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a b s t r a c t

Wedefine an automaton-based abstract interpretation of a trace semanticswhich identifies
loops that definitely initialize all elements of an array to values satisfying a given property,
a useful piece of information for the static analysis of Java-like languages. This results in
a completely automatic and efficient analysis, that does not use manual code annotations.
We give a formal proof of correctness that considers aspects such as side-effects of method
calls. We show how the identification of those loops can be lifted to global invariants about
the contents of elements of fields of array type, that hold everywhere in the code where
those elements are accessed. This makes our workmore significant and useful for the static
analysis of real programs. The implementation of our analysis inside the Julia analyzer is
both efficient and precise.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Static analysis of Java-like languages is very often concerned with the identification of properties that hold for program
variables at some specific program points. By program variableswemean both local variables (to a method) or fields, that is,
variables local to an object. Identifying such properties, in the second case, is extremely more complex, since fields might
well not be initialized before being accessed, in which case they hold a default or unspecified value, depending on the
semantics of the language. Hence, for fields, it is necessary to be able to prove that fields are never read before being written
at least once; only in that case it is possible to guarantee that, wherever they are read, they contain a value that was written
before into them. Moreover, fields can be accessed through distinct expressions, aliased to the same object, which further
complicates the static analysis process.

Things become yet more complex when variables hold arrays rather than a single value. For those variables, most
sound static analyses just assume the worst: the elements of the arrays that they hold are approximated by a worst-
case assumption. This results in many spurious warnings when it comes to verification techniques based on those static
analyses. For instance, this work was born from a concrete problem faced during the static analysis of Java and Android
programs. We want to analyze the CubeWallpaper Android program distributed by Google with the Android Software
Development Kit and prove that it can never throw a null pointer exception at run-time. The interesting snippet of code is
shown in Fig. 1. Fields mOriginalPoints and mRotatedPoints hold arrays, initialized by readModel() and later read
and dereferenced in other methods. There, the null pointer analysis of Julia [24] issued spurious warnings since it used a
worst-case assumption for the contents of the elements of mOriginalPoints and mRotatedPoints, i.e., such elements
were assumed to be potentially null. We hence realized that we had to improve the analyzer with a technique able to
reason about arrays and cope with those false alarms.
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Fig. 1. A snippet of code from the CubeWallpaper Android program by Google.

Namely, we wanted to prove automatically the following property that we call global in the rest of the paper:

‘‘all elements of fields mOriginalPoints and mRotatedPoints
are non-null wherever they are read’’.

When we say wherever, we mean that this property should also hold in other methods, outside of readModel(). The first
sensible goal in that direction is to prove the following property that we call local in the rest of the paper:

‘‘all elements of fields mOriginalPoints and mRotatedPoints
are completely initialized to non-null values at point *’’.

In our example, information at point * is of little interest, since arraysmOriginalPoints andmRotatedPoints are largely
accessed outside of themethod readModel(). Whatwe actually need is the ability to use the local property local to prove
the global property global, that also holds outside of readModel(). This lifting is far from obvious: those arrays might be
modified in other program points, or their elements might be read and dereferenced before readModel() is executed. In
the latter case, the default value null (or an unspecified value) would be found inside of them. Moreover, arrays might be
modified by side-effects rather than by direct access. To the best of our knowledge, this lifting from local to global properties
of arrays has never been studied before.

Related work

Automatic reasoning about properties of arrays has been addressed recently. Some of the approaches show that an array
satisfies a certain property (specified by the user), while others discover valid properties of that array. A decision procedure for
satisfiability in an expressive fragment of a theory of arrays is studied in [5]: the authors state that theirmain theory of arrays
is motivated by practical requirements in software verification. They use Presburger arithmetic for the theory of indices and
the theory of integers, reals and equalities to describe the contents of arrays. Another decidable logic for reasoning about
infinite arrays of integers was introduced in [12]. This logic permits to express both: constraints on consecutive elements of
arrays (e.g., an array is ascending) and periodic facts about elements of array (e.g., elements corresponding to even indices
are equal to 0). Although a complete initialization of arrays is in general undecidable, there exist some approaches able
to prove complete initialization in some particular cases. Most of them [9,10,3] are based on predicate abstraction [11], a
special formof abstract interpretation, or on theoremproving [15,14]. [9] introduces amethod for automatically inferring loop
invariants and it is based on predicate abstraction, where the abstract domain is constructed using a given set of predicates.
Predicates may be generated in a heuristic manner from the program text or by the programmer. Given a suitable set of
predicates for a given loop, their algorithm infers universally-quantified loop invariants expressed as Boolean combinations
of the predicates, and these invariants are crucial for verifying programs that manipulate unbounded data such as arrays.
In [4] properties about arrays are analyzed using two opposite approaches: array expansion and array smashing. The former
introduces an abstract element for each index in the array, it is precise, but in practice can only be used for arrays of small
size, and even with up-to-date hardware cannot analyze unbounded arrays. The latter represents all array elements with
one summary variable, allows one to handle arbitrary arrays efficiently but suffers from precision losses. A combination
of the benefits of both these approaches is introduced in [10], where an abstract interpretation-based framework capable
of capturing numeric properties of array elements is presented. There, the analysis attempts to partition array elements
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into groups; assertions can be established and maintained about groups; in the case of array initialization, the analysis
keeps, in distinct groups, array elements that were already initialized from uninitialized array elements. A similar idea
is used in [13], where the authors restrict themselves to one-dimensional arrays and programs that manipulate arrays
only through for loops that increment their index at each iteration and access arrays by simple expressions of the index.
Moreover, they consider only a restricted class of all possible properties, and they state that in these settings their method
detects interesting properties of non-trivial programs. All previous approaches can be applied on small target languages
representing a restriction of real-life programming languages. They are intra-procedural and do not deal with side-effects
of different method invocation, as we do instead.

The most detailed actual approach for discovering array properties is presented in [8], where FunArray, a parametric
segmentation abstract domain functor for the fully automatic and scalable analysis of array content properties, is introduced.
FunArray lifts existing analyses for scalar values to uniform compound data structures as arrays or collections. The authors
implemented it into Clousot, an abstract interpretation-based static contract checker for .NET, and empirically validated
the precision and the performance of the analysis by running it on the main libraries of .NET and on their own code.
They could infer thousands of non-trivial invariants and deal with complex upper bound expressions for the loop variables.
They state that theirs is the first analysis of this kind applied to such a large code base, and proven to scale. The technique
introduced in [8] is able to prove our local property, but it looks as an overkill for proving a relatively simple property such
as local and it does not explain how local can be lifted to global, in an automatic way. Our goal is a simpler analysis,
both in implementational and theoretical terms.We also provide a formal proof of correctness, currently not available for [8].

This article discusses the array initialization algorithm for a simple imperative language, in order to keep definitions and
proofs as simple as possible and concentrate on the relevant aspects of the analysis. However, we actually analyze full Java
bytecode with the Julia analyzer, where aspects such as late binding of method calls and object-orientation are relevant for
the definition of the analysis. The interested reader can find more details about those aspects of Julia in [26,25].

Where does our analysis fit inside julia?

Our analysis is initially intraprocedural, in the sense that loops that completely initialize all elements of an array are
identified only if they lay, syntactically, inside a given method or constructor. Nevertheless, it uses some interprocedural
information, related to the heap memory, such as reachability between program variables of reference type, purity of
methods, creation point analysis and available expressions. This information is computed before our array initialization
analysis, through independent analyses, hence not in a reduced product. The exact description of these supporting analyses
is not the topic of this paper; they have been defined and described in other articles, already published or submitted for
publication [20,17,19,16]. We only assume that this information is available and can be used by our array initialization
analysis. Moreover, our base analysis is lifted to interprocedural properties of fields of array properties, through an oracle
technique that we describe later.

The results of our array initialization analysis are subsequently useful to other static analyses, that are performed after it.
In particular, in this article, wewill show how those results are useful for nullness analysis, through the experiments that we
perform in Section 8. That analysis is run independently from the array initialization analysis and exploits its results. Also
in this case, we do not perform a reduced product of analyses but rather a sequence of analyses, one exploiting the results
of the previous ones.

Java programs typically start from one or more main methods. However, libraries are called through many entry points,
in any order. In the middle, there are frameworks such as Android, that are event-driven and hence have no actual main
method, but rather event handling methods triggered by external events. Julia deals with all such situations, by assuming
that entry points can be called with any possible input: their parameters might hold null and be shared in any way. In
the case of Android, entry points are identified by looking at methods overriding prototype methods in the Android library
(see [22] for more information).

2. Contributions and plan of the paper

The contributions of this article are:

1. a new abstract interpretation of traces of execution, proving that all elements of an array are definitely initialized at a
given program point;

2. a detailed proof of correctness for the previous analysis;
3. a technique for lifting the results of the previous analysis to global invariants about fields of array type;
4. experiments showing that the analysis is efficient (one/two seconds for large software) and useful in practice.

Our abstract interpretation uses an automaton, whose states abstract properties of traces of execution. For each array
variable a and index integer variables i1 . . . , in, the automaton can be executed over the program to check if the array in a
is completely initialized by using those index variables. In particular, each program point is decorated with a set of states
of the automaton and all the traces leading to that program point must be among those represented by those states. If that
set is actually the singleton {ACCEPT}, then all the traces reaching the program point definitely initialize all the elements
of a with a (possibly nested) loop using the given index variables. This algorithm is run for every possible choice of a and
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Fig. 2. Example extracted from [8].

i1, . . . , in, which in practice are very few. If a is actually a field of an object, initialized in the constructor of the object, we are
also able to lift this local complete initialization of a to its complete initialization at every program point where an element
of a is accessed, a much more useful piece of information.

We observe that our abstract domain is very simple, which gives rise to a fully detailed proof of soundness of our analysis
for our target language. This proof is of low complexity, which is not always the case for analyses of arrays.

Our goal was to devise a simple static analysis that copes with the most frequent array initialization loops. Hence, our
analysis is in general less precise than that in [8]. An example is shown in Fig. 2 (extracted from [8, Figure 1]): we are not able
to cope with out-of-order array assignments. However, we cover the most realistic cases, as shown with the experimental
evaluation of Section 8: our analysis spots most array initialization loops; we have also checked when our analysis fails in
those experiments: this is always due to weaknesses in the underlying supporting alias analyses or failures in the detection
of the expression holding the size of the array, rather than toweaknesses in our array initialization analysis. Other techniques
based on static analysis would suffer from the same imprecisions as well.

A preliminary version of this paper appeared in [18], where only mono-dimensional arrays were considered. Moreover,
contributions 2 and 3 above are not considered in [18] and discussions are much more condensed there.

The rest of the paper is organized as follows. Section 3 presents the syntax and semantics of a simple but representative
imperative programming language with arrays. Section 4 presents our abstract interpretation, limited to arrays held in local
variables. Section 5 describes the fixpoint analysis, based on that abstract interpretation. Section 6 shows the way we deal
with arrays held in fields rather than in local variables, and with calls having side-effects, like split() in Fig. 1. Section 7
shows how we lift the local results of Sections 5 and 6 to global invariants about the elements of fields of array type (the
lifting of local to global, in the example above). Section 8 presents our experiments of analysis. Section 9 concludes.

3. A simple imperative language and its semantics

We present here a simplified imperative language, inspired by [7]. The actual implementation of our analysis includes
all features of mono-threaded Java bytecode such as classes, method calls and exceptions.

In our language, commands are labeled actions. These actions are executed when the interpreter of the language is at a
given, initial label and lead to another, successor label. More actions can share the same initial label and hence our language
is, in general, non-deterministic. The exact nature of labels is irrelevant: we can assume, for instance, that they are integers.
At run-time, variables hold values which, in a programming language such as Java, may be primitive or non-primitive. In
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Fig. 3. Abstract syntax of programs. LV are leftvalues, that is, expressions that may occur on the left-hand side of an assignment, E and B are arithmetic and
Boolean expressions, A are actions and C are commands.

our formalization we simplify the picture by considering that the only primitive type is int, while non-primitive types are
arrays and classes containing instance fields only.

Definition 1 (Types). We let K denote the set of classes, where every class might have at most one direct superclass and an
arbitrary number of direct subclasses. We define T , the set of types, as the minimal set containing int, K and t[ ] for every
t ∈ T . We use A to denote the set of all array types. Every variable v ∈ Var has a static type t(v), where Var denotes the set
of all program variables. Every class κ ∈ K might have instance fields κ.f : t (field f of type t ∈ T defined in class κ) We let
F(κ) denote the set of all κ ’s fields. Every array type t = t1[] ∈ A has its own arity, arity(t), which is 1 if t1 ∈ {int} ∪ K or
1 + arity(t1) otherwise.

Definition 2 (Type Ordering). We define the type ordering ≤: T × T as follows: given two types t1, t2 ∈ T , we say that t1
is a subtype of t2 and we denote it by t1 ≤ t2 if and only if:

• t1 = t2, or
• t1, t2 ∈ K and t1 is a subclass of t2, or
• t1 = t ′1[], t2 = t ′2[] ∈ A, arity(t1) = arity(t2) and t ′1 ≤ t ′2.

Example 1. Let ForeignStudent andStudent be two classes such that the former is a subclass of the latter. Then, the following
relations hold:

ForeignStudent ≤ Student,

ForeignStudent[ ] ≤ Student[ ],

ForeignStudent[ ][ ] ≤ Student[ ][ ], etc.

We define the arithmetic and Boolean expressions of our target language.

Definition 3 (Expressions). The set of arithmetic expressions E and the set of Boolean expressions B are defined by the
grammar in Fig. 3. Namely, arithmetic expressions can be integer constants (n ∈ Z), variables (x ∈ Var), arithmetic operations
between two expressions (E ⊕ E, where ⊕ ∈ {+, −, ∗, ÷, %}), length of arrays (E.length), array elements (E[E]) and field
accesses (E.f ). On the other hand, Boolean expressions can be truth (true), falsity (false), negation of a Boolean expression
(¬B), comparison of arithmetic expressions (E<E, where< ∈ {<, ≤, =}), conjunction and disjunction of Boolean expressions
(B > B, where > ∈ {∧, ∨}).

The following definition introduces the syntax of our target imperative intra-procedural language.

Definition 4 (Syntax of Programs). A program is a finite set of commands, with a distinguished initial command Cinit . C is
the set of commands C of the form L1 : A → L2;, where L1 and L2 are called initial and successor labels of C, and A is the
action executed by C. We define selectors ini(C) = L1, suc(C) = L2 and act(C) = A. Actions can be Boolean expressions or
assignments (Fig. 3). The set of all actions is A.

Example 2. Consider the two Java loops on the left of Fig. 4.We translate them into our simple language and show the result
on the right of the same figure.
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Fig. 4. Java loops that initialize arrays a and b and their transition systems.

Let us now introduce a notion of reachable types. Intuitively, int can reach only itself, array types can reach themselves,
their subtypes as well as the types reachable from the array types of the same form but with a smaller arity, while classes
can reach themselves, their subclasses and the types reachable from the types of their fields.

Definition 5 (Reachable Types). Given a type t ∈ T , we define a function reachTypes : T → ℘(T ) as:

reachTypes(t) =


{int} if t = int
{t ′ | t ′ ≤ t} ∪ reachTypes(t1) if t = t1[ ] ∈ A
{t ′ | t ′ ≤ t} ∪


{κ.f:t1∈F(t ′)|t ′≤t}

reachTypes(t1) if t ∈ K.

Example 3. According to Definition 5, the types reachable from int[ ][ ] are int[ ][ ], int[ ] and int. Suppose that the class
Student introduced in Example 1 contains a field id of type int. Then, among the types reachable from Student are, for sure,
Student, ForeignStudent and int.

The static typing function t for variables is extended to non-Boolean expressions, in a standard way. Hence we can talk of
the static type t(E) of an expression E. Expressions and actions of a program are assumed type-checked, in the usual sense
of a typical imperative programming language. For instance, the indexes of an array must be expressions of type int and
assignments can be performed only if the right-hand side and the left-hand side have compatible types. Then, in an action
x[y[3]][i] := z we require that t(y) = int[ ], t(i) = int and t(x) = t(z)[ ]. Hence, in the following, we silently assume that
expressions and actions are type-checked.

We define a map modVar that characterizes the set of variables modified by an action.

Definition 6. We define a function modVar : A → ℘(Var) as:

modVar(A) =


{x} if A is x := · · ·

∅ otherwise.

Another piece of information, used in our static analysis, is the static types of the arrays that might be updated by the
actions of the program under analysis. The following definition introduces the map modArr.

Definition 7. We define a function modArray : A → ℘(T ) as:

modArray(A) =

{t(E0)}
if A is E0[E1] := E2 or
if A is E0[E1] := new t[E2] · · · [En] or
if A is E0[E1] := new C()

∅ otherwise.

Recall that in this paper the only primitive type is int and the reference types are arrays and classes. This simplification
does not limit the results we obtain in the present paper, since the latter only concerns arrays, possibly held in fields of
classes, and integer counters. Note that multi-dimensional arrays are represented as mono-dimensional arrays containing
other arrays as their elements. This is the representation that Java uses at run-time.
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Definition 8 (Values). We define Val, the set of values that variables can be assigned to, as Val = Z ∪ L ∪ {null}, where
Z is the set of integers, L is a finite set of memory locations and null is a value that can be assigned to any reference
type. Arr is the set of arrays a = ⟨n, [v0, . . . , vn−1]⟩, where n ∈ N is the length of a and vi ∈ Val are its elements,
for i ∈ [0..n) ⊆ N. We define a.length = n and a[i] = vi, for i ∈ [0..n). We also define the update of a at i as
a[i → v] = ⟨n, [v0, . . . , vi−1, v, vi+1, . . . , vn−1]⟩ ∈ Arr, which is undefined when i is outside the range of a. Every object
o has class o.κ and an internal environment o.φ mapping each field f ∈ F(o.κ) into its value (o.φ)(f ) ∈ Val. The set of all
objects is Obj.

Definition 9 (Default Values). The default value of a variable x is 0 if t(x) = int, and null otherwise. For every type t ∈ T ,
we write dt to denote the default value of variables of static type t .

An environment represents the state of an interpreter of the language. It provides a value for each variable and specifies the
memory of the system.

Definition 10 (Environment). An environment is a tuple e = ⟨ρ, µa, µo⟩ of a total map ρ : Var → Val, array memory
µa : L → Arr and object memory µo : L → Obj. Like in Java, we ban dangling pointers and we require that static types are
respected. We let E be the set of all environments.

Example 4. At the end of the Java fragment given at the top of Fig. 4we haveρ(i) = 3 ∈ Z andρ(a) = ℓ ∈ L, where ℓ is such
that µa(ℓ) = ⟨3, [1, 2, 3]⟩ ∈ Arr. Hence, µa(ℓ).length = 3 and for each i ∈ [0..µa(ℓ).length), we have µa(ℓ)[i] = i+ 1 ∈ Z.

Definitions 11–13 introduce three partialmaps providing the evaluation of arithmetic expressions, the evaluation of Boolean
expressions and the semantics of actions. Since they are partial maps, they are undefined on parameters not belonging to their
domains.

Definition 11. We define, for every environment e = ⟨ρ, µa, µo⟩ ∈ E , the evaluation of non-Boolean expressions as a
partial map AJEK : E → Val:

AJnKe =n
AJxKe =ρ(x)

AJE1 ⊕ E2Ke =


AJE1Ke ⊕ AJE2Ke

if ⊕ is defined on those values
undefined

otherwise

AJE.lengthKe =


µa(ℓ).length

if ℓ = AJEKe ∈ L and µa(ℓ) ∈ Arr
undefined

otherwise

AJE1[E2]Ke =


µa(ℓ)[i]

if ℓ = AJE1Ke ∈ L, µa(ℓ) ∈ Arr,
i = AJE2Ke and 0≤ i < µa(ℓ).length

undefined
otherwise

AJE.f Ke =


(µo(ℓ).φ)(f )

if ℓ = AJEKe ∈ L and µo(ℓ) ∈ Obj
undefined

otherwise.

In this paper, error situations are represented through undefined behaviors. We could have introduced also a notion of
exceptional state, but this would have made the formalization heavier.

Definition 12. The evaluation of Boolean expressions is a partial function BJEK : E → {true, false} defined as:

BJtrueKe =true
BJfalseKe =false
BJ¬BKe =¬BJBKe

BJE1<E2Ke =AJE1Ke<AJE2Ke
BJB1>B2Ke =BJB1Ke>BJB2Ke.

This map is undefined when any of its arguments is undefined.
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The execution of an action maps an initial environment into the subsequent environment, if any. Note that Boolean
expressions are actions that filter those environments that make them true. It is worth noting that, in our target language,
conditionals are used in complementary pairs. For instance, the comparison i < a.length at line 3 of the Java fragment given
in the top left corner of Fig. 4 is translated into the pair of commands 3: i < a.length → 4; and 3: ¬(i < a.length) → 6;.

Definition 13 (Semantics of Actions). Given an action A and an environment e ∈ E , the semantics of A in e is given by a
partial map SJAK : E → E defined as:

SJBKe =


e if BJBKe = true
undefined otherwise

SJx := EKe = ⟨ρ[x → AJEKe], µa, µo⟩

SJE1[E2] := E3Ke =


⟨ρ, µa [µa(ℓ)[i → AJE3Ke]] , µo⟩

if ℓ = AJE1Ke ∈ L, µa(ℓ) ∈ Arr,
i = AJE2Ke and 0 ≤ i < µa(ℓ).length

undefined
otherwise

SJE1.f := E2Ke =


⟨ρ, µa, µo [(µo(ℓ).φ)(f ) → AJE2Ke]⟩

if ℓ = AJE1Ke ∈ L and µo(ℓ) ∈ Obj
undefined

otherwise

SJx := new t[E1] · · · [En]Ke = ⟨ρ[x → ℓf ], µa(ℓf , t, AJE1Ke, . . . , AJEnKe), µo⟩

SJE[E′
] := new t[E1] · · · [En]Ke =



⟨ρ, µa(ℓf , t, w1, . . . , wn)[µa(ℓ)[i → ℓf ]], µo⟩

if ℓ = AJEKe ∈ L, µa(ℓ) ∈ Arr,
∀1≤ i≤n, wi = AJEiKe ∈ Z,
i = AJE′Ke and 0 ≤ i < µ(ℓ).length

undefined
otherwise

SJE.f := new t[E1] · · · [En]Ke =


⟨ρ, µa(ℓf , t, w1, . . . , wn), µo[(µo(ℓ).φ)(f )→ℓf ]⟩

if ℓ = AJEKe ∈ L, µo(ℓ) ∈ Obj and
∀1≤ i≤n, wi = AJEiKe ∈ Z

undefined
otherwise

SJx := new C()Ke = ⟨ρ[x → ℓf ], µa, µo[ℓf → of ]⟩

SJE[E′
] := new C()Ke =


⟨ρ, µa[µa(ℓ)[i → ℓf ]], µo[ℓf → of ]⟩

if ℓ = AJEKe ∈ L, µa(ℓ) ∈ Arr,
i = AJE′Ke and 0 ≤ i < µ(ℓ).length

undefined
otherwise

SJE.f := new C()Ke =


⟨ρ, µa, µo[(µo(ℓ).φ)(f ) → ℓf , ℓf → of ]⟩

if ℓ = AJEKe ∈ L and µo(ℓ) ∈ Obj
undefined

otherwise,

where ℓf is a fresh location, of is a new created object such that for each field κ.f : t ∈ F(o.κ), its value (o.φ)(κ.f : t) is dt , and
µ(ℓ, t, ln, . . . , l1) is the memory µ enriched with the creation of a new array of dimensions l1, . . . , ln, bound to location ℓ,
of basic type t . Namely,

µ(ℓ, t, l1) = µ[ℓ → ⟨l1, [dt , . . . , dt ]⟩]

µ(ℓ, t, ln+1, ln, . . . , l1) = µ(ℓ1, t, ln, . . . , l1) . . . (ℓln+1 , t, ln, . . . , l1)

[ℓ → ⟨ln+1, [ℓ1, . . . , ℓln+1 ]⟩]

where ℓ1, . . . , ℓln+1 are all fresh. This is just the formalization of the allocation algorithm of multi-dimensional arrays, as
performed by the Java runtime.

In the following examples we will omit the object memory component from the environments. That is because our
examples refer to arrays of type int[] or int[][], and their updates do not give rise to any modification of the object memory.

Example 5. The semantics of the first action of the fragment considered in Example 4 (see Fig. 4), A0 = a := new int[3],
in an arbitrary environment e is e0 = SJA0Ke = ⟨[a → ℓ], [ℓ → ⟨3, [0, 0, 0]⟩]⟩ = ⟨ρ0, µ0⟩, where ℓ ∈ L is fresh and 0 is the
default value for int. The semantics ofA1 = i := 0 in environment e0 is e1 = SJA1Ke0 = ⟨[i → 0, a → ℓ], µ0⟩ = ⟨ρ1, µ1⟩. The
semantics of A2 = i < a.length in environment e1 is SJA2Ke1 = e1 since BJA2Ke1 = (AJiKe1 < AJa.lengthKe1) = (ρ1(i) <
µ1(ρ1(a)).length) = (0 < 3) = true.
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Fig. 5. Finite partial traces and environments of the program from Fig. 4.

Example 6. Consider an action A = a := new t[2][3] and an environment e = ⟨ρ, µ⟩ ∈ E , where t = int[]. Then,
SJAKe = ⟨ρ[a → ℓ], µ(ℓ, t, 2, 3)⟩, where ℓ ∈ L is fresh. By Definition 5, µ(ℓ, t, 2, 3) = µ(ℓ1, t, 3)(ℓ2, t, 3)[ℓ → ⟨2, [ℓ1, ℓ2]⟩],
where ℓ1, ℓ2 ∈ L are fresh locations. Since dt = null, we obtain µ(ℓ, t, 2, 3) = µ[ℓ1 → ⟨3, [null, null, null]⟩, ℓ2 →

⟨3, [null, null, null]⟩, ℓ → ⟨2, [ℓ1, ℓ2]⟩].
Our operational semantics works over execution traces of states. A state is an environment enriched with a component
recording the next command to be executed, similar to the program counter in an actual interpreter of the language.
Definition 14 (State). A state is a pair σ = ⟨e,C⟩ ∈ E × C. The set of states is denoted by Σ . We define the selectors
env(σ ) = e and cmd(σ ) = C.
Example 7. The initial state of the program fragment considered in Example 5 is σ0 = ⟨e,C0⟩, while the states obtained
after the execution of the first three commands are σ1 = ⟨e0,C1⟩, σ2 = ⟨e1,C2⟩ and σ3 = ⟨e1,C4⟩, respectively, where e0
and e1 are the environments calculated in Example 5.

A trace is a sequence of states that reflects an actual execution of the program, i.e., environments are modified in
accordance to the semantics of the actions in the states of that sequence, while the sequence of labels corresponds to the
sequence of commands in the program.
Definition 15 (Trace). A finite partial trace τ of states is a finite sequence of states ⟨σ1, . . . , σn⟩, where |τ | = n is the length
of τ . For every i ∈ [1, . . . , |τ |), if σi = ⟨e,C⟩, we require that SJact(C)Ke is defined and that σi+1 = ⟨SJact(C)Ke,C′

⟩ with
suc(C) = ini(C′). When n = 0, the trace is empty and denoted by ϵ. Otherwise, we define first(τ ) = σ1 and last(τ ) = σn.
The set of traces is denoted by T . The concatenation ◦ of two traces is defined as τ1 ◦ ϵ = τ1, ϵ ◦ τ2 = τ2 and

⟨σ 1
1 , . . . , σ 1

n1⟩ ◦ ⟨σ 2
1 , . . . , σ 2

n2⟩ =



⟨σ 1
1 , . . . , σ 1

n1 , σ
2
1 , . . . , σ 2

n2⟩

if env(σ 2
1 ) = SJact(cmd(σ 1

n1 ))Kenv(σ
1
n1 )

is defined
and suc(cmd(σ 1

n1 )) = ini(cmd(σ 2
1 ))

undefined
otherwise.

We define the operational semantics of our language as a transformer of sets of traces: it expands every trace τ with a state
whose next command to be executed is a given command C that can be attached to τ according to Definition 15.
Definition 16 (Operational Semantics). Let C ∈ C and T ⊆ T . We define a function S : C × ℘(T ) → ℘(T ) as

S(C, T ) = {τ ◦ ⟨e,C⟩ | τ ∈ T ∧ ∃e ∈ E .τ ◦ ⟨e,C⟩ ∈ T }.

Given two sets T , T ′
⊆ T , we use T⇒

C T ′ to denote S(C, T ) = T ′. The operational semantics at C is the set @C of all possible
traces that lead to C and start with the execution of a distinguished command Cinit , that is, @C = {τ ∈ Tn | ∃T1, . . . , Tn ⊆

T .∃C1, . . . , Cn ∈ C.{ϵ} ⇒
C1 T1 ⇒

C2 T2 · · · ⇒
Cn Tn ∧ C1 = Cinit ∧ Cn = C}.

Example 8. The second column of the table given in Fig. 5 (Traces) contains all the finite partial traces obtained during
the execution of the program from Fig. 4. These traces are divided in 7 partitions corresponding to the commands of the
program of interest (Command). Traces belonging to row @Ci of column Traces represent the operational semantics at Ci.
Definitions of the traces mentioned above use different environments e, e0, . . . , e7, and their definition is given at the top of
the third column (Environments). At the bottomof the third column (Operational Semantics atC6)we compute the operational
semantics at command C6.
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Fig. 6. Automaton detecting fully initialized arrays.

4. Regular trace approximation

We define here an approximation of the execution traces of a program through a finite deterministic automaton. Its
states, that are just sets of traces, represent elements of an abstract domain. This domain is defined through regular
expressions specifying sequences of commands that can be executed to construct the traces. We prove that the transition
relation of the automaton is a correct approximation of the ⇒

C operational relation (Definition 16). Let a be an array of
dimension n which is initialized through n nested loops with index variables i1, . . . , in of integer type. We approximate
the semantics of our programming language by the automaton given in Fig. 6, which is parameterized on a tuple of
program variables ⟨a, i1, . . . , in⟩. The goal of this automaton is to detect nested loops that fully initialize the array a through
index variables i1, . . . , in. The automaton’s alphabet is Λ = {===, S,N} ∪ {0k,+++k,≥≥≥ k | 1 ≤ k ≤ n} and its states are
Q = {INIT,WRITTEN, ACCEPT} ∪ {STARTk | 1 ≤ k ≤ n} ∪ {EXITk | 1 < k ≤ n}.

As we formalize later (Definition 20), INIT means that nothing is known about the last executed commands. STARTn
means that the automaton is at the beginning of the loop for in. EXITn means that the automaton is at the end of the loop for
in. WRITTEN means that an assignment to a[i1] . . . [in] has just been executed and the automaton is waiting to match it with
a corresponding unitary increment of in. Finally, ACCEPT means that the complete initialization of the array can be asserted.

As usual, the transition relation of the automaton is formalized by a function δ : Q × Λ → Q : given states p, q ∈ Q and
λ ∈ Λ, if the automaton has a transition from p to q labeled by λ, then δ(p, λ) = q. For simplicity, the automaton given in
Fig. 6 is not complete, since there are missing transitions (for instance, there is no transition labeled by 03 that starts from
START1 or from WRITTEN). We silently assume that all these missing transitions lead to INIT.

The alphabet is an abstraction of the commands of the program.

Definition 17 (Abstraction of Commands). We define a function s : C → Λ called abstraction of commands as

s(⟨L1 : A → L2; ⟩) =


0k if A is ik := 0
+++k if A is ik := ik + 1
≥≥≥ k if A is ¬(ik < a[i1]...[ik−1].length)
=== if A is a[i1] . . . [in] := E
S otherwise, if safe(A) = true
N otherwise.

We say that an action A is safe i.e., safe(A) = true, if it is a full array assignment, or if it does not modify the variable a
nor any index variable i1, . . . , in, nor any array of a type reachable from t(a). Namely, safe : A → {true, false} is defined as
safe(A) = (modVar(A) ∩ {a, i1, . . . , in} = ∅ ∧ modArray(A) ∩ reachTypes(t(a)) = ∅) ∨ (A is a[j1] . . . [jn] := E).

For any k ∈ [1..n], commands with actions ik := 0 and ik := ik +1 are abstracted into 0k and+++k respectively. It is important
to observe that this abstraction is syntactical. For instance,while a commandwith action ik := 0 is abstracted into 0k, another
with action ik := 1 − 1 is abstracted into N. This does not affect the correctness of our analysis, but reduces its precision.
We distinguish between full and partial array assignments: full array assignments are of the form a[j1] . . . [jn] := E, where
for each k ∈ [1..n], jk satisfies bounds of kth array’s dimension, while partial array assignments are of the form a[j1] . . . [jm],
where m < n. Full array assignments of the form a[i1] . . . [in] := E are abstracted into ===, but any other full assignment is
abstracted into S (safe), as imposed by the safe function. On the contrary, partial array assignments are abstracted into N
(non-safe) because there are situations when some already initialized elements of the array of interest might be destroyed
by a partial assignment to another array. Consider the Java fragment given at the bottom of Fig. 4. The inner loop (lines 4-6)
fully initializes array b[i], for each i ∈ [0..b.length). But, at line 7, this initialization may be destroyed, since a new array of
integers is created and assigned to array c[i], and this array might be an alias of b[i]. Hence, we decided to consider not safe
all the partial array assignments where the type of the array element modified by that command is reachable from the type
of the array of interest. This choice, although sound, might be quite imprecise.

There are, though, some static analyses that improve the precision of our array initialization analysis. One of them is
sharing analysis. We say that two variables a and b of array type share in an environment e when they reach a common
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Fig. 7. The abstract domain A.

location. A static analysis that determines, for each program point, an over-approximation of the pairs of variables that
might share at that point can be integrated in our formalization by changing Definition 17 in the following way: we say
that an action A is safe if it does not modify the array variable of interest a nor the index variables of interest i1, . . . , in (i.e.,
modVar(A) ∩ {a, i1, . . . , in} = ∅) and if the variables updated by A definitely do not share with a. Our static analyzer Julia
implements this analysis [23].

The abstraction of a trace is just the element-wise application of s.

Definition 18 (Abstraction of Traces). We definite a function β : T → Λ∗ called abstraction of traces as
β(⟨σ1, . . . , σn−1, σn⟩) = β(⟨σ1, . . . , σn−1⟩) s(cmd(σn)) = s(cmd(σ1)) . . . s(cmd(σn)), for non-empty traces, with β(ϵ) = ϵ.

The following definition introduces two functions that provide regular expressions describing the structure of the kth
of n nested loops used for the initialization of array a: Tot(k) and Part(k) correspond to traces inside the loops that fully or
partially initialize the first k dimensions of array a.

Definition 19 (Completion). We define functions total and partial completion, Tot and Part:

Tot(k) =


0nS∗((=== S∗)+ +++ nS∗)∗ ≥≥≥ n if k = n
0kS∗(Tot(k + 1)S∗

+++ kS∗)∗ ≥≥≥ k otherwise

Part(k) =


0nS∗((=== S∗)+ +++ nS∗)∗ if k = n
0kS∗(Tot(k + 1)S∗

+++ kS∗)∗ otherwise,

where ∗ (+) means zero or more (at least one) repetitions.

Note that, for every k ∈ [1..n], we have Tot(k) = Part(k) ≥≥≥ k.
Since Λ contains abstractions of commands, the meaning of the states of the automaton, Q , becomes more clear. INIT

means that nothing is known about the last executed commands. STARTn means that assignments i1 := 0, . . . , in := 0 are
executed and that they are potentially followed by an alternation of assignments to a[i1]...[in] and unitary increments of
in (Part(n)). STARTn−1 means that assignments i1 := 0, . . . , in−1 := 0 are executed, they are potentially followed by an
assignment in := 0 and in that case, there is an alternation of assignments to a[i1]...[in] and unitary increments of in until
a comparison ≥≥≥ n is found (Tot(n)), then there is an unitary increment of in−1, which is potentially followed by another
Tot(n), and so on, but no unitary increments of in−1 is followed by a comparison ≥≥≥ n−1 (Part(n − 1)). States STARTk for
k ∈ [1..n − 2] are defined analogously. The only difference between states STARTk and EXITk is the fact that the latter
terminates with a comparison ≥≥≥ k, potentially followed by some safe actions (Tot(k)). WRITTEN means that an assignment
to a[i1] . . . [in] has just been executed and the automaton is waiting to match it with a corresponding unitary increment of
in. Finally, ACCEPT means that the complete initialization of the array can be asserted. An arbitrary number of safe actions
can always be executed between non-safe ones.

In formal terms, the states of the automaton are the sets of execution traces characterized by the following definition.

Definition 20 (Abstract Domain). The states of the automaton in Fig. 6 correspond to the following sets of traces defined by
regular expressions over Λ:

INIT = {τ ∈ T | β(τ) ∈ Λ∗
} = T

STARTk = {τ ∈ T | β(τ) ∈ Λ∗Part(1) . . . Part(k)}, ∀k ∈ [1..n]
EXITk = {τ ∈ T | β(τ) ∈ Λ∗Part(1) . . . Part(k) ≥≥≥ kS∗

}, ∀k ∈ [2..n]

WRITTEN = {τ ∈ T | β(τ) ∈ Λ∗Part(1) . . . Part(n)(=== S∗)+}

ACCEPT = {τ ∈ T | β(τ) ∈ Λ∗Part(1) ≥≥≥ 1}.

We define the set A = {INIT,WRITTEN, ACCEPT, ∅} ∪ {STARTk | 1 ≤ k ≤ n} ∪ {EXITk | 1 < k ≤ n}.

Proposition 1. A is a Moore family of ℘(T ) i.e., it is an abstract domain ordered by set inclusion (Fig. 7). As standard for Moore
families, the induced abstraction map α : ℘(T ) → A is α(T ) =


A∈A,T⊆A A, for every T ⊆ T .

Proof. For any k ∈ [1..n], the last safe instruction of any τ ∈ STARTk is 0k or +++k; the last relevant instruction of any
τ ∈ WRITTEN is ===; the last relevant instruction of any τ ∈ ACCEPT is ≥≥≥ 1; if k ≠ 1, the last relevant instruction of any
τ ∈ EXITk is ≥≥≥ k ≠≥≥≥ 1. Therefore, these 2n + 1 abstract elements are disjoint and their intersection is ∅ ∈ A. Since
INIT = T , its intersection with any other abstract domain element p is p itself. Hence A is a Moore family. �
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The following lemma shows that the transition function δ of the automaton given in Fig. 6 is monotonic.

Lemma 1. Let p, q ∈ A and λ ∈ Λ. If ∅ ⊂ p ⊆ q then δ(p, λ) ⊆ δ(q, λ).

Proof. The result is immediate when p = q. Otherwise, from ∅ ⊂ p ⊂ q it follows (Fig. 7) that q = INIT. From Fig. 6,
for all λ ∈ Λ r {01} we have δ(q, λ) = INIT and hence δ(p, λ) ⊆ INIT = δ(q, λ). Moreover, again from Fig. 6, we have
δ(p, 01) = START1 = δ(q, 01). �

Lemma 2 states a consistency or correctness relation [6] between the operational semantics of Definition 16 and the
transitions of the automaton in Fig. 6. Namely, suppose that two sets of traces I and O and a command C are connected by
I⇒C O, i.e., each trace inO is obtained by attaching a state whose next command component is C to an opportune trace from
I. Hence, the next command component of the last state of each trace belonging to O is C. We show that a similar property
holds in abstract terms as well: if we perform a transition s(C), representing the abstract behavior of C, from the automaton
state α(I), corresponding to all the traces representable by the regular expressions that the traces of I give rise to, we reach
an automaton state which contains at least the traces α(O).

The figure on the left illustrates this result: inner circles (with no borders) are I and O. Shapes with dashed borders are
their abstractions through α. The shape with a solid border is the abstract state obtained by executing δ from α(I) and is, in
general, an approximation of α(O).

Lemma 2. Let C ∈ C and I,O ⊆ T . If I ⇒C O then α(O) ⊆ δ(α(I), s(C)).

Proof. Consider any τ ∈ O. By Definition 16, there exist τ ′
∈ I and e ∈ E such that τ = τ ′

◦ ⟨e,C⟩. By Definition 18, we have
β(τ) = β(τ ′)s(C). We proceed by case analysis:

α(I) = STARTk ∧ k ∈ [1..n] ∧ s(C) = 01: In this case τ ′
∈ I ⊆ α(I) = STARTk and

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(k)s(C)

= Λ∗Part(1) . . . Part(k)01

⊆ Λ∗01 ⊆ Λ∗Part(1).

Since β(τ) ∈ Λ∗Part(1), we have τ ∈ START1 (Definition 20). Since τ ∈ O is arbitrary, we have O ⊆ START1
and hence α(O) ⊆ α(START1) = START1 = δ(STARTk, 01) = δ(α(I), s(C)).

α(I) = STARTk ∧ k ∈ [1..n) ∧ s(C) = 0k+1: In this case τ ′
∈ I ⊆ α(I) = STARTk and

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(k)s(C)

= Λ∗Part(1) . . . Part(k)0k+1

⊆ Λ∗Part(1) . . . Part(k)Part(k + 1).

Since β(τ) ∈ Λ∗Part(1) . . . Part(k + 1), we have τ ∈ STARTk+1 (Definition 20). Since τ ∈ O is arbitrary, we have
O ⊆ STARTk+1 and hence α(O) ⊆ α(STARTk+1) = STARTk+1 = δ(STARTk, 0k+1) = δ(α(I), s(C)).

α(I) = STARTk ∧ k ∈ [1..n) ∧ s(C) = 0l ∧ l /∈ {1, k + 1}: It is clear that, in this case δ(α(I), s(C)) = δ(STARTk, 0l) = INIT,
hence for any O, α(O) ⊆ INIT = δ(α(I), s(C)).

α(I) = STARTn ∧ s(C) = 0l ∧ l /∈ {1, n}: In this case we have δ(α(I), s(C)) = δ(STARTn, 0l) = INIT, hence for any O,
α(O) ⊆ INIT = δ(α(I), s(C)).

α(I) = STARTk ∧ s(C) = +++l ∧ k, l ∈ [1..n]: In this case we have δ(α(I), s(C)) = δ(STARTk,+++l) = INIT, hence for any O,
α(O) ⊆ INIT = δ(α(I), s(C)).

α(I) = STARTk ∧ k ∈ [1..n) ∧ s(C) ====: In this case we have δ(α(I), s(C)) = δ(STARTk,===) = INIT, hence for any O,
α(O) ⊆ INIT = δ(α(I), s(C)).

α(I) = STARTn ∧ s(C) ====: In this case τ ′
∈ I ⊆ α(I) = STARTn and therefore:

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(n)s(C)

= Λ∗Part(1) . . . Part(n) ===

⊆ Λ∗Part(1) . . . Part(k)(=== S∗)+.

Since β(τ) ∈ Λ∗Part(1) . . . Part(k)(=== S∗)+, we have τ ∈ WRITTEN (Definition 20). Since τ ∈ O is arbitrary, we
have O ⊆ WRITTEN and hence α(O) ⊆ α(WRITTEN) = WRITTEN = δ(STARTn,===) = δ(α(I), s(C)).
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α(I) = STARTk ∧ s(C) =≥≥≥ k ∧ k ∈ [2..n]: In this case τ ′
∈ I ⊆ α(I) = STARTk and

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(k)s(C)

= Λ∗Part(1) . . . Part(k) ≥≥≥ k

⊆ Λ∗Part(1) . . . Part(k) ≥≥≥ kS∗.

Since β(τ) ∈ Λ∗Part(1) . . . Part(k)(=== S∗)∗ ≥≥≥ kS∗, we have τ ∈ EXITk (Definition 20). Since τ ∈ O is arbitrary, we
have O ⊆ EXITk and hence α(O) ⊆ α(EXITk) = EXITk = δ(STARTk,≥≥≥ k) = δ(α(I), s(C)).

α(I) = START1 ∧ s(C) =≥≥≥ 1: In this case τ ′
∈ I ⊆ α(I) = START1 and therefore β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1)s(C) =

Λ∗Part(1) ≥≥≥ k. Since β(τ) ∈ Λ∗Part(1) ≥≥≥ k, we have τ ∈ ACCEPT (Definition 20). Since τ ∈ O is arbitrary, we
have O ⊆ ACCEPT and hence α(O) ⊆ α(ACCEPT) = ACCEPT = δ(START1,≥≥≥ 1) = δ(α(I), s(C)).

α(I) = STARTk ∧ k ∈ [1..n] ∧ s(C) =≥≥≥ l ∧ l ≠ k: In this case δ(α(I), s(C)) = δ(STARTk,≥≥≥ l) = INIT, hence for any O,
α(O) ⊆ INIT = δ(α(I), s(C)).

α(I) = STARTk ∧ k ∈ [1..n] ∧ s(C) = N: In this case we have δ(α(I), s(C)) = δ(STARTk,N) = INIT, hence for any O,
α(O) ⊆ INIT = δ(α(I), s(C)).

α(I) = WRITTEN ∧ s(C) = 01: In this case τ ′
∈ I ⊆ α(I) = WRITTEN and therefore

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(k)(=== S∗)+s(C)

= Λ∗Part(1) . . . Part(k)(=== S∗)+01

⊆ Λ∗01 ⊆ Λ∗Part(1).

Since β(τ) ∈ Λ∗Part(1), we have τ ∈ START1 (Definition 20). Since τ ∈ O is arbitrary, we have O ⊆ START1 and
hence α(O) ⊆ α(START1) = START1 = δ(WRITTEN, 01) = δ(α(I), s(C)).

α(I) = WRITTEN ∧ s(C) = +++n: In this case τ ′
∈ I ⊆ α(I) = WRITTEN and therefore

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(n − 1)Part(n)(=== S∗)+s(C)

= Λ∗Part(1) . . . Part(n − 1)[0nS∗((=== S∗)+ +++ nS∗)∗](=== S∗)+ +++ n

⊆ Λ∗Part(1) . . . Part(n).

Since β(τ) ∈ Λ∗Part(1) . . . Part(n), we have τ ∈ STARTn (Definition 20). Since τ ∈ O is arbitrary, we have
O ⊆ STARTn and hence α(O) ⊆ α(STARTn) = STARTn = δ(WRITTEN,+++n) = δ(α(I), s(C)).

α(I) = WRITTEN ∧ s(C) =≥≥≥ n: In this case τ ′
∈ I ⊆ α(I) = WRITTEN and therefore

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(n)(=== S∗)+s(C)

= Λ∗Part(1) . . . Part(n)(=== S∗)+ ≥≥≥ n

⊆ Λ∗Part(1) . . . Part(n)(=== S∗)∗ ≥≥≥ n

Since β(τ) ∈ Λ∗Part(1) . . . Part(n)(=== S∗)∗ ≥≥≥ n, we have τ ∈ EXITn (Definition 20). Since τ ∈ O is arbitrary, we
have O ⊆ EXITn and hence α(O) ⊆ α(EXITn) = EXITn = δ(WRITTEN,≥≥≥ n) = δ(α(I), s(C)).

α(I) = WRITTEN ∧ s(C) = S: In this case τ ′
∈ I ⊆ α(I) = WRITTEN and therefore

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(n)(=== S∗)+s(C)

= Λ∗Part(1) . . . Part(n)(=== S∗)+S
⊆ Λ∗Part(1) . . . Part(n)(=== S∗)+

Since β(τ) ∈ Λ∗Part(1) . . . Part(n)(=== S∗)+, we have τ ∈ WRITTEN (Definition 20). Since τ ∈ O is arbitrary, we
have O ⊆ WRITTEN and hence α(O) ⊆ α(WRITTEN) = WRITTEN = δ(WRITTEN, S) = δ(α(I), s(C)).

α(I) = WRITTEN ∧ s(C) /∈ {01,+++n,≥≥≥ n, S}: In this case we have δ(α(I), s(C)) = δ(WRITTEN, s(C) = INIT (Fig. 6), hence for
any O, α(O) ⊆ INIT = δ(α(I), s(C)).

α(I) = EXITk ∧ s(C) = +++k−1 ∧ k ∈ [2..n]: In this case τ ′
∈ I ⊆ α(I) = EXITk and

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(k − 1)Part(k) ≥≥≥ kS∗s(C)

= Λ∗Part(1) . . . [0k−1S∗(Tot(k)S∗
+++ k−1S∗)∗]Part(k) ≥≥≥ kS∗

+++ k−1

= Λ∗Part(1) . . . [0k−1S∗(Tot(k)S∗
+++ k−1S∗)∗]Tot(k)S∗

+++ k−1

⊆ Λ∗Part(1) . . . [0k−1S∗(Tot(k)S∗
+++ k−1S∗)∗]

= Λ∗Part(1) . . . Part(k − 1)

Since β(τ) ∈ Λ∗Part(1) . . . Part(k − 1), we have τ ∈ STARTk−1 (Definition 20). Since τ ∈ O is arbitrary, we have
O ⊆ STARTk−1 and hence α(O) ⊆ α(STARTk−1) = STARTk−1 = δ(EXITk,+++k−1) = δ(α(I), s(C)).
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Fig. 8. The ArrayInit algorithm.

α(I) = EXITk ∧ s(C) = 01 ∧ k ∈ [2..n]: In this case τ ′
∈ I ⊆ α(I) = EXITk and

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(k) ≥≥≥ kS∗s(C)

= Λ∗Part(1) . . . Part(k) ≥≥≥ kS∗01

⊆ Λ∗01 ⊆ Λ∗Part(1)

Since β(τ) ∈ Λ∗Part(1), we have τ ∈ START1 (Definition 20). Since τ ∈ O is arbitrary, we have O ⊆ START1 and
hence α(O) ⊆ α(START1) = START1 = δ(EXITk, 01) = δ(α(I), s(C)).

α(I) = EXITk ∧ s(C) = S ∧ k ∈ [2..n]: In this case τ ′
∈ I ⊆ α(I) = EXITk and

β(τ) = β(τ ′)s(C) ∈ Λ∗Part(1) . . . Part(k) ≥≥≥ kS∗s(C)

= Λ∗Part(1) . . . Part(k) ≥≥≥ kS∗S
⊆ Λ∗Part(1) . . . Part(k) ≥≥≥ kS∗

Since β(τ) ∈ Λ∗Part(1) . . . Part(k) ≥≥≥ kS∗, we have τ ∈ EXITk (Definition 20). Since τ ∈ O is arbitrary, we have
O ⊆ EXITk and hence α(O) ⊆ α(EXITk) = EXITk = δ(EXITk, S) = δ(α(I), s(C)).

α(I) = EXITk ∧ s(C) /∈ {01,+++k, S}: In this case δ(α(I), s(C)) = δ(EXITk, s(C) = INIT (Fig. 6), hence for any O, α(O) ⊆ INIT =

δ(α(I), s(C)).
α(I) ∈ {INIT, ACCEPT} ∧ s(C) = 01: In this case τ ′

∈ I ⊆ α(I) ∈ {INIT, ACCEPT} and thereforeβ(τ) = β(τ ′)s(C) ∈ β(τ ′)01 ⊆

Λ∗01 ⊆ Λ∗Part(1). Since β(τ) ∈ Λ∗Part(1), we have τ ∈ START1 (Definition 20). Since τ ∈ O is arbitrary, we
have O ⊆ START1 and hence α(O) ⊆ α(START1) = START1 = δ(INIT, 01) = δ(ACCEPT, 01) = δ(α(I), s(C)).

α(I) ∈ {INIT, ACCEPT} ∧ s(C) ≠ 01: In this case δ(α(I), s(C)) = δ(INIT, s(C) = δ(ACCEPT, s(C)) = INIT (Fig. 6), hence for any
O, α(O) ⊆ INIT = δ(α(I), s(C)). �

5. The static analysis algorithm

We describe here a static analysis that uses the automaton of the previous section to determine a subset of those
commands of the program that are exactly at the end of a loop performing a complete initialization of an array. This subset
is in general strict, since identification of completely initialized arrays is undecidable. The analysis, intra-procedural but
aware of interprocedural side-effects, is designed for a specific tuple ⟨a, i1, . . . , in⟩ of program variables. Its result lets us
compute an under-approximation of the points where an array a of dimension n has just been initialized through n nested
loops with index variables i1, . . . , in. In principle, one has to repeat the analysis for every tuple ⟨a, i1, . . . , in⟩; in practice,
a tuple ⟨a, i1, . . . , in⟩ is only significant when variables a, i1, . . . , in occur in an array store action a[i1]...[in] := ..., which
drastically reduces the number of tuples to consider up to an empty or singleton set.

Our analysis is formalized by ArrayInit, the working set-based fixpoint algorithm in Fig. 8. When the working set (ws)
becomes empty (line 6), a fixpoint is reached. The algorithm starts by applying the automaton in Fig. 6 from Cinit and the INIT
state (line 4). Commands are read in any order allowed by the labels of the program and then executed. While the automaton
reads those commands, its state evolves. At each command, the algorithm records the states of the automaton just before
the execution of that command. We implement this by a map ϕ from commands to sets of states, initially empty (line 2)
and updated when a new state is found at the beginning of a command (line 12).

Example 9. We show the application of the ArrayInit over the Java fragment and its corresponding transition system given
at the top of Fig. 9. In this fragment, we initialize the loop counter i to 0 (line 1), check whether, for an arbitrary integer
variable b, b < 5 holds (lines 2–3), and then execute a.length iterations of the loop (lines 4–6). Each iteration initializes
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Fig. 9. A Java loop that fully initializes a and its analysis with ArrayInit.

the ith element of a and increments i by 1. Since lines 2–3 do not affect the initial value assigned to i, it is clear that, at the
end of the loop (line 7), the array a will be completely initialized. Let us analyze this fragment by the ArrayInit algorithm.
We assume the working set implemented as a queue. Due to space limitations, we write I, Sk, Ek, W and A for INIT, STARTk,
EXITk, WRITTEN and ACCEPT. Fig. 9 shows the evolution of ws and ϕ during the iterations. Column Ci stands for the content
of ϕ(Ci). Initially, ws = [⟨C0, I⟩] with C0 = Cinit , ϕ(C0) = {I} and ϕ holds the empty set elsewhere. Then we pop ⟨C0, I⟩

from ws and compute δ(I, s(C0)) = δ(I, 01) = S1. Since suc(C0) = ini(C1) = ini(C2), control passes to C1 and C2. Since
S1 /∈ ∅ = ϕ(C1) = ϕ(C2), we push ⟨C1, S1⟩ and ⟨C2, S1⟩ into ws and update ϕ at C1 and C2. Since ws is not empty, the
algorithm continues by popping ⟨C1, S1⟩ from ws and computes δ(S1, s(C1)) = δ(S1, S) = S1. Since suc(C1) = ini(C3) and
S1 /∈ ∅ = ϕ(C3), we push ⟨C3, S1⟩ into ws and update ϕ at C3. The algorithm continues similarly until the working set is
empty.

Example 10. Figs. 10 and 11 showother two Java fragments, their corresponding transition systems and the iterations of our
algorithm. The former initializes the loop counter i to 0, and then iterates the loop while i < a.length holds. At ith iteration,
if i is a multiple of 3, a value is assigned to a[i]. Otherwise, we assign both a[i] and a[i + 1]. At the end of the execution
of this fragment, a is completely initialized.1 On the other hand, the fragment shown in Fig. 11 completely initializes the
array a through two loops. They are examples of unusual and non-trivial array initializations, that our algorithm identifies,
nevertheless, as complete initializations (continues in Example 12).

Example 11. Suppose thatwe removed line 7 from the nested loop given at the bottomof Fig. 4. Then, its transition system is
similar to that given in the same figure: the only difference is command C5, which now becomes 4 : ¬(j < b[i].length) → 8;.
This fragment represents a complete initialization of thematrix b through twonested loops. The outer one is iterated b.length
times, and at ith iteration it executes b[i].length iterations of the inner loop. Each of these iterations initializes one of the
elements of the matrix b. We analyzed the initialization of matrix b by ArrayInit, and we give the result in Fig. 12.

The following result states that the ArrayInit algorithm computes a correct approximation of the concrete operational
semantics of Definition 16.

Proposition 2. Let C ∈ C. ArrayInit terminates with @C ⊆ ∪ϕ(C).

Proof. We actually prove a stronger property, which entails the thesis, i.e., we show that, at the end of the algorithm, for
every sequence of application of ⇒ of the form {ϵ} ⇒

C1 T1 ⇒
C2 T2 · · · ⇒

Cn Tn, with Tn ≠ ∅ and C1 = Cinit , we have
Tn ⊆ ∪ϕ(Cn) and, during the execution of the algorithm, there has been a step when a pair ⟨Cn, σ

♯
⟩, with α(Tn) ⊆ σ ♯, has

been pushed in the working set ws. The thesis follows by Definition 16 for @C.
The above statement is proved by induction on the length n ≥ 1 of the sequence of applications of ⇒.

1 In this example we assume that the length of a is a multiple of 3.
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Fig. 10. A loop initializing the elements of a in different ways and its analysis.

Fig. 11. A pair of loops fully initializing an array and their analysis with ArrayInit.

Base case: we have n = 1 and the sequence of applications of ⇒ becomes {ϵ} ⇒
C1 T1 with C1 = Cinit . By line 5 of the

algorithm and since that algorithm never removes states from the codomain of ϕ, we conclude that at the end of
the algorithm we have T1 ⊆ INIT = ∪ϕ(Cinit). Moreover, line 4 of the algorithm pushed a pair ⟨Cinit , INIT⟩ in ws
with α(T1) ⊆ INIT.

Induction: Assume that the result holds for some n ≥ 1. We prove it for n + 1. The sequence of applications of ⇒ of
length n + 1 has the form {ϵ} ⇒

C1 T1 ⇒
C2 T2 · · · ⇒

Cn Tn ⇒
Cn+1 Tn+1, with Tn+1 ≠ ∅ and C1 = Cinit . Since

Tn+1 ≠ ∅, we also have Tn ≠ ∅, by Definition 16 of ⇒. By inductive hypothesis applied to the subsequence
{ϵ} ⇒

C1 T1 ⇒
C2 T2 · · · ⇒

Cn Tn we conclude that, at the end of the algorithm, we have Tn ⊆ ∪ϕ(Cn) and,
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Fig. 12. Analysis of initialization of the matrix b in Fig. 4.

during the algorithm, there has been a step when a pair ⟨Cn, σ
♯
⟩ with α(Tn) ⊆ σ ♯ has been pushed in the working

set ws. Since the algorithm ends only when ws becomes empty (line 6), we conclude that pair must have been
removed from the working set at some moment, at line 7. Since Tn+1 ≠ ∅, by Definition 15 we conclude that
suc(Cn) = ini(Cn+1). Hence Cn+1 has been considered in the loop at line 8, the state σ

♯

1 = δ(σ ♯, s(Cn)) has been
computed at line 9 and compared against ϕ(Cn+1) at line 10. This might have had two outcomes:
• it was the case that σ

♯

1 ∉ ϕ(Cn+1): then line 12 added σ
♯

1 to ϕ(Cn+1) and it was still there at the end of the
algorithm, since no state is ever removed from the range of ϕ. Then, at the end of the algorithm, by extensivity
of α [6] we have

Tn+1 ⊆ α(Tn+1)

⊆ δ(α(Tn), s(Cn)) [Lemma 2]

⊆ δ(σ ♯, s(Cn)) [ind. hypothesis + Lemma 1 (Tn ≠ ∅)]

= σ
♯

1 ⊆ ∪ϕ(Cn+1).

Moreover, line 11 pushed ⟨Cn+1, σ
♯

1 ⟩ into ws and from Tn+1 ⊆ σ
♯

1 (just shown above) we have α(Tn+1) ⊆

α(σ
♯

1 ) = σ
♯

1 since σ
♯

1 ∈ A.
• it was the case that σ

♯

1 ∈ ϕ(Cn+1): then it was still there at the end of the algorithm, since no state is ever
removed from the range of ϕ. Exactly as in the previous case, we can prove that Tn+1 ⊆ ∪ϕ(Cn+1) and
α(Tn+1) ⊆ σ

♯

1 . �

We can now prove a result stating that our algorithm can be used to implement a correct array initialization analysis.

Theorem 3. Consider a program P, variables a (array of dimension n), i1, . . . , in (indexes) and the automaton in Fig. 6 for a and
i1, . . . , in. At the end of the ArrayInit algorithm, for every C ∈ C such that ϕ(C) = {ACCEPT}, we have that ini(C) is a point of P
where all elements of a have been initialized by n nested loops with indexes i1, . . . , in.

Proof. By Proposition 2, we know that @C ⊆ ∪ϕ(C) = {ACCEPT}, i.e., every trace of execution τ leading to C belongs to the
language of regular expression Λ∗Part(1) ≥≥≥1 = Λ∗Tot(1) (Definitions 19 and 20). By Definition 19 we have:

ACCEPT = Λ∗Tot(1) = Λ∗01S∗(Tot(2)S∗
+++1S∗)∗ ≥≥≥1 = · · ·

Λ∗01S∗ (· · · (  
n−1

S∗0n−1S∗(Tot(n)S∗
+++n−1S∗)∗ ≥≥≥ n−1)

∗
· · · )S∗

+++1S∗)∗ ≥≥≥1

It means that all traces belonging to state ACCEPT correspond to executions that completely initialize a through n nested
loops with indexes i1, . . . , in. For example, given arbitrary values for i1, . . . , in−1, regular expression Tot(n) = 0nS∗((===
S∗)+ +++nS∗)∗ ≥≥≥n simulates those executions that completely initialize the array a[i1][i2] · · · [in−1] through a loop with index
variable in: it starts with an assignment in := 0 (0n), which is followed by an alternation of assignments to a[i1] · · · [in] (===)
and unitary increments of in (+++n) until a comparison in ≥ a[i1] · · · [in−1].length is found. Between these actions, only safe
actions (S) are allowed. By definition of safe actions, they cannot modify the contents of the array a, since those actions do
not affect arrays whose elements have a type reachable from that of a. Similarly, we can show that Tot(n − 1) simulates
those executions which completely initialize the array a[i1] · · · [in−2] through 2 nested loops with index variables in−1 and
in, and so on. �

Example 12. From Fig. 9 we know that ϕ(C8) = {ACCEPT} at the end of the algorithm. By Theorem 3, we conclude that the
array has been completely initialized when program point 7 = ini(C8) is reached. The same is proved for program points
9 = ini(C10) in Fig. 10, 10 = ini(C12) in Fig. 11 and 9 = ini(C10) in Fig. 12.
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Fig. 13. Side-effects hinder the full initialization of this.a.

6. Dealing with implicit upper bounds and side-effects

Sections 4 and 5 introduce a static analysis that determines where the elements of a local variable of array type are all
initialized. The analysis is limited in many ways. Namely, it identifies the comparison between the loop index variable i and
the size of the array a in a syntactical, explicit way (Definition 17): it must have the form ¬(i < a.length). For instance, this
is not the case in Fig. 1 and the analysis would fail there. Moreover, it works only for arrays held in local variables. Again, this
is not the case in Fig. 1, where they are stored into instance variables, that is, fields. In that case, the analysis would require
careful attention to side-effects. For instance, in the program in Fig. 13, method foo() recreates the array at each iteration.
At the end of the loop, none of its elements is initialized. This problem might arise when one calls non-pure methods such
as foo() (i.e., methods with side-effects). Then, a naif extension of our analysis to the case of arrays held in fields might
easily turn out to be unsound. We discuss below how we overcome these two limitations.

6.1. Implicit upper bounds

We consider the most frequent implicit ways of expressing the upper bound of an array. Often, a variable is used, as
numpoints in Fig. 1. In order to prove that this variable holds the length of the array, we use the definite expression
aliasing [19] static analysis available in Julia. It is a version of the traditional available expression analysis [2] for bytecode:
bindings of variables to expressions are generated by assignments, that also kill other bindings that use the old value of the
variables. In Fig. 1, the binding numpoints = this.mOriginalPoints.length is generated by the first new statement
and never killed later, since there is no subsequent statement modifying this, numpoints or this.mOriginalPoints.
Similarly for the binding numpoints = this.mRotatedPoints.length. Definition 17 is consequentlymodified: when
A is ¬(i < var), its abstraction is ≥≥≥ whenever the definite expression aliasing information contains, there, the binding
var = a.length (a can be a local variable or a field).

Another frequent case consists in using a numerical constant as upper bound. This includes the case when a final static
integer field is used (i.e., a symbolic constant) since compilers usually replace such fieldswith their numerical value and Julia
analyzes the compiled bytecode. This case is more complex than it looks: we must be sure that the same constant has been
used to specify the length of the array wherever it is created, hence also outside the method where the initialization loop
occurs. Moreover, there might be more creation points for the objects stored inside the same variable and that condition
must hold for all of them. Here, we exploit the creation point analysis available in Julia: for each variable at a given program
point or field, it over-approximates the set of program points where its content might have been created. This is similar
to class analysis [21], but more concrete information is kept: the creation points rather than just the types of the objects
created. Definition 17 ismodified again: whenA is¬(i < con) and con is a numerical constant, its abstraction is≥≥≥whenever
all creation points for a (the variable being initialized) have the form new T[con].

6.2. Side-effects

When the array being initialized is stored in a field, as in x.field, we must strengthen the notion of safe action A (case
S of Definition 17). Namely, we must also require that A does not modify field. The only actions that might modify field
are explicit assignments to y.field, for any y, and calls to non-pure methods (the latter are not in Fig. 3, but naturally a real
language includes them). Here, we use the side-effects analysis provided by Julia: for each method call, it over-approximates
the set of fields modified during the execution of the callee(s) (and of the methods that the callees invoke, recursively). By
checking if field belongs to that over-approximation, we determine if the call must be conservatively considered as unsafe.
This means that our analysis works also when non-pure methods are called inside the initialization loop, as long as they do
not affect the specific field being initialized.

7. Inferring global invariants

At this point, we are able to prove the local property local of Section 1. What we want now is an automatic technique
to lift local to the global invariant global, which is our actual goal: all elements of fields mOriginalPoints and
mRotatedPoints contain non-null elements wherever they are read (not just inside readModel()). Let us generalize
global: all elements of a field f , of array type, satisfy a condition X wherever they are read. We split global in two simpler
subproblems, that entail global and that we prove separately:
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1. P1: each element of f is never read before being written at least once;
2. P2: only values satisfying X are assigned to the elements of f .

P1 and P2 predicate over thewhole program, not just over the code that initializes the array (readModel() in our example).
In the following, we will show how P1 and P2 are proved. We observe for now that P1 is proved by showing that any

execution of any constructor of the class C defining f must initialize all elements of f , before it ever reads them. Since a
static constraint of Java bytecode imposes that objects must be always initialized by a constructor before being used, this is
enough to conclude that the elements of f are fully initialized immediately after the creation of its holder object and, because
of P2, they must be initialized to values satisfying X . Of course, this situation might later change if the elements of f are later
reassigned by the code of C of by the code of other classes (when f is not private in C). But, again, condition P2 ensures
that the full initialization of the elements of f to values satisfying X is never lost along the lifespan of its holder object. In
principle, one might identify a field from its name f , with no reference to its instantiation context. This might be imprecise
if the field is public. Hence, the actual implementation distinguishes fields on the basis of their instantiation context (the
creation point of their holder object) rather than just by their name. For simplicity, we do not describe this improvement
here and we assume that fields are identified by their name only.

Note that the knowledge about the fact that, at a given program point, we write values satisfying the property X comes
in general from an interprocedural static analysis. In our experiments in Section 8, this will be an interprocedural nullness
analysis, which is independent from our (intraprocedural and local) array initialization analysis and is performed after it.

7.1. Proving P1

This problem is similar to that faced in [24]: finding the so-called candidate fields, that are never read before being
assigned. An algorithm is given there and proved correct. It performs a data-flow analysis from the constructors of each
class and collects the fields that are definitely assigned before being possibly read. This analysis is inter-procedural and
hence considers also fields initialized in helper functions that are often used to support the constructors. For instance,
readModel() in Fig. 1 is a helper function used by the constructor of the class where it occurs. Since the analysis starts
from the constructors, it does not consider methods unreachable from them. In [24], an assignment to f is an operation of
the form x.f = . . .where x is a definite alias of this and a read of f is an operation of the form x.f that does notmodify f and
where x is a possible alias of this. Note the different directions of approximation, that are essential to prove the algorithm
correct. The same algorithm can be applied here if we use a different notion of read and write to f : in this paper, we assume
that an assignment to the elements of f is the exit program point of a loop that definitely completely initializes this.f ; this
is checked through the technique of Sections 4 and 5. A read of the elements of f is any operation of the form . . . = x[. . .]
where x is a possible alias of this.f ; this is checked through the same creation point analysis of Section 6.1. We rephrase
that algorithm here for our purposes.

Definition 21 (Candidate Field). A field f defined in class κ is candidate if it has array type and for every execution path x in
every constructor of κ , that ends at a return instruction, x passes through a program point where all elements of this.f
are definitely initialized. Moreover, if an execution path x in a constructor of κ passes through a program point that might
read an element of this.f , then it passed before through a program point where all elements of this.f are definitely
initialized.

The algorithm candidates(c) yields the set of candidate fieldsw.r.t. a given constructor c. A constructor is just the set of
its commands L1 : A → L2; with a distinguished initial command. If class κ has constructors c1. . .cn, the intersection
of candidates(c1). . .candidates(cn) is a set of candidate fields from class κ . The algorithm computes, for every
command a, sets a.w and a.r . The former is the set of fields of array type of thiswhose elements are all definitely written
in every execution path starting at a; the latter is the set of fields of κ of array type such that one of their elements might be
read in some execution path starting at a before all the elements of that field have been definitely written.

Set candidates(Constructor c) {
\\ all commands reachable from the first command of c are
\\ added to a workset. Helper functions are also included
Set ws = reachable(c.firstCommand(), new Set());
for (Command com: ws)

{ com.w = new Set(); com.r = new Set(); }

\\ we process the workset
while (!ws.isEmpty()) {

remove some com from ws;
let com1..comn be the successors of com;

\\ a field is read if it is read by some path
com.r = com1.r union ... union comn.r;

\\ a field is written if it is written by all paths
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if (n > 0) com.w = com1.w intersect ... intersect comn.w;

if (com might read an element of a field f of this) {
com.r.add(f); \\ this field is read
com.w.remove(f);

}
else if (com definitely writes all the elements

of the field f of this) {
com.r.remove(f);
com.w.add(f); \\ this field is written

}
else if (com is a call M whose receiver is this) {

let M1...Mn be the methods that might be called here;
\\ we continue inside the helper function(s)
Set r = union Mi.firstCommand().r over i
Set w = intersection Mi.firstCommand().w over i
com.w.removeAll(r);
com.w.addAll(w);
com.r.removeAll(w);
com.r.addAll(r);

} else if (com is a call M) {
\\ this is not a helper function
let M1...Mn be the methods that might be called here;
Set r = all fields of array type read by some Mi

or any method that Mi calls;
com.w.removeAll(r);
com.r.addAll(r);

}

if (com.w or com.r changed during this iteration)
add all predecessors of com to ws;

}

return c.firstCommand().w;
}

\\ yields the set of commands reachable from com.
\\ Helper functions are included
Set reachable(Command com, Set result) {

if (!result.contains(com)) {
result.add(com);

for (Command f: com.successors()) reachable(f, result);

if (com contains a call M whose receiver is an alias of local 0)
for each M1...Mn, the methods that might be called here

reachable(Mi.firstCommand(), result);
}

return result;
}

The algorithm uses a working set of commands, those reachable from the beginning of the constructor by following
helper functions as well. Their initial approximation is empty. The working set is analyzed until it is empty. Every time a
command com is extracted from the working set, we compute the union of the fields that might be read by its successors
and the intersection of the fields that are definitely written by its successors. Those sets are added to com.r and to com.w,
respectively. Thencom is considered. Itmight be a command thatmight read an element of a field of array type or a command
that definitely writes all elements of a field of array type. It might also be a call over this, that is, a helper function used to
initialize the constructed object; in that case we compute the fields r whose elements are read by some called method and
the fieldsw whose elements are all written by all calledmethods. Set r is removed from com.w and added to com.r and set
w is added tocom.w and removed fromcom.r . For the other calls, we conservatively add tocom.r all fieldswhose elements
might be read by the method(s) that it calls. Every time that the approximation of a command changes, its predecessors are
added to the working set. If com is the beginning of a helper function, by predecessorswe mean the commands that call the
helper function.
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In Fig. 1, the only assignment to the elements of mRotatedPoints is hence program point * and there are no reads
of the elements of that field (reachable from the constructor): the data-flow algorithm concludes that the elements of
mRotatedPoints are never read before being assigned. For field mOriginalPoints, instead, the only assignment to
its elements is point * again but there are three operations reading its elements, inside the same initialization loop in
readModel(): the data-flow algorithm does not conclude that the elements of mOriginalPoints are never read before
being assigned, which is a conservative but imprecise result. Indeed, the three reads from this.mOriginalPoints[i]
access exactly the element that has been initialized two lines before to a new ThreeDPoint. This situation is frequent and
wemust copewith it. Namely, we do not consider anymore a read operation of x.f [i] as suchwhen the analyzer is able to find
an assignment to the same element that dominates that operation and such that no side-effect to x.f [i] occurs in themiddle,
as is the case in Fig. 1. We implemented this check as a backward syntactical check that uses the same side-effects analysis
exploited in Section 6.2. With this improvement, our technique concludes that also the elements of mOriginalPoints are
never read before being assigned, that is, both mRotatedPoints and mOriginalPoints can be considered as candidate
fields.

7.2. Proving P2

We can apply here any static analysis for the property X and check its outcome wherever an element of f is assigned.
For instance, when X is being non-null, we can use the nullness analysis in [24]. Two points deserve careful consideration,
though. The first is that assignments to elements of f are not always syntactically apparent in code: one can modify the
elements of the array held in field f by writing into a data structure that shares with the object holding f , rather than by
writing into f itself. Hence, we compute an over-approximation W u

f of the set Wf of program points where an element of
f is assigned: W u

f contains the program points where an array write operation a[. . .] = . . . occurs and a and f share at
least a creation point. Here, we use the same creation point analysis of Section 6.1. The second point is that we are inferring
a global invariant to improve the precision of the static analysis for X and we are, at the same time, using the results of
that analysis to infer the global invariant. This cycle is broken through an oracle-based technique: we start with an oracle
O = ∪{f | f is a field of array type}. We assume, optimistically, that only values satisfying X are written inside the elements
of the fields in O. We perform the analysis for X using this (probably initially unsound) hypothesis. For every field f in
O, we check the results of the analysis to see if only values satisfying X are written in f . If this is not the case, we drop
f from O. We restart the analysis for X , recheck and shrink O again. This process is iterated until a fixpoint oracle. Then
we conclude that inside the elements of the fields in the fixpoint oracle only values satisfying X are written. Note that the
array initialization analysis is performed before this fixpoint iteration and only once: the iteration concerns the analysis for
X , which is performed after our array initialization analysis. This technique is not new: it was defined and proved correct
in [24] but has never been applied before to fields of array type. Note that it can be highly optimized through caches to keep
small the cost of the iterated static analyses. Moreover, our nullness analysis already performs this oracle-based iteration
for the fields of reference type [24], so the inference of global invariants about fields of array type does not introduce any
extra cost.

Let us hence define an oracle.

Definition 22 (Oracle). An oracle is a set of candidate fields. The set of oracles is O. An oracle O ∈ O is correct if, for every
f ∈ O, only values that satisfy X are written inside the elements of f .

Given an oracle O, we parameterize the static analysis for X by assuming that only values satisfying X are written inside
the elements of the fields in O. This hypothesis can be exploited to improve the precision of the static analysis for X
parameterized w.r.t. O but, of course, we have no guarantee that static analysis yields correct results. This depends on the
choice of O. But an interesting result states that the analysis for X , parameterized w.r.t. O, is correct if O is correct.

Proposition 3. If O ∈ O is correct, then the analysis for X parameterized w.r.t. O is correct.

Proof. We assume that the non-parameterized analysis for X is sound. The only difference between that analysis and its
parameterized version is that the latter can exploit the fact that a value satisfying X is written inside the elements of the
fields in O. But since O is correct, that assumption is sound and the resulting analysis, parameterizedw.r.t. O, is consequently
sound. �

If O is not correct, it is actually the case that the analysis for X parameterized w.r.t. O is correct w.r.t. a non-standard
semantics parameterized w.r.t. O, that forces the value of the fields in O to be arrays of elements satisfying X . This non-
standard semantics is distinct from the standard one only for the definition of the evaluation of E.f :

AJE.f Ke =


arr if ℓ = AJEKe ∈ L, o = µo(ℓ) ∈ Obj, a = µa((o.φ)(f )) ∈ Arr,

f ∈ O and a has elements not satisfying X
a otherwise, if ℓ = AJEKe ∈ L, o = µo(ℓ) ∈ Obj and

a = µa((o.φ)(f )) ∈ Arr

undefined otherwise

(1)

where arr is an array of values satisfyingX . This array can always be constructed since theremust be at least a value satisfying
X , or otherwise the static analysis for X is vacuously useless.
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Lemma 4. The static analysis for X parameterized w.r.t. O is sound w.r.t. the non-standard semantics parameterized w.r.t. O.

Proof. Over expressions distinct from E.f and over all actions, the standard and non-standard semantics coincide and, on
the other hand, the static analysis for X parameterizedw.r.t. O and the non-parameterized static analysis for X coincide. Since
the non-parameterized static analysis for X is assumed sound, the same must hold for the parameterized static analysis for
X over those expressions and actions. If f ∉ O, the standard and non-standard semantics of E.f coincide and, on the other
hand, the static analysis for X parameterized w.r.t. O and the non-parameterized static analysis for X coincide for E.f . Since
the non-parameterized static analysis for X is assumed sound, the same must hold for the parameterized static analysis for
X over the expression E.f . Assume now instead that f ∈ O. The static analysis for X parameterized w.r.t. O assumes that the
value of E.f has only elements that satisfy X . But this is exactly how the non-standard semantics for E.f is defined (Eq. (1)).
We conclude that, also in this case, the static analysis for X parameterizedw.r.t. O is correctw.r.t. the non-standard semantics
for E.f parameterized w.r.t. O. �

The problem now is to find a correct O ∈ O. The obvious choice O = ∅ is correct but leads to a static analysis for X that
assumes that a value satisfying X is never written inside a field of array type. This is too conservative. The following result
will help us.

Proposition 4. Define F : O → O as

F(O) =


f ∈ O

 the analysis for X parameterized w.r.t. O proves that only
values satisfying X are written inside the elements of f


.

If O is a fixpoint of F then O is correct.

Proof. Let O ∈ O be a fixpoint of F and assume, by contradiction, that O is not correct. Hence I = {f ∈ O | a value that does
not satisfy X is written inside an element of f } is not empty. Hence there is a finite execution x of the program that leads to
an assignment to an element of the array held in a field f and that assignment writes a value that does not satisfy X . We can
assume, without loss of generality, that this never happened before, in x, for any of the fields in I (i.e., we end x where, for
the first time, a value that does not satisfy X is written inside an element of an array held in a field f ). Consider an operation
that reads an element of a field g , executed during x. By the choice of x, if g ∈ O\ I then g must hold an arraywhose elements
all satisfy X and the operation reads hence a value that satisfies X . If instead g ∈ I then g is candidate and, by Definition 21,
all elements of the array held in g must have been already initialized. By the hypothesis about x, we conclude that also in
this case the operation reads a value that satisfies X . In conclusion, all operations that read an element from an array held
in the fields in O always read a value that satisfies X i.e., they behave accordingly to the non-standard semantics of Eq. (1).
This means that the execution x is also a non-standard execution that uses the semantics of Eq. (1). Since the static analysis
parameterized w.r.t. O is correct w.r.t. the non-standard semantics parameterized w.r.t. O (Lemma 4), we conclude that it
cannot prove that only values satisfying X are written inside f , since xwrites a value not satisfying X inside f . Then f ∉ F(O)
and O ≠ F(O), a contradiction. We conclude that Omust be correct. �

By computing F(O), one applies the static analysis for X parameterized w.r.t. O and checks in which fields of O the program
writes only values satisfying X . By definition, F(O) ⊆ O. Take O0 equal to the set of all candidate fields and compute
O1 = F(O0). If O1 = O0 then O0 is correct (Proposition 4); otherwise O0 ⊃ O1 and compute O2 = F(O1); again, if O2 = O1
then O1 is correct; otherwise O1 ⊃ O2 and compute O3 = F(O2) and so on. Since the number of candidate fields of P is
finite, the decreasing chain O0 ⊃ O1 ⊃ O2 ⊃ O3 ⊃ . . . must be finite and converge to a correct oracle (a greatest fixpoint
of F ). In words, one starts with the optimistic hypothesis that all candidate fields hold arrays whose elements satisfy X and
iteratively removes those fields for whose elements one has no proof of satisfying X . When no more fields are removed,
one gets a correct oracle and the last iteration of the analysis is correct (Proposition 3). For instance, in Fig. 1, we start with
an oracle O that contains both mOriginalPoints and mRotatedPoints (together with other fields that are not shown
in that figure). If we consider the property of being non-null as X , the nullness analysis in [24] proves that only values
satisfying X are written inside those fields: this is clear in Fig. 1 (new ThreeDPoint() is obviously non-null) and is true
also in other program points that we do not show. Hence those two fields are never removed from O and belong to the final
fixpoint oracle.

8. Experiments

We have implemented our analysis inside the Julia analyzer [1]. Experiments were performed on a quad-core Intel Xeon
64 bitsmachine running at 2.66GHz,with 8GB of RAM, Linux 2.6.27 and Sun jdk 1.6.We analyzed some real-life benchmarks.
Some of these benchmarks are Java programs: JFlex is a lexical analyzers generator2; Plume is a library byMichael D. Ernst3;
Nti is a non-termination analyzer by Étienne Payet.4 We also analyzed some Android applications: ChimeTimer, Dazzle,

2 http://jflex.de.
3 http://code.google.com/p/plume-lib.
4 http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html.
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Fig. 14. Experiments with our array initialization analysis.

OnWatch and Tricorder5; TxWthr6. The others are sample programs taken from the Android 3.1 distribution by Google. This
means that we have analyzed non-trivial libraries as well as complete Java and Android applications. Most of the Android
applications are games or libraries or demonstrations of the use of the standard Android API. Those programs contain simple
as well as nested loops and we analyze both kinds of loops.

Fig. 14 shows that our array initialization analysis is fast and precise. We explain the meaning of different columns:

• loc is the number of non-blank, non-comment source program lines reached andhence analyzedby Julia; this information
is recovered from the debug information generated by the compiler;

• total loc is the total number of analyzed lines, including java.* and android.* libraries;
• total is the number of reachable loops in those programs (libraries excluded) that fully initialize an array, computed by

manual check;
• detected is the number of these initializing loops that our analysis successfully spot as complete initializations of arrays.

In principle, for the most precise static analysis we have detected=total;
• time is the runtime in seconds of our array initialization analysis;
• total time is the runtime in seconds of the nullness analysis of Julia: it includes parsing of the class files, preprocessing,

aliasing, sharing, creation points, expression aliasing and side-effects analyses.

Fig. 15 shows that our array initialization analysis is useful to a client analysis. In particular, it considers those programs
from Fig. 14 that contain at least a loop initializing an array of reference type, since otherwise the array initialization analysis
would be irrelevant for the nullness tool of Julia. The figure reports the number of null-pointer warnings with (ArrInit
column) andwithout (ArrInit column) the analysis introduced in this paper. In the former case, the precision of the nullness
analysis is improved by 8.48% on average on these programs and its cost is only 0.47% higher (compare time and total time
in Fig. 14). Actually, the total time is not affected by the presence of the extra array initialization analysis, sincewe perform it
in a separate thread and its results are available well before they are needed by the client nullness analysis. Moreover, those
results improve the precision of the nullness analysis, but never induce a reduction in the number of its fixpoint iterations,
at least in our experiments.

When Julia fails to spot complete array initialization, the problem is related to theweaknesses of the supporting analyses
of our array initialization analysis rather than to those of the latter. For instance, there is a complete array initialization in
HoneycombGallery that Julia fails to spot (Fig. 14). Here it is:

5 http://moonblink.googlecode.com/svn/trunk/
6 http://typoweather.googlecode.com/svn/trunk/
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Fig. 15. Effects of our array initialization analysis on the number of warnings produced by Julia’s nullness tool.

String[] items = new String[cat.getEntryCount()];
for (int i = 0; i < cat.getEntryCount(); i++)

items[i] = cat.getEntry(i).getName();

The loop upper bound is cat.getEntryCount(), which does not fall in the cases considered in Section 6. The use of
a method call as loop upper bound is problematic since the definite expression aliasing analysis must be able to prove that
the value of cat.getEntryCount() is constant between the creation of the array and the check of the loop upper bound,
also when the loop body has side-effects, as here.

9. Conclusion

We have described a new abstract interpretation that detects fully initialized arrays held in local variables or fields. In
the case of fields, we have shown how local complete initialization can be lifted to a global invariant, much more useful to
client analyses. Our implementation shows the efficiency of the analysis and its effectiveness to support a client nullness
analysis. It is worth observing that our array initialization analysis is not tailored to nullness, but can instead support any
other client analysis.

An interesting consideration is that provably sound and precise array analyses and related global invariants can be
computed only over a complex static analysis infrastructure, since they are built on previous creation points and side-effects
global static analyses. They are all available in Julia and are now highly optimized and debugged after years of use.
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