4 research outputs found

    Deductive Evaluation: Formal Code Analysis With Low User Burden

    Get PDF
    We describe a framework for symbolically evaluating iterative C code using a deductive approach that automatically discovers and proves program properties. Although verification is not performed, the method can infer detailed program behavior. Software engineering work flows could be enhanced by this type of analysis. Floyd-Hoare verification principles are applied to synthesize loop invariants, using a library of iteration-specific deductive knowledge. When needed, theorem proving is interleaved with evaluation and performed on the fly. Evaluation results take the form of inferred expressions and type constraints for values of program variables. An implementation using PVS (Prototype Verification System) is presented along with results for sample C functions

    Deductive Evaluation: Implicit Code Verification With Low User Burden

    Get PDF
    We describe a framework for symbolically evaluating C code using a deductive approach that discovers and proves program properties. The framework applies Floyd-Hoare verification principles in its treatment of loops, with a library of iteration schemes serving to derive loop invariants. During evaluation, theorem proving is performed on-the-fly, obviating the generation of verification conditions normally needed to establish loop properties. A PVS-based prototype is presented along with results for sample C functions

    Inferring Complete Initialization of Arrays

    Get PDF
    We define an automaton-based abstract interpretation of a trace semantics which identifies loops that definitely initialize all elements of an array to values satisfying a given property, a useful piece of information for the static analysis of Java-like languages. This results in a completely automatic and efficient analysis, that does not use manual code annotations. We give a formal proof of correctness that considers aspects such as side-effects of method calls. We show how the identification of those loops can be lifted to global invariants about the contents of elements of fields of array type, that hold everywhere in the code where those elements are accessed. This makes our work more significant and useful for the static analysis of real programs. The implementation of our analysis inside the Julia analyzer is both efficient and precise
    corecore