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Abstract

Musculoskeletal Disorders (MSD) have been the primary contributor to the global disease
burden with increased years lived with disability. Such chronic conditions require self-
management, typically in the form of maintaining an active lifestyle while adhering to
prescribed exercises. Today, exercise monitoring in fitness applications wholly relied
on user input. Effective digital intervention for self-managing MSD should be capable
of monitoring, recognising and assessing performance quality of exercises in real-time.
Exercise Recognition (ExRec) is the Machine Learning problem that investigates the
automation of exercise monitoring. Multiple challenges arise when implementing high
performing ExRec algorithms for a wide range of exercises performed by people from
different demographics. And in this thesis, we explore three personalisation challenges.

Different sensor combinations can be used to capture exercises to improve usability and
deployability in restricted settings. Accordingly, a recognition algorithm should be adapt-
able to different sensor combinations. To address this challenge, we investigate the best
feature learners for individual sensors and effective fusion methods that minimise the
need for data and very deep architectures. We implement a modular hybrid attention
fusion architecture that emphasises significant features and understates noisy features
from multiple sensors for each exercise.

Persons perform exercises differently when not supervised; they incorporate personal
rhythms and nuances. Accordingly, a recognition algorithm should be able to adapt to
different persons. To address personalised recognition challenge, we investigate how to
adapt learned models to new, unseen persons. Key to achieving effective personalisation
is the ability to personalise with few data instances. Accordingly, we bring together
personalisation methods and advances in meta-learning to introduce personalised meta-
learning methodology. Resulting personalised meta-learners are learning to adapt to new
end-users with only few data instances.

It is infeasible to design algorithms to recognise all expected exercises a physiotherapist
would prescribe. Accordingly, the ability to integrate new exercises after deployment is
another challenge in ExRec. The challenge of adapting to unseen exercises is known as
open-ended recognition. We extend the personalised meta-learning methodology to the
open-ended domain such that an end-user can introduce a new exercise to the model
with only few data instances.
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Finally, we address the lack of publicly available data and collaborate with health sci-
ence researchers to curate a heterogeneous multi-modal physiotherapy exercise dataset,
MEx. We conduct comprehensive evaluations of the proposed methods using MEx to
demonstrate that our methods successfully address the three ExRec challenges. We also
show that our contributions are not restricted to the domain of ExRec but applicable
in a wide range of activity recognition tasks by extending the evaluation to other HAR
domains.

Keywords: Exercise Recognition, Self-management, Human Activity Recognition,
Multi-modal Fusion, Personalised HAR, Open-ended HAR
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Chapter 1

Introduction

In 2017, Global Health Metrics reported that Musculoskeletal Disorders (MSD) are the
primary contributor to the global disease burden with increased years lived with disability.
Prevalent cases of MSD have consistently increased from 1990 to 2017 by 38.4% and the
affected demographic ranges from ages 15 to 95 (James et al., 2018). Low back pain,
neck pain and arthritis are several chronic conditions that falls under MSD (Figure 1.1),
which are affecting the joints, bones, muscles, spine and in some cases, multiple body
areas or systems. MSDs require self-management, typically in the form of maintaining
an active lifestyle while adhering to exercises prescribed by a healthcare professional or
rehabilitation specialist. Therefore it is vital to raise awareness about the importance of
adherence and provide necessary support mechanisms to encourage active lifestyles.

Figure 1.1: Leading causes of years lived with disability rate by country, 2017 (from James
et al. (2018), image licensed under CC-BY-4.0)
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Finding technological solutions for the self-management of MSD has been a research area
that emerged over the last few years. Smart devices collect data that help to keep track of
fitness activities such as walking or jogging with high precision using accelerometers. In
the recent past, fitness applications gained popularity by gamification of physical activity
monitoring and made a positive impact on general health and well-being. However,
automated exercise monitoring is yet to be implemented in fitness applications due to the
inherent challenges of complex movement monitoring and reasoning with sensors. Today,
exercises monitored in fitness applications are wholly reliant on user input, resulting in
low accuracy and reliability.

Figure 1.2: Years lived with disability rate by demographic groups, 2017 (from James
et al. (2018), image licensed under CC-BY-4.0)

Effective digital intervention for self-managing MSD should be composed of three main
components: monitoring exercises in real-time; recognising exercise being performed; and
evaluating the quality of the performance. In this thesis, we focus on the first steps, mon-
itoring and recognition of physiotherapy exercises. Exercise Recognition (ExRec) is the
Machine Learning problem that investigates automating exercise monitoring which is an
expert domain of Human Activity Recognition (HAR). Exercises are complex movements
and need to be captured with multiple, strategically placed sensors. In HAR literature, a
sensor (wearable or ambient) with a specific placement is referred to as a sensor modal-
ity (or modality in short). Sensor modalities used for ExRec are often generate different
types of data (i.e. heterogeneous). This is in contrast to a single or multiple homogeneous
sensor modalities used to recognise daily fitness activities such as running or walking (Or-
dóñez and Roggen, 2016; Radu et al., 2016; Yao et al., 2017). In addition, as shown in
Figure 1.2, both male and female in a wide range of ages are affected by MSD (in pink).

2



Numerous challenges arise when implementing ExRec algorithms that can recognise a
wide range of exercises that perform with high precision in many demographics.

Specifically, we recognise three challenges from previous work in the domain of HAR
that need to be addressed to accomplish end-to-end recognition: heterogeneous multi-
modal recognition, personalised recognition and open-ended recognition. Each challenge
addresses a different usability aspect of ExRec: the ability to choose sensor modalities
preferred by the end-user with multi-modal recognition; the ability to adapt to varying
demographics with personalisation; and the ability to add preferred exercises with open-
ended recognition.

In this research, we focus on improving usability and robustness of exercise recognition
by implementing deep learning algorithms. Throughout, our methods are inspired by
the need to reduce the demand for data and knowledge. We affirm that our contribu-
tions are not restricted to the domain of ExRec and applicable in a wide range of HAR
tasks. Importantly, this work also collaborates with health science researchers to curate
a heterogeneous multi-modal physiotherapy exercise dataset which is shared publicly to
promote open-research in the HAR research domain.

1.1 Human Activity Recognition

Human Activity Recognition (HAR) is an extensively researched area in Machine Learn-
ing. HAR, as a supervised learning problem, is modelled as a multi-class classification
task that requires labelled sensor data, preferably stratified across all activity classes.
Gómez and Rojas (2016) said that there exists no one reasoning model or methodology
that fits all tasks i.e. no free lunch. Accordingly, a broad spectrum of machine learning
algorithms are used in literature to implement recognition models.

1.1.1 Early Research

In early research, classification with sensor data for HAR consists of three main steps:
data collection, pre-processing and classification (Figure 1.3). The pre-processing pipeline
is formed of two components: segmentation to create data instances from incoming sensor
data streams; and feature extraction. Windowing is the commonly used segmentation
method where a constant time window splits the sensor data stream in to data instances.
Then each data instance is transformed to features, using a pre-defined set of feature ex-
traction methods that extract time-domain, frequency-domain and spatial features. Time
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domain features include mean, standard deviation and min/max for the specific inter-
val. Frequency-domain features include mean frequency, energy and entropy (Sani et al.,
2017a). Methods such as Local Binary Pattern and Local Phase Quantisation (Nanni
et al., 2017) are commonly used to extract spatial features.

Figure 1.3: Classification with hand-crafted features

These features are used by classification algorithms such as k-nearest neighbour (Miu
et al., 2015), Naive Bayes (Gomes et al., 2012), Support Vector Machines (Sani et al.,
2016) and ensemble methods (Ravi et al., 2005). In early research, feature extraction
and classification are disjoint steps except when feature selection strategies are used to
optimise feature selection (Dash and Liu, 1997; Su et al., 2014). Manual creation and
selection of features is found to be burdensome, yet, these methods have achieved high
performance with limited data for bespoke HAR applications.

1.1.2 Deep Learning Methods

More recently, Deep Learning (DL) algorithms consolidated feature extraction and classi-
fication steps where the feature learning is conditioned by iterative optimisation. Similar
to early methods, windowing is applied to obtain data instances and optionally fea-
ture transformation methods are applied. These feature transformation methods include
frequency domain transformation (Sani et al., 2017a; Yao et al., 2017) for time-series
data and skeleton extraction for depth camera data (Khaire et al., 2018; Rahmani and
Bennamoun, 2017).

Figure 1.4: Classification with feature learners
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During the classification step, convolutional and recurrent neural constructs are used
to create feature learning architectures. Convolutional networks are selected to extract
spatial features, and recurrent networks extract temporal features (Ordóñez and Roggen,
2016; Yao et al., 2017). The output of a deep feature learning architecture is connected to
a neural network classifier. The network is then trained end-to-end, optimising feature
learner weights to learn features that correctly predict class labels. As a result, DL
methods eliminate the need for curating feature extraction techniques specific to each
sensor modality. Recent literature shows that DL methods consistently outperform early
methods in several comparative studies (Ordóñez and Roggen, 2016; Radu et al., 2018;
Yao et al., 2017).

1.2 Research Motivation

HAR research, in general, has embraced the recent advances in DL similar to other ap-
plication domains such as computer vision and machine translation. Although, ExRec
which is a challenging HAR problem that involves multiple modalities and a wide range
of complex activities, is yet to exploit these advances. ExRec is a high impact application
area, especially for the self-management of MSDs and physiotherapy rehabilitation. We
identify three challenges faced when implementing a high-impact, high-performance yet a
user-friendly solution for physiotherapy exercise monitoring and recognition: the ability
to support different sensor modality preferences; the ability to adapt to personal charac-
teristics; and the ability to integrate personal activity preferences. We illustrate the three
challenges in Figure 1.5 and identify them all under the umbrella term personalisation.

Figure 1.5: Facets of personalisation for human activity recognition

Preference of sensor modalities varies between different persons and constraints in de-
ployment environments can call for restricted modality configurations. For example,
a person at the physiotherapy clinic may perform exercises under a sensor-rich envi-
ronment, and at home, they may only have access to a minimal setup. A recognition
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algorithm that is strictly bounded to a specific modality combination impedes usability.
The heterogeneity of modality data suggests that there exists no one solution that fits
all modalities and modality combinations. Accordingly, we find it is challenging to learn
an effective feature representation for ExRec from any given modality combination. An
algorithm should adapt to modality combinations and learn to identify effective modality
and feature combinations while learning to discard the noise.

Sensors capture personal nuances that are more pronounced in exercises. Exercises can
be modified to suit individual preferences, performed in unique rhythms, or the person
may unintentionally incorporate personal idiosyncrasies. Accordingly, personalisation
has been identified as a transferability challenge in ExRec. Creating personalised models
specifically for the end-user is infeasible when reaching a broad audience because each
end-user has to provide a large quantity of data. However, literature highlights that
the best way to learn personal nuances is to learn from end-user data. Existing active
learning methods rely on periodical end-user involvement which can be obtrusive in
practice (Gomes et al., 2012; Longstaff et al., 2010; Losing et al., 2019). Accordingly, an
effective personalised algorithm should adapt to personal nuances given only few data
instances, limiting the end-user involvement which improves the user-experience.

A similar transferability challenge with high impact is the ability to recognise exercise
classes not seen during model development, or open-ended recognition. For instance,
physiotherapists prescribe different exercises plans for different patients considering their
physiology, pain levels and many other factors. Current methods rely on the assumption
that it is possible to know about all expected activity descriptions encoded using expert
knowledge prior to deployment. Open-ended ExRec is an explicitly challenging domain,
where an exercise is better presented by a data instance, rather than a description. This
is our inspiration when designing methods to address the challenge of open-ended ExRec.
Similarly to personalised ExRec, open-ended ExRec algorithms should also consider the
limited availability of end-user data and unobtrusive deployment.

This thesis addresses the above challenges towards implementing an effective ExRec so-
lution to self-manage MSDs. Accordingly, we investigate the following research questions
(RQ1-3):

1. How to recognise exercises, given a set of sensor modalities, by learning modality
and feature combinations and learning to discard noise?

2. How personalise exercise recognition to end-users with limited data and minimal
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end-user interaction?

3. How to extend exercise recognition to recognise new unseen exercises with limited
data and minimal end-user interaction?

1.3 Research Objectives

To address the challenges raised in exercise recognition and personalisation, we identify
five key objectives for this thesis as follows:

1. Multi-modal Recognition: Develop a fusion algorithm to recognise exercises using a
combination of heterogeneous sensor modalities.

This objective addresses RQ 1. The emphasis is on introducing a fusion architecture
that learns to highlight significant features and understate noisy features for each
exercise class. We are also keen to minimise the depth of the feature learning
architectures with the use of attention methods and to create an architecture that is
customisable to many modality combinations. Realising this objective will improve
overall recognition accuracy, and also implement architectures that are adaptable
to end-user modality preferences.

2. Personalised Recognition: Develop Exercise Recognition algorithms that are adapt-
able to unseen persons or person groups.

This objective addresses RQ 2. Key to achieving effective personalisation is the
ability to personalise with few data instances. Accordingly, we investigate learning
with few-data and meta-learners for ExRec. The resulting algorithm should be
able to personalise a model using only few data instance obtained from the end-
user. Consequently, a rehabilitating patient should be able to customise an activity
recognition application to their physiological needs and personal nuances.

3. Open-ended Recognition: Develop algorithms to recognise exercises not seen during
model implementation.

This objective addresses RQ 3. Physiotherapists prescribe different exercise plans
to various patients, and it is infeasible to design algorithms to recognise all expected
exercise classes. Key to addressing this objective is to find the best representation
of a new and unseen class that is knowledge-light. We explore few-shot learning and
meta-learning methods to address this objective. The resulting algorithms should
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be able to integrate new unseen classes to the model with only few data instances
obtained from the end-user.

4. Create an open, sensor-rich dataset for physiotherapy exercise recognition.

We identify the lack of publicly available datasets to implement and evaluate exer-
cise recognition algorithms. Accordingly, we investigate the sensors, exercises and
data collection protocols that are used to create a comprehensive physiotherapy
exercises dataset. The resulting dataset should be sensor-rich to identify the most
effective and user-friendly sensor combinations. It should also include exercises
that represent a wide range of physiotherapy exercises performed by persons from
different demographics.

5. Conduct a comprehensive evaluation of all developed methods for physiotherapy
exercise recognition

Using the dataset created in Objective 4, a comprehensive evaluation of methods
introduced in Objectives 1, 2 and 3 is performed. The objective thoroughly eval-
uates our methods against methods in recent literature and appropriate baselines.
We extend the evaluation when possible to provide visual evidence to support our
findings. The evaluation outcomes should demonstrate that our methods success-
fully address each exercise recognition challenge.

1.4 Contributions

We describe the contributions in this thesis that address the ExRec research challenges.
In Figure 1.6, we show the current research landscape of HAR in the three areas of in-
terest. We identify the demand for knowledge and data as one of the main drawbacks
of existing methods and look to minimise data and knowledge requirements. Accord-
ingly, we highlight where our contributions fall within the landscape of Neural Machine
Learning and Human Activity Recognition against the demand for data. We also high-
light how objectives and contributions are aligned and which chapters investigate each
contribution.

1.4.1 Multi-modal Recognition

The first contribution of this thesis is the Multi-modal Hybrid Attention Fusion archi-
tecture, mHAF for ExRec presented in Chapter 4. In mHAF, first individual feature
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Figure 1.6: Contributions in the HAR research landscape

representations are learned independently for each individual heterogeneous modality.
Then the resulting feature vectors are concatenated using a Hybrid Attention Fusion
module (HAF). HAF module learns to highlight significant features and understate
noisy features using attention which results in a shallow neural network architecture.
HAF consists of two attention modules: soft attention and hard attention. The soft
attention module in HAF is designed to highlight multiple informative features and the
hard attention module highlights the few most informative features from multiple sensor
modalities. Accordingly, HAF learn to highlight discriminatory features that otherwise
may only have been learned using a very deep architecture trained on a more extensive
training dataset. We stress the necessity of learning the feature importance for each exer-
cise as different exercises are best captured with different sensor modality combinations.
A comparative evaluation shows how our method outperforms fusion methods in litera-
ture and several baselines. We further confirm our results using confusion matrices and
visualisation of attention weights where we show how mHAF architecture learns sensor
modality and feature combinations for each exercise class. We verify the contribution
of each module in the mHAF using an ablation study. And we perform an empirical
evaluation to identify the best minimal sensor modality combinations to accommodate
personal preferences or to deploy in restricted environments.
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1.4.2 Personalised Recognition

The second contribution of this thesis is the personalised meta-learning methodology for
ExRec presented in Chapter 5. In the ExRec domain, we find it is intuitive to treat a
person-activity pair as the class label when sensors capture pronounced personal traits
and nuances. Accordingly, we formalise the personalised meta-learning methodology,
where we consider each person as an independent multi-class classification task to recog-
nise person-activity classes. Once a person is considered an individual task, there is only
a limited amount of data instances per person-activity class, which resembles a few-shot
learning setting. Accordingly, we explore two meta-learning algorithms to implement our
personalisation methodology: adaptation-optimised MAML and similarity-optimised Re-
lation Networks. We further affirm the robustness of the personalisation methodology
by improving an existing personalised few-shot learner. With a use case, we describe
how to implement personalisation in the real-world. Our personalisation approach re-
quires a one-time interaction with the end-user to obtain few seconds (max 15 seconds)
of calibration data. In an empirical evaluation, we find the most optimal feature learn-
ers and the most optimal few-shot setting. A comparative evaluation demonstrates that
personalised meta-learners outperform the deep learning methods and conventional meta-
learning methods. We visualise how our personalisation methodology learns a generic
meta-model that successfully adapts to any person given only few seconds of labelled
data.

1.4.3 Open-ended Recognition

The third contribution of this thesis is the open-ended meta-learning methodology for
ExRec presented in Chapter 6. Instead of the existing knowledge-intensive methods that
require expert knowledge, we introduce a knowledge-light approach to perform open-
ended ExRec. Our open-ended recognition algorithm is inspired by the research in
few-shot learning and zero-shot learning. We investigate how conventional zero-shot
meta-learners fail to dynamically integrate new activities without disposing previously
known activities. We adapt the personalised meta-learning from the previous contribu-
tion to the open-ended setting to present the open-ended meta-learning methodology.
Unlike conventional zero-shot learners, an open-ended meta-learner can increasingly add
activity classes to the reasoning model, without having to remove original classes. In our
evaluation, we compare three open-ended meta-learners to find the most robust algorithm
across different activity classes and with an increasing number of classes. These are es-
sential properties of an open-ended recognition algorithm to maintain performance across
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a wide range of user preferences. Our comparative evaluation shows that our algorithm
outperforms recent open-ended algorithms from literature and a baseline lazy-learner al-
gorithm. With a use case, we present how this methodology will be implemented in the
real-world. An end-user is required to provide few seconds of data to introduce a new
unseen activity that is integrated with zero model re-training.

1.4.4 MEx Dataset

The final contribution of this thesis is the Heterogeneous Multi-modal Physiotherapy
Exercises Dataset, MEx. As identified in this thesis, the gaps in ExRec research begins
with the lack of publicly available datasets and standardised evaluation practices. Ac-
cordingly, we present the MEx dataset; a sensor-rich dataset with 4 sensor modalities,
recorded for 7 exercises with 30 participants. The exercises are selected by an expert
to include that are recommended for physiotherapy rehabilitation. Sensors and sensor
setup is selected to capture human movement expected to observed in theses exercises.
30 participants for the data collection are selected via convenient sampling. We present
the comprehensive methodology of collecting, refining an publishing MEx in Chapter 7.
This dataset is used to fine-tune and evaluate the first three contributions, both in single
sensor modality settings and multi-modal settings. Accordingly, we affirm that the meth-
ods introduced in the first three contributions are effective in a range of sensor modalities
and multi-modal environments. The long term goal is to establish MEx as a standardised
benchmark dataset in the HAR domain.

1.5 Thesis Outline

An outline of the rest of this thesis is as follows.

Chapter 2 reviews relevant works in literature. We start by investigating the research
in Exercise Recognition, algorithms and datasets available. Next, we review the related
literature in the three branches of HAR challenges investigated in this thesis: hetero-
geneous multi-modal fusion, personalised HAR and open-ended HAR. We explore the
research landscape of each challenge by discussing different approaches, strengths and
limitations. Finally, we review two research areas with a view to addressing aforemen-
tioned challenges while minimising the demand for data and knowledge: attention fusion
and few-shot learning.

Chapter 3 presents the background in neural networks, data and evaluation strategies.
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We start by discussing the basics of multi-class classification with Neural Networks and
the deep feature representation learning methods. Next, we introduce the four HAR
datasets used for evaluation and the pre-processing steps applied on each modality. We
also introduce the data formalisation, evaluation methodology, performance evaluation
metrics and significance testing methods applied in this research.

Chapter 4 presents the first technical contribution of this thesis, Multi-modal Hybrid
Attention Fusion architecture, mHAF. We formalise the fusion problem and discuss the
main design considerations when designing a fusion architecture for heterogeneous multi-
modal fusion. First, we explore how we can represent each modality and then the variants
of fusion levels suitable for ExRec with heterogeneous multi-modal data. Next, we present
our hybrid attention fusion module that is designed to learn feature importance for each
exercise. Lastly, we bring the modules together to present the mHAF architecture,
trained end-to-end for ExRec. In our empirical evaluation, we find the best feature learner
for individual modalities, explore different modality combinations to identify the best
minimal modality combinations and perform an ablation evaluation of our architecture
using three HAR datasets.

Chapter 5 presents the second contribution, personalised meta-learning methodology for
personalised exercise recognition. First, we formalised personalised meta-learning and
introduced a use case where we discuss the practical implications of our methods. We
present three meta-learners implementing the personalisation methodology, including
the train and test conditions under the personalisation approach. Next, we perform two
empirical experiments to fine-tune the three personalised meta-learners. We find the
most effective feature learners for each algorithm suitable for a wide range of modalities.
We also explore a range of few-shot settings to find the most optimal, considering the
user-friendly deployment and performance.

In Chapter 6 we take the ideas of few-shot learning and meta-learning to address the
challenge of open-ended HAR. We present a use case to highlight that our method only
requires a one-time micro-interaction with the end-user to obtain few seconds of labelled
data to introduce a new exercise class. We present an investigation on how zero-shot
compatible meta-learners fail in an open-ended setting. Then, we introduce the open-
ended meta-learning methodology and implement with three similarity-optimised meta-
learners that alleviate recognised challenges. Our empirical evaluation finds the best
open-ended meta-learner with two properties: firstly it is robust across a wide range of
unseen activity classes; and secondly, it is robust when incrementally adding new, unseen
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activity classes.

Chapter 7 presents the MEx dataset and a comprehensive evaluation of our methods us-
ing the MEx dataset for ExRec. We start by detailing the sensor and exercise selection,
data collection process and summarise the data collection results. We then present a
comprehensive evaluation of the three contributions using the MEx dataset. First, we
present a comparative evaluation of mHAF against several baselines and recent methods
from literature. We show how mHAF learned modality and feature combinations for
each exercise class using confusion matrices and visualisation of attention weights. Next,
we present a comparative evaluation of personalised meta-learners against conventional
meta-learners and deep learners. We further verify that personalisation improves perfor-
mance by comparing the conventional and personalised meta-learner training and testing
processes. Finally, we evaluate our open-ended meta-learner approach against a baseline
and a few-shot learner to demonstrate the robustness of our method. We conclude the
Chapter with a comprehensive evaluation of the same methods using three other HAR
datasets. Here we further verify the applicability of our methods in different domains of
HAR such as general fitness, activities of daily living and pose recognition.

We conclude in Chapter 8 revisiting our objectives with a review of the extent to which
we met our research objectives. We also outline the limitations and implications of the
work presented in this thesis and considerations for future extensions.
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Chapter 2

Literature Review

There are many open research challenges in the Human Activity Recognition (HAR) do-
main such as, unobtrusive deployment, energy consumption on edge devices and adapt-
ability to user preferences (Abdallah et al., 2018; Lara and Labrador, 2012). We identified
three personalisation challenges that need addressed to implement Exercise Recogni-
tion (ExRec) solution as part of an effective digital intervention for self-managing Mus-
culoskeletal Disorders.

• Multi-modal recognition to support modality preferences

• Personalised recognition to adapt to personal characteristics

• Open-ended recognition to adapt to activity preferences

This chapter explores HAR research landscape to identify related literature and research
gaps to address these challenges. The investigations are grounded in classification meth-
ods using neural networks. We first explore research in ExRec to identify the need for
public data and open research to implement methods addressing above challenges. It is
followed by a comprehensive review of literature on the three areas of interest within the
HAR research domain. We explore the recent advances in Machine Learning to address
these personalisation challenges while alleviating the demand for data or knowledge. Ac-
cordingly, we investigate two areas in literature with the view to limit the demand for
data and knowledge: attention fusion and few-shot learning.
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2.1 Exercise Recognition

Exercises is a category of human activities with sequences of complex movements, re-
peated in short intervals. Cardio exercises, flexibility exercises, resistance exercises and
rehabilitation exercises are some subcategories. ExRec is the task of learning reasoning
models to recognise exercises from streams of sensor data that capture human move-
ments. ExRec can be seen as an expert domain of HAR and is highly impactful in several
application areas such as personal fitness, physiotherapy rehabilitation, recreation and
self-management of chronic pain.

2.1.1 Sensor Modalities and Datasets

A wide range of sensors is used to capture exercise movements, that are either wearable
or embedded in the environment (i.e. ambient sensors). Accelerometers are the most
common wearable sensor used for ExRec that is either embedded in a smartwatch or a
smartphone (Burns et al., 2018; Guo et al., 2018; Mendiola et al., 2019; Morris et al.,
2014; Velloso et al., 2013). At each time-stamp, tri-axial accelerometers capture proper
linear acceleration, i.e. acceleration not caused by gravity, along three orthogonal axes,
x, y and z. Gyroscope and Magnetometers are two sensors commonly bundled with an
accelerometer, referred to as an Inertial Measurement Unit (IMU) (Chavarriaga et al.,
2013; Reiss and Stricker, 2012; Young et al., 2010, 2011). A gyroscope measures angular
velocity and a magnetometer measures the strength of the magnetic field along three
orthogonal axes. Abdallah et al. (2018) showed that a single IMU device did not recognise
activities with sufficient accuracy and highlighted the need for additional sensors to
capture complex activities. Accordingly, in literature we find alternative wearables for
activity monitoring, such as pressure-sensitive fabric and heart-rate monitors. Pressure-
sensitive fabric, commonly designed into clothing or designed as a band is used as a
body-worn sensor. The pressure sensors in the fabric measure the pressure variances
produced by a movement generating a stream of time-series data (Zhou et al., 2016).
Heart-rate monitors measure the pace of the blood-flow (Reiss and Stricker, 2012) that
is analogous to the intensity of an activity.

Many ambient sensors embedded in the environment, such as pressure sensors and cam-
eras are also used to capture human movements. Ambient sensors are effectively used for
ExRec in group settings like a gym or a smart home (Antón et al., 2015; Khurana et al.,
2018). In a gym setting, multiple persons are present and also the activities involve com-
plex movements that cannot be successfully captured by a single wearable sensor. Depth
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cameras and RGBD cameras are commonly used in such settings. A depth camera cap-
tures a series of grey-scale images of the view where the values are directly proportional
to the distance between the object and the camera. Pressure sensitive fabric can be used
as ambient sensors where the fabric is integrated into a target surface (Sundholm et al.,
2014). A pressure mat is an ambient sensing device that consists of multiple pressure
sensors typically arranged in a matrix. Over time, a pressure mat generates a sequence
of heat-maps that closely resembles a low-resolution video.

A sensor modality is identified by the sensor type and its placement. Table 2.1 presents
a comprehensive list of datasets selected from ExRec research and the sensor modalities
used. We include literature since 2012, that present datasets of exercises, monitored
using wearable or ambient sensors that were collected to develop machine learning algo-
rithms. Following notations are used to identify sensors modalities: PM: Pressure mat,
IMU: Inertial Measurement Unit, A: Accelerometer, G: Gyroscope, CSI: Channel State
Information, ECG: Electrocardiogram, H: Heart rate monitor and PB: Pressure sensor
band. There is a wide range of sensors modalities and modality combinations used in
bespoke application areas. Notably, all except Vakanski et al. (2018) (marked with an
asterisk) are not publicly available for open research to the best of our knowledge.

2.1.2 Recognition Algorithms

Given sensor data streams, ExRec is often viewed as a multi-class classification task.
The two-stage approach found in early HAR research is commonly used in the ExRec
domain. Labelled data instances are used to model a multi-class classifier where the
feature vectors are hand-crafted using a pipeline of pre-processing steps. In literature,
classification algorithm such as k-nearest neighbour (Sundholm et al., 2014; Xiao et al.,
2018), SVM (Morris et al., 2014), Decision Trees (Zhou et al., 2016), Random For-
est (Mendiola et al., 2019; Velloso et al., 2013) and HMM (Qi et al., 2018) are used as
to model labelled data. While Deep Learning methods are the state-of-the-art in gen-
eral HAR, only recently, such methods are implemented for ExRec. Burns et al. (2018)
uses convolutional and recurrent components in their ExRec architecture to recognise
shoulder rehabilitation exercises. Burns et al. (2018) also demonstrated that traditional
machine learning algorithm that uses hand-crafted features such as k-NN, RF and SVM
fail to outperform their deep learning architecture.

ExRec models are evaluated using different methodologies. Guo et al. (2018); Nguyen
et al. (2015a); Zhou et al. (2016) and Burns et al. (2018) build ExRec models for personal
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Table 2.1: Exercise Recognition Datasets

Dataset Activity Classes Sensor Modalities
Velloso et al. (2013) 5 Weight Lifting Exercises IMU:wrist, arm, back

and on equipment
Cheng et al. (2013b) 10 Calisthenic and Weight Exercises A&G:wrist, arm and

hip
Koskimäki and Siirtola (2014) 30 Calisthenic and Weight Exercises A:wrist ans torso
Sundholm et al. (2014) 10 Calisthenic and Weights Exer-

cises
PM:floor

Morris et al. (2014) 26 callisthenics and weight training
exercises

A:arm, G:arm

Ar and Akgul (2014) 8 rehabilitation exercises Kinect
Antón et al. (2015) 6 Upper Body Exercises Kinect
Lin et al. (2015) 6 exercises for frozen shoulder reha-

bilitation
IMU:wrist and arm

Pernek et al. (2015) 6 upper body strength training ex-
ercises

A:left and right
wrists, left and right
arms and chest

Nguyen et al. (2015a) 8 Basketball Actions IMU:back, left and
right feet and left and
right legs

Bleser et al. (2015) 13 upper body and lower body
strength exercises

IMU:wrist, elbow and
chest

Pernek et al. (2015) 6 weight exercises 5:wrists, arms and
torso

Zhou et al. (2016) 4 Gym Leg Exercises PB:thigh
Parmar and Morris (2016) 5 large amplitude movement exer-

cises
Kinect

Rybarczyk et al. (2017) 4 rehabilitation exercises Kinect
Vox and Wallhoff (2017) 20 rehabilitation exercises Kinect
Das et al. (2017) 7 Calisthenic and Weight Exercises A:wrist, H:chest
Crema et al. (2017) 9 weight exercises IMU:wrist
Xiao et al. (2018) 4 Calisthenic and Weight Exercises CSI
Burns et al. (2018) 7 Shoulder Exercises performed bi-

laterally
A:wrist, G:wrist

Qi et al. (2018) 12 Weight Exercises ECG:wrist and chest,
A:wrist and chest

Guo et al. (2018) 7 Ambulatory activities + Rope
Jumping, Cycling, Gymnastics

IMU:wrist, arm,
waist, thigh, ankle

Chapron et al. (2018) 4 exercises for neuromuscular reha-
bilitation

IMU:wrist

Triantafyllidis et al. (2018) Aerobic exercises in a group setting Kinect, H:wrist
*Vakanski et al. (2018) 10 rehabilitation exercises Optical tracker and

Kinect
Mendiola et al. (2019) 4 Calisthenic and Weight Exercises A:wrist
Nardi (2019) Upper Body Exercises A:wrist, G:wrist and

arm
Zhu et al. (2019) 4 rehabilitation exercises IMU:shoulders, back,

elbows, and forehead
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fitness applications. The classification algorithm in a personal fitness application is likely
to be used by one person. Accordingly, leave-one-person-out evaluation is performed
where the data of the test person is not seen during training. Khurana et al. (2018)
presents an ExRec model for a gym environment with groups of people. They apply
leave-one-day-out evaluation methodology to learn from a set of previous days to predict
exercises on a future day. In a gym environment, it is expected to encounter the same
person in multiple days, but different days have different schedules. Accordingly, the
leave-one-day-out methodology correctly evaluates the transferability of their models to
different days.

Mendiola et al. (2019) and Qi et al. (2018) are two personal ExRec models that apply
cross-fold evaluation methodology. Cross-fold is seen as a person-agnostic methodology
where train and test data is split disregard of the person or day. Such a method share
persons across training and test data, thus exhibits exaggerated performance improve-
ments. It also fails to emulate how the model will perform when used by persons not
encountered during training. Accordingly, we find person agnostic evaluation methods
are not suitable for personal ExRec model evaluation.

Unavailability of public datasets and inconsistent evaluation methodologies are two main
challenges when advancing ExRec research. Few other challenges identified in the litera-
ture are listed as follows. The complexity of exercises calls for multiple sensor modalities
working in sync to improve performance (Abdallah et al., 2018). The variability in perfor-
mances between persons which calls for personalisation (Morris et al., 2014). Exercises
can be confused with non-activity time if not captured with the correct set of sensor
modalities. In addition, compared to ambulatory activities, there is a broader range of
exercise classes resulting in complex multi-class classifiers.

2.2 Challenges in Human Activity Recognition

This thesis explore three branches of activity recognition research: multi-modal recogni-
tion, personalised recognition and open-ended recognition of activities. In this section, a
review recent literature in these three areas of interest is presented.

2.2.1 Multi-modal Recognition

Advances in sensing technologies encourage the use of multiple sensor modalities to im-
prove activity recognition performance (Abdallah et al., 2018). Also, the wide variety
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of HAR applications have different sensory requirements and often require more than
one sensor modality to capture activities with high precision. Research in HAR has
highlighted the challenge of reasoning with a variety of sensor modalities and modality
combinations which calls for multi-modal fusion (Radu et al., 2018).

HAR Sensor Modalities

Figure 2.1: Sensor modalities used in human activity recognition

Figure 2.1 categorises the types of sensor modalities seen in HAR literature. There
are two types of modality combinations: homogeneous modalities where every sensor
generate the same type of data such as a set of inertial sensors placed on different parts
of the body; and heterogeneous modalities where sensors generate different types of data.
Research in HAR broadly cover the fusion of homogeneous sensor modalities (Ordóñez
and Roggen, 2016; Radu et al., 2018; Yao et al., 2017). In contrast, domains such as video
caption generation (Xu et al., 2017a), speech recognition (Ngiam et al., 2011) and emotion
analysis (Chen and Jin, 2016; Kahou et al., 2016) often explore the fusion of heterogeneous
modalities. In these domains, modalities considered are audio, video, motion, image, and
text. Accordingly, this section investigates multi-modal fusion architectures from both
HAR and other domains to identify implications and limitations that can be informative
when designing a fusion architecture for ExRec.

While many use a single feature representation of the sensor modality for fusion, using
more than one representation of the modality is found advantageous in literature. These
feature representations are either derived from raw data (i.e. such as depth video and
skeleton) (Das et al., 2019; Escalera et al., 2013; Ghosal et al., 2018; Gu et al., 2018) or
obtained from multiple feature representation learners (Chen and Jin, 2016; Ghosal et al.,
2018; Jiang et al., 2019). Das et al. (2019) presented a hybrid architecture for HAR that
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uses multiple modalities derived from an RGB-D camera data stream. RBG image data,
skeleton data and video data are obtained as three independent modalities by applying
data sampling and data transformation methods. Language classification architecture
by Gu et al. (2018) is an example of applying multiple raw feature transformations
methods on raw audio data to create multiple modalities.

Extracting multiple feature representations from deep feature learners is used in many
application domains. Jiang et al. (2019) extract feature presentations at different lev-
els of a multi-layer convolution architecture, as different representations of the depth
camera modality. These representations are later aggregated to perform motion track-
ing. Ghosal et al. (2018) uses two variations of each modality, audio, video and text in
the final modality fusion for sentiment classification. For each modality, first, a feature
presentation is learned, and it is transformed using attention methods (more details in
Section 2.3.1). Both feature representation and attended feature representation are used
as independent modalities for fusion.

Multi-modal Fusion

The landscape of multi-modal fusion research can be categories into three design consid-
eration: feature learning architectures, fusion methods and fusion levels. These categories
are illustrated in Figure 2.2.

Figure 2.2: Design considerations of multi-modal fusion

The most common multi-modal fusion architectures are hybrids of convolution and recur-
rent constructs (Ordóñez and Roggen, 2016; Yao et al., 2017). Resulting architectures
are deep and have high parametric complexity to capture both spatial and temporal
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patterns from sensor modalities. Convolutional neural networks have also been applied
successfully to learn fusion feature presentations (Münzner et al., 2017; Sani et al., 2017a)
when there are no significant temporal dependencies.

Fusion level determines at which stage the modality features are unified. We categorise
levels found in literature as late, mid and early. Late fusion allows a model to learn
modality-specific feature representations, thus preferred by heterogeneous modality com-
binations (Chen and Jin, 2016). In contrast, early and mid fusion are preferred by
homogeneous modality combinations (Ordóñez and Roggen, 2016; Yao et al., 2017). We
illustrate the three levels in Figures 2.3a, 2.3b and 2.3c using DC (M1) and ACT (M2)
modalities in the MEx dataset.

(a) Early fusion

(b) Mid fusion

(c) Late fusion

Figure 2.3: Multi-modal fusion levels

Fusion methods are used to create a unified feature vector from multiple modalities,
and concatenation is the most commonly used method. As illustrated in Figure 2.4, an
important fusion method design consideration is along which axis the fusion is applied:
temporal axis or feature axis. Applying fusion at the temporal axis is advantageous for
early fusion methods where modalities are still independently presented to the feature
learner (Ordóñez and Roggen, 2016). DeepConvLSTM (Ordóñez and Roggen, 2016) is a
homogeneous multi-modal fusion architecture that applies early fusion at the temporal
axis to recognise activities using inertial sensor data. Raw data instances are concate-
nated along the temporal axis as multiple convolutional channels to form the early fusion
feature vector.

Applying early fusion on the feature axis can be detrimental where modality properties
may get lost in detail. For instance, when using a heterogeneous modality combina-
tion, concatenating features from two modalities can hinder the features of one modal-
ity. Instead, fusion on the feature axis is found to be advantageous at a mid fusion
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level where modalities are already transformed in to feature representations (Yao et al.,
2017). DeepSense (Yao et al., 2017) is a homogeneous multi-modal fusion architecture
that applies mid-level fusion along the feature axis. First, independent, but identical
convolutional feature learners are applied on each modality which allows the network
to learn modality features independently. Resulting features at a given timestamp are
concatenated to create the fusion feature vector.

Figure 2.4: Modality fusion on the temporal axis vs. feature axis

Recent literature in multi-modal fusion applied attention to elevate modality fusion meth-
ods. Attention can be seen as a weighted fusion, and we discuss attention in detail on
Section 2.3.1. QualityDeepSense (Yao et al., 2018), DeepFusion (Xue et al., 2019) and
AttenSense (Ma et al., 2019) are predecessors of the DeepSense (Yao et al., 2017) archi-
tecture that exploit attention to improve fusion.

An alternative method of fusion is presented by Münzner et al. (2017) for homogeneous
modalities. Instead of applying early fusion to create a unified representation of homoge-
neous modalities (like in DeepConvLSTM (Ordóñez and Roggen, 2016)), modalities are
kept independent but applied the same convolutional filters. This method is similar to a
metric learning architecture where multiple data instances are applied the same feature
learner to create comparable representations (Bromley et al., 1994; Hoffer and Ailon,
2015). The feature representations obtained for each modality are concatenated at a late
level resulting in a shallow architecture. This architecture benefits from using a shared
convolutional feature learner to outperform conventional early and late fusion architec-
tures, but the convolutional filter sharing method can only be applied to homogeneous
modalities.

Temporal fusion is used in an architecture with recurrence at the last stage to learn
temporal dependencies (Ma et al., 2019; Yao et al., 2017, 2018). Instead of using the
output at the last timestamp T , temporal fusion applies an aggregation of all hidden
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states ht, to obtain the recurrence output. Here, we view a hidden state, ht, as a
temporal modality, thus referred to as temporal fusion.

2.2.2 Personalised Recognition

In general, a HAR algorithm that is trained on a large population can be considered
generalised to many users that may encounter after deployment (Longstaff et al., 2010).
Although, it is intuitive that different users have their interpretation of activities and
only the end-user can provide the ground truth of their activities (Miu et al., 2015). Ac-
cordingly, personalising an activity recognition algorithm using end-user data to personal
characteristics such as gait patterns and physiology can improve recognition performance.
Personalised HAR research has explored how reasoning models can obtain end-user data
and how reasoning models can integrate end-user data.

We find that most early machine learning algorithms opt to only train with end-user
data (i.e. person-dependent) to achieve personalisation. Berchtold et al. (2010); Tapia
et al. (2007) and Wahl and Amft (2014) reported performance improvements of 39.3%,
19.0% and 20 ∼ 25% respectively with classification algorithms trained with end-user
data over the same algorithms trained with person-independent data. Person-dependent
evaluation demonstrates the capacity of end-user data to improve performance but in-
feasible to implement in practice due to the significant amount of labelled data required
by today’s state-of-the-art recognition models.

In more recent literature, active learning and online learning methods are used to obtain a
limited amount of labelled data from the end-user data for personalisation (Gomes et al.,
2012; Losing et al., 2019). Longstaff et al. (2010); Losing et al. (2019) and Gomes et al.
(2012) integrate an active learning loop to obtain the labelled data and personalise a pre-
trained recognition model. Longstaff et al. (2010) rebuilds a decision tree classifier using
end-user data in conjunction with the training data to achieve significant performance
improvements compared to the generic classifier. Gomes et al. (2012) uses the end-
user data to personalise and to maintain personalisation over time by learning personal
changes of the end-user.

An alternative approach is to have access to a set of classifiers (i.e. experts) trained
for each user seen during training and access to their data. Online Multi-task Learning
method by Sun et al. (2012) treats each train-user as a task. A classifier is learned for
each user (i.e. an expert) in a multi-task setting, thus allowing to learn from other train-
users. Alternatively, experts can be trained in a personal setting (Reiss and Stricker,
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2013). When an end-user provides a set of labelled data instance for each activity class,
it is used to determine the similarity (i.e. weight) of the end-user to train-users. This
similarity knowledge is used to either aggregate experts and obtain a personalised clas-
sifier (Sun et al., 2012) or to obtain a prediction using an ensemble of experts using
majority voting Reiss and Stricker (2013).

If we only have access to the data from train-users, the labelled data instances provided
by the end-user are used to find similar train-users. Sani et al. (2017b) uses the labelled
data provided by the end-user in conjunction with the labelled data from the most
similar train-users to train a personalised convolutional classifier. Miu et al. (2015)
avoids the similarity calculation, and simply add labelled end-user data to the training
data set against which they perform k-nearest neighbour retrieval for class prediction.
Accordingly, there is a mix of data from the general population and ones own data in
the dataset to achieve a lazy personalisation.

Most recently, few-shot learning is adopted as an approach to personalisation by per-
sonalised Matching Networks (Sani et al., 2018; Vinyals et al., 2016). Matching Net-
works (MN) was introduced for few-shot classification by Vinyals et al. (2016). Architec-
turally it is a predecessor of Relation Networks (details in Section 2.4.2) where a static
similarity function with non-parametric attention calculates the similarity distribution in-
stead of a parametric regression model. Sani et al. (2018) introduced personalised Match-
ing Networks (MNp) to perform personalised HAR.MNp learns a reasoning model, that
is optimised to find the best match for a query instance when given a set of labelled data
instances from the same person. At deployment, the network transfers the learning to
new end-user given only few labelled data instances for matching. This method does not
require access to train-persons data which is privacy-preserving compared to previous
methods. It also avoids post-deployment model re-training which less burdensome on an
edge device. MNp training task design is similar to Sun et al. (2012) where a person is
considered a task. Instead of a person creating a single task, many tasks are created for
each person in the training data set, presenting many variants of the same person to the
reasoning algorithm. A set of training tasks (500 in Sani et al. (2018)) are created per
person, where each training task is comprised of a randomly selected support set and
a single query instance. Accordingly, MNp is trained as a conventional classifier with
mini-batching and categorical cross-entropy loss.

Personalisation is explored in application domains other than HAR to improve user expe-
rience. Some examples are facial expression recognition for personalised gaming (Blom
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et al., 2014), pain level recognition from video (Thiam et al., 2017), emotion recogni-
tion from audio and video (Ramya and Bhatt, 2019) and personalised dialogue genera-
tion (Madotto et al., 2019).

Challenges in Personalised Recognition

Seemingly, all personalised HAR algorithms rely on having access to many or few labelled
data instances of the end-user. Active learning and online learning methods have shown
significant performance improvements by integrating few instances of end-user data after
deployment. However, we identify few existing challenges highlighted in the literature.

One of the main challenges is the access to train-user data. Sani et al. (2017b); Sun
et al. (2012) and Reiss and Stricker (2013) are methods that rely on identifying the
similarity of the end-user to train-users using data. Algorithms that require access to
train-users data can raise privacy concerns as well as storage limitations on a mobile
platform. Recent advances of privacy preserving machine learning methods (McMahan
et al., 2017) have highlighted the importance of distributed or federated machine learning
instead of conventional machine learning to minimises the sharing of sensitive data.

Personalisation using pre-trained classifiers (Sani et al., 2018) eliminate the privacy con-
cerns by sharing only the trained models instead of data. However, MNp by Sani et al.
(2018) followed a training methodology which results in a standard classifier instead of
a meta-learner as intended in original MN. There is high variability within the tasks
created from the same user, and the model has less opportunity to identify and isolate
personal nuances to capture commonalities between users. In addition, this setting does
not emulate the real-life environment where a person records a set of calibration data to
use as the support set for all query instances. Improving MNp is further investigated in
Chapter 5.

The online active learning method used by Miu et al. (2015) requires complete model
retraining every time labelled data is obtained from the end-user. This is in contrast
to incremental learning algorithms that seamlessly learn from new data. In an active
learning setting, the system asks the end-user for labelled data periodically, which results
in retraining the reasoning model frequently. Computational and resource limitations of
a mobile platforms makes it less desirable to re-train a model from scratch. In addition,
it is also desirable to limit the interaction with the end-user to one or few instances to
improve non-invasiveness.
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Berchtold et al. (2010) highlighted the importance of obtaining end-user data in similar
conditions to which it was seen during training, such as the orientation of the sensor.
Their results report 20% decrease in performance when end-user data is obtained in
different orientations. It is noteworthy that Berchtold et al. (2010) considered personali-
sation with accelerometer data where the orientation of the sensor can change over time.
Issues in sensor orientation are less applicable with ambient modalities like pressure mat
or depth camera where positioning of the sensors is fixed. But obtaining end-user data
from an ambient sensor is more challenging compare to a wearable.

While many report significant performance improvements with personalisation, Longstaff
et al. (2010) highlight that such improvements are only significant against weak baselines.
Accordingly, it is recommended to evaluate algorithms not only against non-personalised
counterparts but against the best deep learning algorithms for recognition.

2.2.3 Open-ended Recognition

Open-ended Human Activity Recognition (HAR) aims to create models that can recog-
nise new activities encountered after deployment in addition to activities seen during
training (Xian et al., 2018). Existing methods reported in literature fall under unsuper-
vised and supervised approaches. Unsupervised methods such as clustering, by nature,
do not rely on labelling, thus suited for open-ended recognition. Incremental updates to
the clusters allow integration of new classes as instances are introduced after deployment.
Often, heuristics such as cluster size and temporal thresholds are introduced to condition
cluster creation and retirement in an online setting (Gjoreski and Roggen, 2017).

Open-ended recognition as a supervised learning problem often relies on semantic features
to describe new, unseen classes (Lampert et al., 2014; Liu et al., 2011; Xu et al., 2017b).
While there are no labelled data instances available during training for unseen classes,
semantic features help to position unseen classes among seen classes during the training
process. Such open-ended recognition algorithm is comprised of two modules: first, the
input data is mapped to the semantic features; and secondly, the semantic features are
mapped to activity labels (seen and unseen). Accordingly, the semantic features act as
a bridge between the input data and the activity labels (Liu et al., 2011).

Hand-crafted intermediary features and their mapping to class labels (also known as
attributes and attribute mapping) provided by an expert is the main form of intermediary
semantic features for open-ended HAR (Cheng et al., 2013a,b; Liu et al., 2011). The
mapping between the raw input data and the intermediary features can be a set of
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reasoning models, one for each intermediate feature, learned using the training data.
Binary classifiers (Cheng et al., 2013b; Liu et al., 2011), multi-class classifiers (Ohashi
et al., 2018) and regression models (Ohashi et al., 2018) are commonly used to learn
the mappings. Once a set of intermediary features are predicted, the nearest neighbour
algorithm is used to find the activity class that best matches the predicted features in
the intermediary feature space (Cheng et al., 2013b; Ohashi et al., 2018).

Figure 2.5: Open-ended activity recognition with an intermediary semantic features space

An example of open-ended HAR using semantic features is illustrated in Figure 2.5.
Sensor data is transformed into six intermediary attributes, using 4 binary classifiers and
two regression models. The resulting set of features are matched against the pre-defined
attribute mapping to find the most similar combination, and the class label is obtained.

An attribute mapping for open-ended HAR encodes domain expert knowledge in which an
activity class is described by a set of intermediate-level actions. For instance, Cheng et al.
(2013b) describes chest-press exercise as a sequence of known action primitives, such as
arms side, arms curl and arms forward. This method is further improved by Cheng et al.
(2013a) to incorporate temporal aspects of activity sequences. Attribute importance is a
method that has further enhanced the attribute mapping. Ohashi et al. (2018) applied
weighted nearest neighbour retrieval to amplify relevant attributes for each activity class.
A key advantage of attribute-based classification is the interpretability of the predictions.
For instance, an activity label prediction can be explained by the set of intermediary
attributes predicted using the raw sensor data.

An alternative method to hand-crafted features is the automated discovery of intermedi-
ary features through word-vector embedding. In Xu et al. (2017b) and Al Machot et al.
(2020) all class labels (seen and unseen) are embedded using a pre-trained word embed-
ding neural model to obtain the intermediary features. Accordingly, the intermediary
features are an encoding of the class label. The mapping between the input data and the
intermediary features is learned using the training data from seen classes as a regression
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task. For instance, a shallow neural network is used by Al Machot et al. (2020) to pre-
dict the word representation (Word2Vec) of the class label from sensor data. Moreover,
similar to hand-crafted feature approach, the nearest neighbour algorithm is used to find
the class that best matches the predicted class in the intermediary feature space.

An alternative approach to open-ended recognition is generative models such as Gradient
Matching Generative Networks used in open-ended image classification. With recent
advances in conditional generative models learn to generate high-quality synthetic data
for unseen classes using the semantic features (Mirza and Osindero, 2014; Sariyildiz and
Cinbis, 2019). Synthetic data instances in conjunction with training data are used in
training a conventional classifier that performs conventional close-set classification.

Challenges in Open-ended Recognition

We identify a few key challenges with regards to semantic-feature based open-ended
recognition methods. Curating a complete attribute mapping is a challenging task, and
in practice, frequent manual updates by an expert are required to maintain completeness
(Cheng et al., 2013b; Ohashi et al., 2018). Accordingly, we view this method as knowledge-
intensive. In addition, a set of attributes should be able to represent a wide range of
activities. Capturing temporal dependencies with attributes (Cheng et al., 2013a) and
attribute importance (Ohashi et al., 2018) are methods that contribute towards improving
this intermediary representations.

Although the semantic attribute approach provides a generalised solution to open-ended
recognition, there are aspects in activity performance that is challenging to encode into
an intermediary feature space. For instance, personal characteristics and intricate move-
ments in complex activity classes are intuitively challenging to decompose into attributes.
These limitations cause poor performance with complex activity types where individual
variations are more prominent compared to ambulatory activities. Active learning is used
as a method of personalisation for open-ended HAR (Cheng et al., 2013b). The end-user
is asked to verify model predictions with low certainty and verified data instances are
used to re-train both input to intermediary feature mapping and intermediary features
to activity class mapping.

An automated approach to acquiring the intermediary features is comparatively less
burdensome compared to hand-crafted features. The main drawback of this method
is the black-box nature of intermediary features. Moreover, the input to intermediary
feature mappings is learned by one or several reasoning models using training data from
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seen classes. Often, these reasoning models over-fit to seen classes and perform poorly
on unseen classes. Geng et al. (2020) proposed to recognise seen and unseen classes using
two separate classifiers to mitigate over-fitting. First, the model determines if a test data
instance is part of the seen classes or unseen classes using a heuristic, then forward the
data to the respective classifier. The success of this method relies on the accuracy of the
heuristic.

We find generative models can also alleviate over-fitting to seen classes as synthetic data
can be generated for both seen and unseen classes using semantic features. Although,
the generated synthetic data are used to train a conventional close-set classifier which is
restricting such that new classes cannot be added after model deployment.

Open-set recognition (Bendale and Boult, 2016) is a more generalised form of open-ended
recognition where semantic features on unseen classes are not provided during model
training. However for HAR applications, we argue that we have access some knowledge
or data on unseen classes, during or after model development.

2.3 Attention Fusion

Attention is learning to highlight or attend to a subset of features towards rapid perfor-
mance improvement. In this section, we explore the literature on Attention and Attention
Fusion with a view to address the heterogeneous multi-modal fusion challenge.

2.3.1 Attention

Attention was first introduced in the domain of neural machine translation (NMT) (Bah-
danau et al., 2014; Luong et al., 2015). Given an RNN encoder-decoder model for machine
translation, attention mechanism was used to learn the alignment between words when
a sentence is given in two languages.

Figure 2.6 shows a simple RNN encoder-decoder architecture (Cho et al., 2014b) that
learns to translate a sentence from a source language to a target language. The RNN
encoder hidden state, het , is derived using the previous hidden state and the input as in
Equation 2.1 where fe is a parametric model or a non-parametric activation function.
The last encoder hidden state, heT , is the summary, c, which encompasses the encoding
of the source sentence, {x1, x2, ..., xT }.

het = fe(het−1, xt) (2.1)
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Figure 2.6: RNN encoder-decoder

The RNN decoder receives the summary, c at every timestamp, and used to derive the
decoder hidden state and the decoder output as in Equation 2.2. Here fd is similar to
fe and g is a parametric model with softmax activation for classification.

hdt = fd(hdt−1, yt−1, c)

yt = g(hdt , yt−1, c)
(2.2)

Instead of using the last hidden state of the encoder, heT , as the encoder summary, c,
Bahdanau et al. (2014) proposed to learn a weighted aggregation of all encoder hidden
states. Here, attention weights, αtj are learned to indicate how much each encoder hidden
state hej should contributes to the summary ct, at decoder timestamp t (Equation 2.3).

ct =
T∑

j=1

αtjh
e
j

yt = g(hdt , yt−1, ct)

(2.3)

Figure 2.7: RNN encoder-decoder augmented with attention
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Consequently, the attention mechanism learned how a target word (yt) aligns to each
word in the source sentence. In Figure 2.7 we augment the RNN encoder-decoder from
Figure 2.7 with attention. After training, the state of the attention vector (αtj) at each
decoder output is illustrated with arrows of different widths to indicate the attention
weight. For instance, the second output is most influenced by the last input and the last
output is most influenced by the first input. Attention mechanism has further inspired
self-attention, where, given a sentence, each word learns the alignment against other
words in the same sentence (Vaswani et al., 2017). For instance through self-attention a
model learns how a noun is referenced by a pronoun in the same sentence.

2.3.2 Attention Fusion

Multi-modal fusion research in many domains adapted the concept of weighted aggrega-
tion to learn effectively from multiple modalities. Attention mechanism for multi-modal
fusion learns an effective selection of significant features to highlight and noisy features
to discard. Two forms of attention are found in multi-modal fusion literature: learning
modality significance given a set of modalities is referred to as modality attention fusion;
and learning feature significance of a modality is referred to as feature attention.

Modality Attention Fusion

Most commonly, a modality is considered analogous to a word in the source sentence,
and one hot encoded classification output to the target sentence. Accordingly, given a
set of feature vectors, {xi}, for m number of modalities, attention fusion feature vector,
z′, is derived as in Equation 2.4. Here αi are the attention weights that indicate the
significance of each modality. Modality fusion in Zhang et al. (2018), AttenSense (Ma
et al., 2019) and Gu et al. (2018) are recent examples of applying modality attention
fusion. Importantly, all the features of a modality are applied the same weight.

z′ = {αixi | 0 < i < m} (2.4)

Attention weights can be derived in a parametric manner or a non-parametric manner.
AttenSense (Ma et al., 2019) and DeepFusion (Xue et al., 2019) are using a single dense
layer parametric model to learn the attention weights from the original modality fea-
tures. QualityDeepSense (Yao et al., 2018) and Jiang et al. (2019) instead exploit a
non-parametric method where original modality features are normalised to obtain at-
tention weights. A parametric model stochastically transforms the input features to
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attention weights using the parameters of the network. Alternatively, a non-parametric
method, applies an algebraic transformation to derive attention weights from modality
features.

As in Equation 2.4, attention weights are used to augment modality feature vectors, {xi}
and unified to obtain the fusion feature vector, z′. Fusion feature vector can be one
of two forms: aggregated or concatenated. Aggregation as in Equation 2.5 results in a
feature vector z′, where |z′| = |xi|. Concatenation results in a feature vector, z′, where
|z′| =

∑m
i |xi|. AttenSense (Ma et al., 2019) and the weighted-combination module in

DeepFusion (Xue et al., 2019) use aggregation to form the fusion feature vector. Late
fusion on the DeepFusion (Xue et al., 2019) architecture, Zhang et al. (2018) and Gu et al.
(2018) are examples where concatenation forms the fusion feature vector (Equation 2.6).

z′ =
1

m

m∑
i

αixi (2.5)

z′ = concat(α1x1, α2x2, ..., αmxm) (2.6)

Aggregation requires each modality to produce a feature vector of the same length and
aggregates features from multiple modalities by their feature vector index. This method
is sound when using a shared feature learner (Münzner et al., 2017) or in the homogeneous
multi-modal setting. However, it is detrimental in a heterogeneous multi-modal setting.
Different modalities use modality-specific feature representation methods where indices
may not co-relate between feature vectors. It can be argued even in an acceptable setting,
the essential features may get lost in aggregation. Concatenation does not introduce a
feature-length constraint, also allows the flexibility to use different feature representation
learners. Although, resulting feature vector can be excessively large in a setting with
many modalities.

The set of attention weights α are often normalised using either softmax or sigmoid
functions. Softmax normalisation method used in AttenSense (Ma et al., 2019), Zhang
et al. (2018) and Gu et al. (2018) skew the attention weights to significantly highlight one
modality over the others. Accordingly, it is referred to as Hard Attention (HA). Notably,
softmax is a stochastic transformation, where each weight is dependent on the other
weights. The weighted-combination module in DeepFusion (Xue et al., 2019) instead
uses sigmoid normalisation where the attention weights are less skewed, highlighting
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(a) Normally distributed score vector normalised using softmax and sigmoid functions

(b) Skewed score vector normalised using softmax and sigmoid functions

Figure 2.8: Score vector normalisation using softmax and sigmoid functions

more than one modality in the final fusion feature vector. Accordingly, it is also referred
to as Soft Attention (SA). Notably, sigmoid is a deterministic transformation where each
weight is independent of other weights.

In modality attention fusion, skewed normalisation is beneficial when learning to select
one modality from a set for a classification task. In contrast, non-skewed normalisation
learns patterns of modality combinations for classification. In Figure 2.8 we plot exam-
ples of the two normalisation functions normalising attention weights. Imagine a vector
of 21 values dispersed between -1 and 1. In Figure 2.8a the values are dispersed evenly,
and both sigmoid and softmax transform original values to a 0-1 range reflecting a similar
distribution to the original values. In Figure 2.8b, the original values are not dispersed
evenly. Instead, there is a weight that is a significant outlier. While sigmoid normalisa-
tion transforms with a normal distribution, softmax transformation is skewed such that
the positive discriminatory feature is further highlighted. As a result, HA accentuates
positive values significantly such that only one or few features are highlighted.

An alternative attention method introduced by Hori et al. (2018) learn feature importance
instead of modality importance for modality fusion. Given a set of feature vectors, {xi}
each of length k, from m modalities, a set of parametric attention weights, αj are learned
for each feature index, j (0 < j < k). This is in contrast to learning an attention
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weight for each modality. αj contains m attention weights, one for each corresponding
feature (jth feature) of a modality. Accordingly, the size of α is m× k. Hori et al. (2018)
also exploits any correlation that may exist between modalities when aligned by feature
index.

Modality importance and feature importance can be viewed as the granularity at which
the attention applied. We illustrate the two methods in Figures 2.9b and 2.9a. Modality
level granularity calculates an attention weight for each modality. In contrast, feature
level granularity calculates an attention weight for each feature of each modality.

(a) Modality level

(b) Feature level

Figure 2.9: Attention at feature level vs. modality level granularity

Feature Attention

Feature attention learns an enhanced feature representation of an individual modality,
either in a multi-modal or a single modal setting. In a multi-modal setting, learning
feature attention can be either independent or against other modalities. Language clas-
sifier presented by Gu et al. (2018) details learning feature attention using a parametric
model, for text and audio modalities. If the modality feature vector is x, a set of attention
weights α is learned where each feature is assigned an attention weight (i.e. | α |=| x |).
Resulting feature vector x′ is augmented to highlight features that are significant and
hinder features that a noisy for the classification task.

Learning an attended feature representation in a multi-modal setting with respect to
one or a few other modalities is referred to as intra-attention in literature. The cross-
sensor module in DeepFusion (Xue et al., 2019), UHAN architecture (Zhang et al., 2018)
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and Jiang et al. (2019) are examples of intra-attention in a multi-modal setting. In
DeepFusion (Xue et al., 2019), feature attention weights for each modality are learned
using the correlations to other modalities. The aim is to situate a modality with respect
to other modalities, as such self-correlation is omitted from the attention learning. It
is beneficial to learn intra-attention for a modality pair that is in natural alignment
with each other (Ghosal et al., 2018). Sentiment analysis architecture by Ghosal et al.
(2018) use audio, video and text modalities where bi-modal feature attention is learned
for modality pairs: (Audio, Video); (Audio, Text); and (Video, Text). However, in
HAR, reasoning with modalities that naturally align with each other can be seen as a
redundancy, given the goal is to minimise the number of modalities to improve usability.

yT =
T∑
t

αtht (2.7)

The idea of weighted aggregation can be applied to temporal fusion where a recurrent
model is used for class prediction. Here, each output (from each timestamp) is considered
a modality and as in Equation 2.7, αt are the attention weights that aggregate tempo-
ral outputs. AttenSense (Ma et al., 2019) use temporal attention fusion to aggregate
the hidden states of their last GRU layer using a parametric model. In contrast, Qual-
ityDeepSense architecture (Yao et al., 2018) use a non-parametric approach to derive
temporal attention weights that encompass intra-dependencies between timestamps.

2.4 Few-shot Learning

Few-shot learning is a multi-class classification setting where there is a large number of
classes with only few labelled examples for each class. The goal of a few-shot classifier is
to successfully learn class boundaries for any given subset of classes using the few-data
available. A few-shot classifier is commonly described as k-shot n-way where k indicates
the number of labelled data available per class and n indicate the size of the subset of
classes.

Creating a decision layer with many classes is feasible when there is an abundance of
labelled data to discriminate one from all other classes in the feature space. Instead,
in a few-shot setting, it is more effective to create smaller decision boundaries. The
k × n number of labelled data from the n number of classes are mapped to a feature
space where the boundaries are separated. Often in practice, only a subset of classes can
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Figure 2.10: Few-shot learning setting

occur at a given time, thus may not need to learn a classifier for all classes. Unarguably,
in a few-shot setting, there are similarities between these subsets of classes, that can
be advantageous when learned together, rather than apart as individual classifiers. A
subset of classes that occur together naturally is referred to as a task, and the task
distributions can be illustrated as in Figure 2.10. Similar to a conventional classification
task, a few-shot task has training and test data sets where the training set consist of
k × n labelled data instances. The state-of-the-art approach to implement a few-shot
classifier is meta-learning (Oreshkin et al., 2018).

2.4.1 Meta-Learning

Meta-Learning is the learning of a model that is generalised across many tasks and is
rapidly adaptable to any new task, thus referred to as learning-to-learn. Given a dataset
D, in the conventional setting, learning is referred to optimising a parametric model θ
using training data such that θ perform well on test data. Learning to learn instead
consider the meta-dataset, D, where each instance is a dataset, D, representing a few-
shot task. A meta-model θ is optimised on a set of training tasks to perform well on a
set of test tasks.

Historically, there are three types of meta-learners, considering the type of information
used from prior tasks to adapt to a new task (Vanschoren, 2019). Early methods exploit
the availability of data from prior tasks to learn a new model. Given access to data from
prior tasks (i.e. meta-data), a model for a new task is learned by aggregating data from
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prior tasks and the new task. In a setting where meta-features are available instead of
data of prior tasks, the similarity between prior tasks and the new task is calculated
using meta-features. The similarities are used to select the most similar prior tasks and
create a model for the new task. More recently, with the advances in learning parametric
models, a generic meta-model learned for a set of prior tasks is used to transfer to a
new task (i.e. exploit meta-model instead of meta-data or meta-features). Essentially,
meta-learning with neural networks is learning a feature space from prior tasks that is
rapidly adaptable to a new task. Here, the feature space is parameterised by a neural
network model and followed by a decision layer. In this section, we explore the scope of
meta-learners for few-shot classification using neural networks.

Figure 2.11: Meta-learning task design

To reiterate, meta-learning for few-shot classification is the learning of a meta-model
that is generalised over many few-shot classification tasks, and rapidly adaptable to any
new few-shot classification task. More formally, a few-shot classification task, T has a
set of train data instances and a set of test data instances, referred to as the support
set, Ds, and the query set, Dq. Here, the number of instances in a support set is ks × n.
For example, for the character recognition task in Figure 2.11, a language forms a task,
and the support set contains distinct characters, each of which is a representative of a
class (i.e. ks = 1). The query set, Dq, is the set of test data of T , which has no overlap
with the support set, Ds. This is similar to a train/test split in a classification task.

Implementation of a meta-learner for few-shot classification is viewed using the universal
machine learning principle, test and train conditions must match (Vinyals et al., 2016).
The goal of meta-learner is to learn a model that solves a few-shot classification task not
seen during training. Accordingly, the test condition is identified as classifying any query
instance, x̂qi of the test task T̂ utilising its support set, D̂s. To match the test condition,
the training data or meta-train tasks are designed as in Figure 2.11 where each training
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data instance is a few-shot classification task. During meta-model training, a parametric
model learns to solve many meta-train tasks. That is, given a task, learn to classify a
query data instance, xqi utilising its support set, Ds. In comparison to a conventional
classifier, a train instance is a few-shot classification task, and a test instance is a few-shot
classification task not see during training.

We view the modern landscape of meta-learners for few-shot classification in Figure 2.12.
Mainly there are three approaches, based on how the meta-learner is optimised to learn
from many tasks: model-optimised; similarity-optimised; and adaptation-optimised.

Figure 2.12: Meta-learners for few-shot classification with neural networks

Model-optimised Meta-learners

Model optimised meta-learners such as SNAIL (Mishra et al., 2018) and MANN (Santoro
et al., 2016) create unique neural architectures to learn from prior tasks. Given a query
instance and the support set, both methods sequentially arrange the support set instances
as part of the input of size (ks×n)+1 where the last timestamp is reserved for the query
instance. The model is optimised to predict the class of the query instance with respect to
the support set instances, and their class labels. An abstract representation of a model-
optimised meta-learner is depicted in Figure 2.13 where we emphasise the sequential
formation of the input. Accordingly, a model-optimised meta-learner learn a new task by
using the support set in conjunction with the query instance in the input. Furthermore,
the model is generalised over many tasks using iterative optimisation.

SNAIL (Mishra et al., 2018) uses a temporal convolution architecture (Bai et al., 2018) to
encode the support set and attend accordingly using self-attention to predict the class of
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Figure 2.13: Model-optimised meta-learner

the query instance. MANN (Santoro et al., 2016) instead creates an external memory in
which it remembers the support set encodings. Mishra et al. (2018) has highlighted the
necessity of deep feature learners for SNAIL, that would otherwise over-fit to few data in a
generic deep learning setting. Accordingly, SNAIL is better suited for few-shot tasks with
complex data types such as image and text that benefit from deep feature learners. In
the HAR domain, model-optimised meta-learners are used for human motion prediction
in a few-shot setting. MoPredNet by Zang et al. (2020) uses a temporal convolution
architecture similar to SNAIL for motion prediction from 3D skeletal data. Given the
complexity of 3D skeletal data, MoPredNet benefits from learning feature representations
from deep feature learners.

Similarity-optimised Meta-learners

Matching Networks (MN) (Vinyals et al., 2016) and its predecessors Prototypical Net-
works (PN) (Snell et al., 2017) and Relation Networks (RN) (Sung et al., 2018) are
examples of meta-learners optimised for similarity. A similarity-optimised meta-learner
learns to predict a class label for a query instance based on its similarity to each support
set instance. Given a query instance (from the query set) and the support set, first, each
element is applied a feature transformation using a feature learner. Then, pairs are cre-
ated by pairing the query instance feature vector with each support set element feature
vectors. The objective is to learn the feature learner parameters such that the similarity
between a matched pair (i.e. a query instance from class A and a support set instance
from class A) is maximised, and similarity between any unmatched pair (i.e. a query
instance from class A and a support set instance from class B) is minimised. Accordingly,
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after iterative optimisation, a similarity-optimised meta-learner learns a feature learner
that produce feature pairings for any few-shot learning task to predict class labels. Fig-
ure 2.14 illustrates an abstract representation of a similarity-optimised meta-learner. We
highlight the paired formation of the input compared to the sequential formation seen in
model-optimised meta-learners.

Figure 2.14: Similarity optimised meta-learner

With MN and PN, the similarity between a feature representation pair is simply calcu-
lated using a similarity metric like Euclidean distance or cosine similarity. Graph Neural
Networks (GNN) (Satorras and Estrach, 2018) and RN (Sung et al., 2018) further param-
eterise the similarity calculation by using parametric models. Accordingly, optimisation
of MN or PN, training only update network parameters of the feature learner. With
GNN or RN, back-propagation is applied end-to-end to optimise the feature learner and
the similarity learner. In comparison to model-optimised meta-learners (also known as
black-box meta-learners (Hospedales et al., 2020)), similarity-optimised meta-learners is
considered to be more interpretable. They can be also viewed as parametric k-nearest
neighbour algorithms.

In the HAR domain, MN is adapted for personalised HAR by Sani et al. (2018). However,
their training approach resembles a conventional classifier training than a meta-learner
training which we investigated in Section 2.2.2. Multi-scale RN is an adaptation of RN
for motion tracking by Ding et al. (2019). They extract features from different levels
of a multi-layer convolutional feature learner to form the multi-scale input for similarity
learning.
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Adaptation-optimised Meta-learners

The goal of an adaptation optimised meta-learner is to learn a model that is most
adaptable to any new unseen task. LSTM meta-learner (Ravi and Larochelle, 2017),
MAML (Finn et al., 2017) and its predecessors FOMAML (Finn et al., 2017) and Rep-
tile (Nichol et al., 2018) are example adaptation-optimised meta-learners from the liter-
ature.

Figure 2.15: Adaptation optimised meta-learner

The goal of training the meta-model is to encapsulate the learning experiences from many
training tasks such that it is the best initial model for any test task. Accordingly, at
a given iteration, a set of task-specific models are created and initialised by the meta-
model. They are then independently optimised using the task support set (similar to test
condition described above). After adaptation, the learning experience of each adapted
model is measured and aggregated to update the meta-model such that it represents
a generalised view of many tasks. Importantly, the meta-model update is a gradient
descent optimisation, using the aggregated loss from adapted models. This is instead of
using a dedicated dataset for meta-model training. This training process ensures that the
aggregated learning experiences of the selected optimised task-models do not disconcert
the meta-model. We visualise an abstract view of a adaptation optimised meta-learner
task adaption in Figure 2.15. The dotted line indicates a training task, where the learning
experience (loss in MAML) of the task is fed into meta-model optimisation.

LSTM meta-learner (Ravi and Larochelle, 2017) is an early adaptation-optimised meta-
learner where the meta-learning is inspired by the LSTM architecture. LSTM meta-
learner aggregates the learning experiences of task-specific models by learning to adapt
the learning rate using a parametric learner (i.e. meta-model). The parameters of the
learning rate are updated considering past learning rate and past performance of the
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model. MAML aggregate the learning experiences of task-specific models by calculating
the loss against their query sets. The collective losses are used to perform gradient descent
on the meta-model. In comparison to LSTM meta-learner, where the meta-model only
parameterises the learning rate, MAML maintains a meta-view of task-specific model
weights. Reptile (Nichol et al., 2018) algorithm further simplify MAML and does not
optimise the meta-model using GD. Instead the meta-model is an aggregation of opti-
mised task-specific model weights and compared to MAML, Reptile achieves comparable
performance. Reptile can be seen as the non weighted equivalent of the FedAvg algo-
rithm introduced for privacy-preserving federated learning (McMahan et al., 2017). In
the HAR domain, similar to other meta-learner approaches, human motion prediction is
attempted with a variant of MAML in Gui et al. (2018). Here the MAML meta-model
learns to predict future activities based on past activities using only few data instances.

2.4.2 Meta-learning Algorithms

This section investigates two meta-learning algorithms in detail: adaptation-optimised
meta-learner MAML and similarity-optimised meta-learner RN.

MAML

MAML (Finn et al., 2017) is an adaptation-optimised meta-learner applicable to any
parametric model optimised with Gradient Descent (GD). At a high level, MAML it-
eratively learns a meta-model generalised over many tasks such that the meta-model is
rapidly adaptable to new unseen tasks (Figure 2.16).

Figure 2.16: Model Agnostic Meta Learner

First, the meta-model θ, is randomly initialised. At each iteration, a set of tasks are sam-
pled from the meta-train set. For each task, Ti, a support set and a query set is selected
according to the meta-learning task design discussed in Section 2.4.1. The support set is
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used to train a task model, θi, initialised by the meta-model, θ. θi training is performed
over gs number of training epochs referred to as the gradient steps using a learning rate
of α. A gradient step includes computing the loss of θi against the support set and using
gradient descent to update θi parameters. For multi-class classification (such as HAR),
categorical cross-entropy is the preferred loss metric and is calculated as in Equation 2.8
against Ds. At the end of the gradient steps, θi is now adapted for Ti using its Ds.

LTi(θi) =
∑

xs,ys∼Ds

ys log θi(x
s) + (1− ys) log(1− θi(xs)) (2.8)

A task query set, Dq, is formed as the test set to evaluate the classification task learned
by θi which is often disjoint from Ds. The loss of a task model, θi, is calculated using
Dq, which we view as the learning experience of θi. The collective loss from the set of
selected tasks is used as the loss on which the meta-model is trained. Similar to training,
categorical cross-entropy is the preferred loss and is calculated as in Equation 2.8, now
against Dq. A learning rate of β is used to update the meta-model parameters θ in a
single step referred to as meta-update. This process of meta-update is iterated over many
meta-train task samplings towards minimising the collective loss from tasks.

Meta-model optimisation for an unseen meta-test task T̂ is similar to creating a task
model during training. A model, θ̂ is initialised from the current meta-model and is
trained using the support set, D̂s of T̂ . The training is performed in few iterations,
referred to as the meta-gradient steps. Once θ̂ is optimised, it is used to predict class
labels of the query set, D̂q. Parameter updates during gradient steps, meta-update and
meta-gradient steps are performed using gradient descent. Intuitively, mini-batching is
not used in the few-shot learning task setting, where there are only few data instances
for training and in practice implemented using an optimiser such as Adam or Adagrad.

Relation Networks

Relation Network (RN) (Sung et al., 2018) is a similarity-optimised meta-learning algo-
rithm that learns-to-match. RN has a similar goal to other meta-learners, of learning
a generalised model over many tasks and as a similarity-optimised meta-learner, RN is
learning to find the best match for a query from a set of anchors (i.e. support set). The
network learns to predict the similarity of a query against each anchor and the pair with
the highest similarity is selected for class prediction. Instead of learning the probabil-
ity distribution across possible class labels using a conventional classifier, RN learns a
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similarity distribution across anchors.

Figure 2.17: Relation Networks

There are two parametric modules to RN as shown in Figure 2.17: first to learn feature
representations, θf ; and second to predict the similarity between a pair of data instances,
θr. First, both networks are randomly initialised. A task, Ti is formed with a support
set, Ds and a query set, Dq as in detailed in Section 2.4.1. Next, a set of training data
instances are created from Ti, by pairing each query instance, xqi , with the support set.
Given a training data instance, (xqi ,Ds), each data instance in the training instances is
encoded with θf . Suppose the support set has more than one representative from an
activity class (i.e. ks > 1). In that case, prototypical representatives for each class is
created by calculating the mean of all xsj that belongs to the class (similar to prototypical
networks by Snell et al. (2017)). The size of the resulting feature transformed support
set is |C|. A |C| number of pairs are created by pairing each support set instance, xsj with
the query instance, xqi . Given a concatenated pair is (xqi , x

s
j), θr predicts the relation

score (i.e a scalar value) as in Equation 2.9.

Relation Score: rqsij = θr(x
q
i , x

s
j) : rqsij ∈ R1 (2.9)

A |C| number of relation scores are obtained for a single training instance, and the goal
of the network is to learn the parameters of θf and θr such that the highest relation score
belongs to the matching pair (xqi , x

s
j) (Equation 2.10).

yq
′

i = arg max
|C|

rqsij (2.10)
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The expected relation scores are 1 for the matching pair and 0 for non-matching pairs, and
the objective is to minimise the difference between the predicted score and the expected
score. Originally, it is calculated using the mean squared error as in Equation 2.11 (Sung
et al., 2018).

LTi(θf , θr) =
∑

xq ,yq∼Dq

‖ yq′ − yq ‖22 (2.11)

In summary, both MAML and RN iteratively optimise meta-models to capture common-
alities between many task such that the resulting meta-model is the best starter model
for an unknown task. In Chapter 5 we exploit this property of meta-learning algorithms.
The optimisation is viewed as a personalisation where the resulting model is personalised
to a new and unseen person.

2.4.3 Zero-shot Learning with Meta-learners

Zero-shot learning (ZSL) can be seen as a natural extension to few-shot learning where
a model at deployment can successfully predict previously unseen class. Similar to open-
ended recognition formalised in Section 2.2.3, zero-shot setting also rely on intermediary
semantic knowledge to be aware of unseen classes. At test time, the model is tested for
either only unseen classes (ZSL) or both seen and unseen classes (generalised ZSL). Sim-
ilar to few-shot learning, zero-shot learning focuses on learning to discriminate between
any given subset of classes. Accordingly, zero-shot learning is described as 0-shot, n-way.
Accordingly, the goal of a zero-shot learner is to predict the class for a query instance
from a subset of classes of size n, that it has not seen during training.

Looking at the meta-learner landscape, Prototypical Networks and Relation Networks
have explored the integration of intermediary semantic knowledge to implement the zero-
shot setting (Snell et al., 2017; Sung et al., 2018). Both similarity-optimised meta-learners
use intermediary features to represent a prototypical instance of each seen and unseen
class during training. Accordingly, the feature learners transform the input data into
intermediary features, and the similarity score is predicted for a pair of intermediary
features. Similar to the generative approach for open-ended recognition (Mirza and
Osindero, 2014; Sariyildiz and Cinbis, 2019), an alternate approach to zero-shot learning
is generative meta-learners. In Verma et al. (2020), data instances are synthesised for
unseen classes using a conditional generative model and used in learning a meta-learner
that perform few-shot learning.

It is challenging to extend adaptation-optimised and model-optimised meta-learners from
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zero-shot to open-ended recognition due to the use of conventional classifier layer with
a fixed class length. For instance, MAML is restricted to performing multi-class classi-
fication with a conventional fixed-size soft-max layer. Open-ended recognition requires
dynamic expansion of the decision layer as new unseen classes are added in addition to
the seen classes. Similarity-optimised meta-learners such as MN and RN instead have a
similarity distribution at the decision layer with the potential to extend to open-ended
setting. We will investigate this further in Chapter 6.

2.5 Conclusions from the Literature

We summarise the findings from the literature, highlighting the main research items that
inspire and influence our methods in Chapters 4, 5, 6 and 7.

During the exploration of literature for modality fusion, we highlighted the importance
of selecting the suitable fusion levels and fusion axis to learn from modality combina-
tions. The use of early and mid fusion in the literature (Ordóñez and Roggen, 2016;
Yao et al., 2017) raised the question of its suitability for the fusion of heterogeneous
modalities. Ordóñez and Roggen (2016) explored an early fusion along the temporal
axis that may preserve unique modality features of heterogeneous modalities. Instead
we explore a late fusion setting similar to Münzner et al. (2017) in Chapter 4. We ex-
ploit the advances of deep feature learners to learn from each modality independently
and create a modular architecture that is loosely coupled such that it is adaptable to
many modality combinations. Finally, we exploit the advances of attention fusion from
Section 2.3.2 to reduce the parametric complexity of the fusion architecture. Notably,
we draw inspirations from Hori et al. (2018) to learn feature level attention instead of
the more common modality level attention to learn modality and feature combinations
unique to each activity.

Recent literature on personalised recognition highlight two main approaches: active learn-
ing (Bleser et al., 2015; Losing et al., 2019); and multi-task learning Sani et al. (2018);
Sun et al. (2012). We take forward the multi-task approach, where each person is con-
sidered an independent task. Here the algorithms learn to create a personalised model
for each person while learning abstract activity characteristics from multiple persons.
Compared to an active learning approach, this approach minimises the need for model
re-training and end-user interactions. Furthermore, Sani et al. (2018) minimised the data
requirements by using a few-shot learning approach to learn from multiple persons. In
Chapter 5, we exploit the most recent advances of meta-learning for few-shot learning to
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further improve methods introduced by Sani et al. (2018). The characteristics of the three
main meta-learning approaches in literature are investigated in Section 2.4.1 to evaluate
their suitability in the personalised HAR domain. In Chapter 5, we select adaptation-
optimised meta-learner MAML (Finn et al., 2017) and similarity-optimised meta-learner
RN (Sung et al., 2018) over model-optimised meta-learners to improve multi-task ap-
proach to personalisation with few data.

The most common approach to open-ended recognition is to use an intermediary se-
mantic feature representation of seen and unseen classes (Lampert et al., 2014). Such
knowledge is either hand-crafted by an expert (Lampert et al., 2014; Ohashi et al., 2018)
or learned using a large knowledge corpus (Al Machot et al., 2020; Xu et al., 2017b). In
Section 2.2.3, we describe these methods as knowledge-intensive. Semantic features can
be incomplete and fails to encode personalised features. We instead investigate the use
of meta-learners from in Section 2.4.3 for open-ended recognition. We identify the oppor-
tunity and challenge of extending similarity-optimised meta-learners (Snell et al., 2017;
Sung et al., 2018; Vinyals et al., 2016) into open-ended recognition while incorporating
personalised characteristic. The ability to use few data instances from the end-user to
introduce unseen activity classes eliminates the need for experts, thus, we identify our
approach as knowledge-light.

2.6 Chapter Summary

In this chapter, we reviewed the literature on four areas of interest; Exercise Recognition,
HAR personalisation challenges, Attention Fusion and Meta-learning. We first outlined
the state-of-the-art research in the ExRec domain. We investigated existing data and
algorithms to highlight the need for open-access data and the need to exploit the advances
in Deep Learning research.

Next, we discussed the literature related to the three HAR challenges addressed in this
thesis. We discussed the multi-modal configurations found in HAR literature to improve
recognition accuracy and the key design aspects of existing fusion algorithms; feature
learning architectures, fusion methods and fusion levels. Then we explored the research
in personalised recognition. We found the challenges of early approaches and highlight
advances in recent methods that explore learning from few-data. Thirdly, we explored
the literature in open-ended recognition. We highlight that existing methods rely on the
completeness of an intermediary feature space curated by experts.
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Next we investigate two areas of research to addresses aforementioned challenge: Atten-
tion Fusion and Meta-learning. We start by discussing the background in attention and
explore attention fusion approaches used for multi-modal fusion. Each approach is criti-
cally reviewed concerning the implication in a heterogeneous multi-modal setting. There-
after, we explored the state-of-the-art meta-learning research for implementing few-shot
classification. We categorised meta-learning algorithms considering how they learn-to-
learn from few-data and discuss their implications in an open-ended setting. We finish
this chapter with the conclusions drawn from the literature, highlighting the most influ-
ential research items for our contributions.



Chapter 3

Background, Data and Evaluation
Methodology

In this Chapter, we aim to set the background for our contributions by describing the data
and methods used in this thesis from Machine Learning and Human Activity Recognition
research. We start by introducing the theoretical background of neural networks and deep
neural constructs. Next, we formalise HAR as a multi-class classification task using a
conceptual representation of a HAR dataset. Finally, we present evaluation datasets,
pre-processing steps, evaluation methodologies and performance metrics applied in this
research.

3.1 Background in Neural Networks

A Neural Network (NN) is comprised of layers of multiple neurons, each layer connected
to the previous layer. This forms a network where every edge is a parameter that is
learned during training. We illustrate a simplified version of a neuron in Figure 3.1. A
neuron calculates the weighted sum of previous layer activations and normalise using an
activation function, ϕ (Equation 3.1). Commonly used activations functions are Sigmoid,
Tanh and Relu. Here, all wi and b are trainable parameters, l indicates the layer, and n
is the number of neurons in the previous layer.

49
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Figure 3.1: Neuron

z(l) =
n∑
i

w
(l)
i a

(l−1)
i + b(l)

Neuron Activation: a(l) = ϕ
(
z(l)
) (3.1)

3.1.1 Neural Network Classifier

A Neural Network (NN) classifier has a C number of neurons at the output layer, one
for each class. Softmax activation at the output layer produces a skewed probability
distribution where the neuron activation with the highest probability is selected as the
predicted class (Equation 3.2).

Softmax Activation: ϕ(zi) =
ezi∑C
j e

zj

y′ = arg max
i
ϕ(zi)

(3.2)

An NN classifier is trained using the gradient descent optimisation algorithm, which
minimises the error of class prediction of training data. An input data instance, x, is
propagated through the layers of neurons, and the NN produce an output, y′, which is also
the activations, a(o), at the output layer, o. The difference between the expected class,
y, and the predicted class y′ is calculated using categorical cross-entropy (Equation 3.3).
Here yi and y′i are elements of one-hot encoding representation of y and y′.

Loss: L = −
C∑
i

yi log(y′i) + (1− yi) log(1− y′i) where y′i = a
(o)
i (3.3)

Gradient descent iteratively refines the parameters towards minimising the loss, L; or the
parameter values that bring the gradient of L, ∇L, to zero (in Equation 3.4). With the
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chain rule, we write Equations in 3.5, the partial derivative for each parameter wi and
b, of the the neuron in Figure 3.1. A single neuron augmented by the back-propagating
partial derivatives is illustrated in Figure 3.2. Here each partial derivative is calculated
using Equations 3.1 and 3.3. Once we calculate the gradients vector, ∇L, the parameters
are updated using the learning rate α (Equation 3.6).

Figure 3.2: Neuron augmented with partial derivatives for back-propagation
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Parameter update: w′i = wi + α
∂L
∂w

(l)
i

and b′ = b+ α
∂L
∂b(l)

(3.6)

It is noteworthy that a NN classifier learns a mapping, between the input data and the
output class, parameterised by a finite number of neurons. As such, a NN can only learn
an approximate mapping, limited by training examples and the number of neurons. Thus,
a NN classifier can not achieve 100% performance, which is also described as the Bayes
error or irreducible error (Antos et al., 1999). NN classifier can be used in conjunction
with many neural feature extraction architectures, such as Deep Neural Networks (DNN),
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). The
basics of each architecture is explored next, with emphasis on the underlying neural
constructs.
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3.1.2 Deep Neural Networks

Figure 3.3: A deep neural network

Deep Neural Network (DNN) is a network of many hidden layers of neurons as illustrated
in Figure 3.3. The DNN is connected to a NN classifier, with softmax activation to
predict classes (5 class classifier in this example) which is a standard configuration for all
DNN, CNN or RNN architectures. A DNN has many layers of neurons that are densely
connected, with Relu activation. Using many layers increases the parametric complexity
allowing the network to learn complex relationships. A DNN layer with Relu activation
is denoted by dense(n) where n refers to the number of neurons in the rest of this thesis.

Having a large number of parameters also increases the abundance of trainable param-
eters to memorise all training data that is known as over-fitting. In this research, we
used Batch Normalisation (BN) (Ioffe and Szegedy, 2015) as a regularisation method to
prevent over-fitting. A BN layer is formalised in Equation 3.7 where µ and ν are trainable
parameters and µ× x̂ is an element-wise multiplication. Input, x, is normalised to obtain
x̂, where E(x) is the expected value(i.e. mean) and V ar(x) is the variance, both w.r.t a
subset of training data (mini-batch) (Equation 3.8).

x′ = µ× x̂+ ν (3.7)

x̂ =
x− E(x)√
V ar(x)

(3.8)

BN introduces a non-deterministic augmentation to the input, x̂, using a parametric
model and is preferred over other regularisation methods such as Dropout or early stop-
ping. Dropout and early stopping are methods that try to avoid over-fitting on training
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data, by either partially removing random neuron activations or by evaluating the train-
ing network for over-fitting on an independent data set (i.e. validation set). BN is applied
after each dense or convolutional layer in every architecture of this thesis and refer to a
BN layer as bn.

3.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (Lawrence et al., 1997) have demonstrated ability
to learn spatial features and are notably successful in image classification (Krizhevsky
et al., 2012). A typical CNN architecture consists of an array of convolution and pooling
functions followed by one or few dense layers. Convolution function extracts latent spatial
dependencies in the input and organises in to feature maps. Deeper layers enable the
discovery of features that are increasingly conceptual. The pooling function manipulates
the spatial dimensions, by either compressing or dispersing the feature space.

Figure 3.4: A pipeline of convolutional and pooling operations, adapted from Goodfellow
et al. (2016)

A simple example is depicted in Figure 3.4, where a convolution kernel of size (2 × 2)

is applied on an input of size (3 × 4) with 1 channel. Each convolution operation maps
an area on the image to a single value, resulting in a feature map of size (2 × 3). Here
w, x, y, z are trainable kernel parameters. In practice, multiple kernels are applied on
the same input to create multiple projections of the input. A convolutional layer is
denoted by conv(n)k where n refers to the kernel size, and k is the number of kernels.
Pooling is applied on the resulting feature map to alter dimensions, most commonly, max-
pooling selects the maximum value from the select area on the feature map. Pooling is
a non-parametric operation with no trainable parameters. Over training epochs, kernels
learn latent spacial patterns while max-pooling amplifies the features by reducing the
dimensionality of feature maps. A max-pooling layer is denoted by maxpool(n) where
n refers to the pooling size. A convolutional block is formed by a convolutional layer, a
pooling layer and a BN layer.
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3.1.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) learn temporal dependencies in data streams. This
is in contrast to convolutions that learn spatial dependencies. In literature, RNN and
its variants such as LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al.,
2014a) networks have been applied successfully for time-series predictions, speech recog-
nition and language translation. We illustrate a simplified RNN un-rolled over time in
Figure 3.5. At a given time-stamp t, the hidden state of the previous time-stamp ht−1
and the input xt is encoded using parametric models, and the output yt is derived as
in Equations 3.9. Accordingly, at timestamp t, the network intuitively absorb temporal
patterns learned over time by integrating the hidden state from the previous timestamp.

Figure 3.5: A recurrent network unrolled over time

ht = tanh(whhht−1 + wxhxt)

yt = σ(whtht)
(3.9)

For a classification task, we only consider the final output at timestamp T . Note that
Figure 3.5 is simplified representation of RNN, compared to variants like LSTM or GRU
that have multiple encoding modules that increase parametric complexity. Commonly,
one or few RNN blocks are used in conjunction with convolutional and dense layers in an
RNN architecture. LSTM is used as the preferred recurrent architecture in this research
and is denoted by lstm(k) where k refers to the number of hidden encoding units.

3.2 HAR Problem Definition

A HAR dataset D, consists of one or multiple streams of sensor data, annotated at each
timestamp with the corresponding activity label. Given D, activity recognition, like any
supervised learning problem, is the task of learning the mapping θ, between given data
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instances, x, and activity classes, y. Thereafter, θ can predict the activity class ŷ for a
test data instance x̂. Here, y, ŷ are from the set of activity classes, C (Equation 3.10).
We consider θ to be a parametric neural network model that learns an approximation of
the mapping between x and y, using a finite number of train-able parameters.

ŷ = θ(x̂) where ŷ ∈ C (3.10)

In comparison to image or text classification, with HAR, each data instance in D belongs
to a person, p. Accordingly, D is the collection of data instances from the population
P (Equation 3.11) where Dp is the set of data instances obtained from person p. As
before, each data instance in Dp will belong to a class in C, except in the open-ended
setting where C is not fully specified at train time.

D = {Dp | p ∈ P} where Dp = {(x, y) | y ∈ C} (3.11)

A dataset may consist of multiple sensor modalities. A sensor modality is identified by
the sensor type and its placement. For instance, selfBACK dataset consists of two
homogeneous sensor modalities (i.e. two accelerometers on the wrist and the thigh) and
MEx dataset consists of four heterogeneous sensor modalities (i.e. two accelerometers,
a pressure mat and a depth camera). A comprehensive list of sensors and sensor place-
ments (i.e. modalities) seen in previous ExRec research is presented in Table 2.1.

LetM represent the set of sensor modalities of sizem in D (Equation 3.12). For instance,
m = 2 for selfBACK.

M = {Mi} where 0 < i < m (3.12)

M t
i = [µ1, µ2, ..., µn] (3.13)

Each sensor modality is recorded for a period of time, and at each timestamp, t, modality
Mi has an array of raw features, µ of size n (Equation 3.13). For instance, at timestamp
t, an accelerometer modality has an array of raw features [x, y, z] where n = 3. We will
refer to the above formalisation throughout this thesis.
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3.3 HAR Datasets and Pre-processing

The three HAR datasets MEx, selfBACK and PAMAP2 are used throughout this
research where each of them represents a unique activity category. The goal is to validate
our method not only on physiotherapy exercise recognition but on a wide range of HAR
tasks. It also allows comparing our methods against the methods in the literature.

MEx is the physiotherapy exercise datasets collected with 30 individuals. The dataset
is recorded with four sensors, two accelerometers worn on the wrist (MExACW ) and
the thigh (MExACT ), a pressure mat (MExPM ) and a depth camera (MExDC).
MEx consists of 7 physiotherapy exercises (details on Appendix B) where each
person performed the 7 exercise, each for approximately 60 seconds. The dataset
is publicly available in the UCI Machine Learning Data Repository 1.

selfBACK dataset is compiled with two tri-axial accelerometer data streams, per-
formed by 33 individuals. The dataset includes 9 activity classes, where 6 are
ambulatory activities, and the rest are sedentary activities. The list of activities is
jogging, walking in a slow, medium, fast pace, walking upstairs, walking downstairs,
standing, lying and sitting. Each activity is performed for approximately 3 minutes
with accelerometers mounted on the right wrist (SBW ) and the thigh (SBT ) of a
participant. The dataset is publicly available in the UCI Machine Learning Data
Repository 2.

PAMAP2 is a physical activity monitoring dataset recorded with 3 IMU sensors (Reiss
and Stricker, 2012). The sensors are located on the wrist (PAMAP2H) and an-
kle (PAMAP2A) are on the dominant side and on the chest (PAMAP2C). Data is
recorded with 9 participants for 18 activity classes by following a pre-defined pro-
tocol. Activities include that are ambulatory, sedentary and daily living. One user
and 10 activities were filtered out of this dataset due to inconsistencies in data col-
lection. The refined dataset contained 8 users and 8 activity classes. 3 ambulatory
activities: walking, walking upstairs and walking downstairs; 3 sedentary activi-
ties: sitting, standing and lying; and 2 activities of daily living: vacuum cleaning
and ironing. The dataset is publicly available in the UCI Machine Learning Data
Repository 3.

1https://archive.ics.uci.edu/ml/datasets/MEx
2https://archive.ics.uci.edu/ml/datasets/selfBACK
3http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
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HDPoseDS dataset contains 22 activity classes (poses and sedentary activities),
recorded with 9 participants (Ohashi et al., 2018). The dataset is available to
download from the project website 4. Data is recorded while wearing 31 IMU sen-
sors. Sensor placements are 1 on the head, 2 on shoulders, 2 on upper arms, 2 on
lower arms, 2 on hands, 14 on fingers, 1 on the spine, 1 onhe t hip, 2 on upper legs,
2 on lower legs and 2 on feet. HDPoseDS dataset is used to evaluate open-ended
recognition methods introduced in Chapter 6. HDPoseDS a sensor-rich dataset
which can be obtrusive in real-world applications. Therefore our methods are eval-
uated against more restricted sensor configurations derived from this dataset.

3.3.1 Pre-processing

Given a dataset D, to learn the model θ, we create labelled data instances, (x, y), using
the sliding window method. It is the standard approach to create labelled data instances
from a stream of time-series data (Keogh et al., 2001). Figure 3.6 illustrates the sliding
window method where window size, w, and overlap, o, are hyper-parameters selected to
create data instances. A data instance, xi, of modality Mi, is a data frame sequence of
w timestamps, starting at timestamp t (Equation 3.14).

xi = [M t
i : M t+w

i ] (3.14)

Figure 3.6: Sliding window method applied synchronously on two sensor data streams

Each modality in the dataset uses the same w and o values and starts applying the
sliding window from the same timestamp, t0. Resulting data instance, x, is the set of

4http://projects.dfki.uni-kl.de/zsl/data/
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data instances from each modality in M starting at timestamp t (Equation 3.15). The
same w and o values are used at test time, where a test data instance is created at
every w − o timestamp (i.e. increment). We summarise the resulting properties of each
dataset in Table 3.1. Here ∗ indicates the original number of modalities in HDPoseDS
and PAMAP2 datasets.

x = {xi} where 0 < i < m (3.15)

Table 3.1: Dataset properties for MEx, selfBACK, PAMAP2 and HDPoseDS

Property MEx selfBACK PAMAP2 HDPoseDS
m 4 2 9* 31*
| C | 7 9 18(8) 22
| P | 30 33 9(8) 9
w (seconds) 5 5 5 1
o (seconds) 3 3 2.5 0
Instances: | D | 6326 22493 5660 5356
Instances per person:| Dp | 210 681 707 595
Instances per person-activity 30 75 88 27

Once the data instances are created using the sliding window method, modality-specific
pre-processing steps are applied to further prepare the data for model learning. Our
aim is not to hand-craft features, but to prepare the data instances, such that it is
complementary to a feature representation learner. We use three pre-processing pipelines
for the three sensor data types accelerometer, depth camera and pressure mat.

An accelerometer data instance consists of three raw data sequences, (x, y, z) of length
w. Recent literature has shown that applying frequency domain feature transformation
is advantageous in comparison to raw data. The most common methods seen in HAR
literature are Discrete Fourier Transformation (DFT) (Yao et al., 2017) and Discrete
Cosine Transformation (DCT) (He and Jin, 2009; Sani et al., 2017a). A comparative
study showed that DCT outperforms DFT (Sani et al., 2017a), and another showed
evidence that DFT did not yield any performance improvement over raw data (Yang
et al., 2015). Accordingly, the DCT method is selected which decomposes a signal into a
set of constituent cosine waves at different frequencies, that collectively approximates the
original signal. DCT is applied to each one-second segment of each axis of accelerometer
data, and the most significant cosine frequency coefficients are selected (i.e.truncated).
The final feature vector is formed by appending the resulting coefficients for the w number
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of one-second segments and 3 axes x, y and z. It is noteworthy that we refer to DCT as
a feature transformation instead of a pre-processing step.

Figure 3.7: DC modality pre-processing frame resize, left: original frame (240x320),
right: resized frame (12x16)

A depth camera produces a time series of images, where each pixel value in the image
corresponds to the distance between the camera and the object. We apply three pre-
processing steps to a DC data instance. Exercises selected in the MEx dataset, and
physiotherapy exercises in general do not have quick repetitive movements where a higher
frame rate is required. Therefore we reduce the frame rate to 5 frames per second where
we select the frame at each 1/5 second increment (i.e. approximately every 3rd frame
given 15Hz original frame rate). Next we reduce the frame size from 240 × 320 to
12× 16 (Figure 3.7) and finally we normalise the pixel values to fit 0− 1 range.

Similar to a depth camera, a pressure mat also produces a time series of heat-maps. A
heat-map is a 2-dimensional matrix of pressure sensor points (32× 16 for PM data from
the MEx dataset) and each point is recording the pressure applied. We apply similar
pre-processing steps to the depth camera data: reduce the frame rate to 5 frames per
second (from 15Hz original frame rate); reduce frame size to 16× 16 (from 32× 16); and
normalise the frame data to fit 0− 1 range.

Pre-processing steps for depth camera and pressure mat are selected following an ex-
ploratory study presented in Appendix B. Radu et al. (2018) pointed out that the same
sensor with different configurations (such as different frame rates) is detrimental to rea-
soning algorithm performance in the real-world. Creating reasoning models using the
minimal frame rates and frame sizes without affecting the performance partly allevi-
ate temporary sensor malfunctions or delays. It also reduce the memory requirements
and computational capacities demanded on an edge device. Table 3.2 summarises the
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resulting data instance features properties of each sensor modality.

Table 3.2: Data instance properties for each modality, before and after pre-processing

Dataset Sensor Original Pre-processed
(window × fps× features) (window × features)

MEx
AC (5× 100× 3) (5× 60× 3)
DC (5× 15× 240× 320) (5× 5× 12× 16)
PM (5× 15× 32× 16) (5× 5× 16× 16)

selfBACK AC (5× 100× 3) (5× 60× 3)

PAMAP2 AC (5× 100× 3) (5× 60× 3)

HDPoseDS AC (1× 60× 3) (1× 30× 3)

3.4 Evaluation Methodology

In literature, activity recognition evaluation methodologies adopt one of three ap-
proaches: person-dependent where an algorithm is trained and tested with one user;
person-agnostic where an algorithm is trained and tested with the a user group; and
person-aware, where an algorithm is trained and tested with different user groups. They
consistently maintain disjointed sets of data instances in train and test, but the person-
aware methodology also preserves disjoint persons by maintaining the person-to-data
relationship.

In early literature, the person-dependent evaluation methodology is commonly used
where an algorithm is learned for a specific end-user (Gomes et al., 2012; Zhou et al.,
2016). This method yield high performances, yet infeasible to implement in practice,
especially with the large data requirements of DL algorithms. Person agnostic methods
such as repeated hold-out (R-HO) and cross-fold (CF) are also used in HAR evalua-
tion (Inoue et al., 2018; Mendiola et al., 2019). Person agnostic methods discard the
person identifier of data when creating hold-out sets, or folds. Accordingly, the resulting
train and test sets share the same population, P, hence the same data distributions (see
Figure 3.8a). Accordingly, these methodologies are not designed to evaluate the robust-
ness of an algorithm on a different population following deployment. However, they
provide the upper-bound performance for an algorithm.

A person-aware evaluation can be performed using Repeated Persons Hold-Out (R-PHO)
or Leave-One-Person-Out (LOPO) methodologies. With R-PHO, a percentage (typically
1/3), of the user population is selected as the test user set, rest forming the train user
set, and this is repeated for multiple iterations. Accordingly, the algorithm is trained
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(a) Person-agnostic evaluation

(b) Person-aware evaluation

Figure 3.8: Example train and test data splits of person-agnostic and person-aware
evaluation methodologies

and tested on different data distributions as in Figure 3.8b. With LOPO methodology,
a single user is put aside, to form a singleton test user group, and the rest of the users
create the training user group. LOPO ensures that each user in the population P is used
as the test set in one of the trials (analogous to person-agnostic CF method). A person-
aware methodology creates a challenging setting compared to person-agnostic methods,
hence it provides the lower-bound performance for an algorithm.

We identify that performance of an algorithm should be evaluated using a person-aware
method to observer the expected performance in the real-world. Accordingly, recognition
algorithms discussed in Chapters 4 and 5 are evaluated using the person-aware methodol-
ogy LOPO. Each algorithm create |P| number of experiments, by leaving out one person
at a time.

3.4.1 Evaluating Open-ended Recognition

Open-ended recognition evaluation settings can be identified by the number of unseen
classes and the number of classes in the test setting. In HAR, such evaluation setting
also has to follow a person-aware evaluation methodology. An evaluation setting in
an open-ended recognition experiment is often described as Leave-N-class-out (LNCO).
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For instance, in a 5 class dataset (i.e. |C∗| = 5), LNCO evaluation can create four
experiments: L1CO, L2CO, L3CO and L4CO, where any 1, 2, 3 or 4 activity classes are
selected as unseen classes, Ĉ and there are 4, 3, 2 and 1 seen classes, C.

L1CO (i.e N=1) provides the opportunity to observe how a model perform when different
activity classes are introduced as the unseen class. The performance may vary for activity
classes depending on how well the selected modalities capture them and on how different
they are from seen classes. For instance, if the discriminatory features of an activity class
are not captured by appropriate sensor modalities, the open-ended recognition algorithm
may fail to recognise the new activity apart from seen activities. Accordingly, in the
L1CO setting we create |C∗| number of experiments where each class is once considered
as the Ĉ.

It is increasingly challenging to perform classification when a subset of classes were
not seen during training. Accordingly, N > 1 settings demonstrate the robustness of
open-ended recognition with an increasing number of unseen activity classes. When
creating N > 1 experiments, we follow a repeated classes hold-out methodology to avoid
a combinatorial explosion. For instance, for L2CO, with a dataset with 10 activity
classes, there are 45 experiments with unique 2 class combinations. Instead, we repeat
an experiment for 20 times each with a randomly selected N number of unseen classes.
For instance, for L2CO experiments, we repeat the experiment 20 times, each time, 2
classes are randomly selected from C∗ as the Ĉ and the rest are considered as C.

While LNCO setting defines the number of unseen classes, the test can be performed
for two sets of test classes (Cte): for only unseen classes; or seen and unseen classes.
More formally Cte = Ĉ or Cte = C ∪ Ĉ. In the literature, when Cte = Ĉ it is referred
to as the conventional open-ended setting. It is assumed that the open-ended model
only encounters unseen classes at test time. Thus, the performance is measured only for
unseen classes. In contrast, Cte = C ∪ Ĉ presents a more real-world setting, hence known
as the generalised open-ended setting. Here, the open-ended model is evaluated for both
seen, and unseen classes and the evaluation captures how the recognition of seen classes
is affected by the introduction of and unseen classes after deployment.

As discussed in Section 3.4, for HAR, using a person-aware evaluation methodology is
essential. Accordingly, any evaluation setting described above needs to conform to a
person-aware evaluation methodology. To avoid a combinatorial explosion, we select a
Repeated Persons Hold-out (R-PHO) methodology. At a given iteration of an experiment,
the train and test persons are split randomly. 2/3 of the persons are selected as the
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train set and the remaining 1/3 persons form the test set. Each experiment is repeated
for 20 times with a random train-test split to account for non-deterministic features in
the algorithms. The final result of each experiment is the mean over the 20 iterations.
Accordingly, a L1CO experiment creates a total number of 20×|C∗| repetitions; an L2CO
experiment (any N > 1) creates a total number of 20× 20 repetitions.

(a) Conventional open-ended setting (b) Generalised open-ended setting

Figure 3.9: Open-ended recognition evaluation settings

Figure 3.9 illustrates an experiment in the evaluation setting we propose for open-ended
recognition. Here we consider an example dataset with 3 person, 5 activity classes (C∗)
where N = 1. In the conventional setting (Figure 3.9a), the open-ended model is only
tested for the unseen classes (Cte = Ĉ). In the generalised setting (Figure 3.9b), the
algorithm is tested for both seen and unseen classes (Cte = C ∪ Ĉ). At each iteration
of the experiment, 2 persons are randomly selected for the train set and the remaining
person for the test set. Accordingly, in the conventional setting, neither the person nor
the weight-lifting class is seen during training. In the generalised setting, neither the
person nor the weight-lifting class is seen during training, but other 4 classes are seen
from train-persons.

3.4.2 Performance Measures

In this section, we choose a set of performance metrics to evaluate algorithms and perform
comparative studies in this thesis. We use the F1-score as the performance measure for
multi-modal recognition experiments (Equations 3.16, 3.17, 3.18). To mitigate class im-
balance that exists in PAMAP2 and selfBACK datasets (more details on Appendix C),
we use weighted averaging where F1-score is first calculated for each class label and is
weighted by the fraction of data instances per each class. Equation 3.19 shows the
weighted averaging of F1-score, where the weight for class c, wc, is calculated as the
fraction of data instances for class c, nc, over the total number of data instances.
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Precision =
TP

TP + FP
(3.16)

Recall =
TP

TP + FN
(3.17)

F1 score = 2× precision× recall
precision+ recall

(3.18)

Weighted F1 score =

C∑
c

wc × F c
1

wc =
nc∑C
c nc

(3.19)

For personalised and open-ended recognition experiments, we explicitly maintain the
class balance in train and test sets with the meta-task creation process. Accordingly,
we report accuracy as the performance measure (Equations 3.20). Both accuracy and
F1-score are averaged over many folds introduced by the evaluation methodology used.
For examples, a recognition algorithm that uses LOPO on a 30 person dataset, reports
the final F1-score which is the mean F1-score over 30 folds. An open-ended recognition
algorithm uses R-PHO and repeats an experiment for 20 times to report the final mean
accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.20)

3.4.3 Statistical Significance Testing

In general, the use of t-tests for statistical significance testing assumes that the test-
statistic is normally distributed. Person-aware evaluation methodologies produce results
that are not normally distributed. For examples, when we test a model using a person
who has a distinctly different data distribution to training data, the model may perform
poorly. However, when tested using a person who has a similar data distribution to
the training data, the model may perform significantly well. Thus the performance is
varied and does not represent a normal distribution. The performances may start to
approximate to a normal distribution if the population is sufficiently large. Given the
number of persons in the HAR datasets considered in this thesis range between 8 and 33,
we opt for a non-parametric statistical significance test. We select Wilcoxon signed-rank
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test for paired samples to evaluate the statistical significance at 95% confidence interval.
The test is performed using the SciPy Python libraries and in evaluations, significantly
performances are highlighted in bold text.

3.5 Chapter Summary

In this chapter, we presented the theoretical background of neural networks, datasets and
evaluation methods. This chapter aimed to set the background for our technical contri-
butions and formalise evaluation methodologies followed this thesis. First, we presented
the basics of neural networks, the neural network classifier and neural network training.
We also discussed the foundations of deep feature learners, specifically, deep neural net-
works, batch normalisation, convolutions and recurrence. Next, we formalised HAR as a
multi-class classification problem and detailed the datasets used to evaluate the methods
introduced in this thesis. We detailed the pre-processing steps, including the window-
ing method and feature transformations used by each modality. Finally, we presented
the evaluation methodologies, performance measures and statistical significance testing
methodology used in this thesis.



Chapter 4

Multi-modal Recognition with
Hybrid Attention Fusion

Human Activity Recognition (HAR) algorithms are implemented to recognise activities
monitored using different sensor modalities. The type of activities, the environment and
personal preferences influence the selection of modalities to capture activities with high
precision. Accordingly, recognition algorithms should be adaptable to different modalities
and perform an effective fusion of heterogeneous sensor data streams.

Our goal is to learn the most effective modality combinations for improved recognition
accuracy while minimising parametric complexity. To this end, we present the Multi-
modal Hybrid Attention Fusion architecture, mHAF. mHAF is a multi-class classifier
with deep feature representation learner. The modularised architecture enables easy
adaptation to suit different modalities and modality combinations. Reduced parametric
complexity of the architecture will allow training a model with a limited amount of data.

4.1 Use Case

Figure 4.1 presents three use cases of multi-modal fusion for exercise recognition in the
real-world. Imagine person A, who has low-back pain, performs exercises at the physio-
therapy clinic. It is a speciality sensor-rich setting where there are multiple heterogeneous
modalities such as wearable sensors, heart-rate monitors, cameras and pressure sensors to
monitor exercise performance. Person B is a healthy older adult who regularly performs
aerobic exercises in the outdoors. They prefer to have a single wearable device on the
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Figure 4.1: Activity recognition with different modality combinations

wrist such that it is not intrusive in the outdoor setting. This wearable device includes
multiple homogeneous modalities such as accelerometer, gyroscope and magnetometer.
Person C is a healthy young adult who performs intensive workout routines at a gym.
To track performance, they use multiple wearables and ambient modalities. These three
use cases highlight different sensor modalities or modality combinations selected based
on the activities, environment and user preference.

Given a set of modalities, the main goal of a fusion architecture is to learn the most
effective modality and feature combinations for each activity class. From a usability
perspective, a modular architecture can train multiple models that are fitted for such
modality combinations. For instance, for person B, a fusion model is created for their
modality preference, instead of treating other modalities as missing. The bespoke archi-
tecture for person B should only causes minimal changes to the primary architectural
constructs.

Design of the modular fusion architecture involves three main design considerations: 1)
how to represent individual sensor modalities; 2) when to aggregate modalities and create
shared representations; and 3) how to attend to features to highlight the most desirable
features. Furthermore, as with any deep neural architecture, the amount of train-able
parameters in θ is constrained by the amount of training data available to avoid over-
fitting.
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Figure 4.2: A modular view of the multi-modal hybrid attention fusion architecture
(mHAF) with the four MEx modalities

4.2 mHAF Architecture

mHAF has three key modules: modality specific feature learners; hybrid attention fusion
learner; and the classification layer. In Figure 4.2 we illustrate the mHAF architec-
ture for MEx four modality combination. Firstly, each modality-specific feature learner
transforms raw input data into a feature representation using the most optimal method
identified using an empirical study we detail in Section 4.3. Next, the Hybrid Attention
Fusion (HAF) module learns a shared feature representation by exploiting two attention
approaches, Hard Attention and Soft Attention. Lastly, a softmax classifier predicts the
class label. Given the output of the HAF module is z′, a dense layer with softmax acti-
vation perform multi-class classification as in Equation 4.1. C refers to the set of activity
classes, w and b are parameters where w ∈ R|z′|×|C| and b ∈ R1×|C|.

y = argmax
c ∈ C

(softmax(wz′ + b)) (4.1)

mHAF architecture is trained end to end using the cross-entropy loss, which minimises
the prediction error on training data. Given the mHAF architecture parameters are θ,
and the training dataset is D, the loss is calculated as in Equation 4.2. Importantly,
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we should select the number of trainable parameters in the architecture to encourage
convergence during model training (i.e. avoid under-fitting) and avoid over-fitting, given
a relatively small quantity of training data.

LD(θ) =
∑

(x,y)∼D

y log θ(x) + (1− y) log(1− θ(x)) (4.2)

4.3 Modality Specific Feature Representations

The heterogeneity of sensor modalities calls for feature representations that are modality
specific instead of modality agnostic. Finding the best representation for each sensor
modality instead of a generic feature set maximises the utility to improve the recognition
task. For instance, a feature extraction method for accelerometer data with numeric
time-series data is intuitively not optimal for depth camera data with visual time-series
data. With the advances in DL, deep parametric feature extraction methods such as Deep
Neural Networks (DNN), Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) are preferred over compiling a manual feature extraction pipeline. DL
Networks are commonly trained end-to-end for classification where the feature represen-
tation is optimised for the best classification accuracy. In contrast, manual methods are
disjoint from the classification task and require iterative refinements to the hand-crafted
feature extraction pipeline.

A comprehensive collection of deep learning feature representation learners are compared
in the single modality recognition task to identify the best learner for each modality. We
note that the input is the data instances segmented using a sliding window and pre-
processed/feature transformed as described in Section 3.3.1.

Deep Neural Networks: We select two NN architectures for feature extraction, a shal-
low NN and a deep NN. The shallow NN consists of one hidden layer densely
connected with 100 units (1st row on Table 4.1), and the deep NN consists of
five hidden layers with an output of 32 neurons (2nd row on Table 4.1). For AC
modalities, the input is the set of DCT features as described in Section 3.3.1. For
pre-processed DC and PM modalities, the frames within the window are flattened
and concatenated as the input to match the 1-dimensional input expected by the
DNN architectures.

Convolutional Neural Networks: We explore two variations of CNN to suit different



Modality Specific Feature Representations 70

sensor modalities. In general, there are two convolution blocks, followed by two
dense blocks that output a feature vector of size 100 as follows:

• 1D-CNN: Comprised of 1-dimensional convolutional layers with kernel size
5 (3rd row on Table 4.1). For AC modalities, the input is a DCT feature
vector with 1 channel. For pre-processed PM and DC modalities, the frames
within the window are flattened and concatenated to create the input with 1
channel.

• 2D-CNN: For PM and DC modalities, 2-dimensional convolutional layers with
kernel size 3 × 3. The frames within the window are concatenated to create
the input with 1 channel (4th row on Table 4.1).

Recurrent Neural Networks: We explore recurrent architectures where the recurrent
module is an LSTM. Two variants of convolution blocks are considered to learn
a low-level feature vector which forms the input to the LSTM. The convolution
block is shared among the data frames within a window, to encode input data,
thus referred to as the time-distributed conv block. Time-distributed model is
selected over two alternatives: 1) independent conv blocks for each timestamp
of the input where the parameters are not shared; 2) creating a concatenated
input, merging all timestamps, learning a feature vector with a larger conv block
and finally splitting the output to original timestamps. The first approach is not
desirable as each input is of the same modality. Learning multiple parametric
models can create inconsistent inputs to the LSTM layer also introduce unnecessary
parametric complexity. The second approach learns a parametric model by applying
an encoding on the full window. Therefore once the outputs are split, they are not
an exact representation of raw data frame from the respective timestamp. With
the time-distributed conv block, each timestamp is now represented by a feature
vector and is the input to the LSTM layer, to learn the temporal dependencies
within the time window. Given the differences between our modalities, we explore
two LSTM variations as follows.

• 1D-CNN: Time distributed 1D convolutional architecture as the conv block,
followed by an LSTM block, and two dense layers with an output feature
vector of size 100 (5th row on Table 4.1). For AC modalities, the input is DCT
transformation applied to each 1 second data segment with 1 channel. For pre-
processed PM and DC modalities, the frames selected for each timestamp is
flattened to create the input, with 1 channel.
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• 2D-CNN: Time distributed 2D convolution architecture as the conv block,
followed by an LSTM block, and two dense layers with an output feature
vector of size 100 (6th row on Table 4.1). For PM and DC modalities, 2-
dimensional convolutions (kernel size 3× 3) are applied. The frames selected
for each timestamp is appended to create the input, with 1 channel.

Table 4.1: Modality specific feature learner architecture details

Model Architecture
Shallow NN dense(100)→ bn

Deep NN dense(128) → bn → dense(96) → bn → dense(64) → bn →
dense(48)→ bn→ dense(32)→ bn

1D-CNN conv(5)32 → maxpool(2) → bn → conv(5)64 → maxpool(2) →
bn→ dense(600)→ bn→ dense(100)→ bn

2D-CNN conv(3 × 3)32 → maxpool(2 × 2) → bn → conv(3 × 3)64 →
maxpool(2× 2)→ bn→ dense(600)→ bn→ dense(100)→ bn

1D-CNN-LSTM td[conv(5)32→ maxpool(2)→ bn→ conv(5)64→ maxpool(2)→
bn]→ lstm(1200)→ bn→ dense(600)→ bn→ dense(100)→ bn

2D-CNN-LSTM td[conv(3 × 3)32 → maxpool(2 × 2) → bn → conv(3 × 3)64 →
maxpool(2× 2)→ bn]→ lstm(1200)→ bn→ dense(600)→ bn→
dense(100)→ bn

Feature learners are evaluated for classification by adding a NN classifier layer with C
number of neurons and softmax activation to predict activity classes. If the parameters of
the feature learner are f , class label prediction using data from modalityMi, is formalised
as in Equation 4.3. C refers to the set of class labels and output layer parameters are wo

and bo such that, wo ∈ R|x′
i|×|C| and bo ∈ R1×|C|.

x′i = f(xi)

y = argmax
c∈C

(softmax(wox
′
i + bo))

(4.3)

A comparative evaluation of the above methods is performed to identify the most optimal
method for each sensor modality and are used to construct the mHAF architecture.

4.4 Multi-modal Fusion

In its simplest form, fusion can be viewed as the fusion of feature vectors, xi, from
m number of sensor modalities, using a fusion method, g, to create the feature vector
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z (Equation 4.4).
z = g(x0, x1, ..., xm) (4.4)

In mHAF we use concatenation as the fusion method where feature vectors, xi from
modalities Mi, are appended to form z. Fusion, g, can be performed in three fusion
levels. With early fusion, raw input feature vectors, xi, are concatenated to form the
fusion feature vector z. A feature representation learner f is designed for learning a
feature representation from z, to output, z′.

z = concat(x1, x2, ..., xm)

z′ = f(z)
(4.5)

In a mid fusion setting, each modality learns a feature vector x′i with an independent
learner, fi, before fusion. Then, a shared feature vector is learned using a shared feature
learner. Feature vectors x′i are concatenated to create a single fusion feature vector z as
the input to the shared feature learner f . In addition, the feature vector size of x′i is kept
consistent across all modalities with the fi design, such that each modality is represented
equally when learning with f .

x′i = fi(xi)

z = concat(x′1, x
′
2, ..., x

′
m)

z′ = f(z)

(4.6)

Late fusion, is similar to mid fusion but with the exclusion of the shared feature represen-
tation learner f . Here we note that z = z′ and similar to mid fusion, the feature vector
size of x′i is kept consistent across all modalities with the fi design for equal modality
representation.

x′i = fi(xi)

z = concat(x′1, x
′
2, ..., x

′
m)

(4.7)

Literature showed that with heterogeneous sensor modalities, early attention can be
detrimental since the learner f not optimised to support different types of input data.
Creating an early fusion feature vector z, is masking the differences in dimensionality and
the modality specificity in feature values. For example, once normalised to 0-1 range, a
feature value from AC modality and a feature value from PM modality may be equal,
however, they do not carry the same semantics. In addition, once flattened, PM modality
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creates a comparably larger feature vector than the AC modality, which may cause the
network to pay more attention to the PM modality. In other words, f is unaware of
the composition of the z vector. Thus, there is less opportunity to learn from individual
modalities. We suggest this method is indifferent when modalities are homogeneous, such
as with a combination of AC modalities.

Late and mid fusion levels alleviate disadvantages of early fusion on heterogeneous modal-
ity combinations. Mid fusion setting is suitable for both homogeneous and heterogeneous
modality combinations, where there is opportunity to learn modality-specific properties.
Admittedly, in comparison to the early fusion setting, the parametric model components
are dramatically increased with multiple modality-specific models, fi, and the shared
model f in the mid fusion setting. Late fusion setting further improves the opportunity
for capturing the heterogeneity by only using modality-specific learners. Late fusion also
reduces the parametric model components with the exclusion of the shared representation
learner. Accordingly, we adapt the late fusion setting for mHAF.

4.5 Attention Fusion

Attention is learning the importance of features or learning to attend to features towards
improved classification performance. It is particularly beneficial for achieving comparable
performance using a shallower parametric model trained on a smaller dataset, compared
to a very deep architecture trained on a large training dataset.

As detailed in Section 4.4, z is the unified fusion feature vector where | z |= m× | x′i |
and z is the input to the NN classifier that predicts class label. Size of z depends on the
number of modalities, and a larger z can be detrimental to classification performance,
because informative features may get overwhelmed and marginalised within a large fea-
ture vector. Attention can be used to alleviate this issue by learning feature importance
to highlight advantageous features and to hinder noisy features. Accordingly, in this
section, we explore Attention Fusion (AF) to enhance the fusion of multi-modal data.

In its simplest form, AF is a parametric module with trainable parameters learning a
weighted feature vector, where each weight corresponds to the significance of the feature.
Accordingly, we learn attention at feature level disregard of the modality which is a
contrasting approach to modality level attention (Ma et al., 2019; Yao et al., 2018) and
modality feature attention (Hori et al., 2018) seen in literature. There is a corresponding
attention weight (i.e. α) for each feature (i.e. | α |= m× | x′i |), and the attention
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fusion feature vector, z′, is z weighted by α. At a high level, our attention fusion method
consists of four steps:

1. Create the fusion feature vector z by concatenating feature representations, x′i,
from m modalities.

z = concat(x′1, x
′
2, ..., x

′
m) (4.8)

2. Learn the score vector with a parametric model, θ, where the input is the feature
vector, z, and the output is the vector, score. The length of, score, is equal to the
length of, z, such that each feature of, z, has its corresponding score.

score = θ(z) (4.9)

3. Normalise the score using a normalisation function, ϕ, resulting in an output vector
of attention weights, α, where the length of, α, is equal to, |z|.

α = ϕ(score) (4.10)

4. Finally the feature vector, z, is multiplied (element-wise) by the attention weights,
α, resulting in the context vector, z′, to replace, z, as the new attended fusion
feature vector.

z′ = α× z (4.11)

Next, we explore alternatives approaches for implementing each step and the intuition
behind our design choices that contributed to the mHAF architecture.

4.5.1 Learning Attention Weights

There are two main methods to obtaining attention weights: non-parametric attention;
and parametric attention. Parametric attention learns the score vector using a dense
parametric model θ, which is later transformed to attention weights using a normalisation
function (Equations 4.9 and 4.10). Instead of learning the score vector, non-parametric
attention apply the normalisation on the feature vector z, to obtain the context vector (i.e.
z′ = ϕ(z)). While there exist attention architectures where a non-parametric approach is
used, we argue that parametric approach is more advantageous in a multi-modal setting.
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With modality specific feature learners, feature vectors produced by learners are not
intuitively correlated, accordingly using them directly as attention weights without a
stochastic transformation can be detrimental to overall performance.

There are two granularity levels in which attention can be applied: modality level and
feature level. At modality-level, only m attention weights are learned such that all
features from one modality is assigned the same weight. This is in contrast to the feature-
level where each feature is assigned a weight regardless of the modality. We argue that
feature level attention is better suited for mHAF for two reasons. Firstly, all features from
a single modality are not equally contributing towards improved classification. Secondly,
more than one sensor modality does contain features that contribute towards improved
classification. To achieve feature-level granularity, we select θ as score = tanh(w.z + b).
w and b refers to trainable parameters and w ∈ R|z|×|z| and b ∈ R1×|z| such that |score| =
|z|.

4.5.2 Normalisation

Attention can be complementary to fusion in two ways. Firstly, attention can help
boost multiple features that in conjunction, contribute towards improving recognition.
Secondly, attention can boost one or few features that are significantly contributing
to improved recognition while discarding the majority of the features as noise. Given a
modality combination, different activity classes may prefer either the first, the second or a
combined approach. For example, consider two exercises monitored using two modalities.
Intuitively, exercise 1 is recognised using only few features from modality 1 and exercise
2 is recognised using a combination of features from modalities 1 and 2. With exercise
1, many features from modality 1 and all features from modality 2 are considered noise,
and the recognition of exercise 2 require features from both modalities.

The two approaches are discriminated by the type of normalisation function used to
obtain the attention weights, α. To achieve the former, we consider a Soft Attention (SA)
module. SA uses the sigmoid function as ϕ where the soft attention weights, αs, are
normalised such that the resulting attention weights are normally distributed. To achieve
the latter, we consider a Hard Attention (HA) module. HA uses the softmax as ϕ function
where the attention weights, αh, are skewed to attend to only one or few features.
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4.5.3 Hybrid Attention Fusion

We examine the varying needs of activity recognition and select a hybrid approach where
both hard and soft attention are harnessed in a single attention module. Figure 4.3
illustrates our architecture where we concatenate output of hard attention fusion(zh′)
and soft attention fusion(zs′) to form the final feature vector z′ as in Equation 4.12.
This concatenation is applied at late fusion level, and attention weights are calculated
at a feature level granularity. This module is referred to as the Hybrid Attention Fusion
module, HAF.

z′ = concat(zh
′
, zs

′
) (4.12)

Figure 4.3: Hybrid attention fusion module

4.6 Evaluation

In this section, we perform a set of empirical evaluations to demonstrate the fine-tuning of
mHAF using MEx, PAMAP2 and selfBACK datasets. First, we find the best modality-
specific feature learners for each modality (Section 4.6.1). Next, we evaluate multiple
modality combinations with mHAF to find the minimal modality combinations (Sec-
tion 4.6.2). Finally, an ablation study is performed to demonstrate the contribution and
significance of each module in the mHAF modular architecture (Section 4.6.3).

4.6.1 Comparison of Modality Specific Feature Representations

We evaluate modality-specific feature representation learners detailed in Section 4.3 to
empirically find the best learner for each modality. All NN models were implemented
using Keras (Ketkar, 2017) and TensorFlow (Abadi et al., 2016) libraries for Python.
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NN models are trained for 50 epochs, minimising the categorical cross-entropy loss. We
use the AdaDelta optimiser with default parameters. Two conventional machine learning
algorithms kNN (k=1,3) and SVM are selected as baselines against the NN models.
They are implemented using the Scikit-learn Python library where the input is the pre-
processed/transformed features (detailed in Section 3.3.1). Each experiment follows the
LOPO evaluation methodology and presents the mean F1-score over person folds as the
performance measure (see Section 3.4 for details).

MEx Modalities

Table 4.2: Modality specific feature learner performance comparison with MEx modalities

Classifier Embedding MExACT MExACW MExDC MExPM

1-NN DCT/Raw 0.7605 0.4521 0.6824 0.5691
3-NN DCT/Raw 0.7631 0.4648 0.6742 0.5654
SVM DCT/Raw 0.8472 0.4771 0.7325 0.3830

NN

ANN
Shallow 0.8673 0.5649 0.6183 0.6386

Deep 0.8437 0.5412 0.6675 0.6710

CNN
1D-CNN 0.8785 0.5605 0.8242 0.7060
2D-CNN - - 0.8720 0.6943

LSTM
1D-CNN-LSTM 0.9015 0.6335 0.8363 0.7408
2D-CNN-LSTM - - 0.7821 0.7079

Table 4.2 present the results obtained with the MEx modalities. Compared to k-NN and
SVM, NN classifiers achieved the best performance with each modality. Overall best
performances with ACT, ACW and PM modalities were obtained using the 1D-CNN-
LSTM architecture, and with DC modality using the 2D-CNN architecture (highlighted
in bold text). Accordingly, these architectures will be used to encode MEx modalities in
the mHAF fusion architecture.

When comparing deep and shallow NN classifiers, deep feature learners performed com-
paratively better than the shallow feature learners with visual data (DC and PM). In
contrast, DCT transformed inertial data preferred the shallow feature learners to the
deep feature learners. ACT and ACW modalities were best represented by the 1D-CNN-
LSTM architecture to achieve F1-scores 0.9015 and 0.6335, respectively. Accordingly,
we find that learning temporal dependencies with a recurrent architecture has resulted
in better feature representation for accelerometer data. Performance of ACT and ACW
suggests that ACT is less noisy when capturing exercises, which is intuitive given the
low freedom of movement of thigh compared to wrist. In contrast, there are multiple
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exercises with no wrist movement and high movement of freedom makes ACW noisy.
Accordingly, ACW benefits the most from feature learning.

Best performances for DC and PM data were 0.8720 and 0.7408, achieved using 2D-CNN
and 1D-CNN-LSTM architectures, respectively. k-NN and SVM performed significantly
poorly with DC and PM modalities highlighting the importance of learning feature rep-
resentations for visual data. When comparing Deep and Shallow ANN, the DC and
PM results affirm that visual sensor data are best learned with deep architectures. DC,
which is predominantly a visual sensor benefited from learning feature representations
that extract spatial dependencies using the 2D-CNN architecture compared to the 1D-
CNN or LSTM architectures. Visually, PM data closely aligned with the DC modality
rather than ACT and ACW modalities. However, PM preferred the 1D-CNN-LSTM
architecture. These results suggest that PM data consists of prominent temporal depen-
dencies within a given time window compared to the DC sensor. Moreover, the spatial
dependencies within the pressure sensor matrix are trivial.

selfBACK Modalities

Table 4.3: Modality specific feature learner performance comparison with selfBACK
modalities

Classifier Embedding SBW SBT

1-NN DCT 0.6113 0.6982
3-NN DCT 0.6073 0.7021
SVM DCT 0.6994 0.7313

NN

ANN
Shallow 0.6741 0.7562

Deep 0.6686 0.7266
CNN 1D-CNN 0.6675 0.7753

LSTM 1D-CNN-LSTM 0.6781 0.7676

Table 4.3 presents the results obtained with the selfBACK modalities. Considering
the NN architectures, SBW achieves the best performance of 0.6781 with the 1D-CNN
architecture and SBT achieves 0.7753 performance with the 1D-CNN-LSTM architecture.
It is noteworthy that SBW and SBT modalities achieve comparable performances with
1D-CNN and 1D-CNN-LSTM architectures, respectively. Accordingly, we select 1D-
CNN-LSTM architecture to encode both SBW and SBT in the mHAF fusion architecture.

Similar to MEx we find that the wrist modality captures more noise compared to the
thigh modality when performing ambulatory and sedentary activities. Moreover, deep
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architecture fails to outperform shallow architecture. Notably, the SVM baseline is ef-
ficiently learning against the noise compared to NN architectures to achieve the best
overall performance with SBW data.

PAMAP2 Modalities

Table 4.4: Modality specific feature learner performance comparison with PAMAP2
modalities

Classifier Embedding PAMAP2H PAMAP2C PAMAP2A
1-NN DCT 0.5619 0.6523 0.6561
3-NN DCT 0.5785 0.6633 0.6577
SVM DCT 0.2362 0.4313 0.3253

NN

ANN
Shallow 0.7160 0.7470 0.7900

Deep 0.6690 0.7505 0.7485
CNN 1D-CNN 0.6970 0.7565 0.7763

LSTM 1D-CNN-LSTM 0.7383 0.7782 0.8034

Table 4.4 presents the results for PAMAP2 modalities for performing ambulatory, seden-
tary and daily living activities. All three modalities achieve the best performance with
the 1D-CNN-LSTM architecture. Ankle sensor achieves the best performance while the
hand is the noisiest modality. These observations are in par with the MEx and self-

BACK accelerometer performances. In contrast to selfBACK modalities, SVM and
k-NN methods fail to achieve comparable performances against NN architectures.

In summary, we find the most optimal feature representation learners for a wide range of
sensor modalities in three different activity domains: exercise recognition, general fitness
and activities of daily living. Importantly the results with the MEx dataset showed that
heterogeneous modalities call for bespoke feature learners to highlight their inherent
characteristics that may otherwise get overlooked. Moreover, inertial sensors preferred
the same feature learner for all modalities, which was the 1D-CNN-LSTM architecture.

4.6.2 Comparison of Modality Combinations

Lara and Labrador (2012) highlighted the importance of identifying minimal modal-
ity combinations to implement user-friendly and energy-friendly recognition algorithms.
Both Lara and Labrador (2012) and Anjum and Ilyas (2013) observed that some sensor-
rich datasets do not necessarily benefit from a large number of sensors. In the ExRec
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domain, using the required minimum number of sensor modalities will contribute to-
wards developing an economical solution with improved usability and deployability in
restricted home settings. Accordingly, we aim to empirically identify the sets of mini-
mal sensor modality combination. We consider MEx and PAMAP2 datasets and exempt
selfBACK because there is only one multi-modal combination.

Best performing modality-specific feature learners from the previous section are used to
create a bespoke mHAF architecture for each modality combination. All mHAF archi-
tectures were implemented using Keras and TensorFlow libraries for Python and were
trained end-to-end for 100 epochs using AdaDelta optimiser to minimise the categori-
cal cross-entropy loss. Each experiment follows the LOPO evaluation methodology and
report the mean F1-score averaged over person folds.

MEx Modality Combinations

Modalities in the MEx dataset create 11 modality combinations by considering 2 modal-
ity combinations (6 combinations) and 3 modality combinations (4 combinations) and
the default 4 modality combination. In this evaluation we create their respective mHAF

architectures to identify the best 2 modality combination and the best 3 modality combi-
nation for unobtrusive deployment. Given the heterogeneous modalities in MEx, in this
evaluation, the unobtrusiveness is only considering the number of sensor modalities not
the type of modalities.

Table 4.5: mHAF performance comparison with MEx modality combinations

m Modality Combination F1-measure

2

ACW and PM 0.8466
ACT and ACW 0.8688
PM and DC 0.9041
ACW and DC 0.9125
ACT and DC 0.9276
ACT and PM 0.9354

3

ACW, DC and PM 0.9147
ACT, ACW and PM 0.9485
ACT, ACW and DC 0.9421
ACT, DC and PM 0.9624

4 ACT, ACW, DC and PM 0.9584

Table 4.5 presents the performances of mHAF against modality combinations, grouped
by the number of modalities. Importantly, the 3M combination ACT, PM and DC
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achieves the best performance, outperforming the default 4 modality combination. We
refer to Table 4.2, which indicates that removing the noisiest modality (i.e. least per-
forming) enhanced the overall performance. Closer examination of 2M combinations
confirms that sensors that are more prone to noise such as the on-body wrist accelerom-
eter is detrimental to fusion in a modality rich environment. For instance, the wrist
and thigh accelerometer combination perform at 0.8688, which is lower than the best
thigh accelerometer performance, which was 0.9015 (Table 4.2). But the best performing
2M combination MExACT,PM outperform best single modality performance of ACT by
3.39%. Best performing 2 modality combination is ACT and PM, but ACT and DC is
a close second. It is noteworthy that although ACT and DC are the best performing
modalities individually, the modality combination ACT and PM has learned a more ef-
fective multi-modal fusion. Accordingly, we find that ACT and PM are a complementary
modality combination which provides a wider sensory coverage more suitable for the
selected exercise classes.

PAMAP2 Modality Combinations

Table 4.6: mHAF performance comparison with PAMAP2 modality combinations

m Modality Combination F1-measure

2
PAMAP2HC 0.8462
PAMAP2HA 0.9004
PAMAP2CA 0.8453

3 PAMAP2HCA 0.9070

Table 4.6 presents the results for modality combinations derived from PAMAP2 modal-
ities. There are three 2 modality combinations in addition to the default 3 modality
combination. Best 2 modality combination is the hand and ankle accelerometer combi-
nation performing at 0.9004. Although chest and ankle are the best performing modalities
individually, hand and ankle combination has learned a more effective multi-modal fu-
sion. This observation indicates that the wider sensory coverage created by the hand
and ankle combination is suitable for PAMAP2 activities. Notably, the best 2 modal-
ity combination performance is comparable to the default three modality combination.
Each modality combination has out-performed the best performing single sensor, which
is A (0.8034). The addition of H modality has improved the best performing single
modality performance (0.8034) by 9.7%. However, the addition of the C modality has
failed to significantly improve the best 2M performance.
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It can be argued that these modality combinations can be learnt by a deep architecture
where the input is all available modalities. Such deep architecture needs to be very
deep with many trainable parameters, which would typically require a large quantity of
training dataset. As stated in Section 4.1, one of the consideration when designing mHAF

is to mitigate the demand for data, using attention fusion. Accordingly, we empirically
explore the modality combinations to reduce the burden on the fusion architecture. As a
result, mHAF is a minimal and shallower architecture that is trainable with a comparably
smaller quantity of training data.

4.6.3 Ablation Study

An ablation study is performed to evaluate the contribution of each module of the
mHAF architecture. We take forward the best modality specific feature learners from
Section 4.6.1 and best modality combinations from Section 4.6.2 in these experiments.
Ablation study is commonly used to verify the contribution and necessity of each ar-
chitecture component to any performance improvements achieved in addition to adding
parametric complexity. Accordingly, we decompose our mHAF architecture as in Fig-
ure 4.4 to create the five variants listed below.

Figure 4.4: An abstract modular view of the mHAF architecture

mHAF-noMSFL-noHAF: mHAF without the HAF module (2) and modality-specific
feature learners (1). A 1D-CNN-LSTM feature learner is used by each individual
modality and concatenated at a late-fusion level.

mHAF-noMSFL: mHAF without modality-specific feature learners (1). A 1D-CNN-
LSTM feature learner is used by each individual modality before applying hybrid
attention fusion.

mHAF-noHAF: mHAF without the HAF module (2). Modality specific feature rep-
resentations are concatenated at a late-level.
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mHAF-noSA: mHAF without the SA module (3) in HAF, only the HA module

mHAF-noHA: mHAF without the HA module (4) in HAF, only the SA module

The first two variants evaluate the significance of modality-specific feature representa-
tions, and the last three variants evaluate the significance of attention module and its
components in the mHAF architecture. The 1D-CNN-LSTM architecture used in the
first two variants is from Table 4.1 and we adjust the input and layer sizes to suit the
input modality. For implementation and evaluation details we refer to Section 4.6.2.

Table 4.7: mHAF performance compared against ablated variants with MEx

Algorithm 2M 3M 4M
mHAF-noMSFL-noHAF - 0.9228 0.9370
mHAF-noMSFL - 0.9417 0.9394
mHAF-noHAF 0.9057 0.9378 0.9465
mHAF-noSA 0.9075 0.9495 0.9525
mHAF-noHA 0.9036 0.9345 0.9425
mHAF 0.9354 0.9624 0.9584

Table 4.7 detail the results for MEx modality combinations where 2M, 3M and 4M refers
to MExACT,PM , MExACT,PM,DC and MExALL modality combinations. We note that
the first two variants do not apply to 2M as both modalities preferred the same feature
learner (Section 4.6.1). Overall, mHAF has significantly outperformed all other variants
with all three modality combinations.

Removing the HAF attention module has decreased the performance significantly: 2.97%,
2.46% and 1.19% for 2M, 3M and 4M configurations respectively. Removing the modality-
specific feature learners has also significantly decreased overall performance: 2.07% and
1.90% for 3M and 4M configurations.

HA and SA contributions are comparatively similar for the MExACT,PM modality combi-
nation but more distinct in the 3M and 4M settings. HA module contribution is measured
with the mHAF-noSA variant, and it is significantly larger compared to the SA mod-
ule. When the HA module is removed (mHAF-noHA), performance is dropped by 1.5%
and 1% for 3M and 4M. In comparison, the removal of the SA only drop performance
by 1.29% and 0.59% for 3M and 4M. Notably, mHAF-noSA vs mHAF difference is only
0.59% with 4M configuration. This observation suggests that removing SA module which
promote many features, is not significantly detrimental to the performance when noisy
modalities are present.
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Overall, we observe performance improvements when both SA and HA modules are
present in the mHAF architecture. These results suggest that mHAF learns an effective
fusion of more than one modality in a heterogeneous multi-modal setting.

Table 4.8: mHAF performance compared against ablated variants with selfBACK and
PAMAP2

Algorithm PAMAP2HA PAMAP2HCA SBWT

mHAF-noHAF 0.8850 0.8975 0.7989
mHAF-noSA 0.9003 0.9091 0.8027
mHAF-noHA 0.8992 0.9037 0.7921
mHAF 0.9004 0.9070 0.7919

Table 4.8 presents the ablation study results obtained for the two PAMAP2 modality
combinations, PAMAP2HA and PAMAP2HCA and the selfBACK modality combina-
tion SBWT . We note that the first two variants are not applicable for PAMAP2 and self-

BACK modality combinations that preferred the same feature learner (Section 4.6.1).
PAMAP2 modality combinations show similar results to MEx modality combinations
when the HAF module is removed. There is a significant performance decline, 1.54%
and 0.95% respectively for PAMAP2HA and PAMAP2HCA modality combinations. We
fail to observe any significant performance differences between mHAF-noSA, mHAF-
noHA and mHAF architectures with the PAMAP2 modality combinations. In contrast,
selfBACK modality combination of wrist and thigh accelerometers fail to improve per-
formance using the HAF module. Instead, the best performance is observed with the
mHAF-noSA module architecture. These results suggest that, with soft attention (SA
module), many noisy features from wrist accelerometer are promoted that is detrimental
to the classification performance.

In summary, we find that mHAF architecture is best tailored for heterogeneous multi-
modal settings. With homogeneous multi-modal combinations, mHAF perform compara-
tively similar to ablated variants. The results also highlight that the inclusion or exclusion
of the SA module is an important design consideration when working with modalities
that are noisy. To further validate this hypothesis, we compare ablation study results
for MExACW,ACT combination where ACT is the least noisy modality, and ACW is the
noisiest modality. We report F1-scores of 0.7871, 0.8786 and 0.8021 for mHAF-noHAF,
mHAF-noSA and mHAF-noHA variants while mHAF architecture achieve 0.8688. As
expected, none of the fusion architectures outperforms the ACT performance of 0.9015
and mHAF-noSA (only HA) architecture achieves the best fusion performance.
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4.7 Chapter Summary

In this chapter, we introduced the heterogeneous multi-modal attention fusion architec-
ture, mHAF. Our goal was to overcome the limitations of existing multi-modal fusion
architectures such as lack of support for multi-modal heterogeneity and parametric com-
plexity. We followed a modularised approach where each module has a distinct purpose.
First, modality-specific feature learners are identified for each modality to provide the
best opportunity to learn the most effective feature representations. Secondly, an atten-
tion fusion module was introduced to create a fusion feature vector efficiently avoiding
the need for a very deep architecture. We apply attention at the feature-level granular-
ity, providing each modality feature equal opportunity to contribute towards improved
performance.

Our empirical evaluation was designed to identify the best design components of the
mHAF architecture bespoke to several modality combinations. First, we identified the
best feature learners for modalities to form bespoke mHAF architectures for different
modality combinations. Using all modalities can be obtrusive, economically infeasible
and discouraging to users. Accordingly, we identified the best performing minimal modal-
ity combinations in addition to the default modality combination suitable for deployment
in restricted settings. The modularised architecture of mHAF allowed effortless amend-
ments of modules to suit different modality combinations. We further verified our fusion
architecture with an ablation study, which highlighted the significance and the necessity
of each component of the mHAF architecture for heterogeneous multi-modal fusion.



Chapter 5

Personalised Recognition with
Meta-learners

Activities performance patterns differ from person to person. Personal characteristics
such as gait pattern, preferences, physiology and nuances are few factors that affect
these unique activity patterns. The same activity can be performed differently by two
persons, or by the same person over time. Some activity domains are more susceptible to
personal differences than others. Exercises or activities of daily living are such complex
activities performed with more personal nuances compared to ambulatory activities like
walking or jogging. Ability to adapt to new persons and personal changes is essential to
the successful deployment of a HAR algorithm.

We argue that it is more intuitive to treat a person-activity pair as the class label, where
we view each person’s data as a dataset in its own right. Inspired by the personalised few-
shot learning and meta-learning research, in this Chapter, we introduce a meta-learning
methodology for personalised HAR. We model personalised HAR as a meta-learning
problem and show how to train a generalised meta-model that it is adaptable by an
unseen person encountered after deployment.

5.1 Use Case

We present a detailed use case of personalised meta-learners for HAR implemented within
a fitness application illustrated in Figure 5.1. The fitness application can recognise four
activity classes, walking, dancing, running and sitting using a single accelerometer sensor.

86
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Figure 5.1: A use case of personalising activity recognition

It is embedded with an activity recognition meta-model trained using the personalised
meta-learning methodology introduced in this Chapter.

Imagine person A (blue), who is young, physically active and healthy, downloads the
fitness application to their mobile phone. They find that the generic model annotates
their walking as running most of the time because naturally, they walk faster. Therefore,
person A wants to calibrate the generic model such that it is personalised to their walking
and running rhythms. They record few seconds of calibration data for each activity using
sensors recommended by the fitness application. Subsequently, the fitness application is
personalised using the calibration data to recognise these activities in the future.

Person B (green), an elderly who enjoys dancing, finds that the fitness application needs
to be personalised to their style of dancing and to their walking rhythm. Similar to
person A, they record few seconds of data for both activities, and thereafter, the fitness
application is personalised with the new dancing and walking data. Both persons have
the opportunity to further personalise the fitness application by adding calibration data
for other activities.

Accordingly, when a meta-learner is trained and embedded in the fitness application,
there is an initial personalisation step to provide calibration data. The end-user will be
instructed to record few seconds of data for each activity using the sensor modalities
synchronised with the fitness application. This step is similar to demographic configura-
tions users perform when installing new fitness applications (on-boarding). Thereafter,
the personal data will be used by the algorithm for personalisation. Importantly, per-
sonalised meta-learners provide the opportunity to provide new calibration data if the
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physiology or preferences of the person change over time. It is also noteworthy that
personalisation of all activities is not required but is recommended over personalising a
subset of activities.

(a) Feature space of person A (b) Feature space of person B

Figure 5.2: PCA 2D feature space comparison between two persons performing the same
set of 7 exercises

We visualise data from two persons in the MEx dataset performing 7 exercises in Fig-
ures 5.2 to highlight personal differences. This data is captured with the pressure mat
and applied PCA dimensionality reduction to select the 2 most significant PCA coeffi-
cients. Different colours indicate different exercise classes. Notably, the data instances
of an exercise (such as the exercise denoted with blue dots) are distributed in different
feature spaces for Person A and B. Accordingly, we treat activity recognition of a person
as a recognition problem in itself (i.e. person-task), and a person-activity pair as a dis-
tinct class label. We view each person’s data as a HAR dataset with a limited number
of data instances per person-activity class which resembles a few-shot learning scenario.
To learn a personalised reasoning model from few data, we view HAR as a personalised
meta-learning problem.

5.2 Personalised Meta-learning

The goal of a personalised meta-learning is to learn a reasoning model (i.e. meta-model)
that can adapt to any person encountered after deployment. In the meta-learning setting,
recognition of activities of a person is considered a task (i.e. person-task). Accordingly,
a meta-model is trained on many person-tasks and is tested on person-task(s) not seen
during training. Importantly, a personal HAR task is considered a few-shot classification
task to minimise the burden on data collection. This section first presents the person-
alised meta-learning task design and then how to implement this methodology with three
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meta-learning algorithms from recent literature.

5.2.1 Personalised Meta-Learning Task Design

The task design for personalised meta-learning is illustrated in Figure 5.3. Given a HAR
dataset of population P, we create tasks such that, each person-task, Pi, only contains
data from a specific person, p where p ∈ P. A person-task, Pi, consists of a set of
training and test data referred to as the support set, Ds, and the query set, Dq. The
support set consist of ks amount of representatives for each class randomly selected
stratified across activity classes such that |Ds| = ks × |C|. Similarly, the query set, Dq,
is selected with kq amount of representatives for each class such that |Dq| = kq × |C|.
Accordingly, a person-task is a few-shot dataset with train and test data that can learn
a person-task model using the support set. Instead of learning an independent model,
meta-learning aggregates the learning experiences of many such person-task models to
produce a generalised meta-model, θ.

Figure 5.3: Personalised meta-learning task design

A meta-test person-task, P̂, is created similar to a meta-train person-task. In practice,
a test person, p̂, provides few seconds of labelled data instances for each activity class to
form the support set, Ds using recommended sensor modalities. The generalised meta-
model, θ is optimised for the test person using the support set, and the resulting model,
θ̂ is personalised to p̂. Thereafter, θ̂ is used to predict the class labels for any query data
instance presented by p̂ (i.e. elements of Dq in P̂).

We view personalised HAR as a few-shot classification problem with a |C| × |P| number
of classes. Notably, each person-task is learning to classify the same set of activity classes
C, but from different persons. The goal of applying personalised meta-learning to solve
personalised HAR is to learn the most generalised model adaptable to any new unseen
person.



Personalised Meta-learning 90

5.2.2 Personalised Meta-learning Algorithms

This section presents how 3 meta-learning algorithms implement the personalised meta-
learning methodology. Adaptation-optimised and similarity-optimised meta-learners are
selected to implement the personalised meta-learning methodology for HAR. As described
in Section 2.4.1, both categories have the flexibility to use custom feature learners to
suit heterogeneous modality settings encountered in HAR applications. Model-optimised
meta-learners are not considered for personalised HAR as their performance is reliant on
using deep feature learners (Mishra et al., 2018).

Personalised MAML

MAMLp is the variant of MAML (in Section 2.4.2) which implements the personalised
meta-learning methodology from Section 5.2.1. MAMLp for HAR learns the generalised
model, θ, such that it can be optimised to any new unseen person encountered at test
time given only few samples of labelled data.

In comparison to MAML, a meta-model learned from MAMLp is conditioned on person-
tasks. At each iteration, a set of persons are sampled from the population, P, to create
a set of person-tasks, {Pi}, as the meta-train set. Sampling is applied with replacement,
where the same person, p, may appear more than once in a meta-train set. For instance,
if the sample size, n is larger than the population size, |P|, a person may contribute to
more than one person-tasks, each with unique support sets and query sets. We consider
n = 32, and this method emulates a slightly larger population, with the opportunity to
learn from few different variations of the same person.

For each person-task, a support set and a query set is selected according to the person-
alised meta-learning task design discussed in Section 5.2.1. Training of a person-task
model, θi, is similar to MAML as detailed in Section 2.4.2. At the end of person-task
training, θi, is now adapted for Pi. In personalised meta-learning, data instances in Dq

is selected stratified across all activity classes such that the learning experience (i.e. loss)
is representing all activity classes. Next, similar to MAML, the collective losses from
all person-tasks are used to train the meta-model. For an unseen meta-test person p̂, a
meta-test person-task is created as P̂. A model, θ̂ is initialised from the meta-model and
is adapted using the support set, D̂s. Once θ̂ is optimised for P̂, it is used to predict
class labels of the query set, D̂q. Unlike meta-train tasks, in practice, the composition of
D̂q is not pre-determined to be stratified across class labels.
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Gradient steps (gs) and meta-gradient steps (meta_gs) are the number of epochs that
optimise person-task models. If a person carries pronounced personal nuances, learning a
fully optimised person-task model can be detrimental during meta-training. Once, fully
optimised, the loss calculated with the query set will be smaller, which it is contributing
to learning a generalised meta-model. As a result, the collective loss from all person-tasks
will be smaller, incorrectly indicating that the meta-model is optimised. Accordingly, we
select gs andmeta_gs such that gs < meta_gs. As a result, during training, the person-
task model, θi is not fully optimised for the person-task. Through this optimisation, the
meta-model is learning commonalities between many person-tasks. The resulting meta-
model has two properties: it is the best starter model for any new unseen person; and
once personalised, the person-task model is the best recognition model for the person.

Personalised Relation Networks

RNp, is the variant of RN (in Section 2.4.2) which implements the personalised meta-
learning methodology from Section 5.2.1. With the personalisation methodology, the
similarity learning of RN is conditioned on personal nuances. Activity representatives
for similarity comparison are selected from the same person to provide personalisation
context, while through iterative optimisation, the meta-model learns commonalities be-
tween different persons.

As discussed in Section 2.4.2, RN learns to find the best matching. Moreover, the goal
of a personalised relation network meta-model is to find the best matching given a spe-
cific person’s data. A person-task, Pi is formed for the randomly selected person p,
with a support set, Ds and a query set, Dq according to the personalised meta-learning
methodology detailed in Section 5.2.1. Training data instances, (xqi ,Ds), and the input
to the relation module, (xqi , x

s
j) are created similar to original RN, but now against their

own data in Pi. Accordingly, with the personalised methodology, the relation score is
always predicted against ones own data. Similar to MAMLp, the same person can be
sampled as person-tasks with different support sets and query sets, allowing the network
to learn from a few variations of the same person. These personalisation constraints will
enable the network architecture to capitalise on personal characteristics by learning on
conditioned person-tasks, instead of generic tasks.

A meta-test person p̂, not seen during training, can use a RNp meta-model to match a
query instance to an instance in their own support set. With RNp, there is no explicit
adaptation step as in MAMLp. However, by using the personal support set in conjunction
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with every query, personalised relation network is optimising its learning to a new unseen
person.

Originally, RN was implemented for few-shot image classification (Sung et al., 2018)
with a 2D convolutional network architecture for feature learning (θf ) and another 2D
convolutional architecture for relation learning (θr). In our initial experiments we failed
to successfully train an RN network with alternatives for the relation learner such as 1D
convolutional networks or dense networks. This is an indication that the training of RN
is highly dependent on the 2D convolutional relation learner. Accordingly, we use two
2D convolutional architectures for relation learning in single modality and multi-modal
settings as in Table 5.1. We refer to Section 3.1 for the notations used in Table 5.1. The
output layer of θr is of size R1 with sigmoid activation (logistic) to predict a similarity
value between 0 and 1.

Table 5.1: Relation learner architecture details

Setting Architecture
Single-modal conv(3 × 3)64 → maxpool(2 × 2) → bn → dense(120, Relu) →

bn→ dense(1, Sigmoid)

Multi-modal conv(3 × 3)64 → maxpool(2 × 2) → bn → dense(1200, Relu) →
bn→ dense(120, Relu)→ bn→ dense(1, Sigmoid)

Personalised Matching Networks as a Meta-learner

By applying the personalised meta-learning methodology introduced in Section 5.2.1,
we improve MNp by Sani et al. (2018) (detailed in Section 2.2.2), such that the model
training creates a generic meta-model. During training we use the task design where kq

is k − ks where k is the total number of data instances available for the person-activity.
Accordingly, there are kq×|C| amount query instances in Dq. At each epoch, one person-
task is randomly selected, which creates a kq × |C| amount of training instances using a
fixed support set. This method ensures that the meta-model is optimised for the specific
person-task, which is represented by kq× |C| amount of query instances instead of 1. We
refer to this version of personalised matching networks as MNp*. With the personalised
meta-learning methodology, we have limited the number of variants of the same person
seen by the model. Accordingly, the network learns to discriminate the personal traits
from activity classes which improves generalisability of the meta-model.
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5.3 Evaluation

In this section, we perform an empirical evaluation of design hyper-parameters to fine-
tune personalised meta-learners: MAMLp, RNp and MNp*. A shallow feature learner is
essential to avoid over-fitting in a few-shot classification setting. Accordingly, we explore
an array of shallow feature learners with the view to selecting the most effective yet,
economical for each meta-learner in Section 5.3.1. A small support set size is a key factor
that improves the deployability of a personalised algorithm with limited memory and
computational requirements. We explore a range of support set sizes and observe the
impact on meta-model learning and personalisation to select the most optimal considering
performance and unobtrusive deployment (Section 5.3.2). Since we have access to the
demographic data, MEx dataset is selected to perform these fine-tuning evaluations. MEx
dataset is compiled with 30 persons from different demographics where each persons data
emulates a few-shot dataset. And each person’s contribution is approximately balanced,
to avoid any personal bias. We refer to Section 7.1.4 for more details.

5.3.1 Comparison of Feature Learners

The three personalised meta-learners introduced in Section 5.2.1 are model agnostic, such
that the meta-learning is independent of the feature learners. In literature, meta-learners
are not applied in the HAR domain and not evaluated with heterogeneous sensor data to
refer to when selecting the most effective feature learners. Accordingly, as a refinement
step, we aim to find the best performing feature learner for different modalities. In this
section, we consider a list of shallow feature learners as listed in Table 5.2 to observe the
impact on performance. We refer to Section 3.1 for the notations used in Table 5.2.

Table 5.2: Feature learner

Model Architecture
DNN(1) dense(1200)→ bn

DNN(3) dense(1200)→ bn→ dense(640)→ bn→ dense(120)→ bn

1D-CONV(1) conv(5)64→ bn→ maxpool(2)

1D-CONV(3) conv(5)64 → bn → maxpool(2) → conv(5)64 → bn → maxpool(2) →
conv(5)64→ bn→ maxpool(2)

2D-CONV(1) conv(3, 3)64→ bn→ maxpool(2, 2)

2D-CONV(2) conv(3, 3)64 → bn → maxpool(2, 2) → conv(3, 3)64 → bn →
maxpool(2, 2)
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Implementation Details

Given a dataset, we apply the personalised meta-learning methodology to create person-
tasks in the ks = 5 setting. To create a person-task, for each person-activity class, we
randomly select a support set and use the remaining data instances as the query set (i.e.
kq = k − ks). We use four single modal MEx datasets for this evaluation. Input to
each feature learners is adjusted to suit the modality dimensions. Details of the input
dimensions of each feature learner for the four MEx modalities are detailed in Table 5.3.
Note that 2D convolutional feature learners are not used to learn from DCT feature
transformed accelerometer data, and also all convolutional architectures consider input
data to have 1 channel.

All models are implemented using the Python library Pytorch (Paszke et al., 2019).
MAMLp and MNp* are using the categorical cross-entropy loss, and RNp uses mean
squared error loss. All models are trained using the Adam optimiser without mini-
batching. MAMLp, RNp and MNp* are trained for 100, 300 and 200 epochs respectively.
For MAMLp, we use 5 gradient steps and 10 meta-gradient steps (i.e. gs = 5 and
meta_gs = 10) and 32 person-tasks are sampled for each meta-training epoch (n = 32).

We follow the LOPO evaluation methodology, as described in Section 3.4. In a given
fold, with a MEx dataset, there are 29 persons in the train set to create meta-train tasks
and one person in the test set to create meta-test tasks. To account for intra-personal
variations and non-deterministic nature of deep learners, we repeat testing with 100
test-tasks created from the test person. All meta-train and meta-test tasks are created
while maintaining class balance, accordingly, we report the accuracy of each experiment
averaged over person folds.

Table 5.3: Feature learner input dimensions with MEx modalities

Modality
Architecture

DNN 1D-CONV 2D-CONV
MExACT /MExACW (5× 180) (5, 180) -
MExDC (5× 12× 16) (5× 12, 16) (5, 12, 16)
MExPM (5× 16× 16) (5× 16, 16) (5, 16, 16)
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MAMLp Results

Table 5.4 details the results obtained for the MAMLp algorithm. All four experiments
achieve the best performance using the three-layer dense feature learner, DNN(3). No-
tably, both visual and time-series modalities achieve significant performance improve-
ments with dense architectures compared to convolutional architectures. All four modal-
ities found an increased number of layers in the dense architectures to be advantageous.
Notably, 1D-CONV(1), 1D-CONV(3) and 2D-CONV(1) feature learners fail to success-
fully learn meta-models.

Table 5.4: MAMLp performance comparison using different feature learners

Feature Learner MExACT MExACW MExDC MExPM

DNN(1) 0.9103 0.6825 0.9774 0.9377
DNN(3) 0.9713 0.8399 0.9857 0.9618
1D-CONV(1) 0.2545 0.1827 0.1681 0.2521
1D-CONV(3) 0.4406 0.1668 0.3141 0.3478
2D-CONV(1) - - 0.3409 0.4433
2D-CONV(2) - - 0.9605 0.9398

RNp Results

Table 5.5 details the results obtained for the RNp algorithm. Overall, time-series data
achieve the best performance with the three-layer dense architecture, DNN(3). Visual
data modalities achieve the best performance with one-layer 2-dimensional convolutional
architecture 2D-CONV(1). Similar to MAMLp, dense architectures benefit from an in-
creased number of layers. In contrast, convolutional architectures find multiple layers
detrimental to overall performance, indicating that feature learners with multiple convo-
lutional layers over-fit to training data (see 2D-CONV(1) vs 2D-CONV(2)).

Table 5.5: RNp performance comparison using different feature learners

Feature Learner MExACT MExACW MExDC MExPM

DNN(1) 0.9444 0.6899 0.8533 0.7553
DNN(3) 0.9596 0.7444 0.8525 0.7857
1D-CONV(1) 0.8972 0.7149 0.1768 0.9059
1D-CONV(3) 0.7368 0.5731 0.8892 0.8931
2D-CONV(1) - - 0.9562 0.9229
2D-CONV(2) - - 0.8968 0.8269
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MNp* Results

Performance of MNp* using the list of feature learners are presented in Table 5.6. All 4
experiments achieve the best performance using dense architectures: DNN(3) achieves the
best performances for time-series modalities; and DNN(1) achieves the best performances
for visual modalities. While time-series data benefit from an increased number of layers
in the dense architectures, visual data achieve the best performance with the single-layer
dense architecture. Convolutional architectures fail to outperform dense architecture and
also an increased number of convolutional layers is found to be detrimental to the overall
performance.

Table 5.6: MNp* performance comparison using different feature learners

Feature Learner MExACT MExACW MExDC MExPM

DNN(1) 0.9465 0.7438 0.9606 0.9289
DNN(3) 0.9695 0.7917 0.8868 0.8593
1D-CONV(1) 0.8625 0.6506 0.9228 0.9150
1D-CONV(3) 0.7775 0.5743 0.8650 0.8704
2D-CONV(1) - - 0.9089 0.8641
2D-CONV(2) - - 0.8209 0.8255

In summary, we find that all three meta-learners achieve competitive performance with
dense architectures as the feature learner. The notable exception is personalised RN with
visual data achieving the best performance with a 2D convolutional architecture.

5.3.2 Explore support set size

In this section, an empirical study is performed to observe the effect of the support set size
on personalised meta-learners. Finding the balance between ks and model performance
is essential because at deployment, a test-person is expected to provide a ks amount of
data instances per activity class for personalisation. Therefore it is desirable to keep ks

to a required minimum.

We perform a set of experiments using the four MEx single modality datasets for a
range of ks values, 1, 3, 5, 7 and 10. Each experiment uses ks amount of instance per
person-activity in the support set and the rest (i.e. 30 − ks) in the query set. The
performance is measured using the mean accuracy averaged over 30 person-folds. For
more implementation and evaluation details we refer to Section 5.3.1.
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MAMLp Results

Figure 5.4 plots the meta-test accuracy obtained from MAMLp models trained using
different ks values. Overall, increasing ks has consistently improved performance up to
ks = 10 with all experiments. Significant performance improvement is observed when
increasing ks from 1 to 3 with all experiments, precisely 5.49%, 8.14 %, 12% and 11.73%
with ACT, ACW, DC and PM respectively. Highest improvements when increasing the
support set from ks = 1 to ks = 10 is observed with the PM and DC experiments;
16.52% and 15.82% respectively. These results show the advantage of learning from
many labelled examples, and it is most significant for complex visual modalities. We find
ks = 5 is a balanced choice for creating the support set across all modalities. Accord-
ingly, for personalisation, a test-person only need to provide approximately 15 seconds
of labelled data for each activity. This is according to the pre-processing steps discussed
in Section 3.3.1 where the window size is 5 seconds and the overlap of 3 seconds.

Figure 5.4: Exploration of support set size, ks for MAMLp

RNp Results

Performances obtained for RNp models trained using different ks sizes are plotted in
Figure 5.5. In contract to MAMLp, we do not observe a consistent performance improve-
ment with increasing ks values. ACT, ACW and DC experiments found more than one
representatives per person-activity is to be detrimental to the overall performance. For
instance, the best performance for ACW is reported when ks = 1 and the best perfor-
mances for ACT and DC are reported at ks = 3. In contrast, PM experiment is not
penalised when increasing ks. However, the performance gain is not significant when
increasing ks from 3 to 10.



Evaluation 98

With a larger ks, the number of elements to be compared at the relation module increase.
Moreover, it increases the number of data instances needs to be kept in memory to
perform comparisons in the RNp algorithm. We find ks = 3 to be the most optimal
setting across all four experiments which minimise memory requirement, yet achieve
significantly improved performance. Accordingly, to personalise an RNp model, a test-
person only need to provide 9 seconds of labelled data for each activity.

Figure 5.5: Exploration of support set size, ks for RNp

MNp* Results

Figure 5.6: Exploration of support set size, ks for MNp*

Figure 5.6 presents the mean accuracy of MNp* models trained with ks values 1, 3, 5, 7
and 10 for the four experiments All four experiments show a similar pattern with increas-
ing ks values. We attribute this deterministic behaviour to the use of static similarity
function. Overall, the best performance is obtained with ks = 5. In contrast to RNp,
more than 5 data instances per person-activity has not been significantly detrimental to
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the overall performance. Instead, comparable performances are achieved in in ks = 5, 7

and 10 settings. In addition, with all experiments, we observe that performance consis-
tently improve when increasing ks = 1 to ks = 5. For MNp*, we select ks = 5 to be
the most optimal setting. Accordingly, a test-person need to provide approximately 15
seconds of labelled data for personalisation.

5.3.3 Optimising Personalised Relation Networks

In this section, we explore three loss functions and observe the optimisation process of
personalised RN. Originally RN is modelled as a regression task using mean squared error
loss where each pair predicts a similarity score. But RN can be modified to perform a
classification task or a metric learning task. Accordingly, we view personalised RN as a
classification task using categorical cross-entropy and as a metric learning task using a
custom distance-based loss function inspired by the Triplet loss (Hoffer and Ailon, 2015).
The loss functions considered are detailed below:

MSE: Originally RN is trained as a regression task using mean squared error. For each
support set element, query instance pair, the relation module predicts a similarity
score (a scalar value) and the expected score is either 1 (matching pair) or 0 (non-
matching pair). For a given training data instance, (Ds, (x

q, yq)), the collective loss
is calculated from all pairs as in Equation 5.1. Here sim(ysi , y

q) is the true label
which is 1 if ysi = yq and 0 if ysi 6= yq. Consider, Ds and Dq are already transformed
to features using θf .

L =
∑

(xs
i ,y

s
i )∼Ds

‖ θr(xsi , xq)− sim(ysi , y
q) ‖22 (5.1)

CCE: We train Personalised RN as a classification task, where in an n-way setting, the
n number of outputs of the relation pairs are analogous to a one-hot encoding of
the predicted class label. Accordingly, there exist one pair where the similarity
score should be 1 (matching pair) and others 0 (non-matching pairs). Loss for one
training data instance, (Ds, (x

q, yq)), is calculated in Equation 5.2. Here yq and ysi
are transformed to one-hot encoding.

L =
∑

(xs
i ,y

s
i )∼Ds

ysi log θr(x
s
i , x

q) + (1− ysi ) log(1− θr(x
s
i , x

q)) (5.2)
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Locality Aware Loss: We train Personalised RN as a metric learning task where the
output of the relation module is the distance between the support set element, query
instance pair. In a training data instance, (Ds, (x

q, yq)), there is 1 positive (i.e.
matching) pair, and the rest are negative (i.e. non-matching) pairs. We consider the
distance predicted for the positive pair (dp) should be less than some margin,M.
Moreover, the minimum distance predicted for a negative pair (dn) should be larger
than the margin M. Accordingly, personalised RN learns a feature space where
furthest like-neighbour is within the distanceM and the nearest unlike-neighbour
is at leastM distance away in the feature space. We formalise the Locality Aware
Loss (LAL) in Equation 5.3. The sigmoid activation at the relation network output
layer (rq,s) now predicts the distance of a pair within 0 and 1 (instead of similarity).
For class prediction, we select the pair that generates the minimum distance (in
contrast to maximum similarity) (Equation 5.4).

dp = rq,s where ysi = yq and dn = rq,s where ysi 6= yq

L = max(0,M+ dp −min(dn))
(5.3)

yq
′

= arg min
|C|

rq,sj (5.4)

We create experiments using the two MEx modalities, ACT (time-series data) and
PM (visual data). We compare the performance in ks = 1 and ks = 5 personalised
meta-learning settings and are trained for 200 and 400 epochs respectively. Each model
is tested at every 10 epochs using the 100 meta-test tasks created from the test per-
son. Mean accuracy of the meta-test tasks over person-folds are plotted in Figures 5.7a
to 5.7d.

Results

Overall, all three methods achieve comparable performances in both ks = 1 and ks = 5

settings. Importantly, CCE achieves comparable performance with rapid meta-model
training in both ks = 1 and ks = 5 settings. For instance, with ks = 1 experi-
ments, at 50 epochs, CCE method outperforms MSE by 4.55% (0.8434∼0.8889) and
3.69% (0.6874∼0.7243) for ACT and PM. Similar, with ks = 5 experiments, at 50 epochs,
CCE method outperforms MSE by 23.1% (0.5694∼0.8005) and 28.9% (0.2743∼0.5638)
for ACT and PM. Accordingly, we find that CCE is significantly better at training in a
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(a) MExACT at ks = 1 (b) MExACT at ks = 5

(c) MExPM at ks = 1 (d) MExPM at ks = 5

Figure 5.7: Personalised RN model performance with different loss functions

few-shot setting (k > 1).

Personalised RN as a metric learner using LAL loss trains significantly faster compared to
MSE within the first 40 epochs in the ks = 1 setting and achieve comparable performance
with CCE and MSE. LAL struggles significantly in the few-shot setting with visual data
and takes longer to achieve comparable performances with CCE and MSE methods (at
330 epochs for PM). Accordingly, we find LAL is better suited in a constricted (k = 1

and a small number of training epochs) setting compared to MSE and when data cannot
be modelled as a classification task (i.e. one-shot deep metric learning tasks).

5.3.4 Prediction Latency of Personalised Meta-learners

A HAR algorithm should be able to recognise activities as they are performed in real-time
for the best user experience. The processor and memory requirements are crucial factors
that affect the latency, especially on an edge device. MAMLp class prediction is a simple
classification task but requires post-deployment model re-training for personalisation. In
contrast, RNp and MNp* do not require model-retraining, however, obtaining the activity
class label for a given query involves a more complex inference process. First, each data
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instance in the support set and the query instance is transformed to feature vectors and
then paired to obtain the similarity scores and the predicted class. We compare the
latency for obtaining a prediction using the three algorithms, with the ACT dataset.
The time elapsed is measured on a computer with 8GB RAM and a 3.1 GHz dual-core
processor.

The MAMLp model used here is already personalised using the support set and it takes
0.0011 ms for a single prediction. RNp takes 2.2124 ms when Ks = 1 and 2.6444 ms
when Ks = 5; and MNp* takes 0.1656 ms when Ks = 1 and 0.3122 ms when Ks = 5.
In comparison, MAMLp has the lowest prediction latency, but the post-deployment re-
training calls for specialised deployment environments. On the other hand, RNp and
MNp* algorithms take significantly more time for class prediction. With respect to the
MEx dataset, the increment chosen when applying the windowing method is 2 seconds (5
second window with 2 second increments from Section 3.3.1). Accordingly, in real-time,
the selected algorithm should be able to make a prediction every 2 seconds. Within this
time period, the sensor data streams are communicated from the sensor devices, and
pre-processed using the methods discussed in Section 3.3.1 before making a prediction
with the selected algorithm. While the time taken for prediction is less than 0.3% of the
2 second time interval, minimising the prediction time is desirable. It allows more time
to mitigate issues that emerge in real-time with communication and sensor functionality
and to provide an uninterrupted user experience.

5.4 Chapter Summary

In this chapter, we presented the personalised meta-learning methodology for HAR. Our
goal was to create personalised HAR models with minimal demand for end-user data.
Accordingly, we bring together meta-learning methodologies and few-shot personalisation
methods from previous literature to present personalised meta-learning methodology.
Personalisation of a meta-model only requires few instances of labelled sensor data that
can be obtained via micro-interactions with the end-user.

We presented the implementation of this methodology with three meta-learning algo-
rithms. Personalised MAML algorithm has the lowest latency of the three algorithms,
but requires to bootstrap the model using end-user data. In contrast, Personalised RN
and Personalised MN algorithms have higher latency but do not require model re-training
after deployment. An empirical evaluation showed how the choice of feature learners and
support set size affect overall performance using four MEx modalities. We found the
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best feature learners for each algorithm and the most optimal support set sizes, which
we select, considering performance and usability. Additionally, we explored different op-
timisation methods for personalised RN, to find that rapid meta-model training can be
achieved by modelling personalised RN as a classification task or a metric learning task
instead of a regression task.



Chapter 6

Open-ended Recognition with
Meta-learners

Open-ended recognition models have the ability to recognise new and unseen classes
added after model deployment. In the HAR domain, open-ended recognition can be seen
as a form of personalisation where the end-user can add their preferred activities to the
recognition model. Personalised HAR literature and methods introduced in Chapter 5
showed how incorporating few end-user data improve recognition performance without
model re-training. We argue that a new activity is best represented by few instances of
data and better yet few instance from the same person (i.e. personalised). In this chapter,
we present the open-ended meta-learning methodology where a new unseen class can be
represented by few data instances provided by the end-user. Moreover, the methodology
is implemented using similarity-optimised meta-learners that dynamically expand the
decision layer as new activity classes are added.

6.1 Use Case

Figure 6.1 presents a detailed use case of personalised open-ended fitness application
that recognise activities according to user preference. Imagine person A who is a young,
physically active, gym enthusiast, downloads the fitness application to their mobile phone.
The application has a meta-model that is pre-trained to recognise four activity classes,
walking, dancing, running and sitting using a single accelerometer sensor. First, person
A personalises the fitness application using the method described in Chapter 5.

104
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Figure 6.1: A use case of open-ended activity recognition

Imagine, person A wanted the fitness application to recognise activities they perform
regularly but are not packaged in the generic model of four activity classes. For example,
person A finds that weight lifting is an activity they perform regularly but is not one of
the activities automatically recognised by the application. They perform a few seconds
of weight lifting while being recorded by the sensors recommended by the application,
and at the end, they label the data as weight lifting. Subsequently, the application is
personalised and extended to recognise five activities using the calibration data. This
model we refer to as personalised and open-ended.

After a while, person A start regular swimming lessons and plan to add swimming to their
weekly fitness plan. They record few seconds of calibration data while swimming and
the personalised open-ended model can integrate the new activity class swimming using
the calibration data to the application. Importantly the new data required is minimal
(i.e., knowledge-light) and is integrated with the reasoning model without re-training.

6.2 Open-ended Meta-learning

Traditionally, semantic knowledge exists in the form of a mapping between intermediary
features and activity labels, Υ, for all seen classes, C and unseen classes, Ĉ. We formalise
conventional open-ended recognition in Equation 6.1 where Xd is the d dimensional raw
feature space, As is the s dimensional intermediary feature space. The mapping from
raw feature space to intermediary features, Ω, is often learned using the labelled data
from seen classes, C. The mapping between the intermediary features and all activity
labels, Υ, must be open-ended such that it can accommodate classes discovered during
after deployment. Accordingly, Υ is often considered a nearest neighbour feature space.

y = Υ(Ω(x)) where Ω : Xd → As and Υ : As → C ∪ Ĉ (6.1)
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Following the discoveries of Chapter 5, we argue that the best representation for a new
unseen class is few representative instances provided by the test person. Accordingly, we
eliminate the intermediary feature, As. Instead, we learn the mapping Xd → C such that
the mapping is transferable to Xd → C ∪ Ĉ without model re-training.

6.2.1 Zero-shot Meta-learners in an Open-ended Setting

In the zero-shot setting, after deployment, we assume that we have access to few example
instances, for a set of new activity classes, Ĉ, that were not seen during the training of
the model. This data is provided by the end-user to introduce the new activity classes.
Thereafter, the model is expected to recognise all activity classes in both C and Ĉ. Similar
to in few-shot setting, a meta-learners in a zero-shot setting is learning to discriminate
a subset of classes, ζ. These classes may belong to seen classes, C, or unseen classes, Ĉ.
Importantly, the meta-learner conforms to the n-way classification such that |ζ| = n.

(a) (b) (c)

Figure 6.2: A conventional similarity-optimised meta-learner in a open-ended setting

In an Open-ended setting, this restriction forces the model to select a subset of classes
from both seen and unseen classes (C ∪ Ĉ). For instance, in a daily fitness application
where every activity has a possibility to take place, selecting a subset is undesirable. The
selected support set of classes, ζ, may not include the true class (the true class label of the
query instance), resulting in poor performance. For instance, in a 6 class setting (|C∪Ĉ| =
6), for 5-way recognition, there are 6 possible ways (nCr = n!/r! × (n − r)!) to select
the support set. Figure 6.2 illustrates three instances of random support set selection
in a zero-shot setting. There are five seen classes (denoted by blue icons), and one
unseen class (denoted by a green icon) and the black icon denotes the query instance.
Evidently, the absence of the expected class in the support set has resulted in an incorrect
classification outcome.

To mitigate the limitations of a zero-shot setting, we expand the support set to include as



Open-ended Meta-learning 107

many as the expected number of classes that are available after deployment. Accordingly,
the meta-learner no longer conform to an n-way classification after deployment. We refer
to this approach as open-ended meta-learning. As we take forward personalisation from
Chapter 5, the resulting meta-learner performs open-ended recognition in a personalised
manner.

6.2.2 Open-ended Meta-learning Task Design

An open-ended meta-learner is trained on many personal HAR tasks similar to a person-
alised meta-learner. Each person-task learns to classify a set of person-activity classes
where the activity is part of the set, C. An open-ended meta-learner is tested on a meta-
test person-task, that belongs to a person, P̂, with Cte number of activity classes where
Cte = C ∪ Ĉ. Importantly, person, P̂ was not seen during training, and the meta-task
contain activity classes, Ĉ that were not seen during training.

Figure 6.3: Personalised open-ended meta-learning task design

The task design for personalised open-ended meta-learning is illustrated in Figure 6.3.
The meta-train person-task configuration is similar to personalised meta-learning
methodology, detailed in Section 5.2.1. Each meta-train person-task consists of C number
of classes and ks number of representatives for each activity class to create the support
set, Ds. Furthermore, kq number of instances for each activity class creates the query
set, Dq. Often, Ds and Dq are selected to be disjoint.

We illustrate two meta-test tasks: P̂1 and P̂2. Person p̂1 has provided ks number of
labelled data instances for each activity class seen during training, C. In addition there
are ks representatives for 1 new unseen class weight lifting which is Ĉ. Accordingly the
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test query set may contain data instances from activity classes that belongs to both C
and Ĉ. Person p̂2 has provided representatives for 2 additional unseen classes (|Ĉ| = 2),
rope jumping and swimming. Accordingly, at test time, the personalised open-ended
meta-model recognises 7 activity classes (i.e. C ∪ Ĉ)

Equation 6.2 formalises meta-test person-task conditions which facilitate the inclusion
of all available classes in the support set. As new classes are introduced to the model
after deployment the meta-test person-task support set, Ds, has ks × |Cte| number of
labelled data instances where Cte is the complete set of classes for the test person. With
this refinement, we can use the meta-learner trained in a personalised manner to perform
open-ended recognition.

Cte = C ∪ Ĉ

Ds = {(x, y)|y ∈ Cte} where |Ds| = ks × |Cte|
(6.2)

The goal of an open-ended meta-learner is to learn a generalised feature learner such
that at test time, the feature space successfully discriminates the set of seen and unseen
classes. Importantly the decision layer needs to adapt to an increasing number of unseen
classes dynamically. As seen in Sections 2.4.2, similarity-optimised meta-learners predict
the class label based on a similarity distribution at the decision layer. We exploit this
property to dynamically expand the decision layer with several modifications. We will
discuss them next with respect to 3 similarity-optimised meta-learners.

6.2.3 Open-ended Similarity-optimised Meta-learner Algorithms

Similarity-optimised meta-learners highlight the similarities between data instances that
belong to the same class. In an open-ended setting, we view a similarity-optimised
meta-learner as a parametric k-nearest neighbour classifier where k = 1. For instance, a
meta-task created in the ks = 5 setting with 7 classes, each of the 7 classes is represented
by 5 data instances. A query instance is compared against this support set of 35 labelled
instances that collectively form the nearest neighbour feature space.

As detailed in Section 2.4.2, with similarity-optimised meta-learners, the label of the
support set element that creates the highest similarity pair with the query instance
is selected as the predicted label of the query instance (i.e. the nearest neighbour).
This approach can also be seen analogues to attribute-based open-ended recognition
methods in the literature that perform k-nearest neighbour classification to predict
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the class label. We consider three similarity-optimised meta learners: Matching net-
works (MN) (Vinyals et al., 2016); Prototypical Networks (PN) (Snell et al., 2017); and
Relation Networks (RN) (Sung et al., 2018) to implement the open-ended meta-learning
methodology.

Let us consider a meta-train person-task, Pi with a support set, Ds, that consists of C
activity classes and ks number of instances per class. And a meta-test person-task, P̂
with a support set, Ds that consists of Cte activity classes and ks number of instances per
class. Training of a open-ended matching networks, MNo*, is similar to as detailed in
Section 5.2.2. Cosine similarity for each query instance, support set element pair, (xq, xsj)
is calculated and transformed into a skewed probability distribution using non-parametric
hard attention (i.e. softmax activation).

With the open-ended methodology, a meta-train person-task calculates the similarity
distribution against |C|×ks number of similarity values. In contrast, a meta-test person-
task calculates the similarity distribution against |Cte| × ks number of similarity values.
The similarity calculation and class prediction in meta-train and meta-test settings for
MNo* are compared in Table 6.1. Here, yq′ refers to the predicted class.

Table 6.1: Similarity and class prediction: MNo*

Meta-train Meta-test

Similarity a(xq, xsi ) =
esim(xq ,xs

i )∑|C|×ks esim(xq ,xs
j)

a(xq, xsi ) =
esim(xq ,xs

i )∑|Cte×ks| esim(xq ,xs
j)

Class prediction yq
′

= arg maxysi
a(xq, xsi ) yq

′
= arg maxysi

a(xq, xsi )

where a ∈ R|C|×ks where a ∈ R|Cte|×ks

Personalised and open-ended prototypical networks, PNo, is the implementation of the
open-ended meta-learning methodology using Prototypical Networks by Snell et al.
(2017). Originally, compared to MN, the only difference is when ks > 1, where PN
creates prototypical representative for each class label. Accordingly, with the open-
ended methodology, there are only |C| number of pairs for a meta-train task and only
|Cte| number of pairs for a meta-test task.

Both MN and PN similarity modules are non-parametric. In contrast, RN predicts
similarity using a parametric regression model (detailed in Section 2.4.2). In addition,
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RN also create prototypes when ks > 1. Accordingly, once the open-ended meta-learning
methodology is adapted, RNo class prediction is similar to PNo.

In summary, train conditions and train methodologies of open-ended similarity-optimised
meta-learners are similar to those discussed in Sections 5.2.2. However, a meta-test
person-task can have a variable amount of activity classes, each represented with a sup-
port set. Accordingly, we expand the test conditions and make the necessary changes to
each algorithm as described above.

(a) MNp*, personalised meta-learner

(b) MNo*, personalised and open-ended
meta-learner with one unseen class (c) MNo*, personalised and open-ended

meta-learner with two unseen class

Figure 6.4: Dynamic adaptation of the personalised and open-ended meta-learners with
an increasing number of unseen classes

In Figures 6.4, we visualise the use case introduced in Section 6.1, using a MNo* model
to further clarify our approach. Figure 6.4a show the meta-model available on the fit-
ness application after personalisation (as described in Chapter 5) which can identify
four person-activity classes. Figures 6.4b and 6.4c show the addition of activities to
the personalised meta-model with few calibration data from the end-user. Importantly,
all classes (seen during training and introduced after deployment) are represented in
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the support set. Moreover, the calibration data are not used to update the paramet-
ric models but instead uses them as descriptors for new classes. As additional classes
are introduced, the support set includes them all when matching a query instance for
classification. Accordingly, we have eliminated the need for an intermediary semantic
space. We refer this method as knowledge-light compared to conventional methods that
use expert intervention to define semantic attributes for open-ended recognition.

6.3 Evaluation

In this section, we evaluate the three similarity-optimised meta-learners for personalised
open-ended activity recognition: MNo*, PNo and RNo. The goal is to find the most
robust open-ended meta-learner that perform consistently across different unseen activity
classes and with an increasing number of unseen activity classes. To evaluate the former,
we present the leave-one-class-out evaluation in Section 6.3.1 and to evaluate the latter
we present the leave-N-class-out evaluation in Section 6.3.2.

6.3.1 Performance variability between different unseen activity classes

A set of L1CO experiments are designed using the three datasets MEx, selfBACK

and PAMAP2 to find the best open-ended meta-learner across a wide range of activity
types. Collectively these datasets contain general fitness activities, activities of daily
living and exercises. Open-ended meta-learning tasks are created in the ks = 5 and
kq = k − ks setting. For every single modal dataset, we design an experiment following
the conventional setting described in Section 3.4.1. Accordingly, we create a C∗ number of
folds. For instance, ACT experiment will create 7 folds, each fold using 6 classes in train
tasks (both support set and query set), 7 classes in the test support set and 1 class in the
test query set. Accordingly, In the conventional setting, we can isolate the performance
of the unseen class. Each fold will be repeated with different test persons (1/3 of all
persons) for 20 iterations. In contrast to LOPO methodology, there is more than one
person in the test set, and we will preserve personalisation by creating person-tasks for
both train and test.

For comparability, every algorithm use the DNN(1) feature learner architecture from
Section 5.3.1. All models are implemented using the Python library Pytorch (Paszke
et al., 2019). MNo* and PNo are using the categorical cross-entropy loss, and RNp use
mean squared error loss. All models are trained using the Adam optimiser without mini-
batching. MNo*, PNo and RNo are trained for 100, 100 and 200 epochs respectively. The
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meta-task design maintains the class balance. Accordingly, we plot the mean accuracy
of each experiment. Error bars are used to indicate the best and worst performances
recorded in a fold (for an unseen activity class).

Figure 6.5: MNo* vs. PNo vs. RNo L1CO performance comparison with MEx modalities

Figure 6.5 plots the results of experiments using the four single modality MEx datasets.
Overall, PNo algorithm outperforms both MNo* and RNo with all four MEx datasets.
ACT, ACW, DC, and PM achieve mean accuracy of 0.9276, 0.7432, 0.9719 and 0.9193,
respectively. PNo also records the lowest variability between unseen exercise classes for 3
of the 4 experiments: ACT, ACW and DC. The difference between the best and the worst
performing exercise classes for ACT, ACW, DC and PM are 3.92% (0.9404∼0.9012),
3.80% (0.7647∼0.7267), 1.3% (0.9799∼0.9661) and 2.91% (0.9351∼0.9060). PM is the
only experiment that record the highest variability with PNo; with MNo* and RNo, the
differences are 1.48% (0.9218∼0.9070) and 1.01% (0.7790∼0.7689) respectively. Overall,
RNo fails to outperform MNo* and PNo, also records high variability between unseen
classes.

In an open-ended setting, we are unable to anticipate the activity classes added after
deployment. Accordingly, the selected modalities and algorithm should support a wide
range of activity classes to ensure robustness. The high variability observed between
unseen classes in ACT and ACW suggest that the modality is not able to capture a
wide range of exercise classes. In contrast, PM and DC modalities can capture different
unseen exercises with similar precision (hence the low variability). Notably, DC modality
records the highest mean accuracy and the lowest variability, which suggests DC is the
best single modal setting for open-ended exercises recognition.

Figure 6.6a plots the single modality experiment results with the selfBACK datasets.
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(a) selfBACK (b) PAMAP2

Figure 6.6: MNo* vs. PNo vs. RNo L1CO performance comparison with selfBACK
and PAMAP2 modalities

Similar to MEx, the overall best performance is achieved by PNo algorithm; with SBW

and SBT , PNo achieves performances 0.8120 and 0.9105 respectively. MNo* fails to
outperform PNo, but with SBW , MNo* achieves the lowest variability between un-
seen classes at 5.52% (0.8032∼0.7480). SBT records the lowest variability with PNo,
at 3.48% (0.9248∼0.8900). RNo perform poorly with both datasets, and also records a
high variability between unseen classes.

Figure 6.6b plots the single modality experiment results with the PAMAP2 datasets. PNo

algorithm records the highest mean accuracy with all three experiments, which is consis-
tent with MEx and selfBACK results. PAMAP2H , PAMAP2C and PAMAP2A record
performances of 0.7248, 0.7767 and 0.7483 respectively. In addition, PNo records the low-
est variability between unseen classes, 6.42% (0.7565∼0.6922), 6.34% (0.8084∼0.7449)
and 4.58% (0.7702∼0.7244) respectively for PAMAP2H , PAMAP2C and PAMAP2A.
Similar to selfBACK, RNo perform poorly with all three experiments with high vari-
ability.

In summary, we find that compared to wearable sensors, visual sensors such as PM and
DC are better single modal configurations to capture many activities with high precision
in a open-ended recognition setting. In addition, PNo algorithm is robust across a wide
range of activity classes, and MNo* is a close second; RNo fails to maintain performance
across different classes. Accordingly, in the next section, we take forward PNo and MNo*
to test which algorithm is the most robust with an increasing number of new unseen
activity classes.
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6.3.2 Performance variability with increasing unseen activity classes

LNCO evaluation measures the robustness of an open-ended recognition algorithm with
an increasing number of unseen classes. For instance, in a scenario where a physiothera-
pist may change the exercise regime often, the model should be able to adapt to multiple
new activity classes while maintaining performance. Accordingly, we compare the two
algorithms MNo* and PNo with a set of experiments created using the three datasets
MEx, selfBACK and PAMAP2. With each dataset, we are observing the impact in
different activity domains. Here we test up to 4 unseen classes (i.e. 1 ≤ n ≤ 4) where
the total number of activity classes for MEx, selfBACK and PAMAP2 are 7, 9 and 8
respectively. Implementation details are similar to the previous section, and all results
are presented in the generalised setting (Section 3.4.1) where the model is tested for both
seen and unseen classes. For instance, ACT (C∗ = 7) experiment in the L2CO setting
will create 20 folds. Each fold will randomly select 2 exercise classes as Ĉ and remaining
5 exercises classes as C. A meta-train person-task will have 5 classes in the support set
and the query set; a meta-test person-task will have 7 activity classes in the support
set and 7 activity class in the query set. Each fold will be repeated with different test
persons (1/3 of all persons) for 20 iterations.

(a) MExACT (b) MExACW (c) MExDC

(d) MExPM

Figure 6.7: MNo* vs. PNo LNCO performance comparison with MEx modalities

Figures in 6.7 plot the results for MNo* vs. PNo using the MEx datasets that contain
exercise activity classes. Similar to L1CO experiments, PNo outperform MNo* with all
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four experiments. In addition, compared to MNo*, PNo maintains performance with in-
creasing unseen classes. MNo* performance drop from L1CO to L4CO are 9.82%, 5.74%,
7.36% and 5.53% respectively for ACT, ACW, DC and PM. With PNo performance drops
are 5.63%, 1.87%, 1.62% and 0.76%, that are significantly lower. With ACT, both MNo*
and PNo significantly loose performance when increasing unseen classes. With ACW,
DC and PM, MNo* significantly loose performance, but the performance loss in PNo is
less severe. These observations also highlight the importance of selecting generalisable
modalities to capture unseen classes.

(a) PAMAP2H (b) PAMAP2C (c) PAMAP2A

Figure 6.8: MNo* vs. PNo LNCO performance comparison with PAMAP2 modalities

Figure 6.8 plot the comparative results for MNo* and PNo using the three PAMAP2
datasets. PAMAP2 includes ambulatory, sedentary and daily living activities. Similar to
MEx results, we find that PNo significantly outperform MNo*. MNo* drop performance
by 6.64%, 4.79% and 2.67% for PAMAP2H , PAMAP2C and PAMAP2A respectively and
PNo only drop by 3.47%, 4.44% and 3.62%. We note the performance improvement be-
tween L1CO and L2CO, which we attribute to the difference between the two evaluation
methods used for L1CO and L2CO experiments.

(a) SBW (b) SBT

Figure 6.9: MNo* vs. PNo LNCO performance comparison with selfBACK modalities

Comparative results for selfBACK datasets are presented in Figure 6.9. Both exper-
iments exhibit similar patterns to MEx and PAMAP2 where PNo outperform MNo*.
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More specifically, MNo* performance is dropped by 2.03% and 2.40% for SBW and SBT ,
and PNo performance is dropped by 1.69% and 3.11%. In summary we find that PNo

achieves the best performance when applied personalised open-ended methodology in
both L1CO and LNCO settings. In the L1CO setting, PNo exhibits minimal perfor-
mance variability between different unseen activity classes. In addition, PNo records the
lowest performance drop when increasing the number of unseen classes.

Overall performance achieved using a single modality is clearly insufficient for real-world
deployment. It is infeasible to have prior knowledge on what activity classes will be
added by the end-user when using an open-ended recognition model in practice. The se-
lected sensor modality or modality combination should be able to capture discriminatory
features of these activities with sufficient precision. Accordingly, the sensor modality con-
figuration used by the algorithm is a key factor that affect recognition performance in an
open-ended setting. We will investigate this further in Chapter 7 when we evaluate PNo

in multi-modal settings and in comparison to existing methods. In addition, open-ended
meta-learners use few data instances provided by the end-user recorded using the selected
modalities. The quality of data is impacted by factors such as modality orientation and
configuration which also influences the recognition performance in the real-world.

6.4 Chapter Summary

In this chapter, we presented the knowledge-light open-ended meta-learning methodology
for HAR. Our goal was to facilitate the addition of new and unseen classes after model
deployment with reduced demand for data and expert knowledge. Accordingly, we argued
that an unseen activity class is best represented by few data instances of the activity.
More specifically, instead of integrating attribute mapping, we acquire a limited amount
of raw sensor data from the end-user through micro-interactions. We viewed open-ended
recognition as a matching task implemented by similarity-optimised meta-learners where
the matching is made between a query and activity class representatives. Consequently,
our methodology can also be conveniently evaluated with any HAR dataset with no
burden of acquiring semantic attributes from experts.

Our empirical evaluation finds the best similarity-optimised meta-learner for open-ended
HAR with two desirable properties: a minimal variability of performance between differ-
ent unseen classes; and a minimal decline of performance with an increasing number of
unseen classes. The first property ensures that our method performs consistently across
many activity classes. This property is essential, given that there is no prior knowledge
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of what activities the end-user will introduce to the model deployment. The second
property is necessary to ensure that the addition of multiple new activity classes does
not result in a poor performing recognition model. We established that PNo algorithm
owns both these properties in a wide range of HAR application domains using three HAR
datasets.



Chapter 7

Exercise Recognition with MEx

In this chapter we perform exercise recognition with the Heterogeneous Multi-modal
Physiotherapy Exercises Dataset, MEx. MEx is compiled with a view to implementing
a self-management digital intervention for musculoskeletal pain, and we start this chapter
by detailing the data collection process. The main objective of this chapter is to situate
the methods introduced in Chapters 4, 5 and 6 among the methods from literature in
their respective branch of exercise recognition challenges. We achieve this objective by
evaluating our methods against appropriate baselines and the most recent methods from
literature. A secondary objective is to establish the effectiveness of each method in other
HAR domains which we achieve by evaluating them using three HAR datasets.

7.1 Heterogeneous Multi-modal Physiotherapy Exercises
Dataset: MEx

Motivation for data collection is two-fold: the lack of publicly available data in the domain
of physiotherapy exercises for machine learning; and the need to identify minimal sensor
configurations for unobtrusive deployment. Accordingly, we explore a range of sensor
modalities to capture physiotherapy exercises in a sensor-rich environment. The resulting
MEx dataset is collected with 4 sensor modalities for 7 exercises with 30 participants.
MEx dataset is publicly available at the UCI Machine Learning Data Repository 1.

1https://archive.ics.uci.edu/ml/datasets/MEx
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7.1.1 Exercises

When selecting exercises for the data collection, we referred to a collection of 71 phys-
iotherapy exercises that are recommended for the self-management of low back pain.
This comprehensive list of exercises was compiled during the selfBACK project, for
implementing a decision support system to self-manage low back pain 2. 7 exercises were
selected for this data collection: Knee Rolling, Bridging, Pelvic Tilt, Bilateral Clam, Re-
peated Extension in Lying, Prone Punch and Superman. These were selected to include
6 different target areas: Ab, Glut, Pain relief, Flexibility, Core and Back. The 7 exercises
are illustrated in Figure 7.1 and exercises in detail with steps to perform are presented
in Appendix B.

Figure 7.1: MEx exercises

Notably, a null activity class is not included in the data collection. The reasoning behind
not including the null activity class is that different persons have different interpretation
of resting during exercises. It can also include transition between exercises which depends
on the set of exercises recommended and the order in which they are performed. However,
it can be a limitation in a scenario where a recognition algorithm build from this dataset
classify “resting in between exercises” as one of the exercises.

7.1.2 Sensors

State-of-the-art sensor technologies were explored for monitoring exercise movements to
select following sensors: Obbrec Astra Depth Camera 3; Sensing Tex Pressure Mat 4;

2http://www.selfback.eu
3https://orbbec3d.com/product-astra-pro/
4http://sensingtex.com/sensing-mats/pressure-mat/
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and Axivity AX3 3-Axis Logging Accelerometer 5. Inertial sensors and depth camera are
commonly used in daily fitness activity recognition (Chen et al., 2017) and physiother-
apy rehabilitation (Ayoade and Baillie, 2014; Ogonowski et al., 2016). Additionally, we
include the pressure mat considering the type of exercises prescribed for MSD, that are
often performed on a mat. Table 7.1 summaries the sensor specifications.

Table 7.1: MEx sensor specifications

Depth Camera Pressure Mat Accelerometer
Frame rate(Hz) ≈15 ≈15 ≈100
Frame size 320×240 32×16 3(x,y,z)
Data range 0-1 0-1 ±8g

Unobtrusive use in a home environment and the ability to capture not only the 7 exercises
selected but many other exercises that are recommended for patients (such as the 71 in the
selfBACK collection) are two key considerations when selecting the placement of each
sensor. Accordingly, the following sensor placements were selected: two accelerometers
will be placed on the dominant wrist and the thigh of the user; the pressure mat will be
used as an exercise mat where the user will lay on to perform exercises; and the depth
camera will be placed above the user, facing down-words recording an aerial view. The
expectation with these placements is that it is not obtrusive to daily activities, and there
is less variability when set up by different persons in their home environment. These
sensor placements are illustrated in Figure 7.2.

7.1.3 Ethics and Data Collection

There are several ethical considerations when designing a data collection task and need to
be approved by an appropriate ethics committee. We succinctly detail the ethics proposal
in five main facets: objective, population and sample, data collection, communication
and data management protocols (Figure 7.3). The objective of this data collection is
to create a sensor-rich data set for physiotherapy exercise recognition. This objective
defines the scope of the ethics proposal.

5https://axivity.com/product/ax3
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Figure 7.2: MEx modality placement

We defined the population using the following inclusion and exclusion criteria: adults of
age 18 or over who do not have a physiological condition that prevents them from per-
forming exercises. Participants are asked to complete a PAR-Q prior to participation to
measure their physiological readiness to perform exercises (Thomas et al., 1992). Target
sample size is 30 and will be recruited from the university staff and student population.
We expect to include both expert and non-expert participants. We recognise an expert
participant as someone who has clinical experience in performing physiotherapy exercises.

In the data collection protocol we present the set of exercises selected (Section 7.1.1), the
sensor setup (Section 7.1.2) and steps taken to ensure participant safety. We propose
the use of hypoallergenic tap to attach wearable sensors and the measures taken to
provide medical assistance for participants if needed. The communication protocol defines
how the researcher and participants communicate during the study. Emails, e-bulletin
advert, word of mouth and social media are the methods proposed to publish the call
for participants within the university. Data management protocol details the process of
data storage and privacy. After collecting data with a participant, we plan to anonymise
and store data in secure storage within the internal university network. During the
research, the data will retain three demographic properties: age, gender and expert, non-
expert status for evaluation purposes. The publicly shared dataset will be anonymised
with all demographic data removed. This data collection protocol was approved by the
ethics committee of School of Health Sciences, Robert Gordon University, Aberdeen,
UK (SHS/17/29).
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Figure 7.3: Data collection ethics considerations

Data Collection

Once a participant contacts the researcher, they received a participant information
sheet (PIS) which includes exercise details, PAR-Q and a consent form. If the par-
ticipant chooses to accept the terms, and if they are eligible, a 1-hour time slot was
booked for the data collection. The signed consent form was collected from the partici-
pant, which allowed the researcher to use the data collected during the study and publish
the anonymised dataset publicly.

The participant was given an instruction sheet of all the exercises. Each exercise is
described with a starting position and set of actions (see Appendix B). The participant
is provided with two accelerometers, one worn on the wrist using a wrist band and one on
the thigh worn using hypoallergenic tape. The participant is asked to place the wearable
on their own, on their dominant side, and not restricted to a specific orientation. This
method adds variability to sensor data, which can be challenging for reasoning (Morris
et al., 2014), but it correctly emulates an unsupervised scenario (i.e. in a home setting).

During the session, the researcher first demonstrated an exercise, and then the partici-
pant performed the exercise for approximately 60 seconds while being recorded with the
four sensors. During the recording, the researcher did not provide any advice or counting
to enforce rhythm. For exercises where it suggests holding a position for a few seconds,
the participant was instructed at the beginning to keep a count by themselves to preserve
their natural rhythm. This method captured individual nuances of participants which
replicates a scenario where a patient performs these exercises at home without the guid-
ance of the physiotherapist. In addition, this method avoided any discomfort that may
occur when following strict instructions.

The data collection was conducted over a 1 year period with 30 participants. 60% of
the participants were female, and 40% were male. 47% of the group were in the 18-24
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Figure 7.4: MEx data collection demographic

age category and the rest were dispersed among the ages from 25 to 54. 7 of the 30
participants were experts, and the remaining 23 were non-experts. These demographic
information is visualised in Figure 7.4.

We used convenient sampling to collect data with healthy adults due to the challenges of
collecting data with MSD patients. Accordingly, MEx population does not emulate the
demographics of MSD. This is a limiting factor of MEx, where the performance measures
presented for methods in this thesis can be too optimistic in the real-world. In addition,
the objective of this data collection is to develop recognition algorithms using machine
learning methods. Accordingly, the dataset is only annotated by the respective exercise
label and person index. It is noteworthy that this dataset in its current state cannot
be used to develop algorithms for repetition counting or exercise quality assessment. In
future MEx can be annotated for performance quality and repetition count to extend to
such tasks.

7.1.4 MEx Data Visualisation

In this section, we visualise multi-modal data from the MEx dataset: the first is a
visualisation of raw data; and the next is using dimensionality reduction.

Raw Data Visualisation

Figure 7.5 visualises samples of data collected from each sensor. Figures 7.5a is the
ACT (left) and ACW (right) sensor data for a person performing 5 exercises. Noisy
outliers are found more commonly in the wrist sensor data compared to the thigh sen-
sor data due to higher freedom of movement. Figure 7.5b and Figure 7.5c show five
timestamps of depth camera data frames and pressure mat data frames sampled from
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(a) Accelerometer data: thigh(left) and wrist(right)

(b) Depth camera video

(c) Pressure mat data

Figure 7.5: MEx raw data visualisation

the knee-rolling exercise. Depth camera visibly captures a large amount of visual data
compared to the pressure mat. Accordingly, exercises such as knee-rolling where there is
a significant visual difference are better captured by the depth camera. In-contrast, an
exercise such as pelvic tilt where the visual movement is minimal, is better captured by
the pressure mat. There are multiple exercises with zero movements of the wrist. These
observations highlight the challenge of recognising a large set of exercises from a single
wearable sensor and the need for multiple heterogeneous sensors.

PCA Visualisation

We use Principal Component Analysis (PCA) for dimensionality reduction and visualise
PM data for 5 different persons in Figure 7.6. Data instances are created using the
sliding window method, as described in Section 3.3.1. Two of the 5 persons are experts,
and other 3 are non-experts. We plot the first two PCA components clustered by exer-
cise classes (indicated by different colours). PCA visualisation highlights that different
persons have unique data distributions, even when performing the same set of exercises.
Physiology, personal nuances, preferences and rhythm attribute to these unique distri-
butions.
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Figure 7.6: MEx 2D-PCA visualisation with the PM modality

MEx Dataset Statistics

We investigate the data distribution of MEx over persons and exercise classes in Fig-
ure 7.7. We plot the number of data instances for each person where the error bar
indicates the maximum and the minimum number of instances for an exercise class. For
example, person 5 contributes 39, 40, 19, 44, 21, 40 and 39 data instances for exercise
classes 1 to 7. The maximum is 44 for the exercise bilateral clam and the minimum is 19
for pelvic tilt. The average contribution of a person to the dataset is between 34.57 and
26.86, which we consider approximately balanced, thus avoid any personal bias.

Figure 7.7: MEx data distribution by person

Figure 7.8 plots the data distribution by the exercise class. Here the error bars indicate
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the maximum and the minimum number of data instances contributed by a person. For
instance, the average number of data instances per person for exercise class 4 (bilateral
clam) is 30 where the minimum is contributed by person 6, at 22 and maximum is from
person 5, at 44. The data instance distribution across exercises classes is approximately
balanced (27.73∼32), thus avoids any class bias.

Figure 7.8: MEx data distribution by exercise class

7.2 Multi-modal Recognition with Hybrid Attention Fusion

In this section, we present the evaluation of the multi-modal fusion methods presented
in Chapter 4 for exercise recognition using the MEx dataset. The evaluation is presented
in three sections: 1) a comparative evaluation against baselines and recent methods from
literature in Section 7.2.1; 2) learning multi-modal combinations by mHAF explained
using confusion matrices in Section 7.2.2; and 3) learning feature combinations by mHAF

explained using attention weights in Section 7.2.3.

7.2.1 Comparative Evaluation

In Chapter 4 we presented the mHAF architecture for heterogeneous multi-modal fu-
sion. In this section we compare the performance of mHAF architecture against a set of
baselines and algorithms from recent literature. The aim is to situate mHAF for heteroge-
neous multi-modal exercise recognition within the recent research landscape. We use the
three most effective modality combinations identified in Section 4.6.2: MExACT,PM (2M),
MExACT,PM,DC (3M) and MExALL (4M) and compare the performance of the algorithms
listed below.

(1) Best single modality performance is selected as a baseline in this comparative
evaluation. We find this to be an appropriate baseline given one of the goals of
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multi-modal fusion is to improve upon the performance achieved by the best single
modality. Best performing single modality of MEx is the ACT modality and we
refer to the results from Section 4.6.1.

(2) Early fusion refers to the fusion architecture where raw features from multiple
sensor modalities are concatenated, to learn a shared feature representation. Here
the fusion is applied at the feature axis. This baseline is selected to measure
the adverse effect of early fusion on heterogeneous modalities. We re-use the 1D-
CNN-LSTM architecture (Table 4.1) as the shared feature learner. The input
sizes for MExACT,PM , MExACT,PM,DC and MExALL are (1, 5, 180+256), (1, 5,
180+256+192) and (1, 5, 180+256+192+180) where the three dimensions refer to
the number of input channels, the number of timestamps and the input feature
length.

(3) Mid fusion learns modality specific feature representations and apply fusion at a
mid level (refers to Figure 2.3b). Here the fusion is applied at the feature axis.
With mid fusion, modalities have the opportunity to learn features independently
and together. Accordingly, this baseline will show the trade off between late fusion
and mid fusion on heterogeneous modalities. The shared feature learner has two
dense layers (dense(600) → bn → dense(100) → bn). Modality-specific feature
learners from Section 4.6.1 are adapted for mid fusion as below:

• 2D-CNN for DC modality: conv(3×3)32→ maxpool(2×2)→ bn→ conv(3×
3)64→ maxpool(2× 2)→ bn→ dense(1200); Input size (1, 5× 12, 16).

• 1D-CNN-LSTM for AC and PM modalities: td(conv(5)32 → maxpool(2) →
bn → conv(5)64 → maxpool(2) → bn) → lstm(1200); Input sizes (1, 5, 180)

and (1, 5, 256).

(4) Mid Fusion+temporal axis fusion architecture can be seen as the mid fusion (3)
that applies fusion at the temporal axis. After applying mid fusion at the tem-
poral axis, the resulting fusion features is considered to have multiple channels.
Accordingly, we use modality-specific feature learners listed in (3) with a convolu-
tional shared feature learner scripted as conv(5)64 → bn → dense(600) → bn →
dense(100)→ bn to form this architecture.

(5) DeepConvLSTM architecture by Ordóñez and Roggen (2016) applied early fu-
sion on the temporal axis. Original DeepConvLSTM architecture consists of four,
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1D convolutional layers followed by 2 LSTM layers. After applying early fu-
sion at the temporal axis, the input sizes to DeepConvLSTM with MExACT,PM ,
MExACT,PM,DC and MExALL are (180+256, 5, 1), (180+256+192, 5, 1) and
(180+256+192+180, 5, 1). The first dimension refers to the number of input
channels, and the rest are feature dimensions. Accordingly, we use only one, 1D
convolutional layer, and all other parameters kept consistent with the original
architecture. DeepConvLSTM architecture for MEx is scripted as conv(5)64 →
lstm(128)→ lstm(128).

(6) DeepSense is a deep fusion architecture introduced by Yao et al. (2017) that applies
mid fusion on the feature axis. At each timestamp, an independent convolutional
feature learner is applied on each modality, and the resulting feature vectors are
concatenated to form the fusion feature vector. A shared convolutional feature
learner transforms the fusion feature vector before applying 2 GRU layers for tem-
poral fusion over the timestamps. The original DeepSense architecture assumes
a homogeneous multi-modal setting where modality-specific feature learner out-
puts are of the same length. However, in a heterogeneous multi-modal setting, the
outputs are different sizes. Accordingly, we adjust the fusion axis, and all other
parameters are kept consistent with the original architecture.

(7) mHAF is our multi-modal hybrid attention fusion architecture as described in
Chapter 4. mHAF has modality specific feature learners and the modality features
are concatenated at a late level using hybrid attention fusion.

Implementation Details

Architectures 1, 2, 3, 4 and 6 were implemented using Keras and TensorFlow libraries
for Python and architecture 5 was implemented using PyTorch. Architectures 1, 2, 3
and 4 were trained end-to-end for 100 epochs using the AdaDelta optimiser with default
parameters to minimise the categorical cross-entropy loss. Architectures 5 and 6 were
trained for 100 epochs using the Adam optimiser. All architecture use 32 as the mini-
batch size. We present the mean F1-scores averaged over person folds created using the
LOPO evaluation methodology. Statistically significant results are highlighted in bold
text.
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Table 7.2: mHAF performance comparison with MEx multi-modal datasets

Algorithm 2M 3M 4M
(1) Best single modality (ACT) 0.9015 0.9015 0.9015
(2) Early Fusion 0.8533 0.9224 0.8992
(3) Mid Fusion 0.8953 0.9263 0.9359
(4) Mid Fusion+temporal axis fusion 0.8723 0.9267 0.9323
(5) DeepConvLSTM 0.8887 0.9168 0.9332
(6) DeepSense 0.8670 0.9048 0.9205
(7) mHAF 0.9354 0.9624 0.9584

Results

Table 7.2 presents the results obtained using the three modality combinations from MEx
dataset. Overall, mHAF significantly outperformed all baselines and algorithms from
recent literature with all three modality combinations.

Architectures (2) and (5) both apply early fusion, (2) along the feature axis and (5)
along the temporal axis. Temporal axis fusion has clearly shown an advantage over
feature fusion with 2 of the 4 modality combinations. 2M and 4M datasets achieve
3.54% and 3.40% performance improvements with temporal axis fusion. The 3M dataset
shows marginal advantage with the feature axis fusion method (2). Importantly, with
both (2) and (5) modality features are aggregated before learning independent feature
representations. And a comparison of (2) and (5) with mHAF performance provides
strong evidence that early fusion is detrimental to learning effective multi-modal fusion.

Mid fusion on the temporal axis, (4), outperforms DeepSense architecture, (6), which
apply mid fusion on the feature axis. Specifically, mid fusion on the temporal axis
perform 0.53%, 2.19% and 1.18% better with 2M, 3M and 4M. Apart from fusion axis,
(4) allow modalities to learn from modality-specific feature learners before applying mid
fusion. Accordingly, both the choice of the fusion axis and independent features learners
have contributed to this performance improvement. However, similar to early fusion
architectures, both (4) and (6) fail to outperform mHAF architecture.

A closer look at the two algorithms from recent literature shows that they are both
not effective in a heterogeneous multi-modal setting. DeepSense has a high parametric
complexity, yet fails to achieve comparable performance with mHAF. Moreover, it may
over-fit to the limited amount of training data available. In contrast, DeepConvLSTM,
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(5) with a shallow architecture and early fusion on the temporal axis has outperformed
DeepSense, (6).

Notably, architectures (3)-(6) improve performance with the addition of the noisy modal-
ity in 4M. In contrast, mHAF and (2) achieve the best performance with the 3M modality
combination. The significance of this observation is that mHAF performance indicates
the addition of a noisy modality allowing us to discover minimal modality configurations.

In comparison to the single modality baseline, mHAF outperforms the ACT performance
in all three settings. Notably, only mHAF architecture outperforms ACT performance
with the 2M modality combination. Late fusion in mHAF has allowed learning the most
effective features from the additional PM modality that are complementary to ACT
features. This is in contract to more noisy, yet significantly larger set of PM modality
features dominating in a early or mid fusion setting.

7.2.2 Confusion Matrices

Results in Section 7.2.1 established that mHAF architecture learns an effective multi-
modal fusion in a heterogeneous modality setting. In this section, we aim to investigate
the mHAF fusion results using confusion matrices. We visualise the best single modality
ACT (1M) performance against 2M, 3M and 4M performances using the mHAF architec-
ture. Confusion matrices show how the addition of modalities affected the performance
at the exercise class level. F1-score performance of each activity class is averaged over
the person folds to create confusion matrices. For implementation details we refer to
Section 7.2.1.

Figures 7.9a, 7.9b, 7.9c and 7.9d are the confusion matrices obtained with 1M, 2M, 3M
and 4M. Best single sensor ACT achieves performances between 0.84∼0.97 across the 7
exercise classes. We note with prone punch (6), although the thigh remains stationary,
it is unique compared to other 6 exercises where others have some unique movements.
Consequently, in a single modal setting, the performance may get penalised with a differ-
ent set of exercises (i.e. in an open-ended setting). Extension in lying (5) exercise record
the lowest performance and the error is dispersed across all other classes.

Addition of the PM modality in the 2M setting (Figure 7.9b) shows clear improvements
to exercise classes 2 and 5, which are the least performing exercises in the 1M setting.
But it is significantly detrimental for exercises 3 and 6. Discriminatory features of ACT
for recognising exercise 3 apart from 2 and 5 are depreciated by the introduction of the
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(a) MExACT (Best 1M) (b) MExACT,PM (2M)

(c) MExACT,PM,DC (3M) (d) MExALL (4M)

Figure 7.9: mHAF confusion matrices with MExACT , 2M, 3M and 4M

PM modality. Similarly, recognising exercise class 6 is more challenging after introduc-
ing the PM modality. Although the overall performance is significantly improved, the
performance differences across the 7 exercise classes are also increased to 0.77∼0.99.

Introduction of the DC modality in the 3M setting has significantly improved the perfor-
mance compared to the 2M setting. The ambiguity between exercises 2 and 3 is reduced,
and the performance of recognising exercise 6 is significantly improved by 6%. Addition
of ACW modality in the 4M setting has been detrimental to recognising exercise 6. Given
that exercises 6 and 7 have the same hand movements, the ambiguity is increased and
now less discriminatory from exercise 7.

Overall, 3M is the best modality combination for the 7 exercises where the performance
range from 0.88∼1.00. Exercise 3, pelvic tilt is the most challenging to recognise (max



Multi-modal Recognition with Hybrid Attention Fusion 132

0.88) followed by exercise 6, prone punch (max 0.94). All 5 other exercises achieve
performances between 0.97 and 1. Accordingly, confusion matrices has revealed that
3M or 4M multi-modal settings do not recognise pelvic tilt and prone punch exercises
with precision required for real-world deployment. An exercise such as pelvic tilt which
involve fine yet intricate hip movements can be challenging to capture. The pressure mat
modality has not successfully captured the torso movements with the precision required
as expected. We also noticed that pelvic tilt is one of the exercises participants failed to
perform correctly as instructed. These observation will be investigated further in future
with different modality combinations (e.g. with the addition of a wearable on the torso).

7.2.3 Attention Weights

In this section, we investigate how mHAF is learning feature importance and modality
combinations at the exercise class level using attention weights. We visualise the atten-
tion weights learned by the HA and SA modules (αh and αs) for each exercise class in
Figure 7.10. The weights are obtained from the best performing 3M mHAF architecture
for a set of randomly selected test instances. Each row is an exercise class, and the
weights post-processed for clear visualisation. The weights are grouped by the modality
and then applied a set of evenly spaced thresholds to create 5 groups. Resulting weights
are sorted and stacked where a lighter colour indicates a higher weight.

Figure 7.10: Visualising soft and hard attention weights of the 3M mHAF architecture
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The hard attention module (HA) has learned skewed weights to highlight only a few
features, whilst the soft attention module (SA) has learned a more naturally distributed
set of attention weights. HA weights show that some exercises classes are recognised
using a combination of all sensor modalities, while others learn to choose a subset of
sensor modalities.

Exercise 4, bilateral clam, only moves the thigh and HA weights have correctly recognised
that by learning to attend to only ACT features instead of a modality combination. This
observation is further verified by confusion matrices in Section 7.2.2, where exercise 4
has achieved performance over 97% with the ACT modality. Exercise 6 is the only
exercise that has no thigh movement (unique compared to others) and HA weights show
that exercise 6 relies on ACT and DC modalities. This observation again conforms
with confusion matrices in Section 7.2.2 where the addition of the PM modality was
detrimental for exercise 6 (drops performance from 91% to 88%) and improve up to 94%
with the addition of the DC modality.

For Exercise 2, bridging, HA is learning a combination of modalities, with the highest
weight on the ACT modality. This is correct in practice as well as aligns with the
observations in Section 7.2.2 where exercise 2 performance continuously increase from
85% to 91% and then to 97% with the addition of PM and DC modalities. For Exercise
5, extension in lying, HA is learning the highest weights for the PM modality. This
is aligned with the observations in Section 7.2.2 where the performance of exercise 5
increase from 84% to 98% with the introduction of the PM modality.

PM modality should be able to clearly capture exercise 3, pelvic tilt because it involves
only low back moments. In contrast, visible movement from an aerial view is minimal
to be captured by the DC modality. Notably, in the 3M modality setting, HA shows the
highest weight on PM modality features with some weight on ACT, and no weight on
DC to correctly align with the expected modality combination. But, the addition of the
DC modality has significantly improved the performance of exercise 3 in Section 7.2.2
which we are unable to explain at this time.

Importantly, with all exercises, the SA module learns a normal distribution of weights
highlighting additional features that are complementary to the few feature highlighted by
the HA module. Overall, there is a significant compatibility between the interpretation
of attention weights, domain knowledge and confusion matrices. mHAF architecture is
learning to select modality and feature combinations with heterogeneous multi-modal
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sensors for the ExRec task. These observations also demonstrated the need for main-
taining alternative forms of attention within the fusion architecture. Additional features
attended by the SA module are compatible with the modalities identified by the HA
module. However, we identified that there is room for improvement with some exer-
cise classes. Furthermore, we verify the two design hypothesis we made when selecting
feature level granularity for learning attention weights: not all features of a modality
equally contribute to improved performance; and more than one modality has significant
features for improved performance.

7.3 Personalised Recognition with Meta-learners

In this section, personalised meta-learners from Chapter 5 are evaluated using MEx
datasets for personalised exercise recognition. This evaluation is three fold: a comparison
against baselines and methods from recent literature in Section 7.3.1; a visualisation of
meta-learner training and testing to demonstrate the advantages of personalisation in
Section 7.3.2; and a visualisation of the impact of meta-model training with expert users
and meta-model adaptation by non-expert users in Section 7.3.3.

7.3.1 Comparative Evaluation

In this section, the performance of personalised meta-learners personalised
MAML (MAMLp), personalised RN (RNp) and personalised MN (MNp*) are compared
against several baselines and methods from recent literature listed below using MEx
modalities.

DL: Best performing DL algorithm from Section 4.6.1

MAML: Model-Agnostic Meta-Learner by Finn et al. (2017)

MAMLp: Personalised MAML introduced in Section 5.2.2

RN: Relation Networks by Sung et al. (2018)

RNp: Personalised Relation Networks introduced in Section 5.2.2

MN: Matching Networks for HAR by Sani et al. (2018)

MNp: Personalised Matching Networks for HAR by Sani et al. (2018)

MNp*: Personalised Matching Networks as a meta-learner introduced in Section 5.2.2
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Implementation Details

Personalised and conventional meta-learning tasks are created in the ks = 5 and
kq = 25(30−ks) setting. For comparability, DNN(1) feature learner from Section 5.3.1 is
used with all algorithms where the input is adjusted to suit the modality dimensions (see
Table 5.3). For more implementation details we refer to Section 5.3.1. For MAML and
RN the same model implementation details from Section 5.3.1 apply. For the implemen-
tation details of MN and MNp we refer to Sani et al. (2018).

We follow the LOPO evaluation methodology, as described in Section 3.4. For more
evaluation details we refer to Section 5.3.1. Notably, even conventional meta-learners,
MN ,MAML and RN preserve the personalisation aspect during testing because there is
only one test person to create meta-test tasks. We report the accuracy of each experiment
averaged over 30 person folds. Statistically significant results are highlighted in bold text.

Results

Table 7.3: Comparative evaluation of personalised meta-learners using MEx datasets

Algorithm MExACT MExACW MExDC MExPM

DL(Accuracy) 0.9068 0.6457 0.8825 0.7703
MAML 0.8673 0.6525 0.9629 0.9283
MAMLp 0.9103 0.6825 0.9774 0.9377
RN 0.8770 0.5184 0.7628 0.6714
RNp 0.9444 0.6899 0.8533 0.7553
MN 0.9073 0.4620 0.5065 0.6187
MNp 0.9155 0.6663 0.9342 0.8205
MNp* 0.9465 0.7438 0.9606 0.9289

Table 7.3 presents the comparative results of personalised meta-learners evaluated with
MEx modalities. First, we find that at least two out of the three personalised meta-
learners outperformed the best performing DL algorithm with all four experiments.
In addition, all personalised meta-learners significantly outperformed their conventional
counterpart.

In the second section, we show how MAML performance is significantly improved when
using the personalised meta-learning methodology. All four experiments achieve perfor-
mance improvements compared to the best DL algorithms. Moreover, all experiments
significantly outperform conventional MAML and the highest improvement is achieved
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by ACT data with 4.33%. Next, we compare RN and RNp algorithms. The per-
sonalisation methodology has significantly improved the performance of RN with all
experiments. Notably, the visual data modalities DC and PM, fail to outperform the
best DL algorithm performance using RNp, while time-series data modalities achieve
significant improvements. Lastly, we compare the performances of MN , MNp against
MNp*. The personalised meta-learning methodology has significantly improved the per-
formance of the personalised few-shot classifier MNp. While ACT and DC improve
by 3.1% and 2.64%, ACW and PM improve by 7.75% and 10.84%. These results sug-
gest that modalities that are more sensitive to personal nuances, like the pressure mat
and the wrist wearable benefit from the meta-learning approach instead of a few-shot
learning approach. In addition, MNp* outperforms the best DL algorithm with all four
experiments.

RNp and MNp* algorithms are both similarity-optimised meta-learners, and with three
out of four experiments, MNp* significantly outperform RNp. It is also noteworthy when
comparing the performance of the original algorithms MN and RN , the parametric
similarity learning in RN outperforms the static similarity function used in MN in 3
out of the 4 times. However, once we apply the personalisation methodology, RNp no
longer outperforms MNp*. Personalisation has eliminated task compositions that do not
occur naturally, and simplify the classification task. Accordingly, a simpler algorithm like
MNp* has achieved significant improvement over a more generic and complex algorithm
like RNp.

Compared to RNp, MNp* is successfully learning feature representations from visual
data for similarity prediction and to outperform the best DL algorithms. Yet, in general,
complex visual data like DC and PM prefer adaptation-optimised MAMLp algorithm over
similarity-optimised RNp and MNp* algorithms. In contrast, with accelerometer data
similarity optimised MNp* and RNp significantly outperform MAMLp. Raw image data
in DC and PM datasets are more complex compared to DCT features of accelerometer
data. Accordingly, these results suggest that learning to compare feature representations
from simple data types is more effective compared to complex data types.

Table 7.4 presents a summary of best performing personalised meta-learners for MEx
modalities and multi-modal combinations. Here 2M, 3M and 4M refers to MExACT,PM ,
MExACT,PM,DC and MExALL datasets (the best performing multi-modal combinations
found in Section 4.6.2). The experiments are created in 5-shot setting. Each 1M experi-
ment is using the best performing feature learners found in Section 5.3.1. In multi-modal
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Table 7.4: Fine-tuned performance of personalised meta-learners with MEx datasets

Algorithm MExACT MExACW MExDC MExPM 2M 3M 4M
MAMLp 0.9713 0.8399 0.9857 0.9618 0.9980 0.9999 1.0000
RNp 0.9596 0.7444 0.9562 0.9229 0.9868 0.9960 0.9960
MNp* 0.9695 0.7917 0.9606 0.9289 0.9890 0.9922 0.9941

settings, MAMLp, RNp and MNp* use architectures DNN(3), 2D-CONV(1) and DNN(1)
respectively (the best feature learners for visual data).

Notably, for all single modal experiments, the best performance is achieved with the
MAMLp algorithm and only for the ACT, MNp* achieve comparable performance with
MAMLp. While 2M experiment achieves the best performance with MAMLp, 3M, and
4M experiments achieve comparable performances with all three algorithms. Moreover,
we find a significant improvement with personalisation in the multi-modal settings com-
pared to best DL algorithms. We refer to Section 4.6.2 where 2M, 3M and 4M ex-
periments achieved an accuracy of 0.9421, 0.9669 and 0.9649 respectively. Importantly,
all three algorithms achieve approximately 100% accuracy with the three multi-modal
experiments, which is a significant achievement for creating high performance exercise
monitoring applications.

7.3.2 Personalised vs Conventional Meta-learners

In this section, we explore the impact of the personalisation in the meta-learning method-
ology. We visualise the training of the adaptation-optimised meta-learner, MAML and
the similarity-optimised meta-learner, RN when applied the two methodologies using the
PM dataset.

Comparing MAML vs MAMLp

We first investigate the performance improvements achieved by MAMLp againstMAML

using the PM dataset. We compare the following three algorithms:

MAML: Original MAML algorithm (Finn et al., 2017) trained and tested using tasks
that were created disregarding any personal identifiers;

MAMLp: Personalised MAML introduced in Section 5.2.2; and

Person-aware MAML: A lazy personalisation of MAML where a meta-train task is
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comprised of a support set with person-activity classes selected from a set of per-
sons. Each person-activity class in the support set is represented by ks data in-
stances that belong to a single person. However, each person-activity class may
select data from any person in the meta-train set. The query set will have data
from a single person who may not have been selected to form the support set. This
method still preserves the concept of person-activity only at the class label level,
but not over the entire support set or at the task level.

We create experiments in both ks = 1 and ks = 5 settings. The meta-model is evaluated
using meta-test tasks at every 10 meta-train epochs to create 10 evaluation points over
the 100 training epochs. At each evaluation point, the meta-test support set is used
to adapt the current meta-model for 10 meta-gradient steps. After each meta-gradient
step, the adapted meta-test model performance is evaluated using the meta-test query set.
Accordingly, there are 100 evaluation points for each algorithm. Through this process,
the adaptation of the generic meta-model is observed at different stages of optimisation.
The graphs plot the mean test-accuracy obtained over person folds.

Results obtained for the three algorithms in the ks = 1 setting are plotted in Figure 7.11a.
Overall performance is improved over meta-train epochs with all three algorithms. More-
over, both MAMLp and person-aware MAML outperform MAML at each evaluation
point. MAML creates a set of meta-train tasks disregarding the person parameter.
When ks = 1, there is no significant difference between the support sets of person-aware
MAML and originalMAML, butMAML create query sets that contain data instances
from multiple persons. Accordingly, the task loss calculated for meta-model update is
not restrained to a single person sourced query set to learn personalisation patterns.

At 30 epochs (and after adaptation, i.e. at the 10th meta-gradient step), person-aware
MAML matches the meta-test accuracy of MAMLp and thereafter, at each evaluation
point, person-aware MAML outperform both MAMLp and MAML. Given there is
only 1 labelled data instance per person-activity in the support set and only one person’s
data is in the query set, person-aware MAML in the ks = 1 setting may emulate
MAMLp, which leads to higher accuracy over MAMLp. We observe that MAMLp

achieves the best performance before adaptation. In addition, over the 10 meta-gradient
steps, MAMLp meta-model adaptation significantly faster compared to both person-
aware MAML and MAML. This result is attributed to MAMLp creating person-tasks,
and the resulting meta-model of MAMLp is the best starter model for any person.

Results obtained for the three algorithm in the ks = 5 setting is plotted in Figure 7.11b.
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(a) ks = 1 setting

(b) ks = 5 setting

Figure 7.11: Comparison of meta-model performance: MAML vs. person-aware MAML
vs. personalised MAML

Once the number of labelled data instance per person-activity class is increased to 5,
we observe a clear advantage of the personalised MAML over person-aware MAML or
conventionalMAML. In the ks = 5 setting, with 5 labelled examples per person-activity
class, a person-aware task has increased the variations within the support set and now
resembles a conventional meta-learning task. Accordingly, meta-test accuracy of person-
aware MAML outperforms MAML, but fails to outperform MAMLp.

MAMLp achieves the best performance at each evaluation point. MAMLp exhibit fast
learning of the meta-model by achieving significant meta-test accuracy even at 10 meta-
train epochs. Moreover, MAMLp exhibit rapid meta-model adaptation only taking 5
meta-gradient steps on average, where person-aware MAML and MAML adaptation
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takes longer. And, similar to ks = 1, MAMLp achieves the best performance before
adaptation. We reiterate that meta-test tasks of all three algorithms are ensured person-
alisation in the LOPO setting. Therefore, any meta-test adaptation variations or final
meta-test accuracy differences are only attributable to the learning of the meta-model.
Moreover, the learning is influenced by the compositional differences of the tasks created
by each methodology.

Overall, we highlight that personalised meta-learner MAMLp improves meta-model
generalisation and rapid adaptation. While person-aware MAML fail to outperform
MAMLp when provided with few labelled data instances, the lazy personalisation can
be useful in a restricted setting. For instance, if the test person is unable to provide a
support set for every activity class, with person-awareMAML, a combination of generic
labelled data instances and person-specific data instances should form a cohesive support
set for successful personalised activity recognition.

Comparing RN vs RNp

We investigate the performance improvement achieved by RNp using the personalised
meta-learning methodology in this section. The two algorithms compared in this section
are:

RN: Original RN (Sung et al., 2018); and

RNp: Personalised RN introduced in Section 5.2.2

The experiments with the PM dataset are created in two settings ks = 1 and ks = 5.
The meta-model is evaluated at every 5 epochs using the meta-test tasks to create 40
evaluation points for each algorithm over the 200 training epochs. The mean accuracy
over 30 person folds obtained using the LOPO evaluation methodology are plotted in
Figures 7.12a and 7.12b.

Both ks = 1 and ks = 5 settings clearly show that personalisation has improved meta-
test performance. In the ks = 1 setting, both methods consistently improve performance
over the training epochs, but the personalised methodology significantly outperforms
the conventional methodology at each evaluation point. For instance, at 100 epochs,
RN achieves 71.57% accuracy and RNp achieves 77.6% accuracy, RN achieves 77.51%
performance (to match RNp at 100 epochs) only after 160 epochs.

It is noteworthy that overall performance achieved in the ks = 5 is significantly lower
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(a) ks = 1 setting

(b) ks = 5 setting

Figure 7.12: Comparison of meta-model performance: RN vs. personalised RN

compared to ks = 1 setting. We also observe a staggered start compared to ks = 1

setting where both algorithms struggle until ∼50 epochs. In Section 7.3 we observed that
reasoning with complex visual data is challenging for both RN and RNp. In addition,
the increased number of elements in the support set has made the model optimisation
even more challenging. However, this visualisation focus on the comparison of the two
algorithms in the ks = 5 setting. After the staggered start, the performance of RNp

and RN consistently improve over the training epochs. The personalised methodology
significantly outperforms the conventional methodology at each evaluation point. At
100 epochs, RN achieves 47.05% accuracy while RNp achieves 59.68% accuracy. At the
end of 200 epochs, RN has achieved an accuracy of 66.44% which RNp achieved at 125
epochs.

When training RN in the ks = 5 setting, a task is created by disregarding the person
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parameter. As a result, an activity class in the support set has representatives from
many persons. Learning similarities from multiple persons have adversely affected the
RN meta-model. Accordingly, a performance difference of 8.46% is observed between
RN and RNp in the ks = 5 setting at the end of 200 epochs. In contrast, in the ks = 1

setting, a task contains only one data instance per class; for RN it is from a random
person, for RNp it is from the same person. However, there is no variability within the
support set for a given activity class. Thus the performance difference is narrower, at
3.64%.

Overall, the personalised methodology has led to learning a generalised meta-model that
is better suited for any meta-test task from a person not seen during training.

7.3.3 Visualising Variability Between Persons

In a real-world application, the data for meta-model training is likely to be provided
by physiotherapy experts performing exercises. For instance, a physiotherapy clinic can
create their meta-model using the data collected from the physiotherapists. Patients
who are registered at the clinic can receive the application which embeds this model to
take home and use for exercise monitoring. Accordingly, a reasoning model is trained
using data from experts and is personalised and used by a non-expert user. While
experts perform exercises uniformly with less variability, non-experts perform exercises
with added personal characteristics. This can be viewed as a specialised evaluation setting
that follow person-aware methodology presented in Section 3.4. Given MEx recognise
persons in the dataset as experts or non-experts, we explore this scenario with the MEx
dataset. MEx has data from 7 physiotherapy experts and 23 non-experts.

We select the PM modality and ks = 1 setting (to create meta-train and meta-test tasks)
to demonstrate this specialised setting. Three meta-models are trained using MAMLp,
RNp and MNp*. Each model is trained using the data from the 7 experts and tested
by each non-expert. The main difference to LOPO evaluation setting is that we fix the
train set to only include experts such that we can observe the performance variations of
non-experts against a fixed meta-model created by all expert data. Similar to previous
evaluations, a meta-model is evaluated at every 10 meta-train epochs. MAMLp algorithm
has a re-training step to personalise a meta-model and to demonstrate the performance
gain achieved by personalisation we plot both before and after meta-model adaptation.
Figure 7.13 present the results. The bold colour line for each algorithm plots the mean
accuracy over 23 folds (non-experts) and light colour lines plot individual performances.
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Figure 7.13: Personalisation variability between non-expert users

Overall, MNp* outperform MAMLp and RNp. In this discussion, we focus on variable
performance between persons. The general trend is that most persons show improvements
with increasing training epochs. The differences between the worst performing person
and the best performing person are 27.57%, 41.85% and 26.72% for MAMLp, RNp and
MNp* respectively. Accordingly, we find that MNp* and MAMLp learn meta-models
that are better generalisable to new, unseen persons compared to RNp. Comparison
between the MAMLp meta-model performance before and after adaptation highlights
the importance of personalisation. In the ks = 1 setting, only one data instance for an
exercise is obtained from the non-expert user to personalise the MAMLp meta-model.
For instance, at the 100th epoch, after re-training the MAMLp meta-model with the
7 data instances, non-expert users have achieved a mean performance improvement of
36.1%. We observe that the performance variance in a single modal setting is significantly
high with all three algorithms for deployment in the real world. However, we expect the
variance to be lower when ks > 1 and in multi-modal settings as shown in Section 7.3.1.
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7.4 Open-ended Recognition with Similarity-optimised
Meta-learners

In this section, similarity-optimised meta-learners for personalised and open-ended recog-
nition introduced in Chapter 6 are evaluated. This evaluation is threefold: a comparative
evaluation against baselines in Section 7.4.1; a detailed evaluation of performance vari-
ances between different unseen classes in Section 7.4.2; and a detailed evaluation of
performance variances when increasing the number of unseen classes in Section 7.4.4.

7.4.1 Comparative Evaluation

Conventional open-ended recognition algorithms rely on the nearest neighbour algorithm
to select the most similar semantic attribute representation at test time for class pre-
dictions (Cheng et al., 2013b; Ohashi et al., 2018). Instead of semantic attributes, our
open-ended methodology uses few data instances to represent an unseen class. Similarity-
optimised meta-learners in an open-ended setting can be seen as parametric nearest
neighbour algorithms, as discussed in Section 6.2.3. For instance, given a query instance,
a similarity optimised meta-learner finds the best matching instance from a set of la-
belled data instance (support set) to predict a class label. Accordingly, in this section,
we compare how meta-learners in the open-ended setting perform against the k-nearest
neighbour algorithm. The algorithms compared are listed below:

k-NN: k-Nearest Neighbour algorithm with cosine similarity.

PNo: Personalised Open-ended Prototypical Networks, introduced in Section 6.2.3.

We note that it is infeasible to compare the performance of our open-ended methodol-
ogy against attribute-based open-ended recognition methods from recent literature us-
ing MEx. Such methods are knowledge-intensive and require an intermediary attribute
mapping that is not available for MEx. Therefore, we perform a comparative evaluation
against the methods from recent literature using the HDPoseDS datasets in Section 7.5.3.

Implementation Details

With k-NN, we replicate the personalised open-ended setting where a personal support
set is created by sampling 5 data instances per activity class for each person (ks = 5). k-
NN is evaluated using the remaining data instances of the same person. Each experiment
is repeated 20 times with a different support set. We evaluate k-NN for k=1 and k=5.
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We select the best performing open-ended meta-learning algorithm PNo for this com-
parative evaluation instead of MNo* and RNo according to results from Sections 6.3.1
and 6.3.2. Experiments are evaluated in the L1CO setting, and therefore, PNo performs
6-way training and 7-way testing with ks = 5. Importantly, at test time, both k-NN and
PNo has access to the same amount of data instances when predicting the class label
for a given query. Experiments are performed with each individual modality and the
best multi-modal combinations of the MEx dataset. We record mean accuracy for all
experiments with error bars to show the best and the worst performing unseen classes
for each algorithm.

Results

Figure 7.14: PNo vs. k-NN performance comparison with MEx datasets

Figure 7.14 plot the performance of the three algorithms using the MEx datasets. Overall,
PNo outperform both 1-NN and 5-NN with 6 out of the 7 experiments. Notably, with
ACW, 1-NN significantly outperform PNo. This 1-NN performance can be attributed
to the noisiness of the wrist accelerometer data where learning with only a few noisy
data instances can be detrimental to learning a successful feature representation using a
parametric model.

1-NN achieve comparable performances to PNo with 3 of the 7 experiments. However,
the variability in performance for different unseen classes is significantly high compared
to PNo. For instance, with ACT, the mean accuracy achieved by PNo and 1-NN are
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0.9276 and 0.9058 respectively, and the difference between best performance and worst
performances for an unseen class are 3.92% (0.9012∼0.9404) and 30.48%(0.6928∼0.9976).
The high variability of performance for different unseen classes is detrimental in the real-
world application where the model is unaware of end-user preferences.

Interestingly with all 7 experiments, 5-NN fails to outperform 1-NN. 1-NN is most similar
to classification where the top-1 data instance pair is selected based on similarity to obtain
a class label. With 5-NN 5 pairs with the highest similarity are selected, and the class
label is derived using majority voting. With k-NN, there is no opportunity to learn from
the representatives for an activity class. Accordingly, independent similarity calculations
lead to misleading results.

7.4.2 Performance variability between different unseen classes

Table 7.5: PNo performance comparison by activity class with MEx datasets

Test class MExACT MExACW MExDC MExPM 2M 3M 4M
Knee rolling 0.9332 0.7432 0.9741 0.9119 0.9802 0.9874 0.9983
Bridging 0.9335 0.7436 0.9619 0.9060 0.9950 0.9968 0.9978
Pelvic tilt 0.9257 0.7321 0.9760 0.9229 0.9845 0.9925 0.9936
Bilateral clam 0.9341 0.7327 0.9661 0.9190 0.9876 0.9938 0.9900
Extension in Lying 0.9404 0.7267 0.9720 0.9351 0.9832 0.9958 0.9946
Prone Punch 0.9250 0.7594 0.9799 0.9179 0.9915 0.9931 0.9949
Superman 0.9012 0.7647 0.9734 0.9221 0.9700 0.9884 0.9890
conv. mean 0.9276 0.7432 0.9719 0.9193 0.9846 0.9925 0.9940
gen. mean 0.9326 0.7389 0.9720 0.9223 0.9831 0.9928 0.9928

Table 7.5 present the detail results for each unseen class using the PNo algorithm. Lowest
variability among 1M experiments is observed with the DC modality (1.80%) followed
by the PM modality (2.91%). This observation suggests that they are the best single
modal settings recommended for an open-ended exercise recognition application.

The multi-modal results are presented in the last three columns where 2M, 3M and 4M re-
fer to MExACT,PM , MExACT,PM,DC and MExALL datasets. In multi-modal settings, the
observed variability among unseen classes is narrower. Multi-modal combinations have
increased the overall performance and reduced the variability between unseen classes.
These results highlight the need for multiple modalities to account for a wide range of
unseen classes that may encounter after deployment.

We observe that the performance on the generalised setting and conventional settings are
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comparable. Accordingly, we find that the PNo feature learner that was trained on data
from seen classes has not over-fit to seen classes. If the feature learner over-fit to seen
classes, the performance in the conventional setting (test performance of only the unseen
class) should be lower than the performance in the generalised setting (test performance
of all classes).

7.4.3 Few-shot vs Open-ended Recognition

Literature shows that integration of an activity-attribute mapping improves recognition
performance, specifically in a few-shot setting Liu et al. (2011). Hybrid classification
models introduced by Nguyen et al. (2015b) and Cheng et al. (2013a) exploit this idea
to augment conventional classification using learned features with hand-crafted inter-
mediary features to improve recognition performance. Since our method of open-ended
recognition stems from few-shot learning, we compare how performances compare in a
personalised recognition setting vs personalised open-ended recognition setting. Accord-
ingly, we compare personalised prototypical networks, PNp, and personalised open-ended
prototypical networks PNo in Table 7.6. Here PNp is trained in the 5-shot, 7-way set-
ting (i.e. ks = 5, |C| = 7) and PNo is trained in the 5-shot generalised L1CO setting (i.e.
ks = 5, |C| = 6). This also allows to further evaluate if the introduction of the unseen
class has been detrimental to the performance of seen classes.

Table 7.6: Personalised RN vs. personalised and open-ended RN performance comparison
with MEx datasets

Test class MExACT MExACW MExDC MExPM 2M 3M 4M
PNp 0.9529 0.7641 0.9727 0.9374 0.9899 0.9945 0.9960
PNo (L1CO) 0.9326 0.7389 0.9720 0.9223 0.9831 0.9928 0.9928

The observed performance drop with 1M datasets, ACT, ACW, DC and PM are 2.03%,
2.52%, 0.07% and 1.51%. With modality combinations, 2M, 3M and 4M it is 0.68%,
0.17% and 0.32% respectively. The difference between PNp and PNo here is that PNp

perform 7-way train and test classification and PNo perform 6-way train and 7-way
test classification. This difference makes the two performances not directly comparable.
However, the performance decline can be seen as an indication of a modality or a modality
combination’s capacity to perform in an open-ended setting. This is in addition to the
rather intuitive performance drop in the open-ended recognition, when trained in a 6-way
setting. Importantly, we highlight that the introduction of the unseen class has not been
significantly detrimental to seen classes. Especially using multi-modal data, we achieve
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comparable performances in the open-ended generalised setting and the few-shot learning
setting.

7.4.4 Performance variability with increasing unseen classes

In this section, we evaluate the impact on performance when increasing the number
of unseen classes. We follow the LNCO evaluation detailed in Section 3.4.1 and im-
plementation details are similar to Section 6.3.2. The experiments are performed for
each modality and the best modality combinations of the MEx dataset. Accordingly,
we investigate if improving the sensor modality coverage using multiple modalities can
improve the performance of the open-ended recognition algorithm compared to single
modal settings. We use the PNo algorithm as found to be the best out of the three
similarity-optimised meta-learners in Section 6.3.2. Table 7.7 detail the results obtained
for the LNCO experiments.

Table 7.7: PNo performance comparison for increasing unseen classes (LNCO) with MEx
datasets

Datasets L1CO L2CO L3CO L4CO
MExACT 0.9276 0.9212 0.9015 0.8713
MExACW 0.7432 0.7409 0.7347 0.7245
MExDC 0.9719 0.9679 0.9641 0.9557
MExPM 0.9193 0.9254 0.9195 0.9117
2M 0.9846 0.9706 0.9690 0.9510
3M 0.9925 0.9892 0.9901 0.9865
4M 0.9940 0.9915 0.9876 0.9821

All datasets exhibit a decline of performance with an increasing number of unseen classes.
The performance drop ranges from 5.63% to 0.76% for MEx single modality experiments.
However, it is less severe with modality combinations; 3.36% for 2M, 0.6% for 3M and
1.19% for 4M. 3M and 4M multi-modal settings consistently achieve performances higher
than 98% even with 4 unseen classes. These results demonstrate that in multi-modal
settings, the modality combinations capture discriminatory features to recognise multiple
new and unseen activities with high precision. Results suggest that the PNo model
manages to maintain recognition performance despite increasing the number of unseen
class in a multi-modal settings. Having this form of robustness is a desirable feature for
real-world deployment.
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7.5 Transferability to other HAR domains

In this section, the methods introduced in Chapters 4, 5 and 6 are evaluated for the
transferability to other HAR domains. We consider everyday fitness activities using the
selfBACK Dataset; and daily living activities using the PAMAP2 dataset. In addition,
we evaluate methods from Chapter 6 using the HDPoseDS datasets, which allows to
compare our methods against the most recent algorithms from literature.

7.5.1 Multi-modal Hybrid Attention Fusion

In this section, we evaluate the performance of the Multi-modal Hybrid Attention Fu-
sion architecture, mHAF introduced in Chapter 4 with two HAR datasets, selfBACK

and PAMAP2. The algorithms considered in this comparative evaluation are listed in
Section 7.2.1. Relevant model implementation details are also found in Section 7.2.1 and
relevant data pre-processing steps are as detailed in Section 3.3.1. All experiments follow
LOPO evaluation to report mean F1-score over the person folds. Notably, both datasets
are homogeneous multi-modal datasets with multiple accelerometer sensors. Accordingly,
we will be evaluating the mHAF architecture for homogeneous modality combinations.

selfBACK Dataset

mHAF architecture for the selfBACK dataset is constructed with optimal feature learn-
ers discovered in Section 4.6.1. Considering the comparable performance achieved by 2D-
CNN and 1D-CNN-LSTM architectures and performance of accelerometer data in other
datasets, we select 1D-CNN-LSTM architecture for both SBT and SBW modalities.

In Table 7.8 details the performance results obtained using the selfBACK dataset.
The first row refers to the best single modal performance obtained with the thigh sensor
at 0.7753. mHAF architecture achieves 0.7919 F1-score to outperform the best single
modality performance. mHAF achieves comparable performance with the three baselines
numbered (2) to (4). Moreover, mHAF fails to outperform the two algorithms numbered
(5) and (6). We attribute the performance achieved by (5) and (6) to applying early and
mid-level fusion to the homogeneous modality combination in the selfBACK dataset.
Best performance is achieved by the DeepConvLSTM architecture, which in comparison
to DeepSense, is shallower and apply early fusion.
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Table 7.8: mHAF performance comparison with selfBACK multi-modal datasets

Algorithm SBWT

(1)Best single modality (Thigh) 0.7753
(2)Early Fusion 0.8091
(3)Mid Fusion 0.7950
(4)Mid Fusion+temporal axis fusion 0.7926
(5)DeepConvLSTM 0.8472
(6)DeepSense 0.8156
mHAF 0.7919

PAMAP2 Dataset

PAMAP2 dataset consists of 3 modalities, and in this evaluation, we consider the best 2
modality combination PAMAP2HA and all modality combination PAMAP2HCA. mHAF

architecture for both modality combinations are created using the 1D-CNN-LSTM ar-
chitecture discovered as the best modality-specific feature learner for all 3 modalities in
Section 4.6.1.

Table 7.9: mHAF performance comparison with PAMAP2 multi-modal datasets

Algorithm PAMAP2HA PAMAP2HCA

(1)Best single modality (Ankle) 0.8034 0.8034
(2)Early Fusion 0.8905 0.8964
(3)Mid Fusion 0.8935 0.8988
(4)Mid Fusion+temporal axis fusion 0.9021 0.9007
(5)DeepConvLSTM 0.8962 0.8985
(6)DeepSense 0.8895 0.8868
mHAF 0.9004 0.9070

Table 7.9 details the comparative performance results obtained using the PAMAP2
dataset. The first row refers to the best single modality performance achieved by the
ankle accelerometer, and both 2M and 3M combinations significantly outperform single
modality performance. Similar to selfBACK dataset, the three baselines (2), (3) and
(4) achieve comparable performances to mHAF architecture. While DeepConvLSTM
architecture achieves comparable performance to mHAF, DeepSense fails to outperform
mHAF. Results from both 2M and 3M combinations further affirm that early and mid
fusion levels are more suited for homogeneous modality combinations. Moreover, similar
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to selfBACK, the shallow and early fusion DeepConvLSTM architecture outperforms
DeepSense architecture with both modality combinations.

In summary, selfBACK and PAMAP2 results highlight that homogeneous modality
combinations benefit from early and mid level fusion compared to late fusion.

7.5.2 Personalised Meta-learning

In this section, we evaluate the performance of the personalised meta-learners introduced
in Chapter 5 using the two HAR datasets selfBACK and PAMAP2. We highlight that
compared to MEx, selfBACK and PAMAP2 have significantly more data instances per
person-activity. Accordingly, with these datasets, we compare how personalised meta-
learners for few-shot classification transfer to considerably larger HAR datasets. The
algorithms considered in this comparative evaluation are listed in Section 7.3. Both
selfBACK and PAMAP2 have accelerometer modalities and the data pre-processing
steps are as detailed in Section 3.3.1. For comparability, DNN(1) feature learner from
Section 5.3.1 is used with all algorithms and algorithm implementation details can be
found in Section 7.3. All experiments follow LOPO evaluation to report mean accuracy
over the person folds.

selfBACK Dataset

Table 7.10: Comparative evaluation of personalised meta-learners with selfBACK
datasets

Algorithm SBW SBT SBWT

DL(Accuracy) 0.6959 0.7908 0.8253
MAML 0.7532 0.8398 0.8997
MAMLp 0.8075 0.8625 0.9339
RN 0.8276 0.9334 0.9596
RNp 0.8528 0.9487 0.9622
MN 0.7669 0.8392 0.8733
MNp 0.8653 0.9124 0.9609
MNp* 0.8140 0.9219 0.9401

In Table 7.10 we summarise the comparative performances obtained using the self-

BACK dataset. Experiments are performed using both single modalities, SBW and
SBT and the multi-modal combination SBWT . Personalised meta-learner significantly
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outperform the DL algorithm performance, outperform their conventional counterpart.
Similar to observations from MEx modalities, similarity-optimised meta-learners achieve
the best performance with the accelerometer modalities and modality combination in the
selfBACK dataset. We observe that RNp and MNp* methods fail to outperform MNp

few-shot learner with the noisy SBW modality. SBT modality achieves the best per-
formance with RNp, significantly outperforming both MNp and MNp*. MNp, RNp and
RN achieve comparable performances for the SBWT combination. We attribute the high
performance of the few-shot learner MNp to the availability of a moderate quantity of
training data for each person-activity. Overall we find RNp is the most robust algorithm
with all three datasets.

PAMAP2 Dataset

Table 7.11: Comparative evaluation of personalised meta-learners with PAMAP2
datasets

Algorithm PAMAP2H PAMAP2C PAMAP2A 2M 3M
DL(Accuracy) 0.75056 0.7878 0.8075 0.9016 0.9089
MAML 0.7593 0.7626 0.6830 0.8573 0.8755
MAMLp 0.8037 0.7822 0.7256 0.8912 0.9031
RN 0.7818 0.8170 0.7527 0.8824 0.8884
RNp 0.7868 0.8294 0.7761 0.8824 0.8971
MN 0.6299 0.7243 0.7123 0.8071 0.8847
MNp 0.7239 0.8402 0.8128 0.8404 0.8857
MNp* 0.7086 0.7922 0.7471 0.8826 0.9077

In Table 7.11 we summarise the comparative performances obtained using the PAMAP2
dataset. Experiments are performed using the three single modalities, PAMAP2H ,
PAMAP2C , and PAMAP2A, best 2 modality combination, PAMAP2HA (2M) and the
default 3 modality combination PAMAP2HCA (3M). PAMAP2 dataset has comparably
more data instance per person-activity class, and it is reflected by achieving the best
performance with DL methods by 2M and 3M modality combinations. In contrast to
performances of other inertial modalities in selfBACK and MEx, MAMLp outperforms
RNp with two datasets and achieve comparable performance with one dataset. Overall,
we find PAMAP2 results are not as conclusive as selfBACK or MEx results. Thus, it
is difficult to find a single algorithm that fit all modalities and modality combinations.
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Compared to selfBACK and MEx, PAMAP2 has access to a moderate amount of la-
belled data. In addition, PAMAP2 dataset contains activities of daily living where it can
be challenging to find patterns between two persons performing an activity like ironing
or vacuum cleaning.

7.5.3 Open-ended Meta-learning

In this section, we evaluate the performance of the personalised open-ended similarity op-
timised meta-learners introduced in Chapter 6 using the three HAR datasets HDPoseDS,
selfBACK and PAMAP2.

HDPoseDS Dataset

We compare the performance of the similarity optimised open-ended meta-learner PNo,
against two attribute-based open-ended recognition algorithms from the literature: Direct
Attribute Prediction (Lampert et al., 2014); and Attribute Importance (Ohashi et al.,
2018). Accordingly, the following algorithms are compared in this section:

• DAP: Direct Attribute Prediction method introduced by Lampert et al. (2014)

• AI: Attribute Importance method introduced by Ohashi et al. (2018) for open-
ended pose classification

• PNo: Personalised Open-ended Prototypical Networks introduced in Section 6.2.3

Both DAP and AI methods rely on hand-crafted activity-attribute mappings that are
not available for datasets MEx, selfBACK or PAMAP2. Accordingly, we include the
HDPoseDS dataset in this section to evaluate our method against two attribute-based
classifier methods which require expert knowledge. Notably, HDPoseDS dataset has only
27 data instances for a person-activity, thus resembles a few-shot scenario similar to MEx.

We experiment with four variants of the HDPoseDS dataset created by selecting subsets
of modalities for unobtrusive use in the real-world (see Section 3.3 for details). We remove
sensors considering their redundancy and obtrusiveness while maintaining the full-body
sensor coverage to create the following four datasets.

• HDPoseDS17 excludes 14 on fingers

• HDPoseDS13 excludes 14 on fingers, 2 on upper legs, 2 on the lower arm
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• HDPoseDS10 excludes 14 on fingers, 2 on upper legs, 2 on the lower arm, 2 on
the upper arm, 1 on spine

• HDPoseDS6 excludes 14 on fingers, 2 on upper legs, 2 on the lower arm, 2 on the
upper arm, 1 on spine, 2 on lower legs, 2 on shoulders

DAP and AI evaluations are performed in a conventional leave-one-class-out setting which
we also follow in this section for comparability. DAP and AI experiments are performed
using the full HDPoseDS dataset with 31 IMU modalities. We follow the L1CO evalua-
tion methodology explained in Section 3.4.1 and report mean accuracy over the R-PHO
experiments.

Figure 7.15: PNo vs. DAP vs. AI performance comparison with HDPoseDS datasets

In Figure 7.15 we plot the mean performances obtained over the 22 L1CO experi-
ments (for HDPoseDS, |C∗| = 22). The column refers to the mean accuracy and error
bars indicate the difference between the lowest performance and the best performance
obtained by an unseen class using the respective algorithms. Overall, PNo significantly
outperforms DAP and AI algorithms. With the most restricted HDPoseDS6 configu-
ration, PNo outperforms DAP and AI by 20.63% and 15.09%. Datasets HDPoseDS17,
HDPoseDS13 and HDPoseDS10 achieve comparable performances with PNo while signif-
icantly outperforming the HDPoseDS6 dataset.

PNo exhibits significantly less variability across different unseen activity classes. The dif-
ferences between the least performing experiment and the best performing experiment for
PNo using HDPoseDS17 and HDPoseDS6 are 0.22% (0.9978 ∼ 1.0000) and 3.45% (0.9429
∼ 0.9774). In comparison to DAP and AI the differences are 63.61% (0.3639 ∼ 1.0000)
and 73.59% (0.2642 ∼ 1.0000).
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In Table 7.12 we present the detailed performances by each unseen class experiment. For
the results from DAP and AI, we refer to Ohashi et al. (2018). The table is sorted by
lowest to highest performances obtained by the DAP algorithm. For PNo, we report the
results in both conventional and generalised settings.

Table 7.12: PNo performance comparison by pose class with HDPoseDS datasets

Test class DAP AI PNo with HDPoseDS
6 10 13 17

WaistTwistingR 0.3639 0.2938 0.9666 0.9891 0.9974 0.9978
StretchingForward 0.3703 0.8707 0.9692 0.9987 0.9956 0.9988
Sitting 0.4072 0.7438 0.9679 0.9979 0.9926 0.9984
WaistTwistingL 0.4241 0.2642 0.9711 0.9955 0.9934 0.9992
FoldingArm 0.4773 0.4387 0.9653 0.9982 0.9970 0.9997
Skiing 0.5277 0.7830 0.9754 0.9883 0.9971 0.9987
BaseballHitting 0.5856 0.7739 0.9577 0.9859 0.9959 0.9981
Boxing 0.6549 0.7494 0.9593 0.9970 0.9952 0.9995
StretchingCalfL 0.6647 0.8068 0.9758 0.9979 0.9986 0.9999
Standing 0.7148 0.6944 0.9712 0.9959 0.9983 0.9995
Thinking 0.8241 0.8230 0.9622 0.9956 0.9980 0.9997
Squatting 0.8922 1.0000 0.9667 0.9963 0.9934 0.9987
DeepBreathing 0.9061 0.9804 0.9459 0.9890 0.9991 0.9987
StretchingCalfR 0.9570 0.8897 0.9679 0.9963 0.9974 0.9991
PointingR 0.9629 0.9947 0.9774 0.9894 0.9971 0.9996
StretchingUp 0.9913 1.0000 0.9679 0.9930 0.9960 0.9986
HeelToBackR 0.9931 0.9729 0.9747 0.9943 0.9965 0.9997
PointingL 0.9937 0.9721 0.9765 0.9960 0.9961 0.9992
RaiseArmR 0.9973 0.9522 0.9429 0.9864 0.9944 1.0000
WaistBending 1.0000 0.9612 0.9588 0.9971 0.9966 0.9981
HeelToBackL 1.0000 0.9787 0.9668 0.9930 0.9954 0.9998
RaiseArmL 1.0000 0.9854 0.9693 0.9923 0.9996 0.9992
Conv. mean 0.7595 0.8149 0.9991 0.9964 0.9938 0.9658
Gen. mean - - 0.9991 0.9962 0.9928 0.9642

PNo outperforms DAP for 18 unseen classes, and outperform AI for 20 unseen classes
with the HDPoseDS17 dataset. PNo outperforms DAP for 15 unseen classes, and outper-
form AI for 14 unseen classes with the HDPoseDS6 dataset. These results suggest that
while many activities are successfully captured with precision with limited sensors, some
activities benefit from the sensor-rich setting. It is noteworthy that although the mean
performance of AI is significantly higher than DAP, there are two unseen classes where
the AI performance is lower than the lowest DAP performance.
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To evaluate if PNo is biased towards seen classes, we present performances in the gen-
eralised setting. In the generalised open-ended setting, each experiment is trained with
21 activity classes and tested for all 22 activity classes. The generalised setting achieves
comparable performance to the conventional setting, which shows the PNo is not biased
towards seen activity classes.

Unbiased performance against seen classes and less variability across different unseen
test classes is two important properties achieved by the PNo algorithm compared to
open-ended algorithms found in the literature. It is noteworthy that a comprehensive
sensor coverage is essential to capture any activity that may encounter after deployment.
Unbiased performance towards seen classes is essential in a real-world application where
both seen and unseen classes need to be recognised.

selfBACK Dataset

In this section, we compare the performance of PNo against the two baselines 1-NN
and 5-NN using the selfBACK datasets SBT , SBW and SBWT . Relevant algorithm
implementation details can be found in Section 7.4 and data pre-processing steps are
as detailed in Section 3.3.1. Figure 7.16 plots the mean performances obtained in the
conventional setting over 9 L1CO experiments (for selfBACK, |C∗| = 9).

Figure 7.16: PNo vs. k-NN performance comparison with selfBACK datasets

Overall, PNo significantly outperform both 1-NN and 5-NN algorithms. Moreover, similar
to observations in Section 7.4, we find that PNo performance is consistent across different
unseen classes. The differences between the least performing experiment and the best
performing experiment for PNo with SBWT is 4.00% (0.9108 ∼ 0.9508). This is in
comparison to the more significant differences observed with 1-NN and 5-NN. Specifically
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for 1-NN algorithm the difference is 56.09% (0.4270 ∼ 0.9883) and for 5-NN algorithm
the difference is 69.16% (0.2935 ∼ 0.9851). Notably, the overall performance of PNo

with SBWT (0.9352) is improved compared to SBT (0.9105), but the addition to of the
wrist modality has been detrimental to some unseen classes indicated by the increased
difference (3.48% and 4.00% for SBT and SBWT ).

A detailed summary of performances obtained for each unseen class using the PNo algo-
rithm is presented in Table 7.13. Similar to MEx and HDPoseDS, the generalised mean
performance calculated for PNo algorithm indicates that the bias towards seen classes or
unseen classes is negligible.

Table 7.13: PNo performance comparison by activity class with selfBACK datasets

Test class SBW SBT SBWT

Walking downstairs 0.8221 0.9008 0.9149
Walking upstairs 0.8257 0.8900 0.9108
Walking fast pace 0.8032 0.9248 0.9455
Walking moderate pace 0.7735 0.9243 0.9497
Walking slow pace 0.7970 0.9107 0.9314
Standing 0.8101 0.9067 0.9366
Jogging 0.8161 0.9153 0.9392
Sitting 0.8577 0.9028 0.9379
Lying 0.8029 0.9194 0.9508
conv. mean 0.8120 0.9105 0.9352
gen. mean 0.8130 0.9103 0.9316

PAMAP2 Dataset

In this section, we compare the performance of PNo against the two baselines 1-NN and
5-NN using the PAMAP2 datasets, PAMAP2H , PAMAP2C , PAMAP2A, PAMAP2HA

and PAMAP2HCA. For implementation, evaluation and performance measure details we
refer to previous sections. In Figure 7.17 we plot the mean performances obtained in the
conventional setting over 8 L1CO experiments (for PAMAP2, |C∗| = 8).

Overall, PNo significantly outperform both 1-NN and 5-NN algorithms. Moreover, simi-
lar to MEx and selfBACK, we find that PNo performance is consistent across different
unseen classes. The differences between the least performing experiment and the best
performing experiment for PNo with PAMAP2HCA is 4.93% (0.8515 ∼ 0.9008). Com-
paratively, more significant differences were observed for k-NN: 31.51% (0.6085∼0.9636)
for 1-NN; and 32.43% (0.6393∼0.9636) for 5-NN. Similar to the HDPoseDS datasets, the
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Figure 7.17: PNo vs. k-NN performance comparison with PAMAP2 datasets

overall performance of PNo is consistently improved with additional modalities and also
significantly reduces the performance difference between unseen classes.

A detailed summary of performances obtained for each unseen class using the PNo

algorithm is presented in Table 7.14. Here, 2M and 3M refer to PAMAP2HA and
PAMAP2HCA datasets. Similar to MEx, HDPoseDS and selfBACK the generalised
mean performance calculated for PNo algorithm indicate that there is no significant bias
towards seen classes.

Table 7.14: PNo performance comparison by activity class with PAMAP2 datasets

Test class PAMAP2H PAMAP2C PAMAP2A 2M 3M
Descending stairs 0.7156 0.7449 0.7366 0.8353 0.8545
Sitting 0.7347 0.8084 0.7554 0.8617 0.8875
Ascending stairs 0.7565 0.7761 0.7320 0.8406 0.8603
Vacuum cleaning 0.7172 0.7826 0.7613 0.8759 0.9008
Ironing 0.7206 0.7861 0.7520 0.8318 0.8844
Standing 0.6922 0.7797 0.7547 0.8520 0.8886
Lying 0.7232 0.7453 0.7702 0.8738 0.8968
Walking 0.7386 0.7908 0.7244 0.8471 0.8515
conv. mean 0.7248 0.7767 0.7483 0.8522 0.8781
gen. mean 0.7233 0.7763 0.7459 0.8515 0.8763
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LNCO with HDPoseDS, selfBACK and PAMAP2

Table 7.15 summarises the LNCO performance comparison for HDPoseDS, selfBACK

and PAMAP2 datasets using the PNo algorithm. This evaluation measures the robust-
ness of the PNo algorithm with an increasing number of unseen classes, and the eval-
uation setting is detailed in Section 3.4.1. Results for single modality PAMAP2 and
selfBACK datasets are a summary from Section 6.3.2 where we compared the two
similarity-optimised meta-learners PNo and MNo* to find PNo is the most robust. It
is noteworthy that there is no appropriate method in the literature to compare against
these results.

Table 7.15: PNo performance comparison for increasing unseen classes (LNCO)

Datasets L1CO L2CO L3CO L4CO L5CO L6CO L7CO L8CO
HDPoseDS17 0.9991 0.9991 0.9989 0.9990 0.9983 0.9990 0.9986 0.9992
HDPoseDS13 0.9964 0.9964 0.9972 0.9968 0.9940 0.9970 0.9962 0.9958
HDPoseDS10 0.9938 0.9928 0.9948 0.9912 0.9945 0.9909 0.9871 0.9941
HDPoseDS6 0.9658 0.9654 0.9600 0.9722 0.9717 0.9578 0.9575 0.9685
PAMAP2H 0.7233 0.7265 0.7132 0.6901 - - - -
PAMAP2C 0.7763 0.8018 0.7593 0.7324 - - - -
PAMAP2A 0.7459 0.7678 0.7161 0.7121 - - - -
PAMAP2HA 0.8515 0.8476 0.8412 0.8020 - - - -
PAMAP2HCA 0.8763 0.8600 0.8352 0.8144 - - - -
SBW 0.8130 0.8180 0.8010 0.7952 - - - -
SBT 0.9103 0.9078 0.8958 0.8795 - - - -
SBWT 0.9316 0.9219 0.9126 0.8978 - - - -

We observe that PNo maintain consistent performance as we keep introducing up to 8 new
classes after deployment with the HDPoseDS datasets. With PAMAP2 and selfBACK

datasets, we observe that the performance gradually decrease as new unseen classes are
introduced. These results are consistent with the results observed with the MEx single
modality datasets in Section 7.4. In addition, similar to MEx multi-modal settings,
with HDPoseDS, we observed that PNo maintains performance with increasing unseen
classes. Accordingly, we affirm that it is an added advantage to have a sensor-rich setting
when performing open-ended recognition. We attribute minor random increments of
performance to the random selection of test classes in the experiment design.
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7.6 Chapter Summary

In this Chapter we presented the MEx dataset and a comprehensive evaluation of the
methods introduced in Chapters 4, 5 and 6. We presented the sensor and exercise section,
ethics processes followed in data collection. We presented a summary of the resulting
dataset organised by the demographic information and also discussed few limitations.

Next, we presented an evaluation of the three technical contributions of this thesis for
exercise recognition using the MEx dataset. First, we evaluated mHAF architecture for
heterogeneous multi-modal fusion to show that our method outperformed several base-
lines and fusion algorithms from recent literature. We further verified this contribution
using visualisations of confusion matrices and attention weights. Secondly, we evalu-
ated the personalised meta-learners against conventional meta-learners and deep learn-
ing methods to show the positive effect of the personalisation methodology. We further
verified this contribution by comparing the conventional and personalised meta-learner
training progression over epochs. Finally, we evaluated the open-ended meta-learners
against k-NN, which is the basis of attribute-based open-ended recognition algorithms.
We visualised the robustness of our methods by evaluating for different unseen classes
and increasing number of unseen classes.

Finally, we evaluated the three contributions using other HAR datasets. Multi-modal
fusion evaluation showed that our architecture is less effective in homogeneous multi-
modal settings. We evaluated personalised meta-learners in other HAR domains to show
that our methods are highly effective when only a limited number of data instances is
available. Finally, we evaluated open-ended meta-learners. Our method not only outper-
formed two methods from recent literature but also demonstrated robust performance
across a range of activity domains in multi-modal settings.



Chapter 8

Conclusion

This thesis investigated the personalisation challenges of heterogeneous multi-modal exer-
cise recognition. The following research questions were selected to address the challenges
in the context of exercise recognition.

1. How to recognise exercises, given a set of sensor modalities, by learning modality
and feature combinations and learning to discard noise?

2. How personalise exercise recognition to end-users with limited data and minimal
end-user interaction?

3. How to extend exercise recognition to recognise new unseen exercises with limited
data and minimal end-user interaction?

Five objectives were identified to address these research questions. This chapter discusses
the contributions of this thesis by revisiting the initial research objectives and summaris-
ing key conclusions that emerged from each Chapter. This chapter also presents the
limitations, future directions and desirable extensions before finally concluding this the-
sis.

8.1 Objectives Revisited

1. Multi-modal Recognition: Develop a fusion algorithm to recognise ex-
ercises using a combination of heterogeneous sensor modalities.

The emphasis of this objective was to create a fusion architecture that learns to

161
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highlight significant features and understate noisy features from multiple modali-
ties for each activity class. Given the limited of availability of labelled data, it is
infeasible to learn such feature and modality combinations using a very deep archi-
tecture. To address this objective, we presented a Multi-modal Hybrid Attention
Fusion architecture, mHAF.

In a heterogeneous multi-modal setting, modalities may prefer different feature
learners, and supporting several modality combinations is infeasible with existing
methods. To address this, we created a modular architecture where individual
modalities learn from their specialist feature learners, and the resulting features
were fused using the hybrid attention fusion module. Accordingly, the mHAF

architecture was adaptable modality combinations to support to end-user modality
preferences and restricted environments. Attention learns to emphasise desirable
features, that contributes to reducing the depth of feature learners and consequently
reducing the need for excessive quantities of training data. With the combination of
hard and soft attention, we ensured that the mHAF learns a modality combination
effective to recognise each activity class.

In evaluation, the specialist feature learner for each modality is identified empir-
ically from a group of deep feature learners. Next, given a set of modalities, we
identified the best minimal modality combinations for restricted settings. Results
of these empirical evaluations informed the mHAF architecture to create bespoke
models. We performed an ablation study which established the contribution and
necessity of each element of the modular architecture.

2. Personalised Recognition: Develop Exercise Recognition algorithms that
are adaptable to unseen persons or person groups

Personalisation methods found in literature either demand end-users to provide la-
belled data to bootstrap models or need periodical end-user interactions with active
learning methods. We propose that the key to achieving effective personalisation is
the ability to personalise with few data instances. We investigated personalisation
with few-data, where we treat a person as a task and person-activity as a class label.
We introduced the personalised meta-learning methodology to train meta-learners
that are adaptable to any new, unseen person using only few data instances. With
this methodology, we learned a meta-model that is the best initialisation point for
any person, and it is easily personalised using only a few data instances. We im-
plemented the personalisation methodology with two meta-learners, and we also
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improved an existing personalised few-shot learning method using this new ap-
proach.

In the evaluation, an empirical study was performed to find the best feature learners
for each modality for learning a meta-model. We find that simple dense architec-
tures are best at extracting abstract features for a given set of activities from many
persons. We explored different few-shot settings to find a balance between perfor-
mance and usability. We also presented an exploratory evaluation on improving
the training of RNp algorithm. We showed how training RNp as a metric learning
task and a classification task is preferred over the original approach of training as
a regression task.

3. Open-ended Recognition: Develop algorithms to recognise exercises not
seen during model implementation.

Physiotherapists prescribe multiple exercise plans to a patient, and it is infeasible
to design an algorithm to recognise all expected exercise classes. To address this
objective we explored a knowledge-light approach to introducing new and unseen
activity classes, instead of the knowledge-intensive methods seen in the literature.
We investigate how meta-learners performing zero-shot learning is not suitable in an
open-ended setting. Instead, we introduced the personalised and open-ended meta-
learning methodology and implemented with similarity-optimised meta-learners.
The resulting approach enabled the dynamic expansion of the decision layer to
integrate new activity classes as they are introduced to the model without any
model re-training. Moreover, similar to personalisation, only few labelled data
instances are needed from the end-user to integrate a new activity class to the
existing model. This new data is not used in model re-training, instead used as
representatives of the unseen classes.

In evaluation, we compared three similarity-optimised meta-learners for person-
alised open-ended recognition. First, we evaluated the robustness of each algorithm
by introducing different unseen activity classes using three HAR datasets. Given
that the end-user can introduce any activity class after deployment, we highlighted
the algorithm which achieves overall highest performance but also performed well
across different activity classes. An end-user can introduce more than one new
activity class, and the model needs to maintain performance in such a scenario.
Accordingly, we evaluated the robustness of the meta-learners with an increasing
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number of unseen activity classes. We find that personalised and open-ended pro-
totypical networks, PNo, achieved the best performance across different activity
classes, different modalities and with multiple unseen classes.

4. Create an open, sensor-rich dataset for physiotherapy exercise recogni-
tion

An investigation of the literature showed the lack of publicly available datasets
impedes the research and development of exercise recognition algorithms. Accord-
ingly, we explore the sensors, exercises and data collection protocols that can be
used in monitoring physiotherapy exercises. The resulting MEx dataset is collected
for 7 physiotherapy rehabilitation exercises using 4 sensor modalities: 2 accelerom-
eters, a depth camera and a pressure mat. Accordingly, this is a sensor-rich dataset
with heterogeneous modalities. MEx has data recorded for 30 persons each per-
forming 7 exercise, each for approximately 60 seconds. As a result, this dataset
is not large compared to other general fitness HAR datasets found in the liter-
ature. We share the dataset as an open-research resource, to encourage further
research in multi-modal fusion and to standardise activity recognition evaluation
methods. This dataset was used in this thesis to fine-tune and evaluate our meth-
ods to establish the significance of our methods compared to methods found in
recent literature.

5. Conduct a comprehensive evaluation of all developed methods for phys-
iotherapy exercise recognition

Finally we performed a comprehensive evaluation of all methods introduced for
Objectives 1, 2 and 3 using the MEx dataset.

A comparative evaluation showed that mHAF architecture outperformed several
baselines and two methods from recent literature in the heterogeneous multi-modal
setting for exercise recognition. By visualising confusion matrices and attention
weights, we further verified that mHAF learned modality and feature combina-
tions that are intuitive for each activity class. Notably, mHAF architecture is most
effective in a heterogeneous multi-modal setting and achieved comparable perfor-
mance in a homogeneous multi-modal setting.

A comparative evaluation showed that personalised meta-learners outperform deep
learners and conventional meta-learners. We also find that our methodology signif-
icantly improves the performance of a few-shot learning methods for personalised
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HAR in literature. By visualising the training of meta-learners, we show that per-
sonalisation has improved the generalisability of the resulting meta-models. We
also presented how different persons adapt meta-learners using their few personal
data to find that adaptation-optimised meta-learners are the most robust across
different persons and different modality combinations.

Finally, we perform a comparative evaluation to find that our open-ended meta-
learning methodology implemented using PNo outperformed kNN baseline and two
attribute-based open-ended recognition algorithms found in literature. PNo per-
formance is consistent across different unseen classes compared to attribute-based
methods. Accordingly, open-ended meta-learners are more effective for open-ended
activity recognition with no model re-training after deployment. Furthermore, our
method requires only few data instances from the end-user to integrate new classes
to the existing recognition model.

This objective is evaluated using the MEx dataset collected in a lab environment
with healthy participants, which is not an accurate representation of the real-world.
Accordingly, we highlight that the performances presented in this objective can be
too optimistic in practice with MSD patients.

8.2 Limitations and Future Work

This section highlights the limitations and implications of the work presented in this
thesis and outlines some areas for consideration in future extensions.

We presented the heterogeneous multi-modal physiotherapy exercises dataset, MEx in
Chapter 7. A notable limitation of the dataset is that the population of 30 persons
does not emulate a population with musculoskeletal disorders. Due to the challenges of
recruiting patients with musculoskeletal pain within a limited time, the data collection
was conducted with participants recruited from the university. For instance, 100% of the
sample were healthy individuals and 47% were in the age group of 18-24. As we visualised
in Section 7.3.3, personal differences affect the recognition performance. Accordingly,
there is a significant possibility that the performance measures we have reported in this
thesis may vary significantly in a real-world setting with a different population.

Another limitation of the MEx dataset is the exclusion of a null activity class. In the
recent past, only few HAR datasets were published with a null activity class to indi-
cate that the person is not doing any of the intended activities (Anguita et al., 2013;
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Koskimäki and Siirtola, 2014; Reiss and Stricker, 2012). For physiotherapy exercises, a
null activity class can be interpreted as when the person is taking rests between exer-
cises and performing warm-up or cool-down exercises. The initial intuition behind not
including the null activity class was the large number of possibilities that may or may
not be captured from all modalities. However, we find it is a significant limitation for
deep learning models introduced in Chapter 4. This issue can be alleviated when using
the methods presented in Chapters 5 and 6, where the end-user has the opportunity to
integrate the null class as a new unseen activity class. The end-user can record few data
instances of their interpretation of a null activity class using the preferred modalities, and
thereafter the personalised and open-ended recognition model will consider null activity
class as one of the possible activity classes.

In Chapter 7 we find how methods introduced in Chapters 4, 5 and 6 perform in both
single-modal and multi-modal settings. While our methods outperform methods from re-
cent literature and other baselines, we observe that performance in single-modal settings
is not sufficient for real-world deployment. Recognition performance of methods intro-
duced in Chapters 4 in a restricted home setting with one modality is between 63%∼90%.
Performance is improved to between 74%∼97% when using personalisation methods in-
troduced in Chapters 5. However, these methods require the patient to provide few
data instances for personalisation. Also, we find that performance is again penalised
when adding new unseen exercise classes using methods in Chapters 6. Evidently, a
single modality fails to sufficiently capture discriminative features of exercises to achieve
high accuracy. In addition, modalities with a high degree of freedom capture noise which
penalises the recognition performance. In contrast, with 2M, 3M and 4M settings (multi-
modal) we observed that recognition performance achieved is between 93%∼96% using
fusion methods and 99%∼100% using personalisation. Also, in these multi-modal set-
tings, the performance is between 95%∼98% with the addition of new unseen exercise
classes. Importantly, multi-modal configurations have improved the coverage to capture
features essential to recognise exercises with high accuracy. These observations confirm
that a multi-modal setting is required for physiotherapy exercise recognition.

Integration of the exercise recognition algorithms introduced in this thesis with a digital
self-management application is the most impactful future extension of this work. Such
integration requires to design a hardware and software solution with many design consid-
erations for unobtrusive and user-friendly deployment in a home environment. We find
several design challenges that need to be addressed to implement such a solution. An
embedded system needs to be implemented to connect and synchronise the multi-modal
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sensors. In addition the embedded system needs to maintain a consistent connection to a
user interface in the form of a web or a mobile to transfer sensor data streams. Computa-
tional requirements and end-to-end latency will be contributing factors when selecting to
host reasoning algorithms either remotely or on the edge device. Addressing these design
challenges require investigation of research on edge computing and embedded systems.

A complete digital intervention for self-managing musculoskeletal pain should consist of
three main components: monitoring exercises in real-time; recognition of the exercise
being performed; and the evaluation of the quality of the performance. In this thesis,
we investigated the first two steps to introduce effective monitoring methods with multi-
modal configurations and recognition algorithms for improved performance. Evaluation
of exercise performance quality remains an open research challenge. The performance
quality of an exercise can be seen as how much actual execution deviates from the correct
execution of the exercise performed under the supervision of a physiotherapist. Measur-
ing this deviation can be either objective (i.e. measurable) or subjective (i.e. open to
interpretation). Existing literature models the measurement of performance quality as a
regression task in the domains of weight-lifting and rehabilitation exercises (Chen et al.,
2013; Rybarczyk et al., 2017; Velloso et al., 2013). A rule-based model matches a query
execution against a set of rules derived from correct execution to measure deviation.
These methods are non-transferable to other exercise domains and need expert interven-
tion to define the rules. We believe that the research in assessing performance quality
can benefit from advances deep learning.

Addressing this challenge can be investigated in two directions. Firstly the performance
quality can be viewed as alternative tasks such as a classification task, clustering task
or a reconstruction task. Performance quality as a classification task or a clustering
task is data-driven where data for multiple incorrect executions are needed to train
a model. An interesting avenue is to investigate exercise performance quality as an
anomaly detection task. The deep models, such as Auto-encoders can be trained using
data from correct executions. The reconstruction loss of a query task can be considered
as the measurement of quality where higher loss indicates a more deviation from the
correct execution. Secondly, to support such research, we identify the lack of data in
the literature. Accordingly, we plan to extend the MEx dataset by recording data in
non-lab environments to capture performances that naturally deviate from the correct
performance.
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In conclusion, this thesis investigated three personalisation challenges in exercise recog-
nition. The methods presented to address these challenges were motivated by the need
to minimise data or knowledge requirements to improve usability. In future, these meth-
ods will contribute towards automating exercise monitoring in fitness applications that
promote self-management of MSD.
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Appendix B

MEx Dataset

In this appendix, we present the empirical study for pre-processing MEx modalities and
a detailed overview of the selected physiotherapy exercises.

B.1 Pre-processing MEx Modalities

This empirical evaluation is two-fold; firstly, we explore different window and overlap
values to find the most optimal sliding window parameters for exercise recognition; sec-
ondly, we explore frame selection, frame rate and frame compression parameters to find
the most optimal pre-processing steps for MEx visual modalities PM and DC.

B.1.1 Window and Overlap

An empirical study was conducted to understand how the classification performance vary
with different window and overlap settings. We create a set of experiments with the PM
modality using the 1D-CNN-LSTM architecture from Section 4.3. 3, 5 and 8 seconds
were considered as window sizes, and a number of overlap values were considered for each
window size. Experiments were performed using the LOPO evaluation methodology, and
mean F1-measure is presented in Table B.1. Best performing overlap value for each
window setting is highlighted in bold.

Overall we observe that classification performance improves with the window size, which
is intuitive given that with larger window size, the data instance carry more information
to recognise the exercise. We observe no strict pattern with the overlap where two window
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Table B.1: Window and overlap with PM data

Classifier
Window Overlap (s)
Size (s) 6 4 3 2 1 0

1D-CNN-LSTM
3 - - - 0.6884 0.6914 0.7102
5 - - 0.7408 0.7370 0.7388 0.7397
8 0.7557 0.7537 - 0.7286 - 0.7431

sizes 5 and 8 performed best with highest overlap values 3 and 6 respectively, and window
size 3 performed best with no overlap.

In practice, there are limitations to using a larger window size; firstly a larger window size
results in a smaller number of training instances. A limited number of training instances
may cause parametric models to over-fit or not optimise. Secondly, at test time, larger
data instances may cause a delay in predictions; also, with a smaller overlap, the time
elapsed between two predictions is higher, both of which are not desirable for real-time
use. Therefore it is important to find a window and overlap size that are both practical
in real-world applications while preserving performance. From this study, we select the
window size 5 and overlap 3.

B.1.2 Frame Selection, Frame Rate and Compression

In this section we observe the impact on performance when frames are down-scaled to
reduce frame sizes and frame rates. A set of experiments were designed to explore three
frame sizes and three frame rates with following frame selection techniques.

• Average (AVG): A new frame is created by pixel-wise averaging all frames within
the time period.

• Increment (INC): Increment timestamp by the time-period and select the nearest
timestamp and respective frame.

We select the PM modality and the 1D-CNN-LSTM architecture from Section 4.3 for
these experiments. LOPO evaluation methodology was followed, and the mean F1-
measure is presented in Table B.2. Best performing frame size and frame selection method
combinations for each frame rate are highlighted in bold.

Considering the frame size, we observe that the 1D-CNN-LSTM model achieves the best
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Table B.2: Frame selection, frame rate and compression results for the PM modality

Frame Size
Frame Selection Frames per second

Method 1 2 3 4 5 6

32× 16
INC 0.7408 0.7413 0.7462 0.7259 0.7530 0.7093
AVG 0.7401 0.7335 0.7370 0.7457 0.7482 0.7249

16× 16
INC 0.7632 0.7753 0.7780 0.7423 0.7812 0.7832
AVG 0.7442 0.7528 0.7926 0.7561 0.7949 0.7560

8× 8
INC 0.7226 0.7116 0.7101 0.7210 0.7369 0.7075
AVG 0.7076 0.7129 0.7157 0.7174 0.7186 0.7128

performance with 16× 16. Down-scaling to frame size 16× 16 has improves the perfor-
mance significantly compared to the original frame size at every frame rate. However,
once the frame size is reduced to size 8 × 8, the performance is heavily penalised even
with higher frame rate due to the loss of spatial information.

It is observed that increased frame rate does not necessarily contribute towards improved
performance since all frame sizes achieve the best performance with frame rate 5, but
degrades performance at frame rate 6 (with the exception at frame size 2 and frame
selection method INC). Overall, INC and AVG frame selection methods yielded similar
performances across all three frame sizes and all frame rates. Based on the above results,
we select 16 × 16 frame size and 5 frames per second using the INC frame selection
method for the PM modality.

Table B.3: Frame rate and compression results for the DC modality

Frame Size
Frame Selection Frames per second

Method 1 2 3 4 5 8
32× 24 INC 0.8746 0.8991 0.8778 0.8655 0.8713 0.8374
16× 12 INC 0.8720 0.8929 0.8837 0.8764 0.8853 0.8450

We extend the empirical study of frame rates and frame sizes with the DC modality using
the INC frame selection method. We select two frame sizes by downscaling the original
frame size of the DC modality which was 320 × 240. We are using the 1D-CNN-LSTM
architecture from Section 4.3 for these experiments. LOPO evaluation methodology
was followed, and the mean F1-measure is presented in Table B.3. We observe similar
performances with both frame sizes. The best performance for each frame size is achieved
at 2 frames per second, but manage to maintain performance up to 5 frames per second.
Performance is dropped significantly at 8 frames per second.
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The important take away from this study is that frame size and frame rate can be
selected such that they complement each other. And importantly, selecting a higher
frame rate and a larger frame size does not naturally improve performance. Lazy feature
augmentation techniques such as frame down-scaling and frame selection can be pivotal
to achieving higher performance with reduced memory and computational power.

B.2 MEx Exercises
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Table B.4: MEx exercises

Knee Rolling
Ab Lying on back, knees together and bent, feet flat on floor. Slowly

roll knees to the right, back to the centre, then to the left keeping
upper trunk still

Bridging
Glut Lying on back with knees bent and slightly apart, feet flat on floor

and arms by side. Squeeze buttock muscles and lift hips off floor.
Hold approximately 5-seconds and lower slowly.

Pelvic tilt
Pain relief Lying on back with knees bent and slightly apart, feet flat on

floor and arms by side. Tighten stomach muscles and press small
of back against the floor letting your bottom rise. Hold approxi-
mately 5 seconds then relax.

Bilateral Clam
Glut Lying on right side with hips and shoulders in straight line. Bend

knees so thighs are at 90 degrees angle. Rest head on top arm
(stretched overhead or bent depending on comfort). Bend top
arm and place hand on floor for stability. Stack hips directly on
top of each other (same for shoulders). Keep big toes together and
slowly rotate leg in hip socket so the top knee opens. Open knee
as far as you can without disturbing alignment of hips. Slowly
return to starting position

Extension in Lying
Flexibility Lying face down, place palms on floor and elbows under shoulders

(press-up position). Straighten elbows as far as you can and push
top half of body up as far as you can. Pelvis, hips and legs must
stay relaxed. Maintain position for approximately 2-seconds then
slowly lower to starting position.

Prone punches
Core On all 4’s with hands directly beneath shoulders, knees slightly

apart and straight back. Punch right arm in front and lower to
floor. Repeat with left arm. Keep trunk as still as possible

Superman
Back On all 4’s with hands directly beneath shoulders, knees slightly

apart and straight back. Extend right arm straight in front of you
and left leg straight behind you, keeping trunk as still as possible.
Hold approximately 5-seconds then lower and repeat with other
arm and leg.



Appendix C

HAR Datasets

In this appendix, we present an extended view on data distribution properties of HAR
datasets selfBACK, PAMAP2 and HDPoseDS. We plot the data distribution by person
and by activity class to observe the characteristics of each dataset. The error bars on by
person plot indicates the maximum, and the minimum number of instances for a class
and the error bars on by class plot indicate the maximum and the minimum number of
instances from a person.

selfBACK Dataset: Figure C.1a plots the number of data instances for each person
of the selfBACK dataset. On average, a person contributes 75.7 ± 3.25 data
instances per class, but there is a significant imbalance between the number of
data instances per class. Figure C.1b plots the data distribution by exercise class.
While the data instance distribution across exercises classes is approximately bal-
anced (75 ± 4.21), there exist significant outliers for personal contributions. It is
noteworthy that compared to MEx, selfBACK is comparably a larger dataset.

PAMAP2 Dataset: Figure C.2a plots the number of data instances for each person on
the PAMAP2 dataset. On average, a person contributes 88.4± 2.8 data instances
per class, but there is a significant imbalance between the number of data instances
per class. Figure C.2b plots the data distribution by exercise class. There is a
significant class imbalance (88.4± 24.35) in addition to the significant outliers for
personal contributions. Similar to selfBACK, PAMAP2 is also a large dataset.

HDPoseDS Dataset Figure C.3a plots the number of data instances for each person on
the HDPoseDS dataset. On average, a person contributes 27.05±2.3 data instances
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per class. There is a significant imbalance between the number of data instances
per class for person 6. Figure C.3b plots the data distribution by exercise class.
On average, a pose class has 27.05 ± 1.42) data instance with significant outliers
for only pose class 22 (Thinking). In numbers, this dataset closely resembles a
few-shot dataset.

(a) By person

(b) By activity class

Figure C.1: selfBACK data distribution
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(a) By person (b) By activity class

Figure C.2: PAMAP2 data distribution

(a) By person

(b) By pose class

Figure C.3: HDPoseDS data distribution
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