Discriminant Analysis

BOLD Blood-Oxygen-Level Dependent

CI Cognitive Imagery

CSD Current Source Density

CSP Common Spatial Pattern

DTF Directed Transfer Function

ECoG Electrocorticography

ERD Event Related Desynchronization

ERS Event Related Synchronization

FDR False Discovery Rate

fMRI Functional Magnetic Resonance Imaging

MEG Magnetoencephalography

MI Motor Imagery

MVAR Multivariate Autoregressive

PDC Partial Directed Coherence

PGC Partial Granger Causality

PMC Premotor Cortex

SBIC Schwarz Bayesian Information Criterion

SMA Supplementary Motor Area

1. Introduction

Electroencephalogram (EEG) based Brain-computer
interface (BCI) technology can be implemented
for a wide variety of communication and control
purposes, such as controlling a cursor, wheelchair or
prosthesis [1], virtual keyboards [2], and navigation
through virtual environments [3]. These systems assert
a strong positive impact on disabled users in terms
of quality of life improvement and communication
with their close environment. In addition, they offer
alternative means of communication for healthy users
in the form of EEG controlled entertainment systems
such as computer games and music control [4, 5]
as well as hybrid systems [6]. Moreover, recent
studies have shown that the use of BCI can affect
neural plasticity during the period of training [7],
and possibly contribute to the enhancement of
motor rehabilitation for stoke patients [8]. Thus,
the development of this technology benefits several
research domains, e.g., medical and healthcare,
neuro-marketing, entertainment and games, smart
environments, and security.

Most of the current BCI systems based on
motor imagery (MI) detection rely on specific
changes in the sensorimotor EEG rhythms (event-
related desynchronization (ERD) and event-related

synchronization (ERS)), which involve kinesthetic
imagination of a particular motor action without its
actual execution [9, 10, 11]. Although promising
results and achievements have been reported in the
literature [12], there remain many challenges and
barriers to the use of this technology reliably and
effectively for the intended beneficiaries [13]. One
of the probable reasons for the limitations of MI-
based BCI is the use of static channel derived features
(e.g. band-power (BP), autoregressive (AR), common
spatial patterns (CSP) and wavelets), which may
not contain information about interactions among
brain regions, while it is well known that multiple
brain regions dynamically interact in accomplishing a
mental task. Thus, it is reasonable to assume that
the connectivity of spatially distributed regions could
provide additional useful discriminant features for the
classification of brain responses evoked during imagery
tasks.

The human brain has been divided into several ar-
eas based on their anatomical and physiological charac-
teristics [14]. These areas are connected to each other
to form functional brain networks that are dynamically
employed to perform various sensorimotor and cog-
nitive tasks. Analyzing these network connectivities
(connectome) and their dynamics during various brain
states may provide a better understanding of physio-
logical mechanisms related to them. However, func-
tional connectivity evaluations are unable to provide
exact information regarding the directionality of the
interaction i.e. whether the information flow is from
area A to area B, or vice-versa. Effective connectivity
analysis can derive better relationships between two
areas of interest by providing directed interactions. Ef-
fective connectivity is therefore a relevant measure for
better assessing the induced physiological variations in
the brain occurring during imagery tasks.

Over the last few years, several research groups
attempted to implement connectivity-based BCIs [13,
15, 16, 17, 18] using different measures to map
the interactions between distinct brain regions (e.g.
transfer entropy [19], coherence, directed transfer
function (DTF) [20], and partial directed coherence
(PDC) [21]). A recent study implemented several
vector autoregressive (VAR) model based methods for
the realization of MI-based BCI [17]. The empirical
findings provided low classification accuracies for most
of the methods when compared to BP features. In this
case, the connectivity between scalp electrodes failed
to provide robust distinction among various MI tasks.

Investigations of the connectome associated with
imagination as well as execution of motor tasks
revealed the manifestation of induced activations
and information flows at various cerebral structures,
including, the primary motor areas (M1), the premotor
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cortex (PMC), and the supplementary motor areas
(SMA) [22]. These cortical areas are located in
close vicinity to each other making estimation of the
causal interaction a challenging task, in particular at
scalp level analyses, due to the volume conduction
(VC) effect. Furthermore, single-trial connectivity
estimations become inherently more difficult due
to the availability of small amount of EEG data.
These confounding factors lead to low performance
of connectivity-based BCI systems. In this study, we
investigate the extent to which the performance of the
imagery tasks detection using features of multivariate
autoregressive (MVAR) model based connectivity
methods depends on the imagery task type. In this
context, we evaluate the performance of single-trial
connectivity features for other imagery tasks, which
are collectively known as cognition imagery (CI) tasks,
e.g., mathematical, navigational and language-related
tasks. The rationale behind our proposed work is that
CI tasks involve activations of distinct regions of the
brain that are relatively far from each other compared
to that associated with MI tasks.

In the present work, in line with our previous
study [23], we estimate the single-trial directed
functional connectivity features to elucidate the
interaction among the EEG signals during various
MI tasks (left hand, right hand, feet, and tongue)
and CI tasks (word generation, spatial navigation,
and subtraction imagery task). In particular, we
implemented time-domain partial granger causality
(PGC) [24] along with PDC and DTF on the two
publically available datasets. Thus, we included three
different methods belonging to MVAR based modelling
of time-series data. As the major aim of this study
is to test the hypothesis that CI based connectivity
features can provide better separability than MI based
features, exhaustive discussion of different connectivity
measures in the analysis is out of scope of this study.
Nevertheless, several previous studies have compared
various connectivity measures with both simulated
and empirical datasets [17, 25, 26]. Furthermore, we
compared the PGC results with state-of-the-art feature
extraction method for BCI, i.e. log variance after
spatial filtering using CSP.

The remainder of this paper proceeds as follows:
Section 2 describes the connectivity methods, the BCI
datasets, and the signal processing pipeline. Next,
Section 3 presents the performance analysis. Finally,
the results are discussed in Section 4, and Section 5
summarizes the findings of this study.

2. Methods

2.1. Multivariate Autoregressive (MVAR) Model

An MVAR model for a set of L observed time-sampled
series x(t) ∈ RL, with 1 ≤ t ≤ N , N is the total
number of samples, can be defined as follows [27]:

x(t) =

r∑
p=1

β(p)

 x1(t− p)
...

xL(t− p)

+

 q1(t)
...

qL(t)

 (1)

where r is the model order and q = [q1, . . . , qL]T is a
zero-mean white noise vector with normally distributed
real-values. The auto-regression coefficient matrices βp

are given by:

β(p) =

 βp
1,1 . . . βp

1,L
...

. . .
...

βp
L,1 . . . βp

L,L

 (2)

where 1 ≤ p ≤ r. The matrix βp ∈ RL×L reveals
the linear interactions among multiple time-series at
the time delay p. For a reliable estimation using
MVAR modeling, the total number of available data
points (LN) must be significantly higher than the total
number of estimated parameters (L2r) [27].

The z-domain transformation of the model can be
obtained as:

q(z) =

(
1−

r∑
p=1

β(p)z−p

)
x(z) (3)

A(z) = 1−
r∑

p=1

β(p)z−p (4)

x(z) = A(z)−1q(z) = H(z)q(z) (5)

where H(z) and A(z) are the transfer function matrix
and its inverse matrix, respectively.

2.2. Time-domain Partial Granger Causality Analysis

Time-domain Partial Granger Causality (PGC) is
a robust form of granger causality wherein causal
interactions between multivariate data can be analyzed
using MVAR modeling. Unlike bivariate GC and
conditional GC, it provides better estimation of
the true interactions by mitigating the effect of
confounding variables [24].

Let’s assume three time series data including
X(t), Y (t) and Z(t). Now, to analyze the effective
connectivity between X(t) and Y (t) (conditioned on
Z(t)) based on PGC rules, the reduced model (i.e.
inclusion of past values of the sink variable conditioned
on other variables) can be defined by:

X(t) =

k∑
p=1

(a1,pX(t− p)) +

k∑
p=1

(c1,pZ(t− p)) + (6)
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ε1(t) + εE1 (t) + β1(L)εL1 (t)

Y (t) =

k∑
p=1

(b1,pY (t− p)) +

k∑
p=1

(d1,pZ(t− p)) + (7)

ε2(t) + εE2 (t) + β2(L)εL2 (t)

where p is the model order, εi(t) is the prediction
error, εEi (t) and β(L)εLi (t) are the residual errors
corresponding to exogenous (E) and latent (L) inputs,
respectively. Similarly, the full model (i.e. inclusion of
past values of the sink variable along with past values
of source variable conditioned on rest of variables) can
be defined as:

X(t) =

k∑
p=1

(a2,pX(t− p)) +

k∑
p=1

(b2,pY (t− p)) + (8)

k∑
p=1

(c2,pZ(t− p)) + ε3(t) + εE3 (t) + β3(L)εL3 (t)

Y (t) =

k∑
p=1

(d2,pX(t− p)) +

k∑
p=1

(e2,pY (t− p)) + (9)

k∑
p=1

(f2,pZ(t− p)) + ε4(t) + εE4 (t) + β4(L)εL4 (t)

The collective prediction errors can be taken from
the previous equations, and are represented as:

µi = εi(t) + εEi (t) + βi(L)εLi (t) (10)

with 1 ≤ i ≤ 4.
The prediction error covariance matrix for the

reduced model can be generated as:

R =

[
var(µ1(t)) cov(µ1(t), µ2(t))

cov(µ2(t), µ1(t)) var(µ2(t))

]
(11)

Likewise, the covariance matrix for the full model as:

L =

[
var(µ3(t)) cov(µ3(t), µ4(t))

cov(µ4(t), µ3(t)) var(µ4(t))

]
(12)

The PGC indices can be calculated by taking the
log ratio between partial variance of prediction error
generated by the reduced model and partial variance
of prediction error generated by the full model. The
following two equations provide the PGC indices for
Y (t) causing X(t) and vice-versa, respectively:

GY→X|Z = ln(
R1,1 −R1,2R

−1
2,2R2,1

L1,1 − L1,2L
−1
2,2L2,1

) (13)

GX→Y |Z = ln(
R2,2 −R2,1R

−1
1,1R1,2

L2,2 − L2,1L
−1
1,1L1,2

) (14)

2.3. PDC and DTF

The PDC and DTF are based on the concept of MVAR
model, and their values can be obtained according to

the following equations:

PDCj→i(z) =
|Aij(z)|√
AT

:j(z)A:j(z)
(15)

DTFj→i(z) =
|Hij(z)|√
Hi:(z)HT

i: (z)
(16)

2.4. Common Spatial Pattern (CSP) Filtering

This method involves the extraction of log variance
features in particular frequency bands after spatial
filtering using common spatial patterns. The CSP
method is highly successful in calculating spatial filters
for detecting ERD/ERS during MI tasks. This two-
step algorithm involves band-pass filtering of the scalp
EEG signals followed by spatial filtering based on linear
transformations that can be represented as:

Zi = WTEi (17)

where Ei ∈ Rc×N denotes the EEG measurement from
the band-pass filter of ith trial/segment; Zi ∈ Rc×N

denotes the spatial filtered EEG data; WT ∈ Rc×c

denotes the transpose of CSP projection matrix; c is
the number of channels; and N is the number of time-
samples in one trial/segment.

The CSP algorithm computes the transformation
matrix W to yield features whose variances are optimal
for discriminating two classes of EEG measurements.
The m pair of CSP features (i.e. log variance of the
spatial filtered EEG signal) are then given by

vi = log
diag

(
ZiZ

T

i

)
Tr
(
ZiZ

T

i

) (18)

where vi ∈ R2m; Zi represents the spatial filtered data
with first m and the last m columns of Zi; diag (·) and
Tr (·) return the diagonal and the sum of the diagonal
elements in the square matrix, respectively.

2.5. EEG Dataset-1

The BCI Competition IV dataset 2A has been analysed
for investigating causal interaction during various MI
tasks [28]. The dataset comprised of EEG signals
acquired from nine healthy participants using a cue-
based paradigm (see Figure 1.A) during two sessions
on different days. The MI tasks include four different
classes: left hand MI (class 1), right hand MI (class
2), both feet MI (class 3), and tongue MI (class 4).
Each data acquisition session consists of 6 runs where
each run comprised of 48 trials (12 trials for each
class). Thus the complete study involved 576 trials
from both sessions of the dataset. The total trial
length is 7.5 s with variable inter-trial duration. The
data were acquired from 25 channels (22 EEG channels
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Figure 1. (A) EEG channel montage and timing of the experimental paradigm for dataset-1.Trial duration is 6 s with a break of
1.5 s between trials. Trial start is indicated with an acoustic beep and appearance of the fixation symbol. After 2 s, participants
are cued for the MI task to be performed. (B) EEG channel montage and timing of the experimental paradigm for dataset-2. Trial
duration is 10 s with a break of 2.5-3.5 s between trials. Trial start is indicated with the appearance of the fixation symbol, and the
cue remains from 3 to 4.25 s. The appearance of the cue is indicated with an acoustic beep.

along with three monopolar EOG channels) with a
sampling frequency of 250 Hz and bandpass filtered
between 0.5 Hz to 100 Hz (notch filter at 50 Hz).
Reference and ground were placed at the left and right
mastoid, respectively.

2.6. EEG Dataset-2

The mental imagery-based BCI dataset has been
previously analysed [29] for pairwise comparison of
BCI performances during various imagery tasks. The
dataset comprised of EEG signals acquired from
nine participants with severe motor disabilities using
a cue-based paradigm (see Figure 1.B) during two
sessions on different days. Details of the participants
are summarized in Table A1 of Appendix A. For
further exploration, readers are referred to the original
study [29]. The mental tasks include five different
classes: word generation imagery (class 1), mental
subtraction imagery (class 2), spatial navigation
imagery (class 3), right hand MI (class 4), and both
feet MI (class 5). Each data acquisition session consists
of 8 runs resulting in 200 trials (40 trials for each
class). Thus the complete study involved 400 trials
from both sessions of the dataset. The total trial length
is 10 s with variable inter-trial duration. The data
were acquired from 30 EEG channels with a sampling
frequency of 256 Hz and bandpass filtered between 0.5
to 100 Hz (notch filter at 50 Hz). Reference and ground

were placed at the left and right mastoid, respectively.
This dataset is publically available at http://bnci-
horizon-2020.eu/database/data-sets.

2.7. Data pre-processing and analysis

MVAR based connectivity methods are sensitive to
volume conduction, thus the first step of data pre-
processing involved the estimation of current source
densities (CSD) for both datasets using spherical
spline method [30]. A recent study showed that
CSD estimation improves the interpretability of
connectivity results by reducing the amount of spurious
interactions [31]. Next, the channels that are noisy or
severely contaminated with artefacts were interpolated
for dataset-2 followed by exclusion of the bad trials.
The information regarding the faulty EEG channels
and noisy trials is provided in [29]. However, for
dataset-1, no such information is present, so all the
available trials were considered for the analysis. For
the three connectivity methods, the features were
generated for delta (δ) (1-4 Hz), theta (θ) (4-8 Hz),
alpha (α) (8-12 Hz), beta (β) (13-25 Hz), lower gamma
(γ) (25-40 Hz), and wide-band (1-40 Hz) frequency
bands whereas for CSP we included a wideband
approach (8-30 Hz) as incorporated in the original
research article [29]. Bandpass filtering was applied
by employing an 8th order, zero-phase forward and
backward bandpass Butterworth filter. For further
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analysis, seven channels (C3, FC1, CP1, Cz, FC2,
CP2, and C4) related to the motor-cortical areas were
selected for dataset-1. Likewise, for dataset-2, 11
channels (F3, F4, T3, C3, Cz, C4, T4, P3, P4, O1 and
O2) were selected for considering the frontal, temporal,
central, parietal, and occipital areas of the cortex.
The motive behind this implementation is to select a
common network for all imagery classes.

Furthermore, the data related to the imagery
tasks were extracted from each trial and for both
datasets (i.e. 3000 ms to 6000 ms for dataset-1 and
3000 ms to 10000 ms for dataset-2). The extracted
data was segmented using a sliding window starting
from 3000 ms to the end of the trial. For dataset-
1, we extracted segments of length 1000 ms with
500 ms overlap while for dataset-2, the segment size
was 2000 ms with an overlap of 500 ms. Thus,
we obtained 5 and 11 segments from each trial for
dataset-1 and dataset-2, respectively. The windowing
strategy can effectively reduce the probability of
spurious causal effects due to non-stationarity in
EEG signal [32]. Longer segment may led to
better model fitting, but they are frequently non-
stationary. The implemented segment lengths provided
a better trade-off between satisfactory model fitting
and local stationarity. Moreover, to counter the
issues related to inter-segment variations and non-
stationarity, processes of detrending and demeaning
of the data were performed wherein the average was
subtracted from each segment separately along with
division of each segment by the standard deviation.

The coefficients of the MVAR model for multi-trial
data were estimated using the LWR algorithm [33].
The application of MVAR modeling for connectivity
analysis requires estimation of the model order (MO)
i.e., the number of time-lags. This process is highly
crucial for the correct estimation of the connectivity
networks. If the MO is too high, overfitting occurs
and may introduce spurious links in the network. If
the MO is too low, the fitted model may fail to
capture the essential dynamics of the data resulting
in exclusion of the existing links [34]. A previous
study examined empirically the effect of incorrect
MO selection on estimated functional connectivity
networks with both simulated and real datasets [35].
Furthermore, the study compared the performances
of various criteria available for estimating the correct
model order and it suggested a cautious usage of these
criteria. In this study, we implemented the Schwarz
bayesian information criterion (SBIC) [36] and the
Akaike information criterion (AIC) [37] for estimating
the optimal value of the model order p. The expressions
for these two methods are given as follows:

AIC(p) = log[det(Σ)] +
2pL2

N
(19)

SBIC(p) = log[det(Σ)] + log(N)
pL2

N
(20)

Where Σ is the estimated noise covariance matrix,
L is the number of EEG channels, and N is the
number of data samples. Furthermore, the model
order was selected for the measure provided minimum
values. During the analysis of optimum model order,
we found 8 as the best model order for most of
the segments (more than 75%) for dataset-1, and 10
for majority of cases (more than 85%) for dataset-
2. Hence to make the analysis unbiased, we set
these model order values for the complete analysis.
Furthermore, we implemented two different techniques
to confirm the legitimacy of applied regression models.
Durbin-Watson whiteness test [38] has been used
for approximating whiteness of uncorrelated residuals.
The model consistency assesses the proportion of
the correlation structure that is shared by the real
data and ’simulated’ data generated from the MVAR
model. A higher consistency value (i.e., ≥ 80) provide
a confirmatory indication for the rejection of null
hypothesis. Moreover, validation of the model was
confirmed using the Ding method [32] by checking the
consistency of the correlation structure. The Ding
consistency test provided a higher value (nearly equal
to 1), which shows that the selected MVAR model has
effectively predicted the time series.

For CSP based analysis, 2 pairs of components
(m=2) were selected for binary classification tasks. For
computational assignments related to data processing,
we used MATLAB (V8.1) and for estimation of single
trial connectivity and CSP features, we implemented
the algorithms with in-house scripts using functions
from GCCA (V2.9) toolbox [39] and HERMES
toolbox [40].

2.8. Single-trial connectivity classification

Single-trial connectivity feature based on 16 binary
classifications were performed for both datasets. The
binary classifications included left-right (L-R), left-
feet (L-F), left-tongue (L-T), right-feet (R-F), right-
tongue (R-T), and feet-tongue (F-T) for dataset-
1 and word-subtraction (W-S), word-navigation (W-
N), word-hand (W-H), word-feet (W-F), subtraction-
navigation (S-N), subtraction-hand (S-H), subtraction-
feet (S-F), navigation-hand (N-H), navigation-feet (N-
F), and hand-feet (H-F) for dataset-2. A Bayesian
linear discriminant analysis (BLDA) classifier was
trained on the feature sets from the data of one session
(training set) while the evaluation was performed
on the feature set generated from the data of the
second session (evaluation set). For the selection of
the best time segment and the optimal number of
features, cross validation was performed during the
training phase. Consequently, the computational load
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during the evaluation phase was efficiently reduced.
We measure the classification performance with the
area under the ROC curve (AUC) for each binary
classification [41]. Furthermore, to evaluate the
best connectivity measures for each pairwise binary
classification task, Pearson’s correlation coefficients
were estimated using data from both sessions.
The absolute values of class correlation coefficients
|r(i, j, s)| and their significance estimators (p −
values: p(i, j, s)) of each connectivity index with their
corresponding dummy class labels l were estimated for
each pair of classes, all segments, all subjects, and both
datasets. The dummy class label is a numeric value
that indicates whether a trial contains class-1 (l = 1)
or class-2 (l = −1) of the binary classification task. For
instance, the dummy label l can be set to +1 for left-
hand MI (class-1) and -1 for right-hand MI (class-1) or
vice-versa as well in case of left-hand versus right-hand
binary classification task. Thus, |r(i, j, s)| indicates
how strongly a connectivity measure can distinguish
between both types of imagery classes for a channel
pair (i, j) during a time segment s.

3. Results

3.1. Performance comparison of PGC, PDC, and
DTF for different frequency bands (δ, θ, α, β, lower
γ, and wide-band).

Figure 2 presents the mean AUC values (across nine
subjects) for PGC, PDC, and DTF for δ band (1-
4 Hz), θ band (4-8 Hz), α band (8-12 Hz), β band
(13-25 Hz), lower γ band (25-40 Hz), and wide-band
(1-40 Hz) in 16 pairwise binary classification tasks
involving both datasets. The first six comparisons
(from left-hand side) belong to dataset-1 while the next
ten comparisons belong to dataset-2. Furthermore,
we compared the grand mean AUCs (across 16 binary
classification tasks) for the three methods and found
no statistically significant differences in δ, θ, α, β,
and wide-band (1-40 Hz). Also, the grand mean
AUC values are lower than 0.65 for all three methods
for these frequency bands. Thus, the results clearly
showed weak discrimination power of connectivity
based features for binary classification tasks. However,
interestingly, PGC performed better than PDC and
DTF for lower γ band. In this frequency band,
the grand mean AUCs(± SD) for PGC, PDC, and
DTF are 0.72(± 0.06), 0.62(± 0.03), and 0.62(± 0.3),
respectively. In 15 out of the 16 binary classification
tasks, PGC provided higher AUC values than PDC and
DTF. Thus, the lower γ band with PGC provided the
best classification results for both MI and CI binary
tasks. The overall statistical significance analysis
showed PGC in lower γ band performed significantly
better than all the other combinations (p < 0.025, FDR

corrected for multiple comparisons).

3.2. Performance comparison of PGC and CSP

The performances corresponding to PGC (lower
γ band) and a state-of-the-art signal processing
technique (i.e. CSP + log variance) are presented
for both databases in Tables 1 and 2. For simplified
presentation, we denote the PGC method by M1 , and
CSP algorithm by M2 in the results. For dataset-
1, the statistical analysis showed significantly better
performance of CSP for all six binary classification
tasks (p < 0.05). For dataset-2, the mean AUCs of
eight out of ten binary classification tasks are better in
case of PGC however we found statistically significant
differences in two cases only i.e. W-S (p = 0.039)
and W-N (p = 0.01), where improvements of 14%
and 10% in mean AUC(%) are obtained, respectively.
Furthermore, we compared the performance of different
MI pairs for PGC results. The comparative analysis
for dataset-1 (with FDR corrected p-value (p=0.026))
showed some interesting results wherein both L-F (p =
0.004) and L-T pair (p = 0.023) provided significantly
better AUCs (%) as compared to F-T. Besides, the
MI task pair F-T had the worst overall performance
whereas L-F and L-T performed best among the six
binary classifications. For dataset-2, group statistical
analysis (with FDR corrected p − value = 0.025)
showed significantly better performance of PGC during
W-S, W-H, and W-F as compared to S-N (p=0.021,
p=0.011, p=0.019), S-H (p=0.007, p=0.003, p=0.007),
S-F (p=0.007, p=0.004, p=0.004), N-H (p=0.004,
p=0.007, p=0.007), N-F (p=0.011, p=0.003, p=0.007),
and H-F (p=0.004, p=0.007, p=0.004). Additionally,
the outcome for W-H (p=0.011) is significantly better
than W-N. In terms of average AUC(%) values, W-H
and W-S performed the best, and H-F performed worse
among all ten binary classification tasks. This analysis
followed the most practical way of classification for
a BCI setting i.e. training and evaluation with data
from different sessions. However, to further explore
the performances of the two competing methods and
to evaluate the variations between two sessions, we
estimated the 10-fold cross validation results for the
data of session-1 and session-2 separately, and for
the combined data of session-1 and session-2. The
mean AUCs across subjects for session-1, session-2,
and combined data are presented for both datasets
in Figure 3(a) for CSP method and in Figure 3(b)
for PGC method. Although we found a slight
increase in the grand mean AUC values for session-
2 as compared to session-1, the difference is not
statistically significant. Moreover, for all the three
cases, CSP outperformed PGC for dataset-1 involving
MI tasks while the latter outperformed CSP for
dataset-2 involving both CI and MI tasks.
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(a) δ band(1-4 Hz)

(b) θ band(4-8 Hz)

(c) α band(8-12 Hz)

(d) β band(13-25 Hz)

(e) Lower γ band(25-40 Hz)

(f) Wide-band(1-40 Hz)

Figure 2. Mean AUC measures for PGC, PDC, and DTF with 16 pairwise comparisons for: (a) δ band(1-4 Hz),(b) θ band(4-8 Hz),
(c) α band(8-12 Hz), (d) β band(13-25 Hz), (e) lower γ band(25-40 Hz), and (f) wide-band(1-40 Hz). The first six comparisons
from left side belong to dataset-1 while the rest belong to dataset-2. The error bars represent the standard error across subjects.
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Furthermore, we estimated the outcomes by
combining PGC and CSP features together. BLDA
classifier was trained on the collective feature set of
session-1 data and evaluated with combined feature-
set of session-2 data. The mean AUC values (across
all subjects) generated with CSP, PGC, and the
combined features are presented for dataset-1 and
dataset-2 in Figure 4 and Figure 5, respectively.
Here, we compared the performance of the combined
feature set with the best approach out of PGC
and CSP for each dataset. For both datasets, we
found no statistically significant difference during the
comparisons. However, the difference between the
grand mean AUC values with the combined feature set
and PGC is higher for dataset-2 as compared to the
difference between combined and CSP features.

3.3. Class-correlation analysis of the connectivity
features

The absolute values of the class-correlation coefficients
were averaged across all subjects and both sessions
for each dataset separately. Next, for each pairwise
comparison, the averaged values of these estimates
were normalized between 0 and 1 to evaluate
the significance of different connectivity indices
within each binary classification task. Finally,
the class-correlation matrices were generated using
the normalized estimates. They are presented
in Figure 6(a) and Figure 6(b) for six pairwise
comparisons of dataset-1 and ten pairwise comparisons
of dataset-2, respectively. Each matrix element
represents directional connectivity from the ith column
(source) to the jth row (sink). Table 3 illustrates
the significant connectivity indices with r > 0.5
for various binary classification tasks for dataset-2.
Furthermore, we scrutinize the indices with majority
voting criterion i.e., selected only those features which
maintain the r-value threshold (i.e. 0.5) for at least
5 subjects out of 9. We found no connectivity
feature above the set threshold and the voting criterion
for dataset-1. However, we can assess the most
contributing connectivity features for dataset-1 with
Figure 6(a), for instance, CP1→C4, C3→FC1, and
C4→Cz for L-R, CP1→C4, C3→C4, and C3→CP1
for L-F, C3→C4, Cz→C4, and C3→CP1 for L-T,
C3→Cz, and C3→FC1 for R-F, C3→FC1, and Cz→C3
for R-T, and finally CP1→FC1, Cz→CP2, Cz→C4,
Cz→CP1,and Cz→FC1 for F-T. For dataset-2, we
found significant association of frontal scalp area with
W-S, W-N, W-H, and W-F binary classification tasks.
Likewise, parietal area is more associated with W-N,
W-H, and W-F while occipital area seems to be more
activated during N-H, N-F, and S-F. Interestingly,
central area electrodes contributed for almost all the
binary classification tasks. Temporal lobe is majorly

contributed in W-N, S-N, and W-F. However, we
found no significant connectivity indices for H-F binary
classification task.

4. Discussion

Most of the connectivity based single-trial BCI
studies focus on MI related modulations in the
motor cortex functional network. Investigations of
the brain connectome related to imagination and
execution of motor tasks revealed the exhibition of
induced activations and information flows at various
cerebral structures, incorporating the primary motor
areas (M1), the premotor cortex (PMC), and the
supplementary motor areas (SMA) [42]. These cortical
areas are located in close vicinity to each other making
discriminative estimation of the causal interaction a
challenging task, in particular at scalp level analyses.
Thus, the performances of the MI-based BCIs using
connectivity features are typically low. In this study,
we presented an alternative solution to overcome this
confounding factor by employing cognition imagery
(CI) features, including word generation, spatial
navigation, and mathematical tasks. The rationale
behind this hypothesis is that these imagery tasks
activate distinct brain regions, which are relatively far
from each other.

In this paper, we have considered PGC, DTF,
and PDC to generate effective connectivity features
in six frequency bands i.e., δ, θ, α, β, lower γ, and
wide-band using two publically available imagery BCI
datasets. Next, to obtain the best performing method
and optimum frequency band, we compared the results
for 16 binary classification tasks involving MI and
CI tasks. Moreover, we compared the performances
of PGC method and CSP algorithm by evaluating
the results of binary classification tasks for both
datasets. Our analysis yielded four major findings.
First, we obtained higher discriminative connectivity
features in lower γ band as compared to the rest
of the canonical frequency bands (i.e. δ, θ, α, β)
and wide-band. Second, the performance of PGC
is significantly better than PDC and DTF in lower
γ band. Third, and more importantly, the PGC
and CSP comparative analysis showed significantly
high improvement in classification performances with
effective connectivity based features for mixed imagery
tasks (i.e., CI versus MI) as compared to MI tasks.
Finally, the post-hoc analysis showed higher values of
class correlation coefficients for connectivity features in
binary classification tasks involving word generation,
spatial navigation and subtraction task as compared
to MI tasks.

Our results illustrate that lower γ frequency
range holds greater information regarding cortical
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Table 1. Comparison of the AUC (%) between PGC in lower γ (M1) and the log-variance of CSP features (M2) approach for the
dataset 1.

Subjects 1 2 3 4 5 6 7 8 9 Mean±SD
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

L-R 73 92 51 67 82 99 56 79 63 66 54 73 59 79 74 99 91 97 67± 14 83± 14
L-F 88 99 61 78 81 93 66 83 60 63 61 68 68 95 70 85 96 98 73± 13 85± 13
L-T 94 99 52 72 81 96 67 85 64 74 60 74 75 92 70 97 95 99 73± 15 88± 11
R-F 88 99 69 83 81 96 64 92 62 67 59 69 68 98 61 91 60 66 68± 10 84± 14
R-T 93 100 60 72 88 99 65 89 64 72 61 71 71 95 72 92 65 86 71± 12 86± 12
F-T 61 67 60 78 76 74 58 75 58 66 58 69 65 77 63 86 74 82 64± 7 75± 7

Table 2. Comparison of the AUC (%) between PGC in lower γ (M1) and the log-variance of CSP features (M2) approach for the
dataset 2.

Subjects 1 2 3 4 5 6 7 8 9 Mean±SD
M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

W-S 63 79 73 62 89 70 82 69 87 76 72 62 85 66 91 56 80 57 80± 9 66± 8
W-N 58 58 81 69 79 79 73 71 79 67 80 71 81 68 80 64 81 58 77± 8 67± 7
W-H 57 56 82 66 82 73 75 83 80 96 86 63 81 56 86 68 86 83 80± 9 71± 14
W-F 61 68 79 70 78 65 76 80 81 83 86 73 79 67 88 66 88 76 79± 8 72± 7
S-N 59 65 80 66 71 73 64 66 76 69 72 55 81 77 78 62 80 60 73± 8 66± 7
S-H 51 90 64 57 80 65 70 75 74 82 77 63 76 65 80 76 74 85 71± 9 73± 11
S-F 57 89 66 58 75 66 72 71 73 76 74 52 78 64 82 81 74 63 72± 7 69± 12
N-H 58 62 72 53 60 63 71 81 74 77 70 55 80 60 82 63 79 67 72± 8 65± 9
N-F 57 68 76 60 59 56 73 89 77 60 69 75 80 60 81 59 76 76 72± 9 67± 11
H-F 58 58 60 54 61 57 54 60 57 77 59 60 58 52 57 52 56 65 58± 2 60± 8

Table 3. Directed connectivities with statistically significant
class-correlation coefficients (r > 0.5 and p < 0.00045,
Bonferroni corrected) for each binary classification task on
dataset-2.

Relevant Connectivities

W-S (P3→F4), (C4→C3), (C3→Cz), (C4↔Cz)
(C3→C4), (F4→T4)

W-N (C3→F4), (P3→F4), (T4→C4), (C4→T4)
(P3→T4), (F4→P3), (C4→P3)

W-H (Cz→F3), (Cz→F4), (P3→F4), (C3→Cz)
(C4→Cz), (F3→C4), (T4↔C4), (C3→P3)
(C3→P4), (C3→O1), (C3→O2)

W-F (P3→F3), (F4→T3), (F4→C3), (P3→C3)
(F3→C4), (P3→C4), (P3→T4), (P3→P4)
(F4→O1)

S-N (C4↔Cz), (T4↔C4), (P3↔T4)

S-H (Cz→F3), (C4→C3), (T4→C3), (P4→C3)
(F3→Cz), (C3→O1)

S-F (Cz↔F3), (C4→C3), (T4→Cz), (C3→O1)
(C3→O2), (Cz→O2)

N-H (O2→F4), (P3→C3), (T4→Cz), (P3→Cz)
(O2→C4), (O2→O1)

N-F (O2→F4), (O2→C4), (T4→P3), (O2→P3)
(O2↔O1)

H-F Nil

interactions during various brain imagery tasks than α
and β frequency ranges. These findings are consistent
with several prior studies. A transfer entropy
based brain connectivity study suggested strongest
modulation in γ band during MI task [16]. Similarly,

detection of high frequency activations in motor cortex
during motor execution and imagery was reported
using invasive modalities including ECoG [43] and
non-invasive recording methods including fMRI [44].
Furthermore, two recent studies presented high
correlation between higher frequency range of ECoG
signal with spatially focal BOLD peaks in primary
sensorimotor areas [45] and in pre and post-central
areas (i.e., covering motor area) [46]. However, it is
evident that the signal to noise ratio is a significant
issue when dealing with high frequencies in EEG
signals. To mitigate the effect of muscular noise,
we implemented CSD estimation as a pre-processing
method [30]. A similar study involving various MVAR
based connectivity measures reported low accuracies
of PDC and DTF for MI-based BCI [17]. Moreover,
the theoretical formulation of PDC and DTF is based
on standard GC measure while the PGC method
enhances the efficiency of conditional GC measure
by mitigating the effect of confounding factors (i.e.
latent variables and exogenous inputs) using a concept
similar to partial correlation [24]. A recent study
provided evidence supporting the higher accuracy and
consistency with PGC as compared to conditional GC
and PDC approaches in identifying causal connectivity
of neural circuits with both simulated and empirical
datasets [47].

We validated the performance improvement of
single-trial connectivity-feature based BCI system
by considering mental imagery of word generation,
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(a) CSP

(b) PGC

Figure 3. Mean AUC measures (across subjects) estimated by 10-fold cross validation classification with session-1, session-2, and
the combined data involving 16 pairwise comparisons for: (a) CSP method, and (b) PGC method. The first six comparisons from
left side belong to dataset-1 while the rest belong to dataset-2. The error bars represent the standard error across subjects.

Figure 4. Mean AUC measures (across subjects) estimated for
dataset-1 involving six pairwise binary comparisons with only
CSP features, PGC features, and with combination of CSP and
PGC features. The error bars represent the standard error across
subjects.

subtraction, and spatial navigation tasks instead of
MI tasks (i.e. Left hand, right hand, feet, and
tongue). For these imagery tasks, PGC significantly
outperformed a state-of-the-art method. However,
connectivity features related to MI tasks failed to

Figure 5. Mean AUC measures (across subjects) estimated for
dataset-2 involving ten pairwise binary comparisons with only
CSP features, PGC features, and with combination of CSP and
PGC features. The error bars represent the standard error across
subjects.

provide high separability between different MI tasks.
We also found higher AUCs for mixed imagery tasks
(i.e. adding CI and MI) as compared to single imagery
type tasks (i.e. either MI or CI only) with both CSP
and PGC features (see Table 2) which is consistent
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L-R L-F L-T R-F R-T F-T
(a) Dataset-1

W-S W-N W-H W-F S-N

S-H S-F N-H N-F H-F
(b) Dataset-2

Figure 6. Class-correlation matrices for each pairwise comparison for both datasets. The absolute values of the class correlation
coefficients for all subjects and sessions were averaged and normalised between 0 and 1 for each binary classification task pair
separately. Each matrix element represents directional connectivity feature from the ith column (source) to the jth row (sink).

with findings of several previous studies [29, 48, 49].
However, as per our knowledge, this is the first study
to compare the CI, MI, and the combined tasks pairs
for connectivity features. There are several limitations
to this study. Firstly, dataset-2 consists of small
number of trials, and hence future work may involve
validation of the proposed hypothesis with a larger
number of trials and also with other non-invasive
imaging modalities, such as magnetoencephalography
(MEG) and functional magnetic resonance imaging
(fMRI). Secondly, the linearly mixed noise due to
volume conduction is the most challenging problem
in scalp-based connectivity analysis. Although
we computed CSDs from the raw EEG signal to
reduce the amount of spurious interactions before
estimating the connectivity matrices, several other
methods, including ICA decomposition [50] and source
localization [51] may provide more robust estimations
in the face of higher computational complexity.
Thirdly, although we estimated the class-correlation
coefficients for all binary classification tasks to find
significant connectivity features, the interpretation of

neurophysiological mechanisms based on these findings
is not absolute and requires further analysis in the
source space. The EEG data acquired from the sensors
can not be directly related to the underlying neuronal
sources as the brain signal undergoes several spatio-
temporal transformation before reaching the scalp
surface [52, 53]. Thus, for studying actual physiological
mechanisms the sensor space data must be source
localized before estimation of connectivity features,
however, it requires to solve the ill-posed EEG inverse
problem. Nevertheless, future work may involve in-
depth study of the mixed imagery related physiological
interactions at source level.

A major challenge in BCI is to increase the
information transfer rate (ITR) as the brain computer
interaction competes with other modalities (e.g.
eyetracking) particularly for people who are not
completely locked-in. The increase of the number of
commands, i.e. the increase of the imagery tasks,
that can be accurately selected at any moment can
improve the ITR. This study has shown that while the
performance of features based on effective connectivity
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remains below the existing methods for MI tasks, this
type of features provides a robust performance for
other types of imagery tasks such as CI tasks. Finally,
because the choice of the easiest imagery tasks may be
subject dependent, the results show that the choice of
the feature extraction method must be based on the
selected imagery tasks.

5. Conclusion

Discrimination of brain evoked responses correspond-
ing to imagery tasks is a challenge for both the per-
son who has to imagine a specific task, and the signal
processing methods that have to extract robust dis-
criminant features. Most of the previous studies have
focused on motor-imagery tasks (e.g., left vs. right) by
using features based on the bandpower or log-variance
of bandpassed signals after spatial filtering. While
this approach stays successful for the classification of
motor-imagery, we have shown that the use of features
based on effective connectivity using Partial Granger
Causality in the gamma band can lead to more reliable
performance in certain imagery tasks: word generation,
numerical subtraction, and spatial navigation tasks.
The results showed that the performance of the pro-
posed system is superior to what can be achieved with
a state-of-the-art method for motor imagery. Finally,
the results also suggest that the combination of differ-
ent imagery tasks opens the scope for improved brain-
computer interface based on the detection of imagery
tasks by increasing the number of possible classes. Fur-
ther work will deal with the combination of methods
to increase the number of commands in BCI.
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Appendix A.

The demographic details of the participants for
dataset-2 are summarized in Table A1. For further
exploration, the readers are referred to the original
study [29].

Table A1. Participant details: The ID, age in years, months
since occurrence and the type of event are shown for each
individual of dataset-2 [29].

ID Age Month Event

P1 42 6 Locked-in syndrome due to
brainstem stroke

P2 31 5 Locked-in syndrome due to
brainstem stroke

P3 33 2 Spinal cord injury C5, ASIA C
P4 40 255 Spinal cord injury C5, ASIA A
P5 57 5 Hemorrhagic stroke (HS) in left

hemisphere
P6 43 27 Spinal cord injury C5, ASIA C
P7 20 6 HS parieto-temporal,

right central no cranium
P8 36 53 Spinal cord injury C5, ASIA A
P9 38 15 Spinal cord injury C4, ASIA A
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