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  SATU MODEL HIBRID RANGKAIAN NEURAL BUATAN UNTUK 
VISUALISASI, KLASIFIKASI DAN PENGKLUSTERAN DATA 

 
 

ABSTRAK 

Tesis ini mempersembahkan penyelidikan tentang satu model hibrid rangkaian 

neural buatan yang boleh menghasilkan satu peta pengekalan-topologi, serupa dengan 

penerangan teori bagi peta otak, untuk visualisasi, klasifikasi dan pengklusteran data. 

Model rangkaian neural buatan yang dicadangkan mengintegrasikan Self-Organizing 

Map (SOM) dengan kernel-based Maximum Entropy learning rule (kMER) ke dalam 

satu gabungan rangkakerja dan diistilahkan sebagai SOM-kMER. Satu siri kajian 

empirikal yang melibatkan masalah piawai dan masalah dunia sebenar digunakan 

untuk menilai keberkesanan SOM-kMER. Keputusan eksperimen menunjukkan SOM-

kMER berupaya untuk mencapai kadar penumpuan yang lebih cepat apabila 

dibandingkan dengan kMER dan menghasilkan visualisasi dengan bilangan unit mati 

yang lebih kecil apabila dibandingkan dengan SOM. Ia juga mampu membentuk peta 

kebarangkalian setara pada akhir proses pembelajaran. Penyelidikan ini juga 

mencadangkan satu variasi SOM-kMER, iaitu probabilistic SOM-kMER (pSOM-kMER) 

untuk visualisasi data dan klasifikasi. Model pSOM-kMER ini boleh beroperasi dalam 

persekitaran kebarangkalian dan mengimplementasikan prinsip dari teori keputusan 

statistik dalam menangani masalah klasifikasi. Selain daripada klasifikasi, satu ciri 

istimewa pSOM-kMER ialah keupayaannya untuk menghasilkan visualisasi struktur 

data. Penilaian prestasi dengan menggunakan set data piawai menunjukkan hasilan 

pSOM-kMER adalah setanding dengan beberapa sistem pembelajaran pintar yang 

lain. Berdasarkan SOM-kMER, penyelidikan yang setakat ini bertumpu kepada 

klasifikasi data, diperluaskan untuk merangkumi pengklusteran data dalam usaha 

untuk menangani masalah yang melibatkan data tidak berlabel. Satu algoritma 
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pengawasan penyahkusutan lattice digunakan bersama SOM-kMER bagi tujuan 

pengklusteran berdasarkan ketumpatan. SOM-kMER bersama algoritma pengawasan 

yang baru ini telah ditunjukkan secara empirikal berupaya untuk mempercepatkan 

pembentukan peta topografik apabila dibandingkan dengan pendekatan kMER yang 

asal. Dengan mempergunakan keberkesanan SOM-kMER untuk klasifikasi dan 

pengklusteran data, penggunaan SOM-kMER (dan variasinya) dalam masalah 

sokongan keputusan didemonstrasikan. Hasil yang diperolehi menunjukkan keupayaan 

pendekatan yang dicadangkan untuk mengintegrasikan (i) pengetahuan, pengalaman, 

dan/atau penilaian subjektif manusia dan (ii) keupayaan sistem komputer untuk 

memproses data dan maklumat secara objektif ke dalam satu gabungan rangkakerja 

bagi menangani tugas pembuatan keputusan. 
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A HYBRID ARTIFICIAL NEURAL NETWORK MODEL FOR DATA 
VISUALISATION, CLASSIFICATION, AND CLUSTERING  

 
  

ABSTRACT 

In this thesis, the research of a hybrid Artificial Neural Network (ANN) model 

that is able to produce a topology-preserving map, which is akin to the theoretical 

explanation of the brain map, for data visualisation, classification, and clustering is 

presented. The proposed hybrid ANN model integrates the Self-Organising Map (SOM) 

and the kernel-based Maximum Entropy learning rule (kMER) into a unified framework, 

and is termed as SOM-kMER.  A series of empirical studies comprising benchmark and 

real-world problems is employed to evaluate the effectiveness of SOM-kMER. The 

experimental results demonstrate that SOM-kMER is able to achieve a faster 

convergence rate when compared with kMER, and to produce visualisation with fewer 

dead units when compared with SOM.  It is also able to form an equiprobabilistic map 

at the end of its learning process.  This research has also proposed a variant of SOM-

kMER, i.e., probabilistic SOM-kMER (pSOM-kMER) for data classification.  The pSOM-

kMER model is able to operate in a probabilistic environment and to implement the 

principles of statistical decision theory in undertaking classification problems. In 

addition to performing classification, a distinctive feature of pSOM-kMER is its ability to 

generate visualisation for the underlying data structures.  Performance evaluation using 

benchmark datasets has shown that the results of pSOM-kMER compare favourably 

with those from a number of machine learning systems. Based on SOM-kMER, this 

research has further expanded from data classification to data clustering in tackling 

problems using unlabelled data samples. A new lattice disentangling monitoring 

algorithm is coupled with SOM-kMER for density-based clustering. The empirical 

results show that SOM-kMER with the new lattice disentangling monitoring algorithm is 
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able to accelerate the formation of the topographic map when compared with kMER.  

By capitalising on the efficacy of SOM-kMER in data classification and clustering, the 

applicability of SOM-kMER (and its variants) to decision support problems is 

demonstrated. The results obtained reveal that the proposed approach is able to 

integrate (i) human's knowledge, experience, and/or subjective judgements and (ii) the 

capability of the computer in processing data and information objectively into a unified 

framework for undertaking decision-making tasks. 
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CHAPTER 1 
INTRODUCTION 

 
 

1.1 Preliminaries 

The extraordinarily rapid development of the electronic computer has 

invigorated human curiosity about the working of the brain and the nature of the human 

mind. The availability of the computer as a research tool has tremendously accelerated 

scientific progress in many fields which are important for a better understanding of the 

brain, such as neuroscience, psychology, cognitive science, and computer science.  AI 

is concerned with making the computer behaves like a human and focusing on creating 

computer systems that can engage on behaviours that humans consider intelligent. 

Indeed, the field of AI plays a major role in the theoretical and practical studies on 

human intelligence.   

 

Conventional computers use an algorithmic approach where the computer 

follows a set of instructions in order to solve a problem. With such an approach, the 

computer must know the specific problem solving steps. An ANN, on the other hand, 

depicts a different paradigm for computing than that of conventional computers. It is 

inspired by the way biological nervous systems, such as the brain, process information. 

The distinctive element of this paradigm is that the network comprises a large number 

of highly interconnected processing elements (neurons) working in parallel to solve a 

specific problem. ANNs, like humans, learn by example. An ANN is configured for a 

specific application, such as classification or regression, through a learning process. 

They do not need to be programmed to perform a specific task.  Indeed, unlike the 

algorithmic approach, this ANN computing paradigm depicts its potential in developing 

intelligent machine that could solve multifaceted problem situations. 

 

In the early days, Rosenblatt (1958) developed the ‘perceptron’, which is an 

artificial neuron that is capable of performing learning and classification of patterns 
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using simple connections called weights. This is one of the first ‘artificial brain models’ 

that had successfully demonstrated the ability to ‘learn’ from an input data. 

Subsequently, a series of important developments in the area of ANNs has arisen, 

such as the discovery of associative memory (Taylor, 1956), model of self-organization 

of feature detectors (von der Malsburg, 1973), and ordered neural connections 

(Willshaw & von der Malsburg, 1976). Later, a number of pioneering studies concerning 

various properties of different ANN models have been published. These include the 

Hopfield Network (Hopfield, 1982), SOM (Kohonen, 1982), field theory of self-

organising neural nets (Amari, 1983), Backpropagation Learning (Rumelhart et al., 

1986), and ART (Carpenter & Grossberg, 1987).  All these models provide a much 

more refined depiction of the brain function than what have been anticipated a few 

decades ago. 

 

It has been known for quite some time that the various areas of the brain, 

especially the cerebral cortex, are organised according to different sensory modalities 

(Kohonen, 1984), and the neighbouring neurons or nerve cells in a given area are 

projected to neighbouring neurons in the next area. The pattern of connections 

establishes a neighbourhood-preserved or topology-preserved map, which is similar to 

repeatedly mapped out of the two-dimensional retinal image in the visual cortex (Van 

Essen et al., 1981).  

 

Kohonen (1982) proposes an artificial brain model, known as the SOM neural 

network, that mimics the abovementioned biological phenomena with the assumption 

that the organisation encountered in many regions of the brain are spatially ordered 

and in the form of two-dimensional neuron layers. The mathematical developments of 

SOM that utilise the competitive learning and self-organising process are proposed and 

have been successfully implemented in a broad spectrum of applications (Kohonen, 

1997). Nevertheless, the original SOM model has a number of shortcomings. These 
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shortcomings motivate several researchers to develop modified versions of SOM. 

Some of the modifications rooted in the basic principles and assumption employed in 

the original model, i.e., the WTA approach for selecting an active neuron. Later, a 

number of extended researches that utilise heuristic to adjust the definition of the 

“winner” based-on “conscience” or recent neuron’s activation history are proposed 

(Bauer et al., 1996; Van Hulle, 1995). Among others, Van Hulle (1996) proposes an 

information-based approach that aims at maximising the information-theoretic entropy 

of the map in order to produce an equaprobabilistic map.  

 

The following section provides an introduction to and definitions of ANNs and 

topographic map. The problems of the current topographic map formation are 

presented, and how these problems motivate this research in which a new hybrid ANN 

model along with a number of its variants is discussed. This is followed by a description 

of the research scope, the specific research objectives, and the research methodology. 

An overview of the organisation of this thesis is included at the end of the chapter. 

  

1.2 Artificial Neural Networks 

ANNs are computational networks that attempt to simulate, in a gross manner, 

the networks of nerve cell of human or animal biological central nervous system. Two 

important aspects of ANNs are (Graupe, 1997): 

a. it allows the use of very simple computational operations to solve complex, 

mathematically ill-defined, non-linear and stochastic problems, and  

b. it has a self-organising features and “learning” ability, allowing it to solve for a 

wide range of problems.  

These aspects are very similar to the ability of the human brain to resolve simple 

problems, such as movement and vision. Several computational formalisms of ANNs 

are developed to cope with real-world situations. They are mainly considered in the 

situations such as ill-defined and noisy natural data. Under these conditions, ANN 
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computing methods are more effective and economical than the traditional computation 

methods.  In order to deal with non-stationary data, the properties of the ANNs should 

be made adaptive. In this case, the performance of the system should improve with 

use, and the system should be able to capture and store information, or to perform 

learning. In addition, ANNs should be able to perform generalisation, that is, able to 

deal with subsets of the problem domain that are not yet to be encountered.  All these 

properties must be appreciated and inherited in the context of ANNs.  Without these 

properties, ANNs are similar to mere ‘look-up’ tables. 

 

Kohonen (1997) categorises the numerous ANN models into three major categories:  

a. Signal-transfer networks 

The output signal values depend uniquely on the input signals. The mapping is 

parametric and is defined by fixed ‘basis functions’ that depend on the available 

unit of neurons. Typical representatives are layered feed-forward networks such 

as MLPs (Rumelhart et al., 1986), Madaline (Widrow & Winter, 1988), and 

Radial Basis Functions networks (Broomhead & Lowe, 1988).    

b. State-transfer networks 

The feedback and non-linearity are so strong that the activity state very quickly 

converges to one of its stable values. The initial activity states are set by the 

input information and the final state represents the result of computation. 

Examples of such network include Hopfield network (Hopfield, 1982) and 

Boltzmann machine (Ackley et al., 1985). 

c. Competitive learning 

The neurons in the competitive learning or self-organising networks receive 

information from the input signals. Then, using the lateral interactions in the 

networks structure, these neurons compete in their activities by selecting the 

best matching neurons and update the neurons to match the current input 

signal. Each neuron or group of neurons is sensitised to a different domain of 
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input signals and acts as a decoder of the domain. Typical examples of this 

type of networks are SOM (Kohonen, 1984) and ART models (Carpenter & 

Grossberg, 1987). During the self-organisation (or competitive learning) stage, 

the neighbouring neurons in the network cooperate and code for similar events 

in the input space whereas more distant neurons compete and code for 

dissimilar events. This learning scheme, i.e., cooperative/competitive learning, 

serves as an important rule in the formation of topographic maps.  

 

The following section provides an introduction to the topographic map.  

 

1.3 The topographic map 

Today, about 80 cortical areas are known in the human cortex (Ritter et al., 

1992). Each of these cortical areas represents a highly parallel “special purpose” 

module for a specific task. For example, the visual cortex areas are for the analysis of 

edge orientation, colour, and etc., while other cortical areas host modules for speech 

comprehension, recognition, spatial orientation and so on (Ritter et al., 1992). Each of 

these cortical areas is also connected to and interacted with numerous additional 

cortical areas as well as the brain and nerve structures outside the cortex. These 

cortical areas basically consist of six layers, which are circuitry connected with one 

another using a common “topographic” organisational principle: adjacent neurons of an 

output field are almost always connected to adjacent neurons in the target field (Ritter 

et al., 1992). Due to the preservation of adjacency and neighbourhood relationships, 

this mapping can be regarded as a topographic map. 

  

These observations have led researchers to model an element of self-

organisation implicated in topographic map formation, driven by correlated neural 

activity and intended to improve the precision of the existing but coarse topographic 

ordering (Willshaw & von der Malsburg, 1976).  This specification occurs in the same 
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topological order that describes the similar relations of the input signal patterns.  As the 

map is often in a 2-dimensional space, it implies that the topology-preserved map is 

also performing dimensionality reduction of the representation space.   

 

The SOM network and some of the related models (e.g. vector quantisation) are 

inspired by these biological effects and the abstract self-organising processes, in which 

maps resembling the brain maps are formed using mathematical processes and ANN 

concepts. The first computer simulations to demonstrate a self-organising process that 

involves synaptic learning for the local ordering of feature-selective cortical cells were 

conducted by Von der Malsburg (1973).  Subsequently, his model serves as a source 

of inspiration for many other orientation selectivity models (Grossberg, 1976; Amari & 

Takeuchi, 1978).  

 

One of the architectures worth mentioning is the Kohonen’s model that explains 

the criterion of self-organisation using the competitive learning scheme in topographic 

map formation. The SOM model encompasses two stages of operation: the competitive 

stage and the cooperative stage. In the first stage, the “winner” (competition) of the 

neurons is selected, and in the second stage, the weights of the winning neuron are 

adapted as well as those of its immediate lattice neighbour (cooperation). The 

neighbourhood function plays an important role in the cooperative stage. It is essential 

for the formation of a topology-preserved mapping, which can be interpreted as a 

statistical kernel smoother (Van Hulle, 2000). However, topological defects occur owing 

to the rapid diminution of the neighbourhood range during the topographic map 

formation process. Besides, if non-square distribution of input data is used to map on 

the 2D square lattice of SOM, then topological mismatches occur, which can result in 

“dead” neurons (neurons that have low probability to be active) in the model.   
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1.4 Problems and motivation 

From the theoretical point of view, neural models which produce a topology-

preserved map are more alike to the theoretical explanation of the brain map than 

traditional ANN models. According to Kohonen (1997), the relevant items and their 

categories of the topographic map are located spatially close to each other. This 

shortens the communication link for information sharing. In addition, the 

weights/prototype data of the neurons in the topographic map are segregated and 

clustered spatially, in order to avoid cross talk. This self-clustering feature is essential 

toward the formation of cluster regions which could be used for feature extraction, 

dimensionality reduction, and visualisation.  Therefore, the converged topographic map 

are localised, clustered, and ordered, and it is very useful for data modelling purposes. 

In this case, depending on the applications, the topographic map can be used a variety 

of tasks such as regression analysis, feature extraction, dimensionality reduction, data 

visualisation, as well as classification and clustering analysis. 

 

The topographic map produced by SOM has two important characteristics.  

First, the weights of SOM are regarded as a representative sample of the data. Since 

the map grid is an ordered representation of the data, the neighbouring regions on the 

map are similar to each other but dissimilar with other far away regions.  Second, the 

weight formed by SOM is a model of the data.  The weights can be used to determine 

the probability density estimation of the input data.  However, topological mismatch 

could occur in the SOM model.  On the other hand, an essential ingredient of SOM is 

the neighbourhood function, which is responsible for generating a topology-preserved 

quantisation region.  The decreasing range of the neighbourhood function results in a 

time-varying characteristic of the weight distribution of the neurons.  This also produces 

neurons that are out of the distribution support region and have zero (or very low) 

probability to be active, which are known as ‘dead’ units (Van Hulle, 2000).   
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The weight density achieved by SOM at convergence is not a linear function of 

the input density (Kohonen, 1995). In addition, SOM tends to undersample high 

probability regions and oversample low probability ones (Van Hulle, 2000). For 

applications such as density-based clustering and Bayesian classification, a model for 

estimating the probability density function underlying the training samples is needed.  

Nevertheless, SOM is not intended to model the fine structure of the input density 

(Kohonen, 1995). Owing to this limitation, SOM is not able to provide a “faithful” 

representation of the probability distribution that underlies the input data (Van Hulle, 

2000).  

 

The information preservation model (Linsker, 1988) is based on a learning 

procedure that is founded on the maximum information preservation principle for 

topographic map formation. Based on this principle, a probabilistic WTA network that 

maximises the Shannon information rate (average mutual information) between the 

output and the input signal can be obtained. Deriving from the similar idea, Van Hulle 

(1995) proposes a more intuitive approach to build a topographic learning rule that 

maximises the information-theoretic entropy directly. Several learning rules are 

proposed, such as Maximum Entropy learning Rule (Van Hulle, 1995) and Vectorial 

Boundary Adaptation Rule (Van Hulle, 1996) that use the lattice quadrilaterals as the 

RFs. However, for this type of RFs, the lattice topology is rectangular and its 

dimensionality is the same as that of the input space.  As a result, it cannot be used for 

non-parametric regression and dimensionality reduction purposes as the definition of 

the quantisation region is too complicated, thus impractical (Van Hulle, 1999). 

 

A new learning procedure known as the kMER (Van Hulle, 1998; Van Hulle & 

Gautama, 2004) model is proposed. The RFs of this kind are defined using an 

individually adapted kernel that performs local smoothing of the interpolation function, 

which is defined by the sum of all RF kernels.  The limitation of lattice-based RFs (i.e., 



 9

Maximum Entropy learning Rule and Vectorial Boundary Adaptation Rule) is relaxed; 

hence kMER can be used for non-parametric regression and dimensionality reduction 

purposes (Van Hulle & Gautama, 2004).   

 

The kMER model, on the other hand, exhibits limitation in terms of its 

computational efficiency. In the self-organising learning process, especially in the 

competitive learning stage, the neighbourhood relation is essential in the formation of 

the topology-preserved mapping (Kohonen, 1995). In kMER, the non-uniform RFs of 

neighbouring neurons overlap during the initial learning stage, and more overlapping 

occurs at the early stage of the learning process. This leads to computational 

inefficiency and slows down the formation of the topographic map, and subsequently 

increases the processing time. Indeed, this problem is significant in practice as real-

world datasets are often huge and complex. 

 

On the other hand, the learning rate of kMER is normally set to a small value 

(Van Hulle, 2000). This is to ensure that the average RF centres obtained at 

convergence represent the (weighted) medians of the input samples that activate the 

respective neurons. It also allows the average RF radii obtained in an equiprobabilistic 

manner to activate the neurons. Owing to the small learning rate, the map formation 

using kMER needs a long training time, and requires many training epochs.  

  

On the contrary, SOM does not define any RF region during the topographic 

map formation. The local enhancement of the winning neuron’s activity is usually the 

WTA operation, which is a global one and allows for only one “winner” at a time when 

an input pattern is given. The batch map SOM (Kohonen & Somervuo, 2002) is a 

variant of SOM that uses a fixed-point iteration process to accelerate the topographic 

map formation. In this way, instead of using a single data vector at a time, the whole 

dataset (batch learning) is presented to the map before any adjustment is made. It 
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provides a considerable speed-up to the original SOM training procedure by replacing 

the incremental weight updates with an iterative scheme that sets the weight vector of 

each neuron to a weighted mean of the training data. 

 

In this research, a hybrid approach is adopted to formulate a new topology-

preserving map model that is able to harness the benefits offered by both SOM and 

kMER, while mitigating their limitations. The converged topographic map is then 

applied to various problem domains such as data visualisation, non-parametric 

estimation of the input probability density, classification and clustering analysis, as well 

as decision support.  

 

Many structured and semi-structure problems are so complex that they require 

expertise for their solutions. In this aspect, ANN techniques can be deployed as 

inference engines and decision support tools in many applications. These applications 

are able to demonstrate the possibility of combining the best capabilities of both 

humans and computers in the decision-making process.  However, computerised 

intelligent systems and humans are viewed as two entities that work separately in the 

whole decision-making process. This leads to the research conducted in this work 

whereby a novel system capitalising on the advantages of both SOM and kMER 

models that allow the integration of human and the computer into a cooperative and 

interactive platform is proposed. 

 

1.5 Research objectives 

The multidimensional reduction technique resulted from SOM is used to 

produce a two-dimensional topology-preserved map that enables the visualisation of 

the input data. Nevertheless, the constraint of SOM is that topological mismatches 

occur in the resulted map, and the density estimation of SOM is not proportional to the 

input density. The kMER approach that utilises the kernel-based maximum entropy 
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learning rule to produce a faithful representation of the probability distribution of the 

input data is able to overcome this constraint. However, owing to the highly overlap 

RFs regions that occur at the early stage of kMER training, it causes inefficient 

computation that makes kMER impractical when voluminous data samples are 

available. Based on this motivation, this research undertakes the design and 

development of a hybrid model in an attempt to accelerate the equiprobabilistic map 

formation process and to improve the applicability of the model to real-world problems.  

 

In addition, by utilising the Bayes’ decision theory and the RFs of the 

equiprobabilistic map, the probabilistic density function of the input data can be 

obtained. This statistical approach offers strong theoretical as well as practical 

foundations for the implementation of classification systems. On the other hand, if the 

input data are unlabeled (i.e., clustering), the density-based clustering method can be 

used together with the topographic map to produce cluster regions for data 

visualisation and data exploration purposes. Such data modelling features, which 

include data visualisation, classification, and clustering, points to the worthiness to 

design and develop a computing system that is able to supplement humans’ decision-

making abilities.   

 

There are three main components of this research work. The first component is 

centred on developing of an ANN hybrid model that can improve the visualisation as 

well as the convergence rate of a topographic map when compared with the original 

stand-alone models. The second component is based on devising appropriate 

strategies based on the hybrid approach to support data visualisation, classification, 

and clustering. The third component focuses on demonstrating the applicability of the 

hybrid model to interactive intelligent decision support.  
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The specific objectives of this research are as follows 

- to develop a novel hybrid ANN model for topographic map formation; 

- to study the feasibility of the hybrid model as a probabilistic classifier; 

- to devise a new lattice disentangling monitoring algorithm for topographic map 

formation and density-based clustering 

- to demonstrate the applicability of the hybrid model to decision-making  

- to assess the performances of the hybrid model (and its variants) in data 

visualisation, classification, clustering, and decision support using simulated 

and benchmark datasets as well as real-world case studies in the areas of 

engineering, design, and medical diagnosis 

 

1.6 Research scope 

The scope of this research is confined to the design and development of 

models and algorithms to improve the current methods of topographic map formation. 

Particular focus is placed on the convergence rate and the visualisation of the resulted 

map. A novel hybrid neural network model that is founded on the topographic map as 

well as other statistical data analysis methods to support visualisation, classification, as 

well as clustering are investigated. The effectiveness of the proposed model is 

examined using empirical approaches with simulated as well as benchmark datasets. 

Applicability of the proposed system to data visualisation, classification, clustering, as 

well as decision support is demonstrated empirically, which include real-world case 

studies in the domains of engineering, design, as well as medical diagnosis. 

 

1.7 Research methodology 

This research begins with a thorough literature review on various methods of 

topographic map formation in an effort to comprehend the limitations that exist in these 

methods. It then proposes a new ANN hybrid model, founded on the topographic map, 

which is able to overcome some of the identified limitations. This proposed model is 
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then implemented using Microsoft Visual Basic 6.0 and MATLAB® 6.0 software 

packages. The research then devises appropriate strategies based on this hybrid 

model to support data visualisation, classification, and clustering. The performance of 

the hybrid model in data visualisation and as a probabilistic classifier is evaluated 

empirically using both simulated and benchmark datasets. These include the Gaussian 

source separation dataset, waveform classification dataset, Ionosphere dataset, and 

Pima Indian dataset.  

 

This research also proposes a novel lattice disentangling monitoring algorithm 

to be integrated into the hybrid model to alleviate topological defects that occur during 

the topographic map formation process for improved density-based clustering analysis. 

The principal curve distribution and the Gaussian dataset are used to demonstrate the 

effectiveness of this new monitoring algorithm in accelerating the topographic map 

formation.  

 

A thorough literature review on human’s cognitive processing model of decision-

making is also undertaken to identify the main cognitive processes that occur during 

the decision-making process. These cognitive processes lead to the use of the hybrid 

model that combines human’s cognitive processes into a cooperative framework. 

Finally, the applicability of the proposed hybrid model is demonstrated using real-world 

case studies in the domains of engineering, design, and medical diagnosis. 

 

1.8 Thesis outline 

The organisation of this thesis is as follows. 

 

Chapter 2 presents a literature review of three important areas, namely data 

visualisation, classification, and clustering, which are related to this work. Classical as 

well as advanced methods in the statistical methods and ANNs in the relevant areas 
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are reviewed. Advantages and limitations of these methods and the related research 

studies that are conducted to overcome these shortcomings are presented.  This 

chapter also provides the definition of DSS and describes several categories of DSSs.  

The iDSS literature and some applications that utilise neural computing techniques for 

decision support are highlighted.    

  

Chapter 3 described the importance of data visualisation in intelligent data 

exploration.  It explains in details of the SOM and kMER models for multivariate data 

projection. It then explains the limitations of both models.  A detailed description of the 

proposed novel hybrid model, termed as SOM-kMER, for topographic map formation is 

presented.  Several experiments to evaluate the proposed hybrid model in terms of 

convergence rate, the resulted visualisation and formation of equiprobabilistic map are 

described.  The experimental results are analysed, compared, and discussed. 

 

 Chapter 4 presents a novel classifier design that takes a hybrid approach by 

integrating the probabilistic estimation procedure of Bayes’ theorem with the SOM-

kMER model. It provides studies of the decision making process in statistical pattern 

classification, explains the Bayes decision criterion, and discusses the general 

characteristics of fixed and variable kernel density estimation. This is followed by a 

description of the proposed hybrid classifier model and the results of a series of 

simulation studies using benchmark datasets.  How the proposed classifier is employed 

to tackle a real-world problem related to fault detection and diagnosis in a power 

generation plant is described.  

 

Chapter 5 introduces a novel lattice disentangling algorithm to overcome 

topological defects occurred in SOM and kMER owing to a rapid diminution of the 

neighbourhood range during the topographic map formation process. It then 

demonstrates the ability of the new monitoring algorithm in SOM-kMER to accelerate 
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the formation of the topographic map. A comparison between the results obtained by 

the proposed monitoring algorithm and with those from the original kMER monitoring 

algorithm using simulated datasets is conducted. The applicability of the hybrid SOM-

kMER model with the new monitoring algorithm for data clustering in two real-world 

applications are demonstrated: (i) pen-based handwritten digit recognition and (ii) 

bedroom colour scheme design based on Kansei Engineering.  The results are 

analysed and discussed in terms of visualisation of the data structure and feature 

extraction of the cluster regions for data mining purposes.  

  

 Chapter 6 highlights the applicability of the hybrid model that combines the 

capabilities of the computer system and the cognitive capabilities of humans into a 

cooperative framework. A liver diseases diagnosis and a pen-based handwritten digit 

recognition problem are used to assess its effectiveness in tackling decision support 

problems.  

 

Finally, Chapter 7 draws the conclusions and contributions of this research.  A 

number of areas to be pursued as future work are suggested at the end of this chapter. 
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CHAPTER 2 
LITERATURE REVIEW 

 
 
2.1 Introduction 

Today, the rapidly growing databases and other computational resources have 

generated huge amount of data. Numerous advanced methods of machine learning, 

pattern recognition, data analysis, and visualisation are devised to uncover salient 

structures and interesting correlations in data (Jain et al., 2000) with the intention to 

generate useful, meaningful, and interesting information out of this flood of data.    

 

This chapter reviews three important areas of intelligent systems that are 

related to this research: visualisation, pattern recognition (classification and clustering), 

and decision support systems. Various visualisation techniques, as well as models for 

supervised classification and clustering are studied. This chapter also provides a 

review of the human decision-making process and various existing computer-based 

decision support systems.  

 

2.2 Visualisation 

Visualisation techniques are becoming increasingly important in data mining 

and exploration of huge high-dimensional datasets. A major advantage of visualisation 

techniques when compared with other non-visual data mining techniques is that 

visualisation allows direct user interaction that could then provide immediate feedback 

(Ankerst, 2000). Data visualisation enables the user to speculate the properties of a 

dataset based on his/her own intuition and domain knowledge. It is meant to convey 

hidden information about the data to the user. Ware (2000) and Tufte (1983) provide an 

excellent overview of modern as well as classical techniques for data and information 

visualisation.   
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There are many types of data visualisation approaches. Geometric approaches 

(Huber, 1985), for example, are based on statistical methods like factor analysis, 

principal component analysis, and multidimensional scaling. Icon-based approaches 

map the attribute values of each input data onto small graphical primitives known as 

icons (Wong & Bergeron, 1997). Hierarchical approaches employ a hierarchical 

partitioning into subspaces (Tipping & Bishop, 1997). The following section highlights a 

number of visualisation techniques based on classical multi-dimensional scaling and 

artificial neural networks, particularly for data projection.  

 

2.2.1 Principal Component Analysis 

The PCA is a well-known statistical method for data projection (Fukunaga, 

1990), and is widely used in pattern recognition, data analysis, as well as signal and 

image processing. It is a linear orthogonal transform from a d-dimensional input space 

to an m-dimensional space, dm ≤ , such that the coordinates of the data in the new m-

dimensional space are uncorrelated and maximal amount of variance of the original 

data is preserved by only a small number of coordinates. 

 

Although PCA is a proven and widely used robust method for data projection, it 

cannot cope with certain situation of dataset such as the one shown in Figure 2.1, due 

to its inherently linear approach. Such datasets require the computation of non-linear 

principal or curvi-linear components (König, 2000). Nevertheless, alternative method 

such as Sammon’s non-linear mapping is able to overcome this problem.    
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Figure 2.1: Non-linear principal components 
 
 
 
2.2.2 Sammon's non-linear mapping 

Sammon (1969) proposes a non-linear projection technique that attempts to 

maximally preserve the inter-pattern distances in the original space and inter-pattern 

distances in the projected space. For a given M input vectors in a d-dimensional space, 

say ix , where Mi ,...,2,1= . These M vectors are to be mapped from the d-dimensional 

space to either a 2D or 3D space. The M vectors in the lower dimensional space are 

denoted by iy , where Mi ,...,2,1= . The ix  and iy  are expressed as follows: 
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Initially, a set of M vectors (or data points) is generated randomly in the 2D (or 

3D) space. The error in mapping is determined by comparing these data points with the 

corresponding points in the d-dimensional space, and it has to be (locally) minimum for 

a perfect mapping. Let )(tE be the mapping error after the t-th iteration. This is 

expressed mathematically as follows: 
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where *
ijd  is the distance between two points in the d-dimensional space and )(tdij  is 

the distance between the corresponding two mapped points in D dimension (2D or 3D) 

space. Sammon uses a diagonal Newton method to locally optimise E(t) and reduce 

the step length by a factor value of 0.3 to 0.4. The details of the algorithm can be found 

in Sammon (1969).   

 

Sammon mapping is shown to be more superior than PCA for data structure 

analysis. However, the Sammon algorithm is a point-to-point mapping which does not 

provide the explicit mapping function and cannot accommodate new data points (Mao 

& Jain, 1995). For any additional data, the projection has to be re-calculated from 

scratch based on all data points. This is impractical as many real-world applications 

have typically a large amount of data, and data are added sequentially. Moreover, the 

Sammon mapping approach has drawback in terms of its generalisation ability when 

compared with some of the ANN-based projection techniques (Mao & Jain, 1995). 

 

2.2.3 Self Organisation Map 

The most promising mapping method in terms of structure preservation uses 

either topology or distance preservation for the non-linear mapping process (König, 

1998). The SOM (Kohonen, 1982), one of the ANN techniques that uses unsupervised 

non-linear projection methods, has a very desirable topology preserved property, i.e. 

close points in the input space are mapped to the nearby neurons in the map space. 

Such property enables visualisation of the relative or quantitative mutual relationships 

among the input samples (Yin, 2002a). 
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In SOM, a topological structure is defined on the competitive layer. The neurons 

of the competitive layer are organised in the shape of a straight line, a rectangle, or a 

hyper-cuboid. As the map is often arranged in a low dimensional grid and the inputs 

are drawn from a high dimensional space, SOM is used as a visualisation tool for 

dimensionality reduction.  

 

As pointed out by Vesanto (2002), visualisation produced by SOM plays two 

important roles. First, the prototype of SOM is regarded as a representative sample of 

the data. It is assumed that the properties seen from the visualisation of the prototypes 

also hold for the original data. The prototypes is an ordered representation of the data, 

with the neighbouring prototypes on the map are similar to each other but dissimilar 

with the far away prototypes. Second, the prototype formed by SOM is a model of the 

data. The prototype can be used to determine the probability density estimation of the 

input data. As the density of the map prototype follows roughly the density of the data, 

the map grid provides visualisation based on the input data density (Vesanto, 2002). 

 

However, the inter-neuron distance on the map grids are not directly visible or 

measurable on the map. One has to use a colour scheme such as U-matrix (Ultsch, 

1993) or interpolation (Yin & Allinson, 1999) to visualise the relative distance between 

the prototype neighbouring neurons. Yin (2001) proposes a visualisation induced self-

organising map (viSOM) by considering the latent contraction force between the 

neuron that helps to regularise the inter-neuron distance.  

 

Topological mismatch also occurs in the SOM map. This is shown in the 

experiments conducted by Van Hulle (2000): a mapping of a circular and L-shaped 

distribution produced by SOM (see Figure 2.2). The circular distribution shows that the 

prototype (weights) distribution is non-uniform. As for the L-shaped distribution, there 
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are several neurons outside the support of the distribution, and some of them have 

zero (or very low) probability to be active, which are known as ‘dead’ units.   

 

 
 

(a) (b) 
 

Figure 2.2: (a): Mapping of a 20x20 lattice onto a circular distribution.  
(b): an L-shaped uniform distribution. (Adapted: Van Hulle, 2000) 

 
 

The weight density )(wp  achieved by SOM at convergence is not a linear 

function of the input density )(vp . In the case of discrete grids, when the 

neighbourhood range vanishes in SOM training, )(wp  is proportional to )(vqp  where 

))/2(1/(1 dq +=  (Kohonen, 1995). In addition, SOM tends to undersample high 

probability regions and oversample low probability ones. Due to this limitation, it is 

unable to provide a “faithful” representation of the probability distribution of the 

underlying input data (Van Hulle, 2000).  

 

The following section provides a review of the equiprobabilistic map, which is 

able to transfer the maximum amount of information available about the input 

distribution to the formed topographic map (Van Hulle, 1995; 1996). 

 

2.2.4 Equiprobabilistic map  

Standard unsupervised competitive learning models (such as SOM) are unable 

to produce similar density estimate as in the input space and yield neurons that are 

never active (“dead” units) in the projected map. There are several attempts to build 
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equaprobabilistic maps. This includes using strategy to maximise the information-

theoretic entropy of the map output. As a result, the map transfers the maximum 

amount of information available about the (stationary) distribution from which it receives 

inputs. The weight density )(wp is proportional to the input density )(vp , or all neurons 

have equal probability to be active, hence producing an equiprobabilistic map (Van 

Hulle, 2000).   

 

There are two categories of equiprobabilistic map formation rules: the lattice-

based learning rule and the kernel-based learning rule. Examples of the first category 

include the Maximum Entropy learning Rule (MER) (Van Hulle, 1995) and the Vectorial 

Boundary Adaptation Rule (Van Hulle, 1996). The map grid units (neurons) have the 

same dimensionality as that of the input space. The quantisation regions (or RFs) 

correspond to the lattice quadrilaterals and do not assume any Voronoi tessellation. 

Van Hulle (2000) demonstrated that MER, as opposed to SOM, does not produce any 

dead unit in one of his experiments that uses an U-shaped uniform distribution. Figure 

2.3 depicts the lattice obtained in the experiment. 

  
(a) (b) 

Figure 2.3: Lattice obtained for a U-shaped uniform distribution. (a): SOM training (b): MER 
training (Adapted: Van Hulle, 2000) 

 

However, in MER, the lattice topology is rectangular and its dimensionality is 

the same as that of the input space in which the lattice is developed. As a result, it 
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cannot be used for non-parametric regression and dimensionality reduction purposes 

as the definition of the quantisation region is too complicated (Van Hulle, 1999). 

 

In the second category, the RFs are kernel-based. The individually adapted 

kernel performs local smoothing of the interpolation function, which is defined by the 

sum of all RF kernels (Van Hulle, 2000). An example of this type of equiprobabilistic 

map formation model is kMER (Van Hulle, 1998). The requirement of 

equidimensionality of MER is relax with different RF definitions. In kMER, the 

quantisation regions are non-uniform, and the neurons can turn active using graded 

magnitude. Since the RFs regions may overlap on the map, multiple winners can be 

selected during competitive learning. Depending on the neural activation, the weights 

are adapted so as to produce a topology-preserved mapping. The lattices formed by 

kMER not only produce few dead units but can also be used for non-parametric density 

estimation and clustering. Chapter 3 describes the kMER model in detail.  

  

2.3 Data classification 

Pattern recognition and classification have been extensively studied (Fukunaga, 

1972; Duda et al., 2000), and Jain et al. (2000) provide a comprehensive review of 

statistical pattern recognition. These studies mainly focus on how machine can observe 

the environment, learn to distinguish patterns of interest from their background and 

able to classify patterns into different categories (Jain et al., 2000). The process of 

pattern recognition can be partitioned into several sub-processes, i.e., sensing, 

segmentation, feature extraction, classification, post processing, and decision (Duda et 

al. 2000). However, this research focuses primarily on the pattern or data classification 

component. The following section provides a review on some of the well-known pattern 

classification approaches. 
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2.3.1 Statistical approach 

In the statistical decision theoretic approach, the decision boundaries are 

determined by the probability distributions of the patterns for each class, which is either 

specified or learned (Duda et al., 2000). There are a number of well-known decision 

rules, such as Bayes decision, maximum likelihood, minimum-error-rate classification, 

and Neyman-Pearson criterion, to define the decision boundaries (Duda et al., 2000). 

Generally, most recognition systems of statistical decision theoretic approach operate 

in two modes: training (learning) and classification (testing). In the training mode, the 

feature extraction module finds the appropriate features to represent the input patterns, 

and the classifier is trained to partition the feature space. In the classification mode, the 

trained classifier assigns the input pattern to one of the pattern classes under 

consideration based on the measured features (Jain et al., 2000).  

 

2.3.2 Neural networks approach 

In recent years, a large part of connectionist research is devoted to the 

development and theoretical analysis of pattern classifiers having ANN-like structure 

and learning capabilities. The main characteristic of ANN-based classification approach 

is its ability to learn complex, non-linear input-output relationships. ANNs are some kind 

of massively parallel computing system with a large number of interconnected simple 

processors that are able to adapt themselves to the data. Although this enthusiasm is 

first considered with some scepticism by researchers in mainstream statistical pattern 

recognition (Duin, 1994), ANNs can be generally seen as a type of statistical pattern 

classifier (Werbos, 1991). Some of the commonly used models include feed-forward 

networks, basis and kernel function networks, and self-organising and competitive 

networks.   
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