65,387 research outputs found

    Learning Adjustment Sets from Observational and Limited Experimental Data

    Full text link
    Estimating causal effects from observational data is not always possible due to confounding. Identifying a set of appropriate covariates (adjustment set) and adjusting for their influence can remove confounding bias; however, such a set is typically not identifiable from observational data alone. Experimental data do not have confounding bias, but are typically limited in sample size and can therefore yield imprecise estimates. Furthermore, experimental data often include a limited set of covariates, and therefore provide limited insight into the causal structure of the underlying system. In this work we introduce a method that combines large observational and limited experimental data to identify adjustment sets and improve the estimation of causal effects. The method identifies an adjustment set (if possible) by calculating the marginal likelihood for the experimental data given observationally-derived prior probabilities of potential adjustmen sets. In this way, the method can make inferences that are not possible using only the conditional dependencies and independencies in all the observational and experimental data. We show that the method successfully identifies adjustment sets and improves causal effect estimation in simulated data, and it can sometimes make additional inferences when compared to state-of-the-art methods for combining experimental and observational data.Comment: 10 pages, 5 figure

    Invariant Causal Prediction for Nonlinear Models

    Full text link
    An important problem in many domains is to predict how a system will respond to interventions. This task is inherently linked to estimating the system's underlying causal structure. To this end, Invariant Causal Prediction (ICP) (Peters et al., 2016) has been proposed which learns a causal model exploiting the invariance of causal relations using data from different environments. When considering linear models, the implementation of ICP is relatively straightforward. However, the nonlinear case is more challenging due to the difficulty of performing nonparametric tests for conditional independence. In this work, we present and evaluate an array of methods for nonlinear and nonparametric versions of ICP for learning the causal parents of given target variables. We find that an approach which first fits a nonlinear model with data pooled over all environments and then tests for differences between the residual distributions across environments is quite robust across a large variety of simulation settings. We call this procedure "invariant residual distribution test". In general, we observe that the performance of all approaches is critically dependent on the true (unknown) causal structure and it becomes challenging to achieve high power if the parental set includes more than two variables. As a real-world example, we consider fertility rate modelling which is central to world population projections. We explore predicting the effect of hypothetical interventions using the accepted models from nonlinear ICP. The results reaffirm the previously observed central causal role of child mortality rates

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    Learning Joint Nonlinear Effects from Single-variable Interventions in the Presence of Hidden Confounders

    Get PDF
    We propose an approach to estimate the effect of multiple simultaneous interventions in the presence of hidden confounders. To overcome the problem of hidden confounding, we consider the setting where we have access to not only the observational data but also sets of single-variable interventions in which each of the treatment variables is intervened on separately. We prove identifiability under the assumption that the data is generated from a nonlinear continuous structural causal model with additive Gaussian noise. In addition, we propose a simple parameter estimation method by pooling all the data from different regimes and jointly maximizing the combined likelihood. We also conduct comprehensive experiments to verify the identifiability result as well as to compare the performance of our approach against a baseline on both synthetic and real-world data.Comment: Accepted to The Conference on Uncertainty in Artificial Intelligence (UAI) 202

    Massively-Parallel Feature Selection for Big Data

    Full text link
    We present the Parallel, Forward-Backward with Pruning (PFBP) algorithm for feature selection (FS) in Big Data settings (high dimensionality and/or sample size). To tackle the challenges of Big Data FS PFBP partitions the data matrix both in terms of rows (samples, training examples) as well as columns (features). By employing the concepts of pp-values of conditional independence tests and meta-analysis techniques PFBP manages to rely only on computations local to a partition while minimizing communication costs. Then, it employs powerful and safe (asymptotically sound) heuristics to make early, approximate decisions, such as Early Dropping of features from consideration in subsequent iterations, Early Stopping of consideration of features within the same iteration, or Early Return of the winner in each iteration. PFBP provides asymptotic guarantees of optimality for data distributions faithfully representable by a causal network (Bayesian network or maximal ancestral graph). Our empirical analysis confirms a super-linear speedup of the algorithm with increasing sample size, linear scalability with respect to the number of features and processing cores, while dominating other competitive algorithms in its class

    Bayesian Model Comparison in Genetic Association Analysis: Linear Mixed Modeling and SNP Set Testing

    Full text link
    We consider the problems of hypothesis testing and model comparison under a flexible Bayesian linear regression model whose formulation is closely connected with the linear mixed effect model and the parametric models for SNP set analysis in genetic association studies. We derive a class of analytic approximate Bayes factors and illustrate their connections with a variety of frequentist test statistics, including the Wald statistic and the variance component score statistic. Taking advantage of Bayesian model averaging and hierarchical modeling, we demonstrate some distinct advantages and flexibilities in the approaches utilizing the derived Bayes factors in the context of genetic association studies. We demonstrate our proposed methods using real or simulated numerical examples in applications of single SNP association testing, multi-locus fine-mapping and SNP set association testing

    Identifiability of Causal Graphs using Functional Models

    Get PDF
    This work addresses the following question: Under what assumptions on the data generating process can one infer the causal graph from the joint distribution? The approach taken by conditional independence-based causal discovery methods is based on two assumptions: the Markov condition and faithfulness. It has been shown that under these assumptions the causal graph can be identified up to Markov equivalence (some arrows remain undirected) using methods like the PC algorithm. In this work we propose an alternative by defining Identifiable Functional Model Classes (IFMOCs). As our main theorem we prove that if the data generating process belongs to an IFMOC, one can identify the complete causal graph. To the best of our knowledge this is the first identifiability result of this kind that is not limited to linear functional relationships. We discuss how the IFMOC assumption and the Markov and faithfulness assumptions relate to each other and explain why we believe that the IFMOC assumption can be tested more easily on given data. We further provide a practical algorithm that recovers the causal graph from finitely many data; experiments on simulated data support the theoretical findings
    corecore