23 research outputs found

    Effectiveness of app-delivered, tailored self-management support for adults with lower back pain-related disability: a selfBACK randomized clinical trial. [Dataset]

    Get PDF
    SELFBACK is an evidence-based decision support system that supports self-management of nonspecific low back pain. In specific, SELFBACK provides the user with evidence-based advice on physical activity level, strength/ flexibility exercises, and educational content. The self-management advice is delivered via a smartphone app and individually tailored to the user’s personal goals, personal characteristics, symptom progression and functional level. The SELFBACK system uses the case-based reasoning (CBR) methodology to capture and reuse knowledge from successful previous cases to suggest the most suitable self-management plan for a current user. Figure 1 illustrates the architecture of the SELFBACK system and the process for producing and tailoring the weekly self-management plans (steps 1-5). In the current trial, patients with low back pain were referred to the research project from their primary care clinician (general practitioner, physiotherapist, chiropractor) or an outpatient spine clinic. The patient was screened for eligibility by a research assistant and if eligible, invited to the trial and sent a link to an online web-based questionnaire (step 1). The questionnaire information was used to create a user profile (step 2), initiate the first CBR cycle (i.e., matching of the current case with the most similar and successful previous case in the SELFBACK case-base), and produce the first weekly self-management plan. The resulting self-management plan is pushed to the mobile phone (step 3) and accessed by the user (step 4). On a weekly basis, the users answered a set of tailoring questions in the app (eg, pain intensity, self-efficacy level, fear-avoidance level, barriers to self-management etc.). In addition, physical activity was tracked by a step detecting wristband (Mi Band 3, Xiaomi) connected to the SELFBACK app. The self-reported data and the objective physical activity data for the past week was then fed back to the CBR system (step 5) where the refined and enhanced user profile was matched with the most similar and successful case in the case-base to create and tailor the next weekly self-management plan. This supplementary material has been provided by the authors to give readers additional information about their work

    Learning to compare with few data for personalised human activity recognition.

    Get PDF
    Recent advances in meta-learning provides interesting opportunities for CBR research, in similarity learning, case comparison and personalised recommendations. Rather than learning a single model for a specific task, meta-learners adopt a generalist view of learning-to-learn, such that models are rapidly transferable to related (but different) new tasks. Unlike task-specific model training, a meta-learner’s training instance - referred to as a meta-instance - is a composite of two sets: a support set and a query set of instances. In our work, we introduce learning-to-learn personalised models from few data. We motivate our contribution through an application where personalisation plays an important role, mainly that of human activity recognition for self-management of chronic diseases. We extend the meta-instance creation process where random sampling of support and query sets is carried out on a reduced sample conditioned by a domain-specific attribute; namely the person or user, in order to create meta-instances for personalised HAR. Our meta-learning for personalisation is compared with several state-of-the-art meta-learning strategies: 1) matching network (MN), which learns an embedding for a metric function; 2) relation network (RN) that learns to predict similarity between paired instances; and 3) MAML, a model-agnostic machine-learning algorithm that optimizes the model parameters for rapid adaptation. Results confirm that personalised meta-learning significantly improves performance over non personalised meta-learners

    Personalised human activity recognition using matching networks.

    Get PDF
    Human Activity Recognition (HAR) is typically modelled as a classification task where sensor data associated with activity labels are used to train a classifier to recognise future occurrences of these activities. An important consideration when training HAR models is whether to use training data from a general population (subject-independent), or personalised training data from the target user (subject-dependent). Previous evaluations have shown personalised training to be more accurate because of the ability of resulting models to better capture individual users' activity patterns. From a practical perspective however, collecting sufficient training data from end users may not be feasible. This has made using subject-independent training far more common in real-world HAR systems. In this paper, we introduce a novel approach to personalised HAR using a neural network architecture called a matching network. Matching networks perform nearest-neighbour classification by reusing the class label of the most similar instances in a provided support set, which makes them very relevant to case-based reasoning. A key advantage of matching networks is that they use metric learning to produce feature embeddings or representations that maximise classification accuracy, given a chosen similarity metric. Evaluations show our approach to substantially out perform general subject-independent models by at least 6% macro-averaged F1 score

    Personalised exercise recognition towards improved self-management of musculoskeletal disorders.

    Get PDF
    Musculoskeletal Disorders (MSD) have been the primary contributor to the global disease burden, with increased years lived with disability. Such chronic conditions require self-management, typically in the form of maintaining an active lifestyle while adhering to prescribed exercises. Today, exercise monitoring in fitness applications wholly relies on user input. Effective digital intervention for self-managing MSD should be capable of monitoring, recognising and assessing performance quality of exercises in real-time. Exercise Recognition (ExRec) is the machine learning problem that investigates the automation of exercise monitoring. Multiple challenges arise when implementing high performing ExRec algorithms for a wide range of exercises performed by people from different demographics. In this thesis, we explore three personalisation challenges. Different sensor combinations can be used to capture exercises, to improve usability and deployability in restricted settings. Accordingly, a recognition algorithm should be adaptable to different sensor combinations. To address this challenge, we investigate the best feature learners for individual sensors, and effective fusion methods that minimise the need for data and very deep architectures. We implement a modular hybrid attention fusion architecture that emphasises significant features and understates noisy features from multiple sensors for each exercise. Persons perform exercises differently when not supervised; they incorporate personal rhythms and nuances. Accordingly, a recognition algorithm should be able to adapt to different persons. To address the personalised recognition challenge, we investigate how to adapt learned models to new, unseen persons. Key to achieving effective personalisation is the ability to personalise with few data instances. Accordingly, we bring together personalisation methods and advances in meta-learning to introduce personalised meta-learning methodology. The resulting personalised meta-learners are learning to adapt to new end-users with only few data instances. It is infeasible to design algorithms to recognise all expected exercises a physiotherapist would prescribe. Accordingly, the ability to integrate new exercises after deployment is another challenge in ExRec. The challenge of adapting to unseen exercises is known as open-ended recognition. We extend the personalised meta-learning methodology to the open-ended domain, such that an end-user can introduce a new exercise to the model with only a few data instances. Finally, we address the lack of publicly available data and collaborate with health science researchers to curate a heterogeneous multi-modal physiotherapy exercise dataset, MEx. We conduct comprehensive evaluations of the proposed methods using MEx to demonstrate that our methods successfully address the three ExRec challenges. We also show that our contributions are not restricted to the domain of ExRec, but are applicable in a wide range of activity recognition tasks by extending the evaluation to other human activity recognition domains

    Study of similarity metrics for matching network-based personalised human activity recognition.

    Get PDF
    Personalised Human Activity Recognition (HAR) models trained using data from the target user (subject-dependent) have been shown to be superior to non personalised models that are trained on data from a general population (subject-independent). However, from a practical perspective, collecting sufficient training data from end users to create subject-dependent models is not feasible. We have previously introduced an approach based on Matching networks which has proved effective for training personalised HAR models while requiring very little data from the end user. Matching networks perform nearest-neighbour classification by reusing the class label of the most similar instances in a provided support set, which makes them very relevant to case-based reasoning. A key advantage of matching networks is that they use metric learning to produce feature embeddings or representations that maximise classification accuracy, given a chosen similarity metric. However, to the best of our knowledge, no study has been provided into the performance of different similarity metrics for matching networks. In this paper, we present a study of five different similarity metrics: Euclidean, Manhattan, Dot Product, Cosine and Jaccard, for personalised HAR. Our evaluation shows that substantial differences in performance are achieved using different metrics, with Cosine and Jaccard producing the best performance

    Usability and acceptability of an app (SELFBACK) to support self-management of low back pain: mixed methods study.

    Get PDF
    Self-management is the key recommendation for managing non-specific low back pain (LBP). However, there are well-documented barriers to self-management, therefore methods of facilitating adherence are required. Smartphone apps are increasingly being used to provide feedback and reinforcement to support self-management of long-term conditions such as LBP. The aim of this study was to assess the usability and acceptability of the selfBACK smartphone app, designed to support and facilitate self-management of non-specific LBP. The app provides weekly self-management plans, comprising physical activity, strength/flexibility exercises, and patient education. The plans are tailored to the patient's characteristics and symptom progress by using case-based reasoning methodology. The study was carried out in two stages, using a mixed-methods approach. All participants undertook surveys and semi-structured telephone interviews were conducted with a subgroup of participants. Stage 1 assessed an app version with only the physical activity component and a web-questionnaire that collects information necessary for tailoring the self-management plans. The physical activity component included monitoring of steps recorded by a wristband, goal-setting, and a scheme for sending personalised, timely and motivational notifications to the user's smartphone. Findings from stage 1 were used to refine the app and inform further development. Stage 2 investigated an app version that incorporated three self-management components (physical activity, exercises and education). A total of sixteen participants (age range 23-71 years) with ongoing or chronic non-specific LBP were included in stage 1, and eleven participants (age range 32-56) were included in stage 2. In stage 1, 94% of participants reported that the baseline questionnaire was easy to answer and 84% found completion time to be acceptable. Overall, participants were positive about the usability of the physical activity component but only 31% found the app functions to be well integrated. 90% of the participants were satisfied with the notifications and 80% perceived the notifications to be personalised. In stage 2, all participants reported that the web-questionnaire was easy to answer and the completion time acceptable. The physical activity and exercise components were rated useful by 80%, while 60% rated the educational component useful. Overall, participants were satisfied with the usability of the app; however, only 50% found the functions to be well integrated and 20% found them to be inconsistent. Overall, 80% of participants reported it to be useful for self-management. The interviews largely reinforced the survey findings in both stages. This study has demonstrated that participants considered the selfBACK app to be acceptable and usable, and that they thought it would be useful for supporting self-management of LBP. However, we identified some limitations and suggestions, which will be useful in guiding further development of the selfBACK app and other mHealth interventions

    Similarity and explanation for dynamic telecommunication engineer support.

    Get PDF
    Understanding similarity between different examples is a crucial aspect of Case-Based Reasoning (CBR) systems, but learning representations optimised for similarity comparisons can be difficult. CBR systems typically rely on separate algorithms to learn representations for cases and to compare those representations, as symbolised by the vocabulary and similarity knowledge containers respectively. Deep Metric Learners (DMLs) are a branch of deep learning architectures which learn a representation optimised for similarity comparison by leveraging direct case comparisons during training. In this thesis we explore the symbiotic relationship between these two fields of research. Firstly we examine what can be learned from traditional CBR research to improve the training of DMLs through training strategies. We then examine how DMLs can fill the traditionally separate roles of the vocabulary and similarity knowledge containers. We perform this exploration on the real-world problem of experience transfer between experts and non-experts on service provisioning for telecommunication organisations. This problem is also revealing about the requirements for practical applications to be explainable to their intended user group. With that in mind, we conclude this thesis with work towards the development of an explanation framework designed to explain the recommendations of similarity-based classifiers. We support this practical contribution with an exploration of similarity knowledge to support autonomous measurement of explanation quality

    Learning deep features for kNN-based human activity recognition.

    Get PDF
    A CBR approach to Human Activity Recognition (HAR) uses the kNN algorithm to classify sensor data into different activity classes. Different feature representation approaches have been proposed for sensor data for the purpose of HAR. These include shallow features, which can either be hand-crafted from the time and frequency domains, or the coefficients of frequency transformations. Alternatively, deep features can be extracted using deep learning approches. These different representation approaches have been compared in previous works without a consistent best approach being identified. In this paper, we explore the question of which representation approach is best for kNN. Accordingly, we compare 5 different feature representation approaches (ranging from shallow to deep) on accelerometer data collected from two body locations, wrist and thigh. Results show deep features to produce the best results for kNN, compared to both hand-crafted and frequency transform, by a margin of up to 6.5% on the wrist and over 2.2% on the thigh. In addition, kNN produces very good results with as little as a single epoch of training for the deep features

    Learning deep and shallow features for human activity recognition.

    Get PDF
    selfBACK is an mHealth decision support system used by patients for the self-management of Lower Back Pain. It uses Human Activity Recognition from wearable sensors to monitor user activity in order to measure their adherence to prescribed physical activity plans. Different feature representation approaches have been proposed for Human Activity Recognition, including shallow, such as with hand-crafted time domain features and frequency transformation features; or, more recently, deep with Convolutional Neural Net approaches. The different approaches have produced mixed results in previous work and a clear winner has not been identified. This is especially the case for wrist mounted accelerometer sensors which are more susceptible to random noise compared to data from sensors mounted at other body locations e.g. thigh, waist or lower back. In this paper, we compare 7 different feature representation approaches on accelerometer data collected from both the wrist and the thigh. In particular, we evaluate a Convolutional Neural Net hybrid approach that has been shown to be effective on image retrieval but not previously applied to Human Activity Recognition. Results show the hybrid approach is effective, producing the best results compared to both hand-crafted and frequency domain feature representations by a margin of over 1.4% on the wrist

    kNN sampling for personalised human recognition.

    Get PDF
    The need to adhere to recommended physical activity guidelines for a variety of chronic disorders calls for high precision Human Activity Recognition (HAR) systems. In the SelfBACK system, HAR is used to monitor activity types and intensities to enable self-management of low back pain (LBP). HAR is typically modelled as a classification task where sensor data associated with activity labels are used to train a classifier to predict future occurrences of those activities. An important consideration in HAR is whether to use training data from a general population (subject-independent), or personalised training data from the target user (subject-dependent). Previous evaluations have shown that using personalised data results in more accurate predictions. However, from a practical perspective, collecting sufficient training data from the end user may not be feasible. This has made using subject-independent data by far the more common approach in commercial HAR systems. In this paper, we introduce a novel approach which uses nearest neighbour similarity to identify examples from a subject-independent training set that are most similar to sample data obtained from the target user and uses these examples to generate a personalised model for the user. This nearest neighbour sampling approach enables us to avoid much of the practical limitations associated with training a classifier exclusively with user data, while still achieving the benefit of personalisation. Evaluations show our approach to significantly out perform a general subject-independent model by up to 5%
    corecore