1,761 research outputs found

    A Hybrid Artificial Neural Network Model For Data Visualisation, Classification, And Clustering [QP363.3. T253 2006 f rb].

    Get PDF
    Tesis ini mempersembahkan penyelidikan tentang satu model hibrid rangkaian neural buatan yang boleh menghasilkan satu peta pengekalan-topologi, serupa dengan penerangan teori bagi peta otak, untuk visualisasi, klasifikasi dan pengklusteran data. In this thesis, the research of a hybrid Artificial Neural Network (ANN) model that is able to produce a topology-preserving map, which is akin to the theoretical explanation of the brain map, for data visualisation, classification, and clustering is presented

    Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach

    Get PDF
    Deep learning approaches have achieved state-of-the-art performance in cardiac magnetic resonance (CMR) image segmentation. However, most approaches have focused on learning image intensity features for segmentation, whereas the incorporation of anatomical shape priors has received less attention. In this paper, we combine a multi-task deep learning approach with atlas propagation to develop a shape-constrained bi-ventricular segmentation pipeline for short-axis CMR volumetric images. The pipeline first employs a fully convolutional network (FCN) that learns segmentation and landmark localisation tasks simultaneously. The architecture of the proposed FCN uses a 2.5D representation, thus combining the computational advantage of 2D FCNs networks and the capability of addressing 3D spatial consistency without compromising segmentation accuracy. Moreover, the refinement step is designed to explicitly enforce a shape constraint and improve segmentation quality. This step is effective for overcoming image artefacts (e.g. due to different breath-hold positions and large slice thickness), which preclude the creation of anatomically meaningful 3D cardiac shapes. The proposed pipeline is fully automated, due to network's ability to infer landmarks, which are then used downstream in the pipeline to initialise atlas propagation. We validate the pipeline on 1831 healthy subjects and 649 subjects with pulmonary hypertension. Extensive numerical experiments on the two datasets demonstrate that our proposed method is robust and capable of producing accurate, high-resolution and anatomically smooth bi-ventricular 3D models, despite the artefacts in input CMR volumes

    A Hybrid Artificial Neural Network Model For Data Visualisation, Classification, And Clustering

    Get PDF
    Tesis ini mempersembahkan penyelidikan tentang satu model hibrid rangkaian neural buatan yang boleh menghasilkan satu peta pengekalan-topologi In this thesis, the research of a hybrid Artificial Neural Network (ANN) model that is able to produce a topology-preserving ma

    Revealing Patient-Reported Experiences in Healthcare from Social Media using the DAPMAV Framework

    Full text link
    Understanding patient experience in healthcare is increasingly important and desired by medical professionals in a patient-centred care approach. Healthcare discourse on social media presents an opportunity to gain a unique perspective on patient-reported experiences, complementing traditional survey data. These social media reports often appear as first-hand accounts of patients' journeys through the healthcare system, whose details extend beyond the confines of structured surveys and at a far larger scale than focus groups. However, in contrast with the vast presence of patient-experience data on social media and the potential benefits the data offers, it attracts comparatively little research attention due to the technical proficiency required for text analysis. In this paper, we introduce the Design-Acquire-Process-Model-Analyse-Visualise (DAPMAV) framework to equip non-technical domain experts with a structured approach that will enable them to capture patient-reported experiences from social media data. We apply this framework in a case study on prostate cancer data from /r/ProstateCancer, demonstrate the framework's value in capturing specific aspects of patient concern (such as sexual dysfunction), provide an overview of the discourse, and show narrative and emotional progression through these stories. We anticipate this framework to apply to a wide variety of areas in healthcare, including capturing and differentiating experiences across minority groups, geographic boundaries, and types of illnesses

    A Geneaology of Correspondence Analysis: Part 2 - The Variants

    Get PDF
    In 2012, a comprehensive historical and genealogical discussion of correspondence analysis was published in Australian and New Zealand Journal of Statistics. That genealogy consisted of more than 270 key books and articles and focused on an historical development of the correspondence analysis,a statistical tool which provides the analyst with a visual inspection of the association between two or more categorical variables. In this new genealogy, we provide a brief overview of over 30 variants of correspondence analysis that now exist outside of the traditional approaches used to analysethe association between two or more categorical variables. It comprises of a bibliography of a more than 300 books and articles that were not included in the 2012 bibliography and highlights the growth in the development ofcorrespondence analysis across all areas of research

    Development and Application of Chemometric Methods for Modelling Metabolic Spectral Profiles

    No full text
    The interpretation of metabolic information is crucial to understanding the functioning of a biological system. Latent information about the metabolic state of a sample can be acquired using analytical chemistry methods, which generate spectroscopic profiles. Thus, nuclear magnetic resonance spectroscopy and mass spectrometry techniques can be employed to generate vast amounts of highly complex data on the metabolic content of biofluids and tissue, and this thesis discusses ways to process, analyse and interpret these data successfully. The evaluation of J -resolved spectroscopy in magnetic resonance profiling and the statistical techniques required to extract maximum information from the projections of these spectra are studied. In particular, data processing is evaluated, and correlation and regression methods are investigated with respect to enhanced model interpretation and biomarker identification. Additionally, it is shown that non-linearities in metabonomic data can be effectively modelled with kernel-based orthogonal partial least squares, for which an automated optimisation of the kernel parameter with nested cross-validation is implemented. The interpretation of orthogonal variation and predictive ability enabled by this approach are demonstrated in regression and classification models for applications in toxicology and parasitology. Finally, the vast amount of data generated with mass spectrometry imaging is investigated in terms of data processing, and the benefits of applying multivariate techniques to these data are illustrated, especially in terms of interpretation and visualisation using colour-coding of images. The advantages of methods such as principal component analysis, self-organising maps and manifold learning over univariate analysis are highlighted. This body of work therefore demonstrates new means of increasing the amount of biochemical information that can be obtained from a given set of samples in biological applications using spectral profiling. Various analytical and statistical methods are investigated and illustrated with applications drawn from diverse biomedical areas

    Information Visualisation Practices for Improving Patient Readability of Blood Pressure, Health Data, and Health Literacy

    Get PDF
    Personal health data obtained through self-monitoring is often presented through standardised representations with little intrinsic meaning for those who may need it the most since low health literacy is associated with poor health. By failing to inform users about their health status, these representations can be dangerous, leaving patients feeling lost, confused, anxious, or even depressed. Information Visualisation can play an important role in aiding patients making sense of their health data and health status, as long as it's aligned with their needs, motivations, and goals. Following Human Centred Design practices, user research methods were applied in order to understand the context of self-monitorisation, as well as identifying which metrics differed the most from participants' mental models. Thanks to quantitative data obtained from a survey, Blood Pressure was identified as the most problematic health variable. A series of interviews allowed patients of chronic conditions to vocalize the challenges they faced in the management of their conditions. Taking into account information obtained from previous steps, multiple ways to map blood pressure data onto design elements were explored and different visualisations were designed. Finally, said visualisations were tested through guided interviews with patients with blood pressure problems. Results showed that participants prefered different visualisations for different goals, and enjoyed being able to choose freely from them; participants with lower literacy but who were deeply invested in monitoring their health found tables to be the most informative visualizations; finally, participants identified colour scales as the most intuitive method to represent health status and health risk

    Monitoring, diagnostics and improvement of process performance

    Get PDF
    The data generated in a chemical industry is a reflection of the process. With the modern computer control systems and data logging facilities, there is an increasing ability to collect large amounts of data. As there are many underlying aspects of the process in that data, with its proper utilization, it is possible to obtain useful information for process monitoring and fault diagnosis in addition to many other decision making activities. The purpose of this research is to utilize the data driven multivariate techniques of Principal Component Analysis (PCA) and Independent Component Analysis (ICA) for the estimation of process parameters. This research also includes analysis and comparison of these techniques for fault detection and diagnosis along with introduction, explanation and results from a new methodology developed in this research work namely Hybrid Independent Component Analysis (HICA).The first part of this research is the utilization of models of PCA and ICA for estimation of process parameters. The individual techniques of PCA and ICA are applied separately to the original data set of a waste water treatment plant (WWTP) and the process parameters for the unknown conditions of the process are calculated. For each of the techniques (PCA and ICA), the validation of the calculated parameters is carried out by construction of Decision Trees on WWTP dataset using inductive data mining and See 5.0. Both individual techniques were able to estimate all parameters successfully. The minor limitation in the validation of all results may be due to the strict application of these techniques to Gaussian and non-Gaussian data sets respectively. Using statistical analysis it was shown that the data set used in this work exhibits Gaussian and non-Gaussian behaviour.In the second part of this work multivariate techniques of Principal Component Analysis (PCA) and Independent Component Analysis (ICA) have been used for fault detection and diagnosis of a process along with introduction of the new technique, Hybrid Independent Component Analysis (HICA). The techniques are applied to two case studies, the waste water treatment plant (WWTP) and an Air pollution data set. As reported in literature, PCA and ICA proved to be useful tools for process monitoring on both data set, but a comparison of PCA and ICA along with the newly developed technique (HICA) illustrated the superiority of HICA over PCA and ICA. It is evident from the fact that PCA detected 74% and 67% of the faults in the WWTP data and Air pollution data set respectively. ICA successfully detected 61.3% and 62% of the faults from these datasets. Finally HICA showed improved results by the detection of 90% and 81% of the faults in both case studies. This showed that the new developed algorithm is more effective than the individual techniques of PCA and ICA. For fault diagnosis using PCA, ICA and HICA, contribution plots are constructed leading to the identification of responsible variable/s for a particular fault. This part also includes the work done for the estimation of process parameters using HICA technique as was done with PCA and ICA in the first part of the research. As expected HICA technique was more successful in estimation of parameters than PCA and ICA in line with its working for process monitoring
    • ā€¦
    corecore