
Deductive Evaluation: Formal Code Analysis with Low
User Burden

Ben L. Di Vito
NASA Langley Research Center, Hampton, VA 23681, USA

b.divito@nasa.gov

ABSTRACT
We describe a framework for symbolically evaluating itera-
tive C code using a deductive approach that automatically
discovers and proves program properties. Although verifica-
tion is not performed, the method can infer detailed program
behavior. Software engineering workflows could be enhanced
by this type of analysis. Floyd-Hoare verification principles
are applied to synthesize loop invariants, using a library of
iteration-specific deductive knowledge. When needed, theo-
rem proving is interleaved with evaluation and performed on
the fly. Evaluation results take the form of inferred expres-
sions and type constraints for values of program variables.
An implementation using PVS (Prototype Verification Sys-
tem) is presented along with results for sample C functions.

1. INTRODUCTION
Both formal code verification and loop invariant genera-

tion are enjoying a resurgence. While new verification tools
offer promise, their uptake remains limited. Static analy-
sis tools, however, have seen mainstream success, owing to
modest goals and ease of use. Software engineering would
benefit from usable tools that combine the precision of code
verification with the ease of use of static analyzers. Our
analysis approach contributes to this goal by adapting verifi-
cation methods while forgoing explicit verification outcomes.
In essence, software engineers are given rigorous analytical
feedback for assessing the fitness of their code.

Recent verification work has focused on SMT solvers and
first order logic. “Heavyweight” methods using interactive
theorem provers and higher order logics (e.g., PVS [15]) tend
to be overlooked. Although tools having rich logics require
some manual effort, we present a new analysis concept that
leverages their strengths while offering end users automatic
tools. Using a two-track approach, we achieve an effective
division of labor by pre-computing deductive artifacts, then
later applying them automatically.

The first track is an invariant synthesis technique revolv-
ing around iteration schemes, which are expressed in PVS

This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the
article citation is given and the authors and agency are clearly identified as its source.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

notation. In contrast with most invariant generation meth-
ods, this approach is highly data-driven, depending on an
extensive body of codified knowledge created by specialists.
The second track makes use of code verification methods
along with synthesized invariants and conventional symbolic
analysis techniques. Collectively these ideas achieve a deduc-
tive evaluation of C functions having loops, a task that is
conducted automatically on behalf of end users without a
need to supply assertions or specifications. The developer is
simply presented with a best-effort derivation of the effects
computed by his or her code.

We have created early-stage prototype tools, hosted within
PVS, to demonstrate basic feasibility. Although C is the lan-
guage used in this study, the approach could be applied to
other imperative languages.

2. ANALYSIS CONCEPT
Several techniques underlie the code analysis method:

• Theorem proving in higher order logic. Our tool
choice is PVS, which includes an expressive language
having rich type features as well as a powerful theorem
prover. Besides its interactive mode, the prover can be
invoked programmatically for fully automated proof.

• Deductive code verification principles. Floyd-
Hoare principles for proving iterative code are used
along with concepts of symbolic evaluation/execution.

• Data-driven invariant synthesis. Loop invariants
are generated from iteration schemes, stylized PVS
theories for modeling the effects of iterative code frag-
ments. Execution effects within a loop body are matched
against a scheme library to derive invariants.

While the resulting capability does not conduct verification,
its analyses can contribute to contract-based verification or
serve other purposes such as symbolic debugging.

2.1 Mechanization Using PVS
PVS refers to both a language and a set of deduction

tools. The language allows formalization of mathematical
and logical concepts, although it lacks explicit models of
computation. Classical higher order logic and a flexible type
system form the theoretical underpinnings. Hosted within
Emacs, the tools perform parsing, typechecking and theorem
proving.

Declarations (e.g., types, constants, lemmas) are grouped
into theories. Key features for our purposes are function-
valued expressions and predicate subtypes [17]. Subtypes

https://ntrs.nasa.gov/search.jsp?R=20160009127 2019-08-31T02:03:53+00:00Z

Figure 1: Architecture of the prototype framework.

may be declared as subsets of previously declared or built-
in types. The set comprehension notation {x : T | P (x)}
denotes a subtype. Uninterpreted constant declarations al-
low us to name an arbitrary value of a type. For example,

n_1_: {n: int | 0 <= n AND n < q}

illustrates this with an integer range subtype. Deductive
evaluation exploits this feature to embed derived constraints
or assertions in the types of PVS constants.

Fig. 1 depicts the experimental tool framework. C source
code is mapped into an abstract syntax tree (AST) using
Lisp s-expressions. The deductive evaluator is implemented
in Common Lisp and resides in the same process as PVS. It
traverses the AST and performs the analysis. A PVS output
theory is built incrementally as described in Section 4.

Iteration schemes are collected in a library of PVS theo-
ries and must first be “registered” for later use during invari-
ant generation. Registration extracts key details from those
theories to build data structures for searching and match-
ing. When the evaluator needs invariants for a fragment of C
code, synthesizer functions are invoked as described in Sec-
tion 3. The synthesizer is implemented in Common Lisp and
loaded along with the deductive evaluator. Only a modest
library of schemes (around 20) has been developed so far.

2.2 C Features Supported
The current prototype is limited to a subset of C lan-

guage features. Data types are integers and arrays of in-
tegers. Function declarations and basic C statements are
supported; other declarations are not. Function calls are
supported as well. Expressions must be free of side effects,
although i++ is allowed as a statement. Array arguments
must not be aliased (no overlaps). Pointers and dynamic
memory features are excluded in this early stage. The eval-
uation prototype is limited to partial correctness results (no
termination proofs). C integers are modeled using math-
ematical numbers rather than machine numbers. Some of
these limitations will be relaxed in future versions.

2.3 Evaluation Example
Fig. 2 shows a C function to multiply integers along with

an excerpt of the evaluation output. Deductive evaluation
produces a PVS theory for each C function. Each such the-
ory ends with a declaration named final that character-
izes the result(s) computed by the C function. In this case
the evaluator deduced that the result is the product of pa-
rameters m and n. Numeric suffixes are attached to PVS
identifiers to disambiguate C variable values at different ex-

int add_mult(unsigned int m, int n) {
int p = 0;
unsigned int i = 0;
while (i < m) {
p += n;
i++;

}
return p; }

add_mult_deval [(IMPORTING iter_schemes@prog_types)
m_0_: nat, n_0_: int] : THEORY

BEGIN
%% Analysis details appear in Figure 3.
final: return_values = (# result_ := m_0_ * n_0_ #)

END add_mult_deval

Figure 2: C function and its evaluation in PVS.

p_0_: int = 0
i_0_: nat = 0
result_0_: int
return_values: TYPE = [# result_: int #]

% Analyzing while loop at depth 1.
% Found dynamic variables: p, i
% Found static variables: m, n
% Found possible index variables: i
% Values at top of loop:
k_1_: nat % implicit loop index
p_1_: int % dynamic variable
i_1_: nat % dynamic variable
% Effects of loop body:
p_2_: int = p_1_ + n_0_
i_2_: nat = i_1_ + 1

% Invariants for loop index i (scheme loop_index_recur):
% (index_var_expr . i_1_ = k_1_)
% (iter_k_expr . k_1_ = i_1_)
% (initial_bound . TRUE)
% (final_bound . i_1_ < 1 + m_0_)
% Invariants for variable p (scheme arith_series_recur):
% p_1_ = (k_1_ * n_0_)

% Values of dynamic variables on (normal) loop exit:
k_2_: nat = m_0_
i_3_: nat = m_0_
p_3_: int = m_0_ * n_0_
% End of for/while loop at depth 1.

Figure 3: Declarations for theory in Fig. 2.

ecution points. Additional declarations and evaluator com-
ments from the generated theory are shown in Fig. 3, which
typically would be hidden in end-user displays.

For modest functions such as that in Fig. 2, deductive
evaluation provides significant benefits. If the result ex-
pression is the desired specification, then verification has
been performed implicitly because that evaluation result is
a machine-checked inference that follows from the C func-
tion’s semantics. If the code contains an error, reviewing the
result expression should aid in its discovery and localization.
For example, if the while-condition had been (i <= m), the
result would have been m_0_ * n_0_ + n_0_, greatly help-
ing to identify the off-by-one error. In other cases, the user
will receive less specific analytical feedback.

To obtain the results in Figures 2 and 3, a user need

only invoke the evaluator; no annotation or interaction is
required. If a particular code fragment is not covered by the
iteration scheme library, the evaluator will produce only par-
tially useful results. While the prototype generates output
in the PVS language, translation to other notations is pos-
sible. The C specification language ACSL [2], for instance,
could be used when only first-order features are involved.

3. INVARIANT SYNTHESIS
Deducing the effects of iterative code can be achieved us-

ing a Hoare-style proof rule such as the following, where
predicate Q serves as loop invariant.

P ⇒ Q ` {B ∧Q} S {Q} Q⇒ (R ∨B)

` {P} while B do S {R}
(1)

Our approach for automated invariant generation relies on
the expressive power of higher order logic to build a library
of iteration schemes, which are later instantiated to create
specific invariants. Over time, growth of this collection will
enable broad coverage for typical iterative code.

3.1 Predicate-Based Recurrence Relations
Recurrence relations have been applied in other work on

invariant generation [12]. Their application to loop invari-
ants is quite natural. For example, given the code

p = 1; for (i = 0; i < m; i++) p *= 2;

we could formulate the recurrence F (0) = 1;F (n + 1) =
2F (n), which has the solution F (n) = 2n. From this solution
we could infer the invariant p = 2i.

In mathematics, solutions to elementary recurrences are
functions. Since many invariants state relational properties,
we generalize to accommodate predicates as solutions. For
example, the recurrence above could become I(u, 0) ≡ u =
1;R(u, v, n) ≡ v = 2u, where I constrains u initially and R
relates next value v to current value u. P (u, n) ≡ u = 2n is
a solution. Note there are multiple solutions, many of which
are trivial (e.g., P (u, n) ≡ u > 0). This does not diminish
the utility of the approach; scheme authors provide solutions
strong enough to serve as effective invariants.

To simplify tool design, we provide a stylized method to
express predicate recurrences directly in PVS theories. Each
theory includes a lemma and inductive proof that the solu-
tion satisfies the recurrence. The proof is constructed by the
scheme developer using the PVS interactive prover.

3.2 Iteration Schemes in PVS
Fig. 4 presents the structure of iteration schemes in exam-

ple form, using a scheme applied in the evaluation of Fig. 2.
Most of what is shown in Fig. 4 will appear in every scheme;
it is basically a template. Schemes typically capture the
behavior of a single, dynamic program variable. Dynamic
variables are those that change value during a loop; static
“variables”may be unchanging variables as well as constants,
functions, or static expressions. Recurrences are grouped
into several categories according to form and function.

Declarations recurrence and solution form the heart of
the scheme, details1 of which appear in Fig. 5. Parameters
for these functions have fixed names: I for initial values of

1PVS notation: (a, b) is a tuple, (: a, b :) is a list,
and (# a := b, c := d #) is a record.

arith_series_recur : THEORY
BEGIN
dyn_vars: TYPE = int
stat_vars: TYPE = int
IMPORTING recur_pred_defn[dyn_vars, stat_vars]
k: VAR nat
I,U,V: VAR dyn_vars
S,W: VAR stat_vars
recur_type: recurrence_type = var_function

recurrence(I, S)(U, V, k): recur_cond = . . .
solution(I, S)(U, k): invar_list = . . .

recur_satis: LEMMA sat_recur_rel(solution, recurrence)
END arith_series_recur

Figure 4: Scheme used in evaluation of Fig. 2.

recurrence(I, S)(U, V, k): recur_cond =
LET s0 = I, d = S, u = U, v = V IN
(# each := (: (iter_effect, v = u + d) :),

once := (: :) #)
solution(I, S)(U, k): invar_list =

LET s0 = I, d = S, u = U IN
(: (func_val_expr, u = k * d + s0),

(initial_bound,
IF d < 0 THEN u <= s0 ELSE u >= s0 ENDIF) :)

Figure 5: Recurrence, solution details for Fig. 4.

dynamic variables, S for static variables, and U, V for dy-
namic variable values before and after each iteration. Any
of these could be a tuple, hence the template uses LET ex-
pressions to perform de-structuring. Also, included in every
scheme is an implicit loop index k, which is part of the mod-
eling framework and separate from any program variables.

Recurrence definitions have two kinds of labeled condi-
tions: “each” conditions must hold before and after every
iteration, and “once” conditions hold initially or constrain
constant expressions. Labeling conditions helps the evalu-
ator provide more precise information during the matching
phase of invariant synthesis. Solution definitions provide la-
beled invariant expressions, the conjunction of which is a
solution predicate. Providing different invariant types helps
the evaluator make better use of derived information.

Higher order logic figures prominently in the formulation
of schemes, enabling generic expression of both conditions
and solutions. Function variables can be restricted to have
necessary properties, such as monotonicity:

FORALL (p, q: nat): p < q IMPLIES f(p) < f(q))

For typical bindings of f, such properties can be proved
automatically by PVS.

3.3 Instantiating Iteration Schemes
Given a loop body S and dynamic variable x, two PVS

constants, e.g., x1 and x2, will denote x’s value before and
after an arbitrary iteration. Evaluation of S will derive an
expression e for the value x2. Subsequently, x1, x2 and e
become inputs to the scheme-matching process.

At scheme registration time, recurrence conditions are
turned into patterns for matching. Variables in a recurrence

declaration (e.g., s0,d,u,v from Fig. 5) become pattern vari-
ables. Each can be bound to a program variable or expres-
sion of the appropriate type and dynamic status.

int add_mult_exp(unsigned int m, int n) {
int p = 0;
unsigned int d = m;
int y = n;
while (d > 0) {
if (d % 2 == 1) p += y;
y += y;
d /= 2; }

return p; }

add_mult_exp_deval
[(IMPORTING iter_schemes@prog_types)

m_0_: nat, n_0_: int] : THEORY
BEGIN

%% Internal analysis details omitted.
final: return_values = (# result_ := n_0_ * m_0_ #)

END add_mult_exp_deval

Figure 6: A more realistic multiply algorithm.

During evaluation and synthesis, schemes will be searched
and matches attempted. The “each” conditions are matched
in order against program expressions until all pattern vari-
ables are bound. Remaining conditions are instantiated with
accumulated bindings. Only after all recurrence conditions
are met, which requires theorem proving, will a matching
scheme be recognized. Included are any conditions needed
to constrain the initial state. After a successful match is
found, each solution expression is instantiated with terms
from the pattern variables and emitted as invariants.

An important aspect of this method is that synthesized in-
variants are valid logical inferences of loop behavior. They
are not merely candidates needing further checking because
all necessary conditions are proved to hold and each scheme
solution is known to satisfy its recurrence. This in turn re-
duces the theorem proving burden during evaluation. Math-
ematically deep properties can be placed in schemes without
taxing the deduction performed during evaluation.

3.4 Additional Features
One feature that enhances invariant synthesis is the abil-

ity to specify that a scheme depends on previously gener-
ated invariants. Consider the example of Fig. 6, a multiply
algorithm similar to a hardware shift-and-add method. The
scheme that p satisfies includes the conditions

(dep_var_func, d = floor(d0 / 2^k)),

(dep_var_func, y = y0 * 2^k),

which are matched by invariants generated for d and y.
Another helpful feature concerns the additional paths cre-

ated when loops are exited via return and break statements.
Loop exits can sometimes induce useful invariants. For exit
condition P (e), we can often infer cases e′ where ¬P (e′)
holds at the top of every iteration. One sufficient condi-
tion is that the loop index is the only dynamic variable P
references. This allows us to conclude an invariant such as
∀ j < k : ¬P (j). Dedicated schemes cover such cases.

As the scheme library grows, features will be needed to
cope with increasing scale. Performance considerations will
dictate more sophisticated search and more careful library
organization. Curtailing the generation of excess invariants
when multiple schemes apply will require attention. The
need for filtering, though, should not be as great as with
the Daikon tool [7], for example. Schemes are hand-crafted,

emphasizing causation rather than correlation, and thus less
likely to spawn useless invariants.

4. DEDUCTIVE EVALUATION
Given C code transformed to ASTs and rendered as s-

expressions, the deductive evaluator attempts to infer effects
that would be produced by the code when executed. The
evaluator works in units of individual C functions. For C
function F, a PVS theory named F_deval will be built in-
crementally to record the evaluation results and provide dec-
larations usable when evaluating other functions. Much of
the processing draws from established techniques; the novel
parts concern loop handling.

4.1 Path Analysis
Evaluation proceeds in a forward direction, similar to sym-

bolic execution or strongest-postcondition analysis. Func-
tion parameters and local variables are represented by pa-
rameters and constant declarations in PVS theory F_deval.
The initial value of v is named v_0_. Values at later execu-
tion points are denoted by constants with higher suffixes.

C data types and expressions are mapped into seman-
tic equivalents in PVS, except that unbounded integers are
used instead of machine integers. Arrays are represented by
functions from {0, . . . , N} into a base type (currently inte-
gers). Relational and logical expressions produce numeric
results, as per C semantics. State vectors of variable values
are maintained and updated as statements are processed.
Values are symbolic expressions in PVS notation.

Statements are processed in order along each execution
path. Assignments cause allocation of new constants to the-
ory F_deval and the updating of state vector(s). Array as-
signments make use of PVS “function update” expressions.
A[i] = A[j], for instance, leads to a declaration such as:

A_3_: int_array(A_size_) =

A_2_ WITH [(i_1_) := A_2_(j_3_)]

Conditional statements cause path branching in the usual
way, along with the accumulation of new conjuncts for path
conditions. Unlike symbolic execution, though, the paths
are unified at the close of a conditional statement. Because
PVS has conditional expressions, a symbolic value after an
if-statement takes the form, IF a THEN b ELSE c ENDIF.

Control transfer statements such as return and break

can create extra paths with cloned state vectors. A return

statement at the end of a function also invokes return-value
processing. A call to function G makes use of G’s previous
evaluation saved in theory G_deval.

4.2 Loop Processing
Deducing the effects computed by loops requires the appli-

cation of proof rule (1) as well as the generation of invariants
for dynamic variables. During the AST stage, for-loops are
translated to while-loops, so we assume each loop has the
general form, while (B) S, where the body S is a statement
or block. Processing begins by identifying static and dy-
namic variables, and noting initial value I of the dynamic
variables. There is also an attempt to identify a loop index
variable (loop counter) among the dynamic variables.

The evaluator first creates a state vector U to represent
values at the start of an arbitrary iteration of the loop. Sup-
plying fresh PVS constants for dynamic program variables
serves this purpose. Next, the evaluator is run on condition

B to yield expression B, then run on loop body S, resulting
in state vector V . Due to conditional statement handling,
all iterating paths are merged into a single path having a
single state vector. Values in V include cumulative updates
to dynamic variables that result from all statements in S.

At this point, the evaluation process seeks invariants. For
each dynamic variable x, the synthesizer is called with B,
I, U , V , and supporting information, where the matching
process described in Section 3 is carried out. If an invariant
Q is returned, it will be saved along with some context infor-
mation. If no valid invariant can be inferred for a variable,
its value will remain unconstrained.

After the generated invariants {Qi} have been gathered,
they are used to derive expressions for the final values of
dynamic variables upon loop termination, the point where
¬B is assumed to hold. Some schemes include auxiliary
facts to help infer final values. When applicable, final values
of the loop index variable and implicit index k are deduced.
For example, if R is “<,” d = 1 and B is i < n, the following
auxiliary fact allows us to deduce i = n.

(final_index_value,
R(0, d) AND NOT R(i, n) => i = n + mod(i0 - n, d))

These derivations, in turn, help deduce final value expres-
sions for other dynamic variables, which are introduced as
new final-value constants. Afterward, the evaluator will have
a new state vector W that characterizes variable values im-
mediately after loop termination. W will be used to continue
evaluation. If loop exit paths exist due to break statements,
these paths are merged with the normal exit path. State vec-
tor merging requires conditional or disjunctive expressions
to describe variable values at the merge point.

4.3 Array Handling and Well-Formedness
Arrays are modeled using values of PVS function types.

Computing with arrays, however, modifies only one element
at a time. This leads to loop invariants that quantify over
array indices to describe work completed. In Fig. 7 is a
function that sets the first n elements of array A to v. After
iteration k, the invariant ∀ q < k : A(q) = v holds. When k
reaches n, we obtain the final quantified expression shown
for val_A in the figure. This example shows how arrays,
which normally require predicates to describe their values,
can be represented by named declarations having predicate
subtypes. Traditional assertions are thereby obviated.

To ensure well-formedness, array index expressions must
be within bounds. Consider two types of parameter declara-
tions: 1) int A[N] and 2) int A[]. (1) triggers a check for
each index expression i that i < N (well-formedness condi-
tion, WFC). (2) is handled by introducing an implicit size
parameter S for function F and generating a well-formedness
obligation (WFO) that implies i < S. Appended to the PVS
theory, a WFO needs to be established in the calling envi-
ronment. Invariants augment what is known about array
accesses within loops. If we can infer i < m for all itera-
tions, we can generate the WFO m ≤ S, as in Fig. 7. Special
schemes are provided to help establish these bounds.

Other kinds of well-formedness, e.g., absence of divide-
by-zero errors, are not yet incorporated in the analysis. Still
under study is the possible role of PVS type correctness
conditions (TCCs) to help confirm when code is free of such
anomalies. Also under study are alternative methods for
discharging subtype and existence TCCs that are spawned

void array_init(int A[], unsigned int n, int v) {
int i, m;
for (i=0; i<n; i++) A[i] = v;

}

array_init_deval [(IMPORTING iter_schemes@prog_types)
A_size_: posnat,
A_0_: int_array(A_size_),
n_0_: nat, v_0_: int] : THEORY

BEGIN
%% Internal analysis details omitted.
val_A: {r_: int_array(A_size_) |

FORALL (q: below(n_0_)): r_(q) = v_0_}
final: return_values = (# A := val_A #)
WFO: boolean = n_0_ <= A_size_

END array_init_deval

Figure 7: Initialization of n array elements.

when typechecking theory F_deval. A comprehensive solu-
tion will require switching to a multi-pass tool design.

4.4 Array Examples
Fig. 8 collects the evaluation results for three common

types of array algorithms. These illustrate further how final
array values are characterized using subtypes. With tradi-
tional verification tools, these would take the form of user-
provided postconditions, although the essential constraints
would be the same.

Note how the result constraint for the linear search exam-
ple mentions all array values tested before finding the target
value. This faithfully describes the computation, although it
is stronger than one might write in a specification. Note also
the nested loops in the bubble sort example. Generally these
can be handled by the evaluator without special techniques,
provided there are iteration schemes that deduce outer loop
behavior from inferred inner loop behavior. Used in these
schemes is the PVS function, permutation_of?, which ap-
pears in NASA Langley’s PVS library collection [14].

4.5 Precondition Discovery
When iterative algorithms need restricted parameter val-

ues, automatic discovery of preconditions can be achieved in
many cases. Consider, for example, a binary search function.
An applicable iteration scheme S would have a condition C
requiring that the array elements be ordered. Suppose that
during the matching process, all of the conditions except C
are satisfied. Rather than rejecting the match, we could in-
stead emit the invariant C ⊃ P , where P comes from S’s
solution expressions.

If this conditional invariant is conjoined with another in-
variant Q, we will have (C ⊃ P) ∧ Q. Now we can push C
outward by introducing the weaker formula C ⊃ (P ∧ Q),
which is implied by the previous one. In the fully general
case, (C1 ∧ . . . ∧ Cm) ⊃ (P1 ∧ . . . ∧ Pn) would collect the
conditions, creating a precondition for the loop. Eventually
these rise to the top of the function to create an overall pre-
condition for the function. Checking whether C1 ∧ . . .∧Cm

is satisfiable would be a possible enhancement.
Although this technique cannot infer preconditions for the

non-iterative parts of a function, it has promise for deal-
ing with common iterative algorithms. Conventions can be
added to the scheme notation so authors can indicate which
conditions should be eligible for this treatment.

int array_min(const int A[], unsigned int nm1) {
int i, m;
m = A[0];
for (i=1; i < 1+nm1; i++)
if (A[i] < m) m = A[i];

return m; }

val_result_: {r_: int |
((FORALL (l: below(1 + nm1_0_)): (r_ <= A_0_(l))) AND
(EXISTS (j: below(1 + nm1_0_)): A_0_(j) = r_))}

final: return_values = (# result_ := val_result_ #)
WFO: boolean = 1 + nm1_0_ <= A_size_
END array_min_deval

int linear_search(const int A[],
unsigned int n, int v) {

int i = 0;
while (i < n) {
if (A[i] == v) return i;
i += 1;

}
return -1; }

val_result_: {r_: int |
(((r_ = -(1)) AND
(FORALL (j: below(n_0_)): NOT A_0_(j) = v_0_)) OR
(A_0_(r_) = v_0_ AND (r_ < n_0_) AND (0 <= r_) AND
(FORALL (j: below(r_)): NOT A_0_(j) = v_0_)))}

final: return_values = (# result_ := val_result_ #)
WFO: boolean = n_0_ <= A_size_
END linear_search_deval

void bubble_sort(int A[], unsigned int nm1) {
unsigned int i, j;
int t;
for (i=0; i < nm1; i++) {
for (j = i + 1; j < 1 + nm1; j++) {
if (A[j] < A[i]) {
t = A[i]; A[i] = A[j]; A[j] = t; }

} } }

val_A: {r_: int_array(A_size_) |
((FORALL (p: below(nm1_0_)):

(r_(p) <= r_(1 + p))) AND
permutation_of?(r_, A_0_))}

final: return_values = (# A := val_A #)
WFO: boolean = 1 + nm1_0_ <= A_size_
END bubble_sort_deval

Figure 8: Evaluation results for three common array algorithms.

Deriving the end-to-end behavior of inverse operations is
a promising application of deductive evaluation. It requires
a different sort of precondition discovery. Consider the prob-
lem of showing that two functions achieve lossless data com-
pression. One might construct a C function similar to that
needed for a test case:

void data_compression(unsigned int n) {

int A[1000], B[1000], C[1000];

unsigned int m;

m = compress(n, A, B);

decompress(m, B, C); }

We hope to infer that, on exit, A = C (initial n elements).
Assume the evaluator has derived P (n,A,B) as the be-

havior of compress. Doing the same for decompress is prob-
lematic because it does not process arbitrary values of array
B, only those having the data format encoded by compress.

Two approaches are feasible. The first would create a
modified form of the decompress function in which the type
of input array B is constrained by P (n,A,B) using a predi-
cate subtype. The second approach would evaluate the func-
tion data_compression after first performing an inline ex-
pansion of decompress. This would cause decompress’s code
to be evaluated under the assumption P (n,A,B).

Given that many operations and services come in comple-
mentary pairs, end-to-end evaluation would provide strong
assurance of key behaviors. Generalization to other function
combinations and properties should be possible as well.

5. RELATED WORK
Recent verification tools for C have exploited the power of

modern SMT solvers to refresh the classic notion of program
verifiers. VCC [3] and Frama-C [6] both carry out functional
verification with high automation, provided that specifica-
tions and loop invariants are supplied by users. Seahorn [1]
is a newer tool with a modular architecture using model

checkers and abstract interpreters. A verification technique
hosted within Java PathFinder [16] combined ideas from
symbolic execution, model checking and invariant genera-
tion. Verification using strongest postconditions was pro-
posed for reverse engineering [10].

ESC/Java [8] performs lighter-weight verification using
deductive techniques, but only to verify selected properties,
relying on some user annotations and hints.

Abstract interpretation [4] can be used to derive conser-
vative loop properties. These constitute valid constraints,
although they are often weaker than human-generated in-
variants. Nevertheless, leading tools in this category [5] can
conduct analyses on a realistic scale.

Early work on loop invariant generation began in the 1970s
[19]. The last 10–15 years have seen a wide variety of new
investigations into invariant generation.

One category generates plausible invariant candidates us-
ing dynamic methods, although these are not guaranteed to
be invariants. Daikon [7] is a leading tool of this type.

More relevant is the use of logical and mathematical tech-
niques to derive invariant formulas. One popular group of
methods is based on predicate abstraction. SMT-based im-
plementations of invariant generation [18] sometimes couple
this idea with templates to seed the search process.

First-order theorem provers such as Vampire provide the
substrate for several generation methods [13, 11]. Heuristics
for extracting loop properties try to identify key facts, for
instance, the aggregate effects of array updates.

A few methods are designed to work backwards from post-
conditions or other assertions. Heuristics that examine the
detailed structure of postconditions [9] can consider the role
that variables and expressions play.

6. CONCLUSION
A preliminary framework for deductive evaluation and in-

variant synthesis has been demonstrated. PVS features have

been leveraged with good effect. Whether function results
are “closed form” expressions or relations encoded via sub-
types, relevant language and tool support is available. Func-
tion calls propagate results and their types upward, offering
good prospects for analysis across several levels.

A full implementation of the framework would have sev-
eral potential uses. These include supplementing or replac-
ing unit testing, analyzing software component libraries, an-
alyzing software for specialized domains, and carrying out
symbolic debugging. An attractive cost-benefit tradeoff,
similar to that of some static analyzers, is a reasonable goal.

Inherent limitations of the current prototype need to be
addressed in future work. Foremost among these is popu-
lating the iteration scheme library. We speculate that hun-
dreds of schemes, possibly a few thousand, would be needed
for adequate coverage of common C functions. Experience
with the NASA PVS library [14] (over 1500 theories) sug-
gests that such a formalization effort is achievable. More-
over, any experienced PVS user can create schemes; tool
developers are not needed. Once the core engine is mature,
capability grows as long as the library grows.

In practice, a deductive evaluator could be embedded within
an IDE (integrated development environment) and designed
to generate results usable by developers without specialized
training. While such a tool would address only a subset of
correctness problems, it could be coupled with testing to in-
crease assurance. Eventually, tools along these lines could
become a new niche in the service of software engineering.

7. REFERENCES
[1] A.Gurfinkel, T.Kahsai, A. Komuravelli, and

J.A.Navas. The SeaHorn verification framework. In
CAV, volume 9206 of LNCS, pages 343–361, 2015.

[2] P. Baudin, J. Filliâtre, T. Hubert, C. Marché,
B. Monate, Y. Moy, and V. Prevosto. ACSL
Specification Language (2013).
http://frama-c.com/acsl.html.

[3] E. Cohen, M. Dahlweid, M. Hillebrand,
D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and
S. Tobies. VCC: a practical system for verifying
Concurrent C. In Theorem Proving in Higher Order
Logics, TPHOLs 2009, volume 5674 of LNCS, pages
23–42. Springer, 2009.

[4] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In 4th
Symposium on Principles of Programming Languages,
pages 238–353, 1977.

[5] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Mine, D. Monniaux, and X. Rival. The ASTREE
analyzer. In European Symposium on Programming
(ESOP’05), volume 3444 of LNCS, pages 21–30, 2005.

[6] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto,
J. Signoles, and B. Yakobowski. Frama-C: A software
analysis perspective. In SEFM, volume 7504 of LNCS,
pages 233–247. Springer, 2012.

[7] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on
Software Engineering, 27(2):99–123, 2001.

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static

checking for Java. In PLDI ’02, pages 234–245, New
York, NY, USA, 2002. ACM.

[9] C. A. Furia and B. Meyer. Inferring loop invariants
using postconditions. In A. Blass, N. Dershowitz, and
W. Reisig, editors, Fields of Logic and Computation,
pages 277–300. Springer, 2010.

[10] G. C. Gannod and B. H. C. Cheng. Strongest
postcondition semantics as the formal basis for reverse
engineering. In WCRE ’95: Proceedings of the Second
Working Conference on Reverse Engineering, page
188, Washington, DC, 1995. IEEE.

[11] K. Hoder, L. Kovács, and A. Voronkov. Case studies
on invariant generation using a saturation theorem
prover. In Proc. of 10th Mexican Intl. Conf. on
Advances in Artificial Intelligence - Vol. Part I,
MICAI’11, pages 1–15. Springer, 2011.

[12] L. Kovács and T. Jebelean. Automated generation of
loop invariants by recurrence solving in Theorema. In
Proc. 6th Intl. Symp. on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC04),
pages 451–464, 2004.

[13] L. Kovács and A. Voronkov. Finding loop invariants
for programs over arrays using a theorem prover. In
Proc. of FASE, 2009.

[14] NASA Langley Research Center. PVS library
collection. Theories and proofs available at
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

[15] S. Owre, J. Rushby, and N. Shankar. PVS: A
prototype verification system. In 11th International
Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages
748–752, Saratoga, NY, June 1992.

[16] C. S. Pasareanu and W. Visser. Verification of Java
programs using symbolic execution and invariant
generation. In 11th International SPIN Workshop,
Barcelona, Spain, volume 2989 of LNCS, pages
164–181, Apr. 2004.

[17] J. Rushby, S. Owre, and N. Shankar. Subtypes for
specifications: Predicate subtyping in PVS. IEEE
Transactions on Software Engineering, 24(9):709–720,
Sept. 1998.

[18] S. Srivastava and S. Gulwani. Program verification
using templates over predicate abstraction. In
Proceedings of PLDI, 2009.

[19] B. Wegbreit. The synthesis of loop predicates. Comm.
ACM, 17(2):102–112, 1974.

