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Abstract

This work addresses the following question:
Under what assumptions on the data gen-
erating process can one infer the causal
graph from the joint distribution? The ap-
proach taken by conditional independence-
based causal discovery methods is based on
two assumptions: the Markov condition and
faithfulness. It has been shown that under
these assumptions the causal graph can be
identified up to Markov equivalence (some ar-
rows remain undirected) using methods like
the PC algorithm. In this work we pro-
pose an alternative by defining Identifiable
Functional Model Classes (IFMOCs). As our
main theorem we prove that if the data gener-
ating process belongs to an IFMOC, one can
identify the complete causal graph. To the
best of our knowledge this is the first identi-
fiability result of this kind that is not limited
to linear functional relationships. We discuss
how the IFMOC assumption and the Markov
and faithfulness assumptions relate to each
other and explain why we believe that the
IFMOC assumption can be tested more eas-
ily on given data. We further provide a prac-
tical algorithm that recovers the causal graph
from finitely many data; experiments on sim-
ulated data support the theoretical findings.

1 Introduction

Inferring the causal structure of a set of random vari-
ables given a sample from the joint distribution is an
important problem in science.

Conditional independence-based methods like the PC

∗ {jpeters, janzing, bs}@tuebingen.mpg.de
† j.mooij@cs.ru.nl

algorithm [Spirtes et al., 2001] are based on the follow-
ing idea: Assume that the joint distribution is Markov
with respect to the causal graph, that means each vari-
able is independent of all its non-descendants given
its parents. If two variables, for example, are always
dependent, no matter what other variables one condi-
tions on, these two variables must be adjacent. Thus,
properties of the joint distribution can help to infer
parts of the graph structure. If one additionally as-
sumes faithfulness (that means all conditional inde-
pendences in the joint distribution are entailed by the
Markov condition), one can use further reasonings like:
If two variables are independent there is no collider-
free path between them. Obviously, many more rules
like this can be exploited. It is clear, however, that
these ideas are not able to distinguish between two
graphs that entail exactly the same set of (condi-
tional) independences, i.e. between Markov equivalent
graphs. Since many Markov equivalence classes con-
tain more than one graph, conditional independence-
based methods leave some arrows undirected and can-
not uniquely identify the true causal graph.

Consider the case of two dependent random variables.
Conditional independence-based methods cannot re-
cover the graph since there is no (conditional) inde-
pendence statement; X → Y and Y → X are Markov
equivalent. Recently, Shimizu et al. [2006], Hoyer et al.
[2009], Peters et al. [2010] suggest the following pro-
cedure to tackle this particularly challenging problem:
Whenever the joint distribution P(X,Y ) allows an ad-
ditive noise model (ANM) in one direction, i.e., there
is a function f and a noise variable N , such that1

Y = f(X) +N, N ⊥⊥ X,

but not in the other, one infers the former direction to
be the causal one (here: X → Y ). They further show
that under mild conditions (essentially some combi-
nations of f , PX and PN have to be excluded) the
model is identifiable. This means that whenever there

1N ⊥⊥ X means N and X are statistical independent.



is an ANM from X to Y the joint distribution does
not allow for an ANM from Y to X. In this work we
call these cases “bivariate identifiable”. Another ex-
ample of a bivariate identifiable model class are post-
nonlinear models [Zhang and Hyvärinen, 2009].

Based on bivariate identifiability we define Identifiable
Functional Model Classes (IFMOCs), which we use to
model distributions of more than two random vari-
ables. As a main result of this paper we prove that
whenever a data generating process belongs to an IF-
MOC, one can recover the true causal graph from the
joint distribution. To the best of our knowledge this
is the first identifiability statement of this kind that
allows for nonlinear interactions.

Analogously to the two-variable case described above,
practical methods for causal inference using ANMs
have been suggested for the multivariate case [Hoyer
et al., 2009, Zhang and Hyvärinen, 2009, Mooij et al.,
2009, Tillman et al., 2009]: whenever a graph models
the data the method infer this structure as the causal
graph. Our results fill a theoretical gap that has re-
mained open so far: except for the linear case [Shimizu
et al., 2006] the corresponding identifiability problem
had not been solved yet.

What happens if the IFMOC assumption is not satis-
fied? Janzing and Steudel [2010] argue that the true
data generating process should not fit an ANM only
in the wrong causal direction. We believe that there is
an analogous statement for the multivariate case, i.e.,
we do not expect the process to belong to an IFMOC
only for a different ordering of the variables. If one
accepts this belief one can test whether the IFMOC
assumption is valid: if it is not, one can either fit none
or multiple models to the data. In order to exploit this
deliberation, we provide an algorithm that outputs all
structures that fit the data. In contrast, faithfulness
in its general form cannot be tested on given data,
although Zhang and Spirtes [2007] decompose faith-
fulness into parts, some of which can be tested.

The paper is organized as follows: Section 2 provides
the two identifiability results and discusses their as-
sumptions. Section 3 proves of our main theorem. Sec-
tion 4 provides an algorithm that identifies the causal
graph given a data set and Section 5 contains experi-
ments on artificial data.

2 Identifiability Results

Let (Xi)i∈V be a finite family of random variables.
This work addresses the following problem:

Problem Given i.i.d. samples from a joint distribu-
tion P(Xi),i∈V, infer the true causal DAG Gc of the
process that generated the data.

The causal graph Gc is constructed by drawing arrows
from nodes to their direct effects. Throughout the pa-
per we assume an acyclic Gc, causal sufficiency (the
absence of latent common causes) and no selection
bias (conditioning on common effects). Specifically,
our goal is to investigate under what assumptions this
problem is solvable. Section 2.2 describes how condi-
tional independence-based methods attempt to tackle
this problem. In Section 2.3 we present the alternative
we propose and Section 2.4 compares the assumptions.
But first, we introduce concepts of graphical models
that will be used throughout the paper.

2.1 Directed Acyclic Graphs

Let (Xi)i∈V be a finite family of random variables and
G = (V, E) be a directed acyclic graph (DAG), with
edges E ⊆ V2. In a slight abuse of notation we often
speak of both Xi and i being the nodes (or vertices) of
G. The following definitions are well-known and can
be found in [Spirtes et al., 2001, Koller and Friedman,
2009], for example.

Definition 1 • Xi is called a parent of Xj if
(i, j) ∈ E and a child if (j, i) ∈ E. The set of
parents of Xj is denoted PAGj , the set of its chil-

dren by CHGj .

• Three nodes are called an immorality if one node
is a child of the two others, which themselves are
not adjacent. If (i, j) ∈ E and (k, j) ∈ E, j is
called a collider.

• A path in graph G is a sequence of (at least
two) distinct vertices Xi1 , . . . , Xin , such that
(ik, ik+1) ∈ E or (ik+1, ik) ∈ E for all k =
1, . . . , n−1. If for all k the former holds we speak
of a directed path between Xi1 and Xin and call
Xin a descendant of Xi1 . We denote all descen-
dants of Xi by DEGi and all non-descendants of
Xi by NDGi .

• A path between Xi1 and Xin is blocked by a set
S (with neither Xi1 nor Xin in this set) whenever
there is a node Xik , such that one of the following
two possibilities hold:

1. Xik ∈ S and

Xik−1
→ Xik → Xik+1

or

Xik−1
← Xik ← Xik+1

or

Xik−1
← Xik → Xik+1

2. Xik−1
→ Xik ← Xik+1

and neither Xik nor
any of its descendants is in S.

We say that two disjoint subsets of vertices A and
B are d-separated by a third (also disjoint) sub-
set S if every path between nodes in A and B is
blocked by S.



• The joint distribution P(Xi),i∈V is said to be
Markov with respect to the DAG G if

A,B d-sep. by C ⇒ A ⊥⊥ B |C

for all disjoint sets A,B,C.

• P(Xi),i∈V is said to be faithful to the DAG G if

A,B d-sep. by C ⇐ A ⊥⊥ B |C

for all disjoint sets A,B,C.

• We call two graphs Markov equivalent if they sat-
isfy the same set of d-separations, that means the
Markov condition entails the same set of (condi-
tional) independence conditions.

Notation: In the remainder of this article we use the
following notation: pX(x) denotes the pdf (or pmf) of
a random variable X, pS(xS) denotes the joint pdf (or
pmf) for a set of random variables S evaluated at the
point xS. We will assume that P(Xi),i∈V is absolutely
continuous with respect to either the Lebesgue mea-
sure or the counting measure (i.e., either we have a pdf
or a pmf). Then Y |X=x is a RV that corresponds to

the conditional density pY |X=x(y) =
pX,Y (x,y)
pX(x) .

2.2 Identifiability for Conditional
Independence-Based Methods

All conditional independence-based (CIB) methods we
are aware of make the following

Assumption 1 (Markov and Faithfulness)
Assume P(Xi),i∈V is Markov and faithful with respect
to the true causal DAG Gc.

In Section 2.4 we discuss Assumption 1 in more de-
tail. Given that one observes i.i.d. data sampled from
P(Xi),i∈V, Pearl [2009], Spirtes et al. [2001], Meek
[1995] show how one can exploit conditional inde-
pendences in the data for (partially) reconstructing
the graph Gc, e.g., by using the PC algorithm. The
graph can only be recovered up to Markov equivalence
classes.

Theorem 1 (Correctness of CIB Methods)
Under Assumption 1 one can identify the Markov
equivalence class of the true causal DAG from the
joint distribution.

Note that the first step of the PC algorithm deter-
mines the variables that are adjacent. Therefore one
has to test whether two variables are dependent given
any other subset of variables, which results in condi-
tional independence tests with conditioning sets of up
to #V−2 variables. Such tests are difficult to perform
in practice [e.g. Bergsma, 2004].

Summarizing, from our perspective this approach has
the following drawbacks: (1) We can identify the true
causal DAG only up to Markov equivalence classes.
(2) Conditional independence testing, especially with
a large conditioning set, is difficult in practice. (3) The
faithfulness condition in its general form cannot be
tested given the data. (4) If faithfulness is violated we
do not have any guarantees that the inferred graph(s)
will be close to the original.

2.3 Identifiability using Functional Models

First, we define functional models [e.g. Chapter 1.4
Pearl, 2009]) that are also known as Structural Equa-
tion Models:

Definition 2 (F-FMOC) • #V equations

Xi = fi(PAi, Ni) i ∈ V

with sets of variables PAi ⊆ V \ {Xi} and noise
distributions PNi are called a functional model if
the (Ni)i∈V are jointly independent and the graph
that is obtained by drawing arrows from all ele-
ments of PAi to Xi (for each i ∈ V) is acyclic.

• Given a set of functions

F ⊂ {f | f : Rm → R for any 2 ≤ m ≤ #V}

we call a set of functional models a functional
model class with function class F (F-FMOC) if
each of the functional models satisfies fi ∈ F for
all i ∈ V and induces P(Xi),i∈V that is absolutely
continuous with respect to the Lebesgue measure
or the counting measure.

Note that each functional model induces a unique joint
distribution P(Xi),i∈V. Some recent causal discov-
ery methods distinguish between cause and effect by
means of the following observation. For some classes of
bivariate functional models it has been shown that the
structure of the model is in the “generic case” identi-
fiable from the joint distribution: Consider, for exam-
ple, only linear and additive functions f(x, n) = a·x+n
and non-Gaussian noise. Then Shimizu et al. [2006]
show that if Y = f(X,NY ) holds with NY ⊥⊥ X, one
cannot find any function g such that X = g(Y,NX)
with NX ⊥⊥ Y . Thus, we will call the set of all triples
(f,PX ,PN ) of linear functions and non-Gaussian dis-
tributions bivariate identifiable. Hoyer et al. [2009],
Peters et al. [2010] show a similar result for non-
linear additive functions f(x, n) = g(x) + n, and
Zhang and Hyvärinen [2009] for post-nonlinear mod-
els f(x, n) = h

(
g(x) + n

)
with invertible h. Writing

F|2 := {f ∈ F | f : R2 → R} we can now generalize
these ideas and define:



Definition 3 (Bivariate Identifiable Set) Let F
be a set of functions as above. We call a set B ⊆
F|2 × PR × PR containing combinations of functions
f ∈ F|2 and distributions PX , PNY of input X and
noise NY bivariate identifiable in F if

(f,PX ,PNY ) ∈ B and Y = f(X,NY ), NY ⊥⊥ X
⇒ 6 ∃g ∈ F|2 : X = g(Y,NX), NX ⊥⊥ Y

holds. Additionally we require

f(X,NY ) 6⊥⊥ X (1)

for all (f,PX ,PNY ) ∈ B with NY ⊥⊥ X.

The first part of the definition requires that we cannot
simultaneously fit both directions (think of F being
the class of linear ANMs and B being all of those mod-
els, where input and noise are not jointly Gaussian).
The left hand side of (1) corresponds to the effect, the
right hand side to the cause. In the bivariate case one
can imagine that we do not want them to be indepen-
dent. Section 2.4 discusses this assumption.

Note further that the function class needs to be re-
stricted for the definition to be non-trivial, because
for any joint distribution of (X,Y ) we can find a func-
tion f and a noise NY ⊥⊥ X, such that Y = f(X,NY )
[Darmois, 1951]. Proving that a set is bivariate iden-
tifiable is not trivial. The following lemma presents
identifiability results that have been reported in liter-
ature. In order to improve readability, we describe the
classes and mention only the most important counter-
examples. We denote all other exceptions by the sets
B̃i, which mostly contain constant functions and other,
“non-generic” cases.

Lemma 1 The following sets have been shown to be
bivariate identifiable (m̃ ∈ N):
(i) linear ANMs: F1 = {f(x, n) = ax+ n}

B1 = {(X,N) not both Gaussian} \ B̃1

(ii) discrete ANMs: F2 = {f(x, n) ≡ φ(x)+n mod m̃}

B2 = {(φ,X) not affine and uniform} \ B̃2

(iii) nonlinear ANMs: F3 = {f(x, n) = φ(x) + n}

B3 = {(φ,X,N) not lin., Gauss, Gauss} \ B̃3

(iv) post-nonlin.: F4 = {f(x, n) = ψ(φ(x)+n), ψ inv.}

B4 = {(ψ, φ,N) not lin., lin., Gauss} \ B̃4

Proof. Shimizu et al. [2006], Peters et al. [2010],
Hoyer et al. [2009] and Zhang and Hyvärinen [2009]
provide proofs and the precise definitions of the sets
B̃i for (i)-(iv), respectively. �

In our final definition we generalize the concept of bi-
variate identifiable to more than two variables:

Definition 4 ((B,F)-IFMOC) Let B be bivariate
identifiable in F . We call an F-FMOC a (B,F)-
Identifiable Functional Model Class, for short (B,F)-
IFMOC, if for all its functional models

Xi = fi(PAi, Ni) , i ∈ V

for all i ∈ V, j ∈ PAi and for all xPAi\{j}, we have

fi(xPAi\{j}, ·︸︷︷︸
Xj

, ·︸︷︷︸
Ni

) ∈ F|2 . (2)

Additionally, for all sets S ⊆ V with PAi \ {j} ⊆ S ⊆
NDi \ {i, j}, there exists an xS with pS(xS) > 0 and(

fi(xPAi\{j}, ·︸︷︷︸
Xj

, ·︸︷︷︸
Ni

),PXj |XS=xS ,PNi

)
∈ B . (3)

Thus, an (B,F)-IFMOC consists of many functional
models, which are defined in Defintion 2.

Example 1 • In the bivariate case (#V = 2), in
Definition 4 we have S = ∅ and thus equation (2)
is always satisfied. (3) then reads that the triple
(f2,PX1 ,PN2) is in the bivariate identifiable set B
(if PA2 = {X1}).

• For more than two variables one can exploit
Lemma 1. For ANMs equation (2) holds: the
functions remain additive in the noise if some
arguments are fixed. If one further uses linear
ANMs F = F1, for example, and restricts B to
contain only non-Gaussian noise, also (3) holds
and we recover LiNGAM [Shimizu et al., 2006].
Using the other F 6= F1 from Lemma 1 we obtain
analogous results for the nonlinear case.

Now we are able to state our main theoretical result:

Theorem 2 Assume that P(Xi),i∈V is induced by a
functional model from a (B,F)-IFMOC with graph G.
Then it cannot be induced by a functional model from
the same (B,F)-IFMOC that corresponds to a different
graph G′ 6= G.

The proof can be found in Section 3. In the context of
causal inference we have the following reformulation:

Assumption 2 (IFMOC Assumption) Assume
that the data generating mechanism belongs to an
(B,F)-IFMOC with graph G = Gc (i.e., PAGi are the
direct causes of Xi).

Corollary 1 Under Assumption 2 we can identify
the true causal DAG Gc from the joint distribution
P(Xi),i∈V.



We do not claim that each natural process satisfies As-
sumption 2, only that if it does, we can then recover
the true causal relationships from the joint distribu-
tion. In our opinion, this approach provides the fol-
lowing advantages: (1) We can identify the true causal
graph even within the Markov equivalence class. (2)
One can use IFMOCs to identify non-faithful causal
models (even those “undetectable” versions of unfaith-
fulness mentioned in Section 2.4), for which condi-
tional independence-based methods usually fail. (3)
In our opinion the IFMOC assumption can be tested
given the data (see Section 2.4). (4) A functional
model contains more information than the correspond-
ing causal Markov DAG: some counterfactual state-
ments, for example, can only be deduced from the
functional model and not from the causal Markov DAG
[e.g. 1.4.4 in Pearl, 2009].
Note that our result already includes discrete models,
but only works for non-deterministic data.

2.4 Discussion of the Assumptions

We briefly discuss the differences and similarities be-
tween Assumptions 1 and 2.

Markov condition. Assume a functional model for
X1, . . . , Xn. Then Pearl [2009] shows in Theorem 1.4.1
that the joint distribution is Markov with respect to
the corresponding graph. Therefore, this part of the
assumptions is common to conditional independence-
based approaches and IFMOC based approaches.

Faithfulness. Zhang and Spirtes [2007] analyse the
testability of faithfulness. They decompose faithful-
ness into adjacency-faithfulness (two adjacent vari-
ables are dependent conditional on any set of other
variables) and orientation-faithfulness (a structure
X → Y ← Z renders X and Z dependent given any
set that contains Y and a structure X − Y − Z with
arrows other than above renders X and Z dependent
given any set of variables that does not contain Y ).
They prove, for example, that under the assumption of
Markov condition and adjacency faithfulness, any vio-
lation of orientation-faithfulness is detectable. How-
ever, some violations of adjacency faithfulness (e.g.
X → Y → Z and X → Z with X and Z indepen-
dent) cannot be detected because they are faithful to
an alternative structure (X → Y ← Z).

IFMOC assumption. The assumptions made by
our approach can be violated in different ways. (1)
The true data generating process belongs to an FMOC
(e.g., linear interactions and additive noise), but not
to an IFMOC (e.g., the interactions are linear and all
variables are Gaussian distributed). In this case the
joint distribution allows several representations that
lead to different causal graphs. Thus, the method

could output: “More than one graph possible, no an-
swer proposed.”. However, if we are willing to assume
faithfulness, we can recover the Markov equivalence
class by choosing the DAGs with the minimal number
of edges and thus obtain asymptotically the same re-
sults as the PC algorithm.2 (2) The true process does
not belong to an FMOC. Here, the method would not
be able to fit the data. Therefore the method should
output: “Bad model fit. Try a different model class.”
(3) The true process does not belong to an FMOC,
but belongs to an IFMOC with a different graph than
the true causal graph (e.g., X → Y is the ground truth
and the joint distribution does not allow an ANM from
X to Y , but only from Y to X). This is the only situ-
ation, in which our method fails and gives a wrong an-
swer. We would like to argue, however, that this case
is unlikely in the following sense: Janzing and Steudel
[2010] use the concept of Kolmogorov complexity to
show that it can only happen if the cause distribu-
tion p(cause) and the conditional distribution of the
effect given the cause p(effect | cause) are matched in
a precise way, whereas one rather expects input and
mechanism to be most often “independent” [Lemeire
and Dirkx, 2006, Janzing and Schölkopf, 2010]. Janz-
ing and Steudel [2010] only consider the bivariate case,
but we expect a similar statement to hold in general.

Faithfulness vs. IFMOC assumption. There is
a connection between equation (1) and faithfulness.
In the context of an IFMOC, (1) basically reads as
Lemma 4 (see below). If the latter is violated, this
is also a violation of faithfulness (in this sense, faith-
fulness is stronger). We even show in Proposition 2
that Lemma 4 implies causal minimality, a weak form
of faithfulness [Spirtes et al., 2001]. Causal minimal-
ity states that a joint distribution is not Markov with
respect to a strict subgraph of the true causal graph
Gc. Further, if g(x, n) = n lies in F|2 , (1) is satisfied:
If Y = f(X,NY ) ⊥⊥ X were true, X = g(Y,NX) with
NX = X would be a valid backward model.

3 Proof

We proceed with the proof of Theorem 2. The lem-
mata are proved in the appendix.

Lemma 2 Let Y,Z,N, S be random variables with
continuous joint density pY,Z,N,S(y, z, n, s) with re-
spect to some product measure (all random variables
here can be multivariate). Let f : Y × Z ×N → X be
a measurable function. If N ⊥⊥ (Y,Z, S) then for all
z ∈ Z, s ∈ S with pZ,S(z, s) > 0:

f(Y,Z,N) |Z=z,S=s = f(Y |Z=z,S=s, z,N)

2Proposition 1 in the appendix proves this statement.



Lemma 3 Consider a functional model with corre-
sponding DAG G and a random variable X. If S ⊆
NDGX then NX ⊥⊥ S.

Lemma 4 Consider an instance of an IFMOC with
DAG G, a variable B and one of its parents A. For
all sets S with PAGB \ {A} ⊆ S ⊆ NDGB we have

B 6⊥⊥ A |S

Proof of Theorem 2. We assume that there are two
instances of an IFMOC that both induce P(Xi),i∈V,
one with graph G, the other with graph G′. We will
show that G = G′. Since DAGs do not contain any
cycles, we always find nodes that have no descendants
(start a directed path at some node: after at most
#V−1 steps you reach a node without a child). Elim-
inating such a node from the graph leads to a DAG,
again; we can discard further nodes without children
in the new graph. We repeat this process for all nodes
that have no children in both G and G′ and have the
same parents in both graphs. If we end up with no
nodes left, the two graphs are identical and we are
done. Otherwise, we end up with two smaller graphs
that we again call G and G′ and a node X that has no

children in G and either PAGX 6= PAG
′

X or CHG
′

X 6= ∅.
We will show that this leads to a contradiction. Im-
portantly, because of the Markov property of G, all
other nodes are independent of X given PAGX :

X ⊥⊥ V \ (PAGX ∪ {X}) | PAGX (4)

To make the arguments easier to understand, we in-
troduce the following notation (see also Figure 1): We
partition G-parents of X into Y,Z and W. Here, Z
are also G′-parents of X, Y are G′-children of X and
W are not adjacent to X in G′. We denote with D
the G′-parents of X that are not adjacent to X in G
and by E the G′-children of X that are not adjacent
to X in G. Thus: PAGX = Y ∪ Z ∪W, CHGX = ∅,
PAG

′

X = Z ∪D, CHG
′

X = Y ∪E.

X

W Y Z

part of G

X

D Z

EY

part of G′

Figure 1: Nodes adjacent to X in G and G′.

Consider T := W ∪Y. We distinguish two cases:

(i) T = ∅. Then there must be a node D ∈ D or a
node E ∈ E, otherwise X would have been discarded.

1. If there is a D ∈ D then (4) implies X ⊥⊥ D |S
for S := Z∪D\{D}, which contradicts Lemma 4
(applied to G′).

2. If D = ∅ and there is E ∈ E then E ⊥⊥ X |S holds

for S := Z ∪ PAG
′

E \ {X}, which also contradicts

Lemma 4 (note that Z ⊆ NDG
′

E to avoid cycles).

(ii) T 6= ∅. Then T contains a “G′-youngest” node
with the property that there is no directed G′-path
from this node to any other node in T. This node
may not be unique.

1. Suppose that some W ∈ W is such a youngest
node. Consider the DAG G̃′ that equals G′ with
additional edges Y → W and W ′ → W for all
Y ∈ Y and W ′ ∈W \ {W}. In G̃′ X and W are
not adjacent. Thus we find a set S̃ such that S̃
d-separates X and W in G̃′; indeed, one can take

S̃ :=
(
CHG̃

′

X ∪ PAG̃
′
(CHG̃

′

X )
)
\
(
U ∪ DEG̃

′
(U)

)
with U = CHG̃

′

X ∩ CHG̃
′

W . Then also S = S̃ ∪
{Y,Z,W \ {W}} d-separates X and W in G̃′.

Indeed: All Y ∈ Y are already in S̃ in order
to block X → Y → W . Suppose there is a
G̃′-path that is blocked by S̃ and unblocked if
we add Z and W ′ nodes to S̃. How can we un-
block a path by including more nodes? The
path (X · · ·V1 · · ·U1 · · ·W in Figure 2) must
contain a collider V1 that is an ancestor of a
Z with V1, . . . , Vm, Z /∈ S̃ and corresponding
nodes Ui for a W ′ node. Choose V1 and U1

on the given path so close to each other such
that there is no such a collider in between. If
there is no V1, choose U1 close to X, if there
is no U1, choose V1 close to W . Now the
path X ← Z · · ·V1 · · ·U1 · · ·W ′ → W is un-
blocked given S̃, which is a contradiction to S̃
d-separates X and W .

But then S d-separates X and W in G′, too and
we have X ⊥⊥W |S which contradicts Lemma 4
(applied to G).

X WV1

V2

Vm

Z

U1

U2

Ur

W ′

X XX X

X
X

X
X

X X

Figure 2: Assume the path X · · ·V1 · · ·U1 · · ·W is
blocked by S̃, but unblocked if we include Z and W ′.
Then the red path is unblocked given S̃.

2. Therefore, the G′-youngest node in T must be

some Y ∈ Y. We define S := PAGX \{Y }∪PAG
′

Y \
{X}. Clearly, S ⊆ NDGX since X does not have



any descendants in G. Further, S ⊆ NDG
′

Y be-
cause Y is the youngest under all W ∈ W and
Y ∈ Y \ {Y } by construction and any directed
path from Y to Z ∈ Z would introduce a cycle in

G′. Ergo, {Y }∪S ⊆ NDGX and {X}∪S ⊆ NDG
′

Y .
Lemma 3 gives us NX ⊥⊥ (Y,S) and NY ⊥⊥ (X,S)
and we can thus apply Lemma 2. From G we find

X |XS=xS
= fX(xPAGX\{Y }

,Y |XS=xS
, NX),

NX ⊥⊥ Y |XS=xS

and from G′ we have

Y |XS=xS
= gY (x

PAG
′

Y \{X}
,X |XS=xS

, NY ),

NY ⊥⊥ X |XS=xS

This leads to a contradiction since according
to Definition 4 we can choose xS such that
(fX(xPAGX\{Y }

, ·, ·),PY |XS=xS ,PNX ) ∈ B, and

gY (x
PAG

′
Y \{X}

, ·, ·) ∈ F .

�

4 Algorithm

Given a data set the main idea of the method is as fol-
lows: for each graph structure it fits the correspond-
ing functional model from the F-FMOCand outputs
all graphs, for which the residuals are independent. If
the algorithm has either no or multiple outputs, The-
orem 2 proves that Assumption 2 must be violated.
Algorithm 1 shows how to avoid checking all possible
DAGs: it finds the sink node, disregards it and con-
tinues with the smaller graph. The algorithm is based
on [Mooij et al., 2009] but outputs all graphs that are
consistent with the data by using depth-first search:
whenever there is more than one way to proceed in
building the DAG, instead of choosing the one that
leads to the highest p-value of the independence test
(see Algorithm 1, line 8 in Mooij et al. [2009]) we keep
track of all possibilities. Note that σ1, . . . , σd give the
causal order; they also depend on currentcase (omit-
ted to improve readability). To increase robustness, we
test for joint independence of the residuals at the end
(not shown). The algorithm runs with any indepen-
dence test and any regression method, our choices are
described below. Code can be found on the homepage
of the first author or of the MPI causality group.

5 Experiments

For regression we either use linear regression
(IFMOClin) or Gaussian Processes as in [Hoyer et al.,
2009] (IFMOCGP). To check whether the residuals are
independent of the regressors we use HSIC [Gretton

Algorithm 1 Finding all possible DAGs

1: input data matrix X of size N × d, sign. value α
2: totalcases← 1, currentcase← 1
3: S(1)← {1, . . . , d}, jj(1)← d, σ1 ← 0

4: while currentcase ≤ totalcases do
5: for j = jj(currentcase) downto 1 do
6: for all i ∈ S do
7: ε̂i ← FittedNoiseValues(XS\{i}, Xi)
8: pi ← TestIndependence(XS\{i}, ε̂i)
9: end for

10: i∗ ← argmax pi
11: if pi < α for all i then
12: break
13: else if pi ≥ α for several i then
14: increase totalcases accordingly
15: store jj, σ, S and those i (except i∗)
16: end if
17: σj(currentcase)← i∗

18: S(currentcase)← S(currentcase) \ {i∗}
19: end for
20: currentcase← currentcase+ 1
21: end while

22: for currentcase = 1 to totalcases do
23: for j = 1 to d do
24: i← σj
25: PAi ← {σ1, . . . , σj−1}
26: for k = 1 to j − 1 do
27: ε̂i ← FittedNoiseValues(XPAi\{σk}, Xi)
28: if TestIndependence(XPAi

, ε̂i) ≥ α then
29: PAi ← PAi \ {σk}
30: end if
31: end for
32: end for
33: end for

34: output all different DAGs
35: If #DAGs = 0 or ≥ 2, output “I do not know.”

et al., 2008]. For the PC algorithm we used an im-
plementation by Tillman et al. [2009] and as a test ei-
ther partial correlation (PCcorr) or “conditional HSIC”
(PCHSIC) proposed by Fukumizu et al. [2008] with 500
bootstrap samples to generate the null distribution.
Ignoring problems of multiple testing we always set
the significance level of statistical tests to 5%.

Data Set 1: How often do we miss faithfulness?
For sample sizes between 100 and 500, 000 we simulate
500 times data from the following model:

X1 X3

X4X2

X1 = β1N1

X2 = α12X1 + β2N2

X3 = α13X1 + β3N3

X4 = α24X2 + α34X3 + β4N4



with Ni
iid∼ N (0, 1). We regard the left DAG as ground

truth and sample the coefficients α uniformly between
−5 and 5 and β uniformly between 0 and 0.5. We
expect the distribution to be non-faithful only on a
subset of measure 0. Indeed, given the sampled co-
efficients we computed all (partial) correlations and
verified that all distributions were faithful to the true
causal graph. For finite sample size, however, we ex-
pect some cases, where the false hypothesis of zero
partial correlation is not rejected. These type 2 errors
lead to wrong conclusions about the underlying graph
and Figure 3 shows how often they occur in the exper-
iments. The number decreases slowly with the sample
size, but even for a sample size of 500, 000 they happen
in more than 10% of the cases. Note that they would
be even more frequent if one lowers the significance
threshold of the test. In our experiments, other dis-
tributions for α and β lead to almost identical results
(not shown).
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Figure 3: Data Set 1. The graph shows the proportion
of cases (out of 500), where at least one (partial) cor-
relation was falsly regarded as zero. These errors lead
to wrong causal conclusions.

Data Set 2: Both methods should work when
both assumptions are met.
We simulate 100 data sets (sample size 400) from two
different structures:

X1

X2

X3

X4

X1 = N1

X2 = N2

X3 = f3(X1) +N3

X4 = f4(X1, X2, X3) +N4

linear1 and nonlinear1

X1

X2

X3

X4

X1 = N1

X2 = f2(X1) +N2

X3 = f3(X1, X2) +N3

X4 = f4(X2, X3) +N4

linear2 and nonlinear2

with Ni
iid∼ U([−0.5, 0.5]). We regard the drawn graphs

as the true causal DAGs.
In linear1 we choose fi(x) = atix and in nonlinear1

f3(x1) = a3 exp(−2x21)− 1

f4(x1, x2, x3) = a41 (x1 + 1)2 + a42 x2 + a43x3 .

For linear2 we have fi(x) = btix and for nonlinear2

f2(x1) = b2x1, f4(x2, x3) = b42 (x2 + 1)2 + b43x3

and f3(x1, x2) = b31 exp(−2x21) + b32x2 ,

with ai, bi
iid∼ U([−2,−1]∪ [1, 2]). Table 1 shows the re-

sults. PCpart fails for the nonlinear data sets, whereas
IMFOClin is undecided. The second setting is more
difficult becauseX1 andX4 are only independent given
X2 and X4 and not a single variable. Especially in this
case, the proposed method seems to be more robust.
Recall that for PC “correct” means having identified
the Markov equivalence class containing the true graph
(e.g., with an undirected arrow X1−X3), whereas the
IFMOC approach identifies the single correct DAG.

lin1 nonlin1 lin2 nonlin2

PCcorr 90/10/0 6/94/0 47/53/0 0/100/0
PCHSIC 60/40/0 96/4/0 3/97/0 4/96/0
IFMOClin 82/0/18 0/0/100 86/0/14 0/0/100
IFMOCGP 79/2/19 86/1/13 76/1/23 86/8/6

Table 1: Data Set 2. correct/wrong/undecided (out
of 100). The proposed method clearly makes the least
mistakes and is not always forced to take a decision.

Data Set 3: If the distribution is not faithful,
PC fails, IFMOC approach does not.
We simulate 100 data sets (sample size 400) from

X1

X2

X3

X4

X1 = N1

X2 = 1.5X1 +N2

X3 = 3X1 − 2X2 +N3

X4 = 1.8X3 +N4

with Ni
iid∼ U([0, 0.5]). The distribution is not faithful

to the true graph (left) since X1 ⊥⊥ X3 is not entailed
by the Markov condition. This is an instance of non-
faithfulness that cannot be detected from the data, see
Section 2.4. Out of these 100 data sets, both PC algo-
rithms always return a wrong DAG that is not Markov
equivalent to the true graph. IFMOClin returns the
correct DAG in 89 cases and no wrong graph.

Data Set 4: If the data are induced by an
FMOC, but not an IFMOC, both methods can
return the Markov equivalence class.
We simulate 100 data sets (sample size 400) from



X1

X2

X3

X4

X1 = 0.5N1

X2 = 0.5N2

X3 = −X1 + 0.1N3

X4 = 1.5X1 − 2X2 +X3 +N4

with Ni
iid∼ N (0, 1). The corresponding distribution

is faithful to the true causal graph (left). Since the
regime is Gaussian and linear, we use PCcorr that
uses partial correlation to test for conditional indepen-
dence. In principle, we expect IFMOC to successfully
fit functional models from different structures and to
output “I do not know”. If one is willing to assume
faithfulness, one can output all graphs with the min-
imal number of edges, which correspond to the true
Markov equivalence class (Section 2.4). Out of 100
data sets PCcorr recovers the true Markov equivalence
class in 47 cases (the rest is incorrect); IFMOClin in
94 cases and remains undecided 6 times.

Data Set 5: If the assumptions are violated,
PC gives wrong results, IFMOC is undecided.
We simulate 100 data sets (sample size is 400) from

X1 X3

X2

X1 = N1

X2 = X1 + 0.5N2

X3 = (X1 −X2) · 0.5N3

with Ni
iid∼ U([−0.5, 0.5]). The corresponding distribu-

tion is neither faithful to the true DAG (left) nor do
we expect it to satisfy an ANM. Both PC algorithms
always output wrong results, whereas both IFMOC
methods always output “I do not know”.

6 Conclusion and Future Work

We proved that using identifiable functional model
classes, i.e., models that are able to distinguish be-
tween X → Y and Y → X, the whole true causal
graph is identifiable from the joint distribution even
within the Markov equivalence class. We only need
to assume a weak form of faithfulness, namely causal
minimality. We further built on an existing algorithm
for recovering the causal graph from a finite amount of
data. We tested the proposed algorithm with ANMs
on simulated data sets. The experiments support our
theoretical results.

Several topics remain for future work: (1) We be-
lieve that some existing methods from Bayesian Struc-
ture Learning are similar to a Bayesian version of our
IFMOC approach. One may be able to apply our theo-
retical findings to these methods and prove their con-

sistency. (2) In our experiments we found that the
proposed method outperforms the PC algorithm even
for some models that meet all assumptions; this can
only occur for finitely many samples and should be
investigated further. (3) It would be interesting to an-
alyze situations, where parts of the graph satisfy the
assumptions and others do not. Preliminary experi-
ments show that some parts of the graph remain iden-
tifiable. (4) It is important to test the proposed prin-
ciple for causal inference on real data sets, for which
the ground truth is known, and compare it to other
methods like PC.
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Appendix

Proposition 1 Assume Gc is the true graph and as-
sume P is faithful and Markov with respect to Gc. If
P is induced by a functional model from an IFMOC
with G′ as corresponding DAG we have #edges in Gc ≤
#edges in G′.

Proof. P must be Markov with respect to G′ and
must thus satisfy IG′ (which we denote for all (con-
ditional) independence equations that are induced by
the graph structure of G′). P must also satisfy IGc and
since P is faithful wrt Gc, we have IG′ ⊆ IGc . Thus:
missing edges in G′ ⊆ missing edges in Gc and there-
fore: #edges in Gc ≤ #edges in G′. �

Proof of Lemma 2 First, note that the joint of
Y,Z,N, S satisfies:

pY,Z,N,S(y, z, n, s) = pZ,S(z, s)pY |Z=z,S=s(y)pN (n)

because N ⊥⊥ (Y,Z, S). Consider the random variable
X := f(Y,Z,N). We have, for all z ∈ Z, s ∈ S with
pZ,S(z, s) > 0 and for all x ∈ X :

pX |Z=z,S=s
(x) =

pX,Z,S(x, z, s)

pZ,S(z, s)

=

∫
pY,Z,N,S(y, z, n, s)δ

(
x− f(y, z, n)

)
dy dn

pZ,S(z, s)

=

∫
pY |Z=z,S=s(y)pN (n)δ

(
x− f(y, z, n)

)
dy dn

= pf(Y |Z=z,S=s,z,N)(x)

Ergo, X |Z=z,S=s = f(Y |Z=z,S=s, z,N) for all z, s
with pZ,S(z, s) > 0. �

Proof of Lemma 3 Write S = {S1, . . . , Sk}. Then

S =
(
fS1(PAGS1

, NS1), . . . , fSk
(PAGSk

, NSk
)
)
.

Again, one can substitute the parents of Si by the
corresponding functional equations and proceed recur-
sively. After finitely many steps one obtains S =
f(NT1

, . . . , NTl
), where {T1, . . . , Tl} is the set of all

ancestors of nodes in S, which does not contain X.
Since all noise variables are jointly independent we
have NX ⊥⊥ S. �

Proof of Lemma 4 According to Definition 4 we can
choose xS, such that p(xS) > 0 and(

fB(xPAGB\{A}
, ·︸︷︷︸
A

, ·︸︷︷︸
NB

),PA|XS=xS ,PNB
)
∈ A.

Because of S ⊆ NDGB and Lemma 3 we can apply
Lemma 2, which gives fB(xPAGB\{A}

, A|XS=xS
, NB) =

B|XS=xS
.

But then (1) reads

A|XS=xS
6⊥⊥ fB(xPAGB\{A}

, A|XS=xS
, NB) = B|XS=xS

�

Proposition 2 If the joint distribution has a strictly
positive density with respect to some product measure,
Lemma 4 is equivalent to causal minimality.

Proof. Suppose Lemma 4 does not hold. Then

∃S : PAGB \ {A} ⊆ S ⊆ NDGB and B ⊥⊥ A |S
⇒ ∃S̃ : B ⊥⊥ A |PAGB \ {A} ∪ S̃ and B ⊥⊥ S̃ |PAGB
(∗)⇒ ∃S̃ : B ⊥⊥ (A, S̃) |PAGB \ {A}
⇒ B ⊥⊥ A |PAGB \ {A}

⇒ P (XV) = P (B|PAGB \ {A})
∏
X 6=B

P (X|PAGX)

⇒ P (XV) is Markov wrt to G without A→ B

⇒ Causal minimality is violated.

⇒ ∃A,B : is Markov wrt to G without A→ B

⇒ ∃A,B : A ⊥⊥ B |PAGB \ {A}
⇒ Lemma 4 is violated.

(∗) is the “intersection” property of conditional inde-
pendence [e.g. 1.1.5 in Pearl, 2009] and requires pos-
itivity of the densities. �


