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Abstract

Understanding similarity between different examples is a crucial aspect of Case-Based

Reasoning (CBR) systems, but learning representations optimised for similarity com-

parisons can be difficult. CBR systems typically rely on separate algorithms to learn

representations for cases and to compare those representations, as symbolised by the

vocabulary and similarity knowledge containers respectively. Deep Metric Learners

(DMLs) are a branch of deep learning architectures which learn a representation opti-

mised for similarity comparison by leveraging direct case comparisons during training.

In this thesis we explore the symbiotic relationship between these two fields of research.

Firstly we examine what can be learned from traditional CBR research to improve the

training of DMLs through training strategies. We then examine how DMLs can fill

the traditionally separate roles of the vocabulary and similarity knowledge containers.

We perform this exploration on the real-world problem of experience transfer between

experts and non-experts on service provisioning for telecommunication organisations.

This problem is also revealing about the requirements for practical applications to be

explainable to their intended user group. With that in mind, we conclude this thesis

with work towards the development of an explanation framework designed to explain

the recommendations of similarity-based classifiers. We support this practical contribu-

tion with an exploration of similarity knowledge to support autonomous measurement

of explanation quality.
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Chapter 1

Introduction

Human experience composes one of the more difficult areas to manage in an organ-

isational memory [1], yet sharing and managing expertise is a necessary aspect of

knowledge management [2]. However, knowledge transfer between expert-level users

is a difficult task [3]. When seeking to automatise such an interaction, it often means

that a user is directed towards another expert user, rather than presented with specific

information itself. For example, in [4] the authors built the PWC Connection Ma-

chine, a machine learning-based system which supported personnel struggling with a

specific problem by recommending colleagues who had experienced similar problems,

or knowledgeable trained experts. The proposed system did not offer an answer to the

problem itself, but instead used the description of the problem to identify the most

suitable person to resolve it. This is because the information sources that store experi-

ence are necessarily complex, as experiential content is difficult to elicit and therefore

difficult to query effectively [5]. As a result, developing a knowledge model to cover all

relevant aspects from historical experience would be infeasible. However, sufficiently

understanding the similarity between work elements in expertise-reliant sectors could

present an opportunity to improve knowledge transfer between users [4]. A method-

ology such as Case-Based Reasoning could be suitable to leverage this intuition while

being easily explainable to users [6, 7].

Case-Based Reasoning (CBR) is a methodology founded on the paradigm that ‘similar

problems have similar solutions’ [8, 9, 10]. The intuition behind this methodology has

its roots in human psychology; as people, we learn from our previous experiences to

inform future decision-making [9, 10, 11]. This means that the solutions produced by a

CBR system often closely mirror human judgements in how they are approached. As a

result, when implemented as a component of a machine learning system CBR is often

pointed to as an easily explainable technique [6, 7, 12].
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CBR is reliant on having records of known past experiences and their solutions (‘cases’)

stored within a structure which can be easily queried (the ‘case-base’). When a query

is input, the case-base is searched to find the most similar cases to the query. Solutions

of retrieved cases can then either be reused in their original form or adapted to suggest

a solution which is appropriate for the query case [8, 9]. The query, a record of the

proposed solution, and knowledge of its outcome (i.e. was the solution successful)

can then be stored to contribute towards further decision-making. Thus the CBR

methodology can be modelled as a four-stage process of retrieve (similar historical

cases), reuse (the solutions of these cases if possible), revise (these solutions to meet

the needs of the new query) and retain (the query case and its solution to improve the

case base) called ‘the CBR cycle’ [8].

In a practical implementation of the CBR methodology, system functionality can be

modelled through the interactions between four knowledge containers - vocabulary

knowledge, similarity knowledge, adaptation knowledge and case-base knowledge [13].

Each of these containers are a method of formalising the level of knowledge captured by

the system: the vocabulary container is indicative of the knowledge captured in the rep-

resentation of case features; the similarity container is a formalisation of the knowledge

in case or feature comparison; the adaptation container represents the known methods

or rules to adapt a solution to meet the needs of another known case; and the case-base

knowledge container summarises the extent of known cases in the case-base. These con-

tainers can be seen as another method of describing specific implementation details of

the CBR cycle, whereby the vocabulary and similarity containers provide functionality

for the system to retrieve similar cases, the adaptation container controls the process

of solution revision and the number of cases captured within the case-base will impact

whether retrieved solutions are suitable to be reused and where revised solutions should

be retained. Typically, these containers are disjoint. For example, algorithms which

support similarity calculations do not contribute towards the vocabulary container.

This presents an issue, because in the case of representing human experience it can be

expensive to construct a specialised representation and then receive feedback to under-

stand how these should be compared for similarity calculations. It would be desirable

for specifically the case vocabulary and similarity function to be learned simultaneously

(meaning filling the vocabulary and similarity knowledge containers at the same time).

Deep metric learners are a branch of neural network architectures (including the

Siamese Neural Network [14, 15] and Triplet Network [16]) which use similarity knowl-

edge between input examples to improve representation and create a latent space opti-

mised for similarity-based return [15, 17, 18]. They receive multiple examples as input

simultaneously to develop embeddings which are optimised based on an objective. This
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objective is defined by a ‘matching criteria’ - a principle which identifies whether two

examples are similar or not. DMLs are interesting because they combine both represen-

tation learning and similarity functions into a single algorithm. This creates potential

for DMLs to be integrated within a modern CBR framework. In particular, it offers

a potential means to learn to learn how best to represent records of human experi-

ence such that the data is optimised for integration with a system which could enable

knowledge transfer.

Furthermore, due to its reliance on reuse of existing cases, CBR allows explanations

of its decision-making to be easily formed using comparisons (i.e. by ”matching”),

or by leveraging knowledge within the case-base itself [7, 12, 19]. The similarity and

vocabulary knowledge containers within CBR present a good opportunity to structure

explanation types to better meet the explanation needs of different users [20]. This

is important in real-world circumstances where many different user groups frequently

interact with the system [21, 22]. Beyond this, CBR’s utility in the field of explanation

hints at the capability of evaluating the quality of explanations autonomously using

similarity metrics.

1.1 Research Hypothesis

We believe that DMLs are well adapted to support the task of transfer of experience

within expertise-driven domains. The similarity between the CBR and DMLs suggest

that the latter should be capable of emulating successful deployment of CBR systems

for this task. Beyond this, DMLs have a key advantage in that they are capable of learn-

ing to represent complex data structures, whereas CBR’s inability to do this (without

an expensive knowledge engineering stage) could present a prohibitive barrier to devel-

opment. We highlight the ability to optimise learned representations using similarity

knowledge as an indicator that DMLs present an opportunity to fulfill the traditionally

knowledge containers of ’vocabulary’ and ’similarity’ within a CBR system.

From another perspective, due consideration of previous research in traditional ma-

chine learning algorithms highlights an opportunity to improve the training efficiency

of DMLs. Specifically we highlight techniques such as boosting in meta-learning, or

clustering in CBR, which leverage locality knowledge to build a contextual awareness

of the feature space and contribute towards better overall performance of the sys-

tem. Given DMLs reliance on building representations based on direct comparisons

of examples, we suggest that a training strategy which incorporates awareness of the

distribution of examples within a locality could lead to faster network convergence.

Finally, given that similarity-based methods such as CBR are interpretable as they

3



mirror human decision-making, it seems intuitive to suggest that the output of DMLs

could also be explained in the same manner. We therefore believe that despite being

deep learning architectures whereby the features learned are not necessarily under-

standable to humans, DMLs’ reliance on similarity knowledge presents an opportunity

to explain their decisions. As part of this, we suggest that similarity-based explanation

methods are well placed to support multiple user groups with escalating requirements

from an explanation. This is because the granularity of the similarity comparison can

be adjusted to suit the expertise of the user (i.e feature-feature comparisons for ex-

perts, case-case comparisons for non-experts, etc). We therefore posit that DMLs can

be explained by leveraging similarity knowledge, and the explanation can be targeted

to meet the needs of different user groups.

To summarise, we hypothesise that similarities between CBR and DMLs present an

opportunity for integration where both methods will benefit. Specifically we anticipate

that training of DML architectures can be improved by considering clustering research

from other machine learning techniques, and that DMLs present an opportunity to

combine the similarity and vocabulary knowledge containers as a component of a CBR

system. Furthermore, as DMLs are fundamentally similarity-based architectures we

believe that their output can be explained effectively in situations where multiple user

groups of varying domain expertise are using the system.

To ensure systematic investigation of these claims, we deconstruct the hypothesis into

the following research questions:

1. How can techniques from traditional machine learning methods (such as CBR

and meta-learning) be incorporated into strategies to improve training efficiency

of DMLs?

2. How effective are DMLs at fulfilling the traditionally separate roles of the ’vocabu-

lary’ and ’similarity’ knowledge containers in the context of transfer of experience

between experts and non-experts of telecommunications engineering?

3. How can we explain the output of similarity-based architectures (including DMLs)

intended to support user groups of varying domain expertise, and how can we

autonomously evaluate the quality of produced explanations?

Each question underpins one aspect of the research we have performed towards proving

our hypothesis. For each research question, we dedicate a chapter in this thesis to

describe our work towards answering that question. Therefore, in this thesis we present

three original and novel contributions towards research in the areas of CBR, Deep

Metric Learning and ecplainability:
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1. We introduce several training strategies for DMLs which are inspired by research

in meta-learning, curriculum learning and CBR. Experiments on public datasets

from multiple domains illustrate that the proposed strategies improve training

efficiency of DML architectures.

2. We compare methods of developing a similarity model for transfer of experience

using free-text data sources. Our findings demonstrate that DMLs can learn to

produce representations optimised for similarity calculations which offer clear im-

provement over dense representations gained from word embeddings, but require

refinement to outperform statistical methods.

3. We describe the development of an explainability framework based upon one of

our use-cases, and assess the quality of these explanations using novel autonomous

evaluation methods and user feedback. The results highlight the practical utility

of a hierarchical explanation framework.

For each of these primary contributions, we also explore a number of secondary con-

tributions in the respective chapters. These secondary contributions will inspect and

discuss in greater granularity specific advancements we have made in each of the re-

search fields which are explored through our primary contributions. Our hypothesis,

research questions and contributions are summarised in Figure 1.1.

1.2 Methodology

We evaluate the contributions of this thesis on two real-world use cases considering the

transfer of experience between expert and non-expert personnel within a telecommu-

nications organisation. The goal of these use cases was to build a system which was

capable of enabling both engineers and desk-based agents to leverage the experience of

other field engineers to better inform their decision-making. In the first use case, we

target recommendation of additional information to support risk management based

on previous tasks, while in the second use case we aim to support transfer of experience

between desk-based agents and engineers. We evaluate these use cases on novel real-

world datasets gathered from engineer notes in the telecommunication domain, which

act as our records of experience. Finally, we also demonstrate a general framework to

develop explanations using these notes as a foundation.

Both of the use cases explored in this thesis rely on textual data as input in the

form of telecommunication engineer notes. In use case 1 we attempt to elicit specific

information from engineer notes to recommend additional information, while in use case

2 we aim to recommend the appropriate task intervention for a desk-based agent using

the notes. We consider CBR as a promising methodology to achieve these aims, and
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Hy
po

th
es

is
Hypothesis

We hypothesise that similarities between Case-Based Reasoning and Deep Metric Learners present an opportunity
for integration where both methods will benefit. Specifically we anticipate that training of DML architectures can be
improved by considering clustering research from other machine learning techniques, and that DMLs present an
opportunity to combine the similarity and vocabulary knowledge containers as a component of a CBR system.
Furthermore, as DMLs are fundamentally similarity-based architectures we believe that their output can be explained
effectively in situations where multiple user groups of varying domain expertise are using the system.

Chapter 4 Chapter 5 Chapter 6

Re
se

ar
ch

 Q
ue

st
io

n How can techniques from traditional 
machine learning methods (such as 
CBR and meta-learning) be 
incorporated into strategies to 
improve training efficiency of DMLs? 

How effective are DMLs at fulfilling 
the traditionally separate roles of 
the 'vocabulary' and 'similarity' 
knowledge containers in the context 
of transfer of experience between 
experts and non-experts of 
telecommunications engineering?  

How can we explain the output of 
similarity-based architectures 
(including DMLs) intended to 
support user groups of varying 
domain expertise, and how can we 
autonomously evaluate the quality 
of produced explanations? 

Pr
im

ar
y 

Co
nt

rib
ut

io
n

We introduce several training 
strategies for DMLs which are 
inspired by research in meta-
learning, curriculum learning and 
CBR. Experiments on public datasets 
from multiple domains illustrate that 
the proposed strategies improve 
training efficiency of DML 
architectures.

We compare methods of developing 
a similarity model for transfer of 
experience using free-text data 
sources. Our findings demonstrate 
that DMLs can learn to produce 
representations optimised for 
similarity calculations which offer 
clear improvement over dense 
representations gained from word 
embeddings, but require refinement 
to outperform statistical methods.

We describe the development of an 
explainability framework based 
upon one of our use-cases, and 
assess the quality of these 
explanations using novel 
autonomous evaluation methods 
and user feedback. The results 
highlight the practical utility of a 
hierarchical explanation framework.

Se
co

nd
ar

y 
Co

nt
rib

ut
io

n

1. Taking inspiration from current 
research into optimising the 
training of DMLs and historical 
research into meta-learners, we 
introduce two methods for 
informed pair selection (DYNE 
and DYNEE) that optimise pair 
creation by leveraging the 
concepts of exploration and 
exploitation. 

2. Encouraged by the results of 
recent work in curriculum 
learning we introduce a pair 
complexity heuristic for ordering 
that draws on knowledge about 
the neighbourhood properties of 
pairs.

3. Building on the limitations of our 
pair selection strategies, and 
motivated by techniques from 
CBR, we present an incremental 
locality-sensitive batching 
strategy for triplets (LSB) which 
allows the batching to evolve 
alongside example 
representations over the course 
of training.

1. We examine our ability to learn 
task similarity using expert-
written documents (engineers' 
notes) provided by a 
telecommunication organisation. 

2. We introduce two real-world use 
cases to highlight the real world 
applicability of the proposed 
methods. The first use case 
examines recommendation of 
additional information to 
perform dynamic decision 
support for engineers in the field. 
The second use case examines 
the transfer of experience 
between expert and non-expert 
personnel within the 
telecommunications work sector. 
We demonstrate how both of 
these use cases are achievable by 
learning similarity models 
empowered by DMLs. 

3. We perform a short comparative 
study of developing 
representations from expert-
written documents for similarity-
based return on the basis of their 
accuracy on two simple 
classification tasks from our use 
cases.

1. We outline the development and 
implementation of a modular 
explainability framework and 
detail several of its sample 
modules as applied to the real-
world problem of supporting 
desk-based planning agents in 
the telecommunications 
engineering domain.     

2. We perform a qualitative 
evaluation to understand user 
opinion on the quality of 
provided explanations with 
feedback from two user groups 
of different levels of expertise. 
The results indicate that the 
judgement of what forms a good 
explanation changes based on 
domain-expertise: experts 
preferred explanations to mirror 
their reasoning, while non-
experts emphasised task 
performance.

3. We explore the correlation 
between the quality of an 
explanation and similarity 
knowledge within the latent 
space using two novel metrics: 
Meet-in-the-Middle (MITM) and 
Trust Your Neighbours (TYN). Our 
results highlight that similarity is 
a promising starting point to 
model the quality of explanation.

Figure 1.1: The hypothesis of this thesis as broken down into research questions. We
answer each question through our contributions in the corresponding chapters.
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so in both use cases our goal is to develop a model capable of assessing the similarity

between notes. We have nominated deep metric learning algorithms for this purpose.

DMLs, like most machine learning algorithms, require that text is converted into a

structured or numerical representation to elicit specific knowledge for algorithms to

leverage. Therefore it is relevant for us to examine methods of text representation, and

in this thesis we consider both statistical methods (term-frequency / inverse-document-

frequency) and learned methods (Word2Vec) to develop representations for text before

input to DML algorithms. In this way, we assess the real-world impact of our research.

We discuss this further in Chapter 5.

Discussions with real users highlight several pragmatic truths about deploying machine

learning algorithms for use in the field. In particular, we highlight the requirements for

explanation of decisions made by these algorithms. Previous attempts to use engineer-

ing notes as a source for skills-based matching of telecommunications engineers with

tasks [23] within our industry partner had been met with resistance when deployed,

largely due to lack of user understanding. Therefore we take a different route to provi-

sioning explanations. We use co-creation with real users to understand their needs from

explanation, which informs the development of a hierarchical explanation framework

with increasing levels of explanation complexity and context awareness. Feedback from

real users enables us to propose methods of autonomously evaluating the quality of

explanations, and measure their correlation. In this manner, our methodology for ap-

proaching explanation of decisions is to work with users to identify good explanations

first, and then develop metrics for evaluation quality second. We discuss this in further

detail in Chapter 6.

Before exploring the practical aspects of deploying our research, it is important to

ensure its theoretical validity. We propose novel training strategies to improve the

training of DMLs, with the intention to apply these to our use cases. However we are

aware that we cannot share the data which informs our exploration, as it is proprietary

to our company partner. Therefore, we evaluate the proposed strategies on a range

of datasets and problem domains. The goal of approaching the thesis in this manner

is to benchmark our methods against public datasets and enable reproducibility in

accordance with best research practice. We provide further details the development

and evaluation of our proposed training strategies for DMLs in Chapter 4. To this end

we provide an introduction to each of the datasets used in this chapter here.

Image Classification

MNIST [24] is a handwriting recognition dataset comprised of 70,000 greyscale images

of handwritten single-digit numbers, divided into a training set of 60,000 images and
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a testing set of 10,000 images. Images are 28 × 28 pixels and have one of ten classes

(the numbers zero to nine). Classes are equally represented throughout the dataset

(i.e. each class has 5,000 examples in the training set and 1,000 examples in the test

set).

CIFAR10 [25] is an object recognition dataset comprised of 60,000 colour images,

divided into a training set of 50,000 images and a test set of 10,000 images. Each image

is 32×32 pixels in size and features one of ten distinct objects that are used to identify

its class label (airplane, automobile, bird, cat, deer, dog, frog, horse, ship or truck).

These classes are equally represented throughout the dataset (i.e. each class has 5,000

examples in the training set and 1,000 examples in the test set).

STL-10 [26] is an object recognition dataset comprised of 13,000 labelled and 100,000

unlabelled colour images extracted from ImageNet. We only utilise the labelled images

in our experiments, which are divided evenly between 10 classes (airplane, bird, car,

cat, deer, dog, horse, monkey, ship, truck). The images are 96 × 96 pixels in size

which is substantially larger than examples from CIFAR10 or MNIST and making it a

challenging benchmark to test the scalability of our proposed methods, as well as much

closer to the size of commercial images.

Human Activity Recognition

The SelfBACK [27]1 dataset features time series data collected from 34 users per-

forming 9 different activities over a short period of time (lying, sitting, standing, walk-

slow, walk-med, walk-fast, jogging, upstairs, and downstairs). Data was collected by

mounting a tri-axial accelerometer on the thigh and right-hand wrist of participants

at a sampling rate of 100Hz. Within this thesis we use a subset of the full SelfBACK

dataset, where we combine the classes walk-fast, walk-med and walk-slow into a single

class (walk) and we remove the class lying. As a result, we have a six-class classification

problem, divided between two data sources. We refer to these as SelfBACK-Wrist and

SelfBACK-Thigh in our experiments.

Text Classification

The Large Movie Review Dataset [28] is comprised of 50,000 labeled film reviews

scraped from the Internet Movie Database (IMDB). Polarized reviews have been ex-

tracted and labeled as either ‘positive’ (where a review score is greater than 6) or

1The SelfBACK project is funded by European Union’s H2020 research and innovation programme
under grant agreement No. 689043. More details available: http://www.selfback.eu. The SelfBACK
dataset associated with this paper is publicly accessible from https://github.com/selfback/activity-
recognition
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‘negative’ (where a review score is lower than 4) to create a binary sentiment analy-

sis task. Though the dataset also contains a large number of unlabeled reviews, we

did not use these in any experiments. We selected the IMDB dataset as its boundary

is naturally complex due to the presence of both concept complexity and subjective

judgment.

The Reuters dataset [29] is a document classification dataset comprised of structured

newswire articles. We used the ModApte subset of the Reuters-21578 benchmark, which

contains 11,228 documents each given one of 46 labels. Reuters was selected as it is

particularly challenging for minibatch approaches, given its inherent data imbalance.

1.3 Chapter List

This thesis is structured in the following manner.

Chapter 2: Related Work. In this chapter we contextualize the contributions of

this thesis by looking at inspirational and related work. In particular, we explore

knowledge containers as a method of formalising the knowledge captured within a

CBR system. Additionally, we present the roots of deep metric learning and efforts

to optimise their training procedures. This allows us to identify overlaps between the

functionality provided by DMLs and the responsibility of individual algorithms within

the knowledge containers. Finally, we discuss the wider field of explanation of machine

learning algorithms, focusing specifically on methods which utilise similarity and some

of the gaps in literature in this regard.

Chapter 3: Technical Aspects of Machine Learning. This chapter introduces

the fundamental technical work required to understand the contributions of this the-

sis. We provide an introduction to the underlying concepts of similarity-based return,

representation learning and deep learning in general. Finally, we discuss in detail the

mathematical basis for the deep metric learning algorithms used throughout this re-

search and demonstrate how they are linked to CBR and Deep Learning algorithms

respectively.

Chapter 4: Similarity Knowledge for Training Deep Metric Learners. In

this chapter we present our foundational work towards the advancement of training

DMLs by incorporating lessons from CBR research. We focus on the matching-based

Siamese Neural Network, and present several novel training strategies using pair-mining

approaches inspired by boosting in meta-learners. Our results show that similarity-

based training schemes have potential, but experiments on four datasets demonstrate

the expense of using similarity knowledge is prohibitive to more complex datasets and

architectures. Motivated by these findings, we are inspired to develop a similarity-based
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training strategy for more complex DMLs, such as Triplet Networks, which is robust to

large or complex datasets and architectures. The result is Locality-Sensitive Batching

(LSB), a method which leverages approximate-Nearest Neighbour (a-NN) mechanisms,

in particular Locality-Sensitive Hashing (LSH), to incorporate similarity knowledge

into a training strategy for triplet networks. Our results over five different datasets

demonstrate the performance improvements offered by LSB in different domains.

Chapter 5: Similarity Knowledge for Transfer of Experience. Here we con-

textualise the contributions of this thesis through two real-world use cases taken from

the domain of telecommunications. The overall goal of these use cases is to support

decision-making by allowing personnel to leverage the previous experiences of domain

experts. In the first use case we present a method of recommending additional informa-

tion to support field engineers to complete complex work tasks on telecommunications

equipment. This use case demonstrates experience transfer between domain experts.

In the second use case we present a case-based recommender system to support desk-

based planning agents to retrieve actionable knowledge from engineer updates in the

form of notes. This use case aims to highlight experience transfer between domain ex-

perts (engineers) and domain non-experts (planning agents). Both of the applications

are reliant on similarity models learned from a textual information source provided by

engineers to describe their daily routine. This allows us to contextualise our contri-

butions to training DMLs in Chapter 4 by applying them in practice. Beyond that,

it highlights the practical considerations for putting these algorithms into use in the

real-world, motivating our contributions towards explainable similarity-based machine

learning architectures in Chapter 6.

Chapter 6: Similarity Knowledge to Support Explanation Explanation mech-

anisms for intelligent systems are typically designed to respond to specific user needs,

yet in practice these systems tend to have a wide variety of users. This can present a

challenge to organisations looking to satisfy the explanation needs of different groups

using an individual system. In this chapter we present an explainability framework

formed of a catalogue of explanation methods, and designed to integrate with a range

of projects within a telecommunications organisation. Explainability methods are split

into low-level explanations and high-level explanations for increasing levels of contex-

tual support in their explanations. We motivate this framework using the specific

case-study of explaining the conclusions of field network engineering experts to non-

technical planning staff and evaluate our results using feedback from two distinct user

groups; domain-expert telecommunication engineers and non-expert desk agents. We

also present and investigate two metrics designed to model the quality of explanations -

Meet-In-The-Middle (MITM) and Trust-Your-Neighbours (TYN). Our analysis of these
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metrics offers new insights into the use of similarity knowledge for the evaluation of

explanations.

Chapter 7 Conclusion. In this chapter, we summarise the outcomes of each chapter

and how they evidence the contributions we have discussed above. We offer some

conclusions, and finish this thesis with some ideas for future work to continue pursuing

these research avenues.
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Chapter 2

Related Work

This chapter provides contextualisation on the contributions of this thesis by examining

relevant machine learning methodologies to enable transfer of experience between expert

and non-expert personnel. This acts as a backdrop for our real world use case in

this thesis, using the real problem of providing decision support within the field of

provisioning services for telecommunication organisation

Firstly we examine work surrounding Case-Based Reasoning, paying particular atten-

tion to the foundational concept of knowledge containers, with an emphasis on the

similarity and vocabulary containers. Following this we examine deep metric learning

research in detail, examining their composition and strategies to improve their per-

formance. In particular, we highlight links between CBR and DML research which

offer a platform for improvements in both methodologies. We will build on this rela-

tionship in Chapters 4 and 5, where we demonstrate how DMLs can support delivery

of CBR components, and how lessons from CBR research can lead to improvements

for the training of DMLs. Finally, we provide an introduction to the growing work in

explainability. Based on the literature, we define the key concepts and terminology

within explainability research. We focus on the need for an explanation from a user’s

perspective, and the ramifications that this has on methods to evaluate the quality of

an explanation. We conclude with a discussion on the explanatory qualities of CBR

and DML architectures. In particular we highlight how explanation fits alongside the

knowledge containers from CBR research. This supports our contribution presented in

Chapter 6.
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2.1 Case-Based Reasoning (CBR)

CBR offers a structured method to develop suitable solutions for novel new problems

by leveraging information from a case-base of previously encountered cases. Each of

these cases describes a specific problem that was encountered (i.e. customer classifi-

cation for direct marketing [30], or a client requiring a recommendation for teaching

materials to access [31]), the corresponding solution to that problem (i.e. a class label,

or the most highly ranked recommendation) and the outcome of that solution (was it

correct, or did the user accept the recommendation) [11]. The case-base is accessed

and maintained through a four-stage process of retrieve, reuse, revise and retain called

‘the CBR cycle’ [8, 32]. In a typical example, when a new problem is presented to a

CBR system as a query, it will first search its case-base to identify the most similar

cases to the query (retrieve). If the problem is sufficiently similar, then the solution

of the retrieved problem may be suggested as an answer to the query (reuse). More

commonly, the solution will require some adaptation to make it more suitable to answer

the current situation (revise). Pending acceptance from the user, a record of the new

problem-solution pair will then be stored in the case-base to inform future iterations

(retain).

From the example above, it can be observed that implementation of specific functions

will be important at several points throughout a CBR system. Aspects such as how

problems can be uniformly described, how they can be consistently and fairly com-

pared, or how to guide adaptation so a realistic solution is generated, are important

practical considerations. These have been formalised in the literature as ‘knowledge

containers’ [13].

We can model a CBR system as the interaction between four knowledge containers -

vocabulary knowledge, similarity knowledge, adaptation knowledge and the knowledge

present in its case-base [13]. These containers act as a means to model the avail-

able knowledge within a CBR system. The vocabulary container is indicative of the

knowledge which is inherent in the representation of case features, while the similarity

container formalises the knowledge of how these features can be compared to judge

which cases are similar [33]. The adaptation knowledge container quantifies the knowl-

edge which is locked within the revision stage of the CBR cycle, commonly examining

the alignment between the query and most similar solution from the case base [34].

Finally, the case-base knowledge is representative of the unique scenarios and problem

types which are covered within the stored cases. For example, we can use case-base

knowledge to judge areas of low representation for case acquisition [35].

To concretize the description of the relationship between the CBR Cycle and knowledge
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containers, consider the following example of a simple theoretical CBR system. The

system is designed to offer recommendations for a recipe given knowledge of available

ingredients and a user’s personal likes and dislikes of ingredients. A case is formed of a

problem component (a finite list of available ingredients and an identical list describing

whether the user likes those ingredients), a solution component (a recipe for a meal) and

an outcome (whether the user enjoyed the meal). This case structure and associated

knowledge forms the basis of the vocabulary container, while the existing historical

cases already captured within the system forms the case-base container. Cases can

be compared using a similarity table which has been provisioned by a domain expert

that describes the similarity of each ingredient to every other ingredient on the basis of

flavour (forming the similarity knowledge container). When a new user wishes to have

a recipe recommended, they will create a query formed of only the problem component

(i.e. the ingredients they have available and their personal likes/dislikes). The CBR

system will compare the query to every case in its case-base using the similarity table

and retrieve the most similar historical case. If the problem component of the retrieved

case is an identical match to the query (i.e. the available ingredients and personal

likes/dislikes are identical), then its solution will be reused. If the problem component

does not match, the system will revise the retrieved solution using the similarity table

to replace unavailable or disliked ingredients with available or liked ingredients (forming

the basis of adaptation knowledge). The adapted recipe will then be recommended

to the user, who can feedback on the recommendation. The new case (formed of the

original query, the adapted solution, and the outcome gained from user feedback) is

then retained in the case-base.

An interesting characteristic of knowledge containers is the co-called ‘knowledge trade-

off’ which exists between them. It is rare for a CBR system to have all four knowledge

containers fully developed, due to the expense of procuring knowledge to fill these

containers or the complexity involved in improving them[36]. Instead, it is significantly

more common for one or multiple of the containers to be lacking, while other containers

are more fully developed and capable of maintaining performance of the system as

a whole [37]. For example, a case-base reasoning system which focuses on similarity

knowledge may have less capacity for adaptation, but a combination of robust similarity

knowledge and a large case-base will still ensure satisfactory performance [4, 37].

As a result, functionality for each of these containers is provided by separate algorithms.

For example, the similarity container is usually filled with local similarity knowledge -

in a textual CBR system this may leverage semantic similarity knowledge gained from

an ontology [38] while its vocabulary container utilises complex text features. Although

the similarity container will operate on the contents of the vocabulary container, that
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is not to say that their functionality is tied together within the same algorithm. An

interesting aspect of deep metric learners, which we will discuss in greater detail in

the upcoming section, is that they present an opportunity to cover multiple knowledge

containers in a single algorithm.

2.1.1 Vocabulary Knowledge

Unlike many other traditional machine learning methods, CBR does not require an ex-

plicit domain model. In its place there is an emphasis on identifying recurring elements

common across the scenarios or data points that make up the real-world objective which

is trying to be solved [11]. The recurring elements are collected together under whether

they describe (1) the problem, (2) the solution or (3) the outcome of the solution when

applied to that problem. Each unique problem-solution-outcome grouping is described

as a ‘case’, while the recurring attributes common across cases are called ‘features’.

Each feature depicts a data point that describes one specific aspect of a case. To illus-

trate this description with an example, consider a CBR system designed to categorise

data describing bears into their species. The features within the problem component of

the case would be a list of attributes describing the bear (i.e. fur colour: white, height:

200cm, etc) while the solution component would contain the class label (i.e species: po-

lar bear), and the outcome would describe whether whether the bear was categorised

correctly or incorrectly (i.e correct classification). The vocabulary knowledge container

is primarily concerned with the selection and representation of these features [13].

In simple CBR systems, a case is represented as a collection of key-value pair features

derived from a structured data source [39]. However, in many real-world situations

these structured features are unavailable and the vocabulary to represent a case must

be learned from unstructured data [40, 41]. This is described as learning a repre-

sentation of the case, as different models and learning parameters will allow different

representations of the same data to be learned. Representation learning is a vast field,

so we focus our attention on only the area which is most relevant to our use case

with telecommunication engineers. The notes detailing complex task information are

recorded in text, and so in this work we consider approaches to learn a representation

for text documents. Typically machine learning algorithms are incapable of accepting

raw text as meaningful input. Instead, the text must be pre-processed in order for

the algorithm to better leverage the complex knowledge structures captured in text.

The process of converting a textual data source (be it a passage of text, a single docu-

ment, or an entire corpus) into a numerical vector representation is collectively referred

to as learning representations for text. By representing the document as a vector,

quantitative functions can be performed upon qualitative data to facilitate informa-

tion extraction by autonomous systems. Text representation methods can be broadly
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categorised into two types, statistical methods and learned methods.

Statistic-based methods learn a representation for documents within a corpus by com-

paring quantifiable features. Individual methods achieve this by examining the pres-

ence/absence of key terms in a document (i.e. binary vectors) or comparing the fre-

quency of terms within a document to how common they are across the corpus (i.e.

tf-idf). Some recent work in this field directly incorporates aspects such as compactness

of terms and how early in a document the word first appears [42]. The representations

which are learned as a result of using a statistical method will be similar if the docu-

ments have a similar distribution of words, and dissimilar otherwise [43]. Perhaps the

most popular statistical method, Term frequency-inverse document frequency (tf-idf)

is a statistical measure designed to quantify as a real value the importance of a set of

given terms within the context of a document in a corpus [44]. The value for each term

is calculated by dividing the frequency of its usage within a document over the number

of documents which contain the term within the corpus [45]. Therefore, each feature

of a document vector is a value which represents an individual word from the corpus

vocabulary and so vectors can be very sparse. As a result, tf-idf becomes steadily less

effective in large corpora with a varied vocabulary.

Learned methods of text representation develop a representation for a document by

modelling latent knowledge captured with the text, and are closely associated with

idea of word embeddings. Word embeddings are a term used to generally describe

a family of learned methods which use neural architectures to model syntactical and

semantic knowledge in passages of text [46, 47, 48, 49]. Word embeddings generally

operate upon the assumption that words which are similar in meaning will occur in sim-

ilar contexts. These assumptions refer to semantic relatedness between words, which is

a broader concept than semantic similarity. Semantic similarity is primarily concerned

with ‘likeness’ relations, such as the relations between synonyms. Semantic relatedness

on the other hand, concerns meronymy and associative relations (such as the relation-

ship between the words ‘pencil’ and ‘paper’) as well as semantic similarity. Semantic

relatedness is powerful as it allows the modeling of association between concepts, and

the measurement of similarity between concepts in a vocabulary.

As an example of a learned method, Word2Vec is a deep learning algorithm which

develops a vector representation of a document based upon the co-occurrence of key-

words within a pre-defined range dubbed ‘the sliding window’ [46, 47]. Word2Vec uses

contextual knowledge from the measurement of word co-occurrence to capture latent

syntactical features and develop word embeddings. The result is a feature space where

words that have similar contexts exist close together. What makes Word2Vec unique
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amongst similar algorithms of this nature, is the fact that the vector describing the doc-

ument produced as output will be optimised based upon the semantic relatedness of

the keywords, so that the model can preserve the linear regularities that exist between

words [46]. Additionally, longer passages of text can be represented by combining the

embeddings for individual words. In its simplest form, this can be achieved by taking

the average of word2vec embeddings for terms in a document. However, more com-

plex methods of learning from word embeddings also exist. Perhaps the most popular

method is learning a vector to represent the desired passage of text (i.e. paragraph

or document) in parallel to learning word vectors [50, 51]. The process of building a

representation of a document from Word2Vec embeddings is known as Doc2Vec [50].

2.1.2 Similarity Knowledge

The concept of similarity, and understanding what makes two cases similar, is a central

underpinning of the CBR methodology. Many researchers point to similarity as the

single most important aspect of a CBR system [9, 52].

Much like the work in case representation described in the above discussion of the

vocabulary knowledge container, popular methods of learning similarity information

between data points have previously been reliant on engineered features and hand-

crafted metrics, such as taxonomies [53]. This is particularly true in systems designed

for domain-specific or complex problems. While some work has examined the auto-

mated learning of similarity metrics using hand-crafted or elicited features [54], CBR

is a methodology which is generally adopted to avoid the expensive process of explicit

knowledge modelling. Increasingly we witness this transition towards global similarity

metrics. Global similarity metrics consider the full representation of a case in order to

perform its similarity calculations, informed either by amalgamating a breakdown of

local feature-based similarities [55, 56], or by transforming cases into numerical vectors

to allow distance comparisons as a proxy for similarity [57, 58, 59]. In this thesis, we

focus on this latter group of vector-based similarity metrics, as they are closely tied

with the learned representations described above.

Vector-based similarity comparisons can quickly become computationally expensive,

particularly in large or complex case-bases. Often these reflect real-world use cases

where the number of cases within the case-base, or features within a single case, are too

large to perform efficient back-to-back comparisons. This problem is often referred to

as the curse of dimensionality [60]. There have been concentrated research efforts with

the intent of reducing the complexity of this process [61, 62, 63, 64, 65]. Specifically we

highlight work which leverages similarity knowledge to cluster the case-base and reduce
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the complexity of case retrieval. Examples include cluster-based retrieval from large-

scale case-bases of image [61], text [62] and even simulation data [63]. Furthermore,

research in this field has also established that the coverage knowledge generated by

clustering approaches can be exploited for sample selection. For example, in [66] the

authors use clustering methods to identify the most important cases for labeling from

an unlabeled set. However, despite the performance gain it can provide, identifying

suitable clusters can be a very expensive process. A number of methods have evolved to

estimate suitable cluster compositions while maintaining computation efficiency. These

methods are called approximate-Nearest Neighbour algorithms (a-NN).

A-NNs are a set of techniques to inexpensively perform neighbourhood computations

on large sets of examples. The goal of these algorithms is to approximate similarity

calculations while maintaining low computational cost. They offer a means to extract

similar examples from a case-base at a fraction of the cost of brute-force nearest neigh-

bour methods such as kNN, with the drawback of usually being less accurate [64, 65].

A specific example is Locality-Sensitive Hashing (LSH). LSH is a data independent

a-NN method to economically estimate nearest neighbour computations by randomly

dividing the feature space into distinct areas known as ‘buckets’, which preserve local-

ity knowledge from the original space [67]. When a query is presented, it is indexed

into a bucket. Similarity metrics are therefore performed only between a query and

the contents of the relevant bucket to establish similarity knowledge in that neighbour-

hood. The trade off between computational efficiency and accuracy is the decided by

the number of projections into the space. Too many projections will result in sparsely

populated buckets and less likelihood of their contents being representative of the true

distribution of examples within a particular locality. This will have a knock-on effect on

the quality of the clusters and the accuracy of the similarity-based return. Meanwhile,

fewer projections will mean that localities will be ill-defined, vulnerable to outlying

examples, and offer less improvement in computational efficiency. Due to their impact

on performance, several works have examined moving from random projections towards

data-driven or lattice-based hashing [68].

There are other methods which aim to reduce the complexity of similarity calcula-

tions. For example, several works propose the use of representative cases to characterize

groups of similar cases, thereby enabling similarity comparisons only to be performed

against the representative of that group [69, 70]. Though works suggest different mech-

anisms and names (i.e. exemplary [69], footprint [70], prototype [71]) for the process,

the overall goal of each algorithm is broadly aligned; identify cluster representatives on

the basis of finding cases whose features characterise the knowledge captured within

a specific locality of the space. The reduction in the cost of similarity comparisons
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enabled by identifying representative cases has enabled the use of CBR methodology

even in very complex fields such as medical systems [71, 72] and workflow model man-

agement [73]. An interesting aspect of these approaches is that they mirror the roots

of CBR, which is based on the concept of human beings learning from previous expe-

rience. Just as people learn from specific past experiences, they also apply judgement

from a summation of all relevant previous scenarios in their decision-making [74]. This

link could empower prototypical approaches to be more explainable, as literature sug-

gests methods which mirror human decision-making are easier to explain or justify. We

discuss explainability of CBR and similarity return based systems in greater depth in

Section 2.3.

2.2 Deep Metric Learning

We look to deep metric learning algorithms as an opportunity to bridge the gap between

the similarity and vocabulary knowledge containers within a CBR system. Deep Metric

Learners (DMLs) are a branch of neural network architectures (including the Siamese

Neural Network [14, 15] and Triplet Network [16]) which use similarity knowledge be-

tween input examples to improve representation and create a latent space optimised

for similarity-based return [15, 17, 18]. They receive multiple examples as input si-

multaneously to develop embeddings which are optimised based on an objective. This

objective is defined by a ‘matching criteria’ - a principle which identifies whether two

examples are similar or not.

The matching criterion is central to learning in DMLs to identify similar examples in

a dataset. Since the expected outcome of training a DML is to have instances deemed

similar to be mapped closer together, the matching criterion is a crucial consideration in

ensuring that network training reflects the objectives of the problem at hand. Typically,

class information will be used for the matching criteria [75, 76], and DMLs have been to

shown to be robust to scenarios where class information is limited [17, 77] or there are so

many classes as to not be useful [18, 78]. Even in situations where class information is

completely unavailable, DMLs can be trained provided that another matching criteria

can be identified. For this reason, recent work has demonstrated these networks can

perform effectively even when working with extremely limited training data, such as in a

one-shot learning environment [17]. Due to this they have demonstrated application in

areas where fine-grained similarity knowledge is important, such as face verification [18]

and similar text retrieval [79].

Deep Metric Learning algorithms can be divided into three components: (1) the archi-

tecture of the neural network itself; (2) the loss function which controls metric learning;

and finally (3) the selection of relevant samples to refine network parameters [80] (see
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Figure 2.1). In the following subsections we will discuss each of these aspects in more

detail.

2.2.1 Deep Metric Learning Architectures

The essence of deep metric learning is to learn a representation of the input data

guided by direct comparisons of examples to build an understanding of the relationships

between cases. In CBR terms, this could be described as leveraging similarity knowledge

to improve the vocabulary container. To achieve this, learning requires comparisons

of multiple examples to judge similarity and the network architecture must facilitate

these comparisons. This means that the network must be capable of receiving as input

multiple examples, and also comparing them in some manner. A number of network

architectures have evolved around this methodology [14, 16, 77].

The Siamese Neural Network (SNN) is a deep learning architecture which trains upon

pairs of input data to learn a metric space in which training instances can be placed.

The expectation of paired learning is that the learned space can better represent salient

relationships between pairs which can then be better captured in a latent space. Orig-

inally used in binary classification tasks such as signature verification [14] and face

recognition [15], SNNs have recently been generalised to multi-class classification [17].

As SNNs are metric learners that develop a new representation of the original data, in

a classification setting they require a non-parametric learner (such as k-NN) to perform

the explicit classification.

The Triplet Network (TN) is a deep metric learner which learns from three exam-

ples concurrently (an anchor, positive and negative example respectively), giving the

network its namesake [16]. Throughout training, the network learns to minimise the

distance between an anchor and its associated positive example while maximising the

distance between an anchor and its associated negative example [16]. Their capability

on this task has translated into strong performance in areas such as face recognition/re-

identification [18, 81, 82] or image-based search [78]. Unlike SNNs, TNs were designed

to be supported by a similarity-based return component [16] and cannot perform clas-

sification tasks on their own. This means that TNs are very capable of establishing an

effective basis for similarity-based return on multi-class problems [83].

Matching Networks (MNs) [77] are unique in that they can be used flexibly as either a

classifier or a DML. Originally designed for few-shot classification problems, MNs learn

to match a query case to members of a support set which contains both matching and

non-matching cases. They therefore learn a representation which is optimised for sim-

ilarity comparisons (much like the two DMLs above). MNs can be trivially adapted to

20



remove class reliance learning by considering altering the matching criterion of the sup-

port set. More recently, MN was exploited successfully to achieve personalised HAR[84]

and Open-ended HAR [85] where they successfully utilise support set to enforce per-

sonal traits of human activities.

One of the contributions of this thesis aims to improve the training of DML architectures

using inspiration from traditional CBR research. With that in mind, we discuss specifics

of network formation and mathematical justification of training SNNs and TNs in

Chapter 3. Although the ideas behind the contributions could be applied with some

adaptation to MNs, we do not explore this in detail. Instead, we opted to examine the

impact the contributions had on a real-world case study in our telecommunications use

case.

2.2.2 Metric-Based Loss Functions

Metric-based loss functions aim to develop a representation for the input data such

that similarity computations are optimised [15]. This is unlike typical deep learning

loss functions, where the goal of learning is to develop a representation optimised for

classification (i.e. network output is a probability distribution indicating class member-

ship for a single example) [86]. As a result, metric-based loss functions have a tendency

to rely on direct comparisons between examples [15, 16], though some have managed

to maintain the emphasis on classification and integrate this with a comparison-based

architecture [77].

The earliest metric-based loss function, contrastive loss [15] is credited with kick-

starting the field of deep metric learning research. Informed by a pairwise comparison of

two input examples, contrastive loss effectively forces a network to learn a binary classi-

fication. However, instead of classes, pair members are classified on the basis of whether

they meet the matching criteria or not. This requires all input pairs into a network to

receive a pair label, indicating whether they are matching or not. Matching pairs will

generate loss if their constituent members are too dissimilar, while non-matching pairs

will generate loss if they are too similar (as decided by thresholding using a margin

value). Though simple, the loss was effective and ensured that the pair-based SNN

architecture was competitive in many complex tasks [15, 17].

More recent innovations on pair-dependant metric-based loss functions saw the birth

of pairwise loss [87]. The original contrastive loss was not robust to intra-class (or

intra-cluster) variance of examples, as it forced all ‘similar’ examples to occupy the

exact same area of the space. Pairwise loss added a boundary parameter to allow

to improve differentiation between examples within the same class and better reflect

real-world problems. Inspired by the SNNs capability in one-shot learning, a pairwise
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loss optimised for transfer learning has since been introduced [88]. Results on both

one-shot learning and transfer learning tasks are indicative of strong performance and

more possible work in this domain.

While pair-dependant metric-based loss functions are powerful, they present several

issues. Chief among these is that the objective of most of these functions is to learn

a binary classification of whether a pair is matching or not [15, 87, 88]. It would be

desirable for the objective of the loss function to be optimisation of the similarity space

itself. Additionally, pairwise comparisons are limited in their granularity. Comparing

a greater number of examples would better inform output of the loss function using

more knowledge of the latent space. It was from these insights that triplet loss was

born [16].

Triplet loss considers three examples - an anchor, a positive example and a negative

example - simultaneously. The goal of training with the triplet loss function is to

ensure that the anchor-positive example pair is more similar than the anchor-negative

pair plus a threshold margin [16]. This resolves many of the problems with pair-

dependent loss functions. The greater number of examples utilises more knowledge

from the feature space to speed up training, and the objective of the function is more

aligned with developing a latent space optimised for similarity. Additionally, because

the loss function only requires the anchor-positive pair to be more similar than the

anchor-negative pair and not identical, intra-class variance is maintained [87].

There have been several recent advancements in triplet loss. Despite the original func-

tion’s improved ability to handle intra-class variance, the authors in [89] propose this

is still not satisfactory in domains such as person re-identification, where it is difficult

to cluster similar examples due to dissimilarities between images (such as changing

backgrounds or angles). They propose an adaptation much like pairwise loss, utilising

a boundary to allow even greater distribution within a single class. Though their re-

sults seem to demonstrate this is an improvement over original triplet loss, intuition

would suggest clusters are much more distributed over the space. This likely inhibits its

usefulness in problems outwith its specific domain. Other approaches have examined

the nature of the comparison between triplet members, with authors suggesting angular

comparisons [90], or integrating sample selection into the loss function itself [91, 92, 93].

Interestingly, work in [94] shows a disturbing pattern for many of the recent innovations

to metric-based loss functions. In this work, the authors cite a lack of experimental

consistency as a factor for seeming enormous improvements in DML research over

the last several years. To evidence this, they present a uniform comparison of 13

different loss functions from across the literature. Their findings indicate minimal
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improvements beyond the original contrastive and triplet losses respectively. Overall

their work demonstrates a lack of consistency across research in this field, and seemingly

refutes much of the claims about progress. With these results in mind, in this thesis we

use contrastive and triplet loss for our experiments with SNN and TN respectively. Also,

to ensure reproducibility of our findings and inline with the recommendations made

towards improving the consistency of evaluating metric learning algorithms in [94], we

use five cross-fold validation in all of our experiments.

2.2.3 DML Optimisation with Sampling

As DMLs are trained upon multiple examples simultaneously, there is an additional

dimension to training which is not present in conventional deep learning architectures

- sample selection. Though convergence of DMLs can be achieved through creation of

random pairs/triplets, recent work has demonstrated that a training strategy which

optimises triplet creation can improve training efficiency [18, 78]. It is important to

consider which samples are most suitable to be input together in order to maximise

training efficiency, as examples which produce no return in the loss function will not

progress network training towards convergence. As the networks approach optima, this

becomes increasingly problematic, as it is more likely that randomly selected samples

will not meet loss function conditions.

Sample selection for DMLs can be broadly split into two related but distinct steps -

batch selection and sample mining. However, inspired by work the area of Curriculum

Learning [95], we also propose that sample ordering should be considered as an aspect

of sample selection. This is discussed further in Chapter 4.

Sample Mining

Employing informed selection for training data is increasingly gaining attention for

deep learning architectures. Both optimising for batch size and the order in which

training examples are processed have shown to be effective for achieving performance

improvements [95, 96]. Typically network loss is exploited to create ranking heuris-

tics with significant speed-up gains observed when processing harder examples first.

Training on an increasing ratio of ‘hard’ samples can be seen as adopting an ‘exploita-

tion’ strategy where focus is maintained on known ‘hard’ problems. It is interesting

to note that meta-learning strategies, such as boosting, do precisely this with weak

learners; whereby model learning is focused on examples that were incorrectly solved

previously [97]. This technique has demonstrated considerable success in areas such as

transfer learning [98] and object detection [99]. However such a strategy alone in the

context of informed sample selection can be detrimental, if ‘exploration’ of the space
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of possible problems is ignored [96]. We study how both exploration and exploitation

strategies can be utilised for informed pair selection. Specifically we consider bud-

geted learning scenarios associated with learning an embedding function [100], where

it has been shown that picking more suitable examples will return greater results in

circumstances where labeled data is limited [101].

Paired examples in relation to triplet networks (TNs) [16] help learn useful feature

embeddings (representations) by distance comparisons [18, 78]. Like SNNs, the goal

of training is to develop an embedding function which minimises distance between the

positive examples and the query examples, while maximising the distance between the

negative example and the query. Unlike with SNNs, TNs form a triplet instance from a

negative and positive pair given a query. Heuristics that are static (neither exploratory

or exploitative) based on initial similarity (relevance) alone were found to perform

poorly [78]. Using heuristics that continually update to reflect the triplets the network

is likely to find difficult in the next iteration, such as exploiting according to the loss

value, was found to give superior performance [18]. However, loss information is not

available from the start of training so the network must complete an initial ‘dry run’ to

retrieve this information. In our work we consider how heuristics that utilise similarity

knowledge calculated from the most recent network embedding can contribute towards

formulating a more dynamic ranking heuristic for training examples.

Other research has shown that sampling is incredibly important in the field of deep

metric learning [102]. As the number of triplet candidates increases near-cubically

with the number of examples, it is not feasible to train on all possible combinations.

Furthermore, in many situations not every triplet is valuable. Therefore there is much

work targeting the optimisation of training triplet networks through sample selection

via triplet mining [18, 78, 81]. In [78], the authors use a deep similarity ranking to

guide triplet formation for use in learning image similarity. Using a calculated image

relevance, they suggest that a relevant but non-matching image should be selected as

the negative example and a non-relevant but matching example as the positive example

for an anchor image. The authors of [18] expanded upon this idea and removed the

concept of relying on an external ranking to decide relevant triplets. They selected

pairs by calculating their loss value to pre-emptively identify their input to the network.

They observed that triplets which produced the maximum amount of loss (the ‘hardest’

triplets) actually caused training to destabilise and network convergence took longer.

Instead, focusing on triplets where the distance between the anchor and the negative

was greater than the anchor and the positive, but less than the margin (the ‘semi-hard’

triplets) were more effective for training.
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Batch Selection

The sample mining approaches discussed above operate on a subset of the full train-

ing set, which is selected randomly from the full distribution, to make computations

cheaper. This is consistent with other examples in the literature [81, 82], where authors

apply an active learning approach after a subset of the training set has been extracted.

We argue that triplet selection actually begins with the selection of that subset, rather

than the mining within. Although mining is an important concern, the best pair or

triplet cannot be selected if one of the components is not within that initial subset.

Identifying this subset is an important aspect of training a triplet network in its own

right.

We refer to this as ‘batch selection of input candidates’, or batch selection from hereon.

We use this term to describe the phase in a training strategy which extracts a batch

of candidate examples from the full training set which can then have sample mining

approaches applied to select suitable pairs/triplets. During implementation, this batch

could be seen as a replacement for the standard minibatch associated with stochastic

gradient descent in conventional deep learning architectures. Like the minibatch applied

to non-DML architectures, network weights could be updated after the examples from

the batch have been passed through the network. However, unlike typical deep learning

architectures which only receive a single instance as input at a time, after batching

DMLs require the examples to be grouped into pairs, triplets or subsets before they

can be input to the network. Therefore, batching is not the final step before examples

are input to the network.

We are aware of only limited work which directly targets batch selection of instances

before input to the network [103]. In this work, the authors process images of faces

through a classifier to improve representations, before passing those learned representa-

tions to a k-means algorithm to perform clustering for initial batch selection. However,

this approach presents several disadvantages. Most importantly, it is a learned clus-

tering method with corresponding overhead and dependence upon access to labelled

data. This is problematic, as triplet networks perform best in situations where labelled

data is scarce or totally unavailable. The process is also not iterative as clustering is

performed on the output of the classification model at the start of training and remains

static. Ideally, locality-based minibatching should exploit the latest network output to

ensure its batches are relevant to the network at that point in training.
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Sample Ordering

Recent work in training of deep learning architectures has also identified that the order

in which examples are input to the network can have a substantial impact on train-

ing [95, 104].

Curriculum Learning (CL) is the concept of introducing examples to a network in a

meaningful order, most often by difficulty from ‘easy’ to ‘hard’. The idea is that by

ranking so that the network is initially exposed to simpler examples and then gradually

introduced to more complex examples, the network will converge faster [95]. Though

a simple concept, CL has demonstrated excellent generalisability, showing success in

areas such as motif finding, noun phrase conference [104] and multi-task learning [105].

Research has also shown that self-paced learning, where the ordering of examples is

based on feedback from the network itself (dynamic), rather than a (static) curriculum

set by a teacher [104], results in model improvements. In this way, the order in which

examples are presented to the network is continuously updated, such that the curricu-

lum presented at the start and that presented at the end of training may be vastly

different.

Promising results in this field are already leading to the development of novel sample

mining approaches which incorporate curriculum learning into their strategy. For ex-

ample, in [106], the author’s propose a difficulty-based curriculum for the ordering of

pairs to be input to an SNN on the basis of whether pair member distance is close

to a pre-defined margin value. The intuition is regardless whether a pair is positive

or negative, the most complex pairs to differentiate will have a distance between pair

members which is close to the threshold. The results obtained indicate that this pro-

vides a positive impact on training, but a more thorough evaluation would be required.

In [107] the authors are also inspired by curriculum learning to improve training of a

neural network on the task of human attribute analysis. As the datasets for this prob-

lem are highly imbalanced, they propose a two-level curriculum. The first level uses

curriculum learning to order sample mined examples on the basis of data imbalance

(i.e. classes with many examples are put in to the network first, while classes with fewer

examples are input later) at each epoch. The second level gradually alters the focus

of the loss function from representation learning (using an adaptation of triplet loss)

towards classification over the course of training. The authors argue this makes the

network better placed to learn robust similarity-based representations at the beginning

of training, while ensuring high classification accuracy at the end of training, which

their results support.
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Figure 2.1: Taxonomy of DML Literature
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2.2.4 DMLs and CBR

The synergy between deep metric learners and case-based reasoning is demonstrated

by growing literature on the subject [41, 84, 110, 111]. In particular, we can observe

growing work which uses DMLs as a means to fulfil the roles of both the vocabulary and

similarity knowledge containers. For example, in [110] the authors use SNNs to learn a

novel similarity function between data, giving rise to an augmented version which they

describe as an extended Siamese Neural Network (eSNN). What is interesting in this

work is that the network learns the vocabulary (by learning a representation for the

input data) and similarity (by optimising that representation for retrieval) containers

simultaneously. In a separate work, the authors in [84] use a matching network to

achieve a similar outcome. Here they draw the comparison of matching network to

a parametric form of k-nearest neighbour and explicitly highlight how their approach

replaces conventional vector-based similarity metrics. In yet another example, the

authors alter the training of an SNN to instead learn the similarities and differences

between classes [111]. This is interesting because the trade off means that the so-

called Class-to-Class SNNs contribute less to the similarity container (as the learned

representation is not as well optimised for retrieval), but in its place contributes slightly

more to the explanatory capability of the network.

We can therefore observe a very clear connection between the knowledge containers in

CBR research and the role of DMLs. DMLs are suitable to fulfill the role of components

within separate knowledge containers in a single algorithm. In particular, we highlight

the vocabulary and similarity containers, where they are capable of covering the tasks

usually performed by feature engineering or local similarity measuring algorithms. In

addition, much like there is a well acknowledged trade-off between knowledge contain-

ers [37], so too can we see this trade-off within alterations to DMLs [111]. The evidence

points to a clear synergy between both the CBR and DML methodologies which can

be most easily described using knowledge containers. Although we are not the first to

highlight relationship between CBR and DML, to our knowledge we are the first to

structure this comparison using knowledge container research from CBR.

Another interesting avenue of research is the growing work that looks to take lessons

from traditional machine learning methods and apply them to improve the training of

deep metric learners. Prototypical Networks [108] are an adaptation of the matching

network which incorporates lessons from prototype cases in CBR (see section 2.1.2).

The model creates a prototype (by averaging over similar elements in the support set)

for each class in the support set, then behaves as a one-shot learning matching network

model. Within the experiments presented by [108], the prototypical network outper-

formed the original matching network through simple adoption of a relevant technique

28



from the CBR field. An updated of the network, Prototypical Clustering Networks, was

proposed to be robust to intra-class variance by using multiple prototypes for each class

within the subset [109]. In their results the authors note that increasing the number

of clusters considered in the support set offers a dramatic improvement relative to the

original prototypical network. This mirrors the description of LSH (see section 2.1.2),

where we discussed the trade off considered when deciding the number of projections

for LSH.

Similarly, there has been some previous work in using clustering techniques to inform

network training by altering the triplet loss function [91, 92]. However, these methods

typically require a priori knowledge [91], or offer reduced flexibility to incorporate

other training methods (such as hard sample mining) because the clustering mechanism

is tightly coupled to loss calculation [92]. For example, in [91], the authors build a

hierarchical class-level tree to define inter class similarity, which can be consumed by

a hierarchical variation of triplet loss. This requires a pre-processing step to compute

the tree, meaning a priori knowledge of the data or a pre-trained network is required.

It would be desirable to have a solution with no previous knowledge requirements, and

which could function as part of an ecosystem of training methods. This is indicative

that the links between CBR and DMLs extend beyond simple reuse of algorithms and

strategies, and hints at deeper research avenues within this area.

2.3 Explainability

Considering the relationship that exists between CBR and DMLs is centered around

the notion of similarity, and evidence supporting CBR as an explainable methodol-

ogy [7, 12], it seems intuitive that DMLs should also be more explainable with similar

methods. The term ‘explainability’ refers to the level at which a machine learning

algorithm is comprehensible to its intended user base [21]. Though explainability of

systems has been a subject of much works since relatively early in machine learning

research [9, 7, 112] recent developments have resulted in explosive popularity of this

field [21, 22, 113, 114, 115]. This is largely due to growing social and ethical responsi-

bilities being faced by organisations to ensure that decisions made by their intelligent

systems are explainable. These responsibilities are supported by European legislation

which dictates ‘an individual’s right to an explanation’ and ensures that organisations

are held accountable for the decisions made by these systems [116].

Central to the idea of explainability is the concept of mental modeling. A mental model

can be summarised as a user’s conceptual understanding of an intelligent system; in

short, it is everything they (a) know and (b) believe about a system [114]. An expla-

nation need is created when something happens within the system that breaks a user’s
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mental model or forces it to adapt. The explanation need is therefore a formalisation

of the gap that has been identified in a user’s mental model [20], while an explanation

is then the artefact which must be created in order to fill that gap [21]. To give an

example, consider the average person’s mental model of a car. The vast majority of

people will understand that a car allows them to move quickly from place to place and

that this is enabled by the burning of petrol so that the car can move forward. When

something breaks this status-quo (i.e. there is petrol in the car but it does not move

forward) a gap in the mental model is usually highlighted. Despite knowing that a car

requires petrol to move, the average person may not know the inner mechanisms of

the car and so cannot comprehend why the car does not work. Their explanation need

becomes“why does my car not drive even though there is petrol in it?”. Thus they

request an explanation from someone with a more complete mental model (such as a

mechanic).

A mental model can be influenced in various different ways. One way in which our

beliefs about the world are altered is through observation of truths that do not adhere to

those beliefs, and this is the governing principle of transparent algorithms [12, 21, 115].

If we can clearly see and comprehend the decision-making process of an intelligent

model then this is usually sufficient to convince us of its effectiveness and clarify why

an outcome was reached. This school of thought has lead to classification of algorithms

on the basis of their transparency: black-box algorithms, where the decision-making is

fully opaque; grey-box algorithms, where the process is clear enough that additional

information can be used to interpret missing information; and white-box algorithms,

where the decision-making process and all needed information to support that process

is clearly visible and understandable [115, 117]. For a comparison of terminology, see

Table 2.1 to clarify the vocabulary we will use in the discussions of explainability

throughout this thesis.

Often the transparency of a system is used to complement other methods to offer more

well-rounded explanation. For example, the authors in [12] propose five goals that an

explainable system should be able to achieve: it should be (1) transparent; (2) able to

justify its decisions; (3) support the user in their ability to understand and conceptualise

necessary features; and (4) ensure that the approach adopted by the system is relevant

to the problem. These aspects should (5) support the user in their ability to learn

both about the system and the problem domain [12]. An interesting anecdote about

this perspective is that it would suggest the complimentary methods that are required

to ensure explainability of a system are not totally unlike the knowledge containers in

CBR. We explore this in greater detail in Chapter 6.
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Terminology Reference Definition

Explanation [21, 115] A generated artefact designed to improve a
user’s understanding of a system’s decision-
making or output.

Explanation Need [20] A formalisation of the user’s comprehension gap
which creates the requirement for an explana-
tion.

Mental Model [114] A formalisation of the user’s mental image of
an algorithm and their understanding of how it
works.

White-Box Algorithm [115, 117] A fully transparent algorithm whose decision-
making process is obvious and clearly under-
standable.

Grey-Box Algorithm [117] An algorithm whose decision-making process is
visible, but this does not lead to full understand-
ing of the model. Generally a property of in-
terpretable models, as opposed to transparent
models.

Black-Box Algorithm [21, 115, 117] An algorithm whose decision-making process is
inaccessible or opaque.

Transparency [12, 21, 115] The property of an algorithm whose decision-
making process is clearly visible and accessible.

Interpretability [21, 115] The capacity to which an algorithm’s decision-
making can be worked out (or interpreted) based
on available information.

Justification [7, 12, 115] The capacity to which a system can justify its
decision-making.

Conceptualisation [12] The extent to which a user can grasp the under-
lying concepts behind the features which make
up a case.

Relevance [12] The applicability of a provided explanation (i.e.
how aligned is an explanation with the explana-
tion need).

Learning [12] The extent to which a system supports a user
to improve their own individual knowledge and
enables learning.

Table 2.1: Explanation Terminology
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2.3.1 User-Focused Explanation

At an individual level, a user’s need for an explanation is often characterised by a

discrepancy between the formal objectives of the learned model and its practical appli-

cation [21]. In practice this can occur when the expectations of a system’s user group do

not match up with one another, or their mental model is not aligned with the system’s

output. A common cause for this is when individuals’ capabilities and expertise are not

considered [118]. In [119] for example, the authors highlight that understanding the

relationship between the needs of a technical expert and the needs of a non-technical

user is of fundamental importance for the success of a deployed industrial application.

It is often the misalignment of objectives between these two parties, or the inability to

effectively transfer information between them, that leads to costly errors. In domains

such as telecommunications engineering where the technical experts heavily rely upon

their non-technical counterparts for administrative and logistical purposes, it is vital

that a clear and understandable flow of information is maintained between the two

groups.

In practice, we rarely intend for a system to be used by a single user in isolation. Recent

work has demonstrated that it is important to be aware of the multiple stakeholders who

are likely to require an explanation of an intelligent system [22, 119, 114, 120]. Each

user of an intelligent application approaches the system with an individual context

which defines their need for an explanation [120]. Some researchers argue that part

of the responsibility of an explainable intelligent system is to enable fairness of its use

throughout its user base [113]. It follows that no single explanation method is therefore

suitable to answer every possible need from every possible stakeholder. This intuition

inspired us to develop a catalogue of explanation methods, allowing users to utilise the

most suitable combination of explanation mechanisms to meet their individual needs.

Developing a suite of explainability methods aimed to satisfy multiple user groups

presents a number of challenges. Foremost among these is identification of explanation

methods which would be suitable for the different user groups we may encounter. There

have been several works in the literature which have attempted to group stakeholders by

explanation need. In [22] the authors suggest that users of an intelligent application can

be divided into three groups (novice users, domain experts and AI experts), each with

distinct explanation needs. While AI experts are usually satisfied by global explanations

describing how the learned model operates, novice users and experts within individual

domains are more likely to require local explanations contextualised by specific input-

output examples. Despite this similarity in need, there remains a wide gap between

these latter groups in regards to their contextual domain knowledge. This divide is

noticeable within our context when comparing field engineers with desk-based agents.

32



Similarly, there is existing work which suggests that personalizing the explanation to

meet the needs of individuals within larger groups will result in improved user experi-

ence [121, 122]. In [121] the authors present evidence that an individual’s personality

significantly correlates with the number and type of explanation which improve their

receptiveness to the explanations of recommender model decisions. Their results also

highlighted that the format through which an explanation was provided (visualisation

or text-based) impacts a user’s receptiveness to the explanation. While they found

that users universally preferred text-based explanation methods over visualisations re-

gardless of individual personality, they did not examine a broader scope of explanation

formats. Intuition would suggest that a study which tested a broader range of ex-

planation formats (incorporating for example, statistical explanations) or examining

different use cases (where the original authors focused on movie recommendation using

a recommender system) may result in findings where personalization of explanation

format is also scenario dependant.

Interestingly, in [122] the authors find that while personalization of explanations may

cause increased user satisfaction, it can actually be detrimental to explanation effec-

tiveness. They judge effectiveness of an explanation on the criteria that it supports

users to make a knowledgeable decision. They propose an experiment to assess effec-

tiveness of explanation based on whether a user is more or less willing to accept the

most appropriate recommended item (as identified by the recommender model being

explained) after being exposed to some explanations. Their results demonstrated that

non-personalized explanations supported users to do this more often, while personalized

explanations lead to better user satisfaction with the explanation itself. This suggests

that an applied system which implemented personalization of explanations would have

to ensure that task performance was not negatively effected.

For our use case of supporting telecommunication engineers, we find it appropriate to

start by building a understanding of the explanation needs of user groups, specifically

the expert engineers and non-expert desk-based agents who support them. In doing

so, we can learn the explicit differences in explanation need between these two groups.

This could present a strong foundation for the framework whereby the nuances and

needs of individual users could be met with finer-grained control of explanation through

personalization.

2.3.2 Evaluating Explanations

A further challenge is the evaluation of explanations intended for multiple stakeholders.

How to evaluate explanations, the need-for and usefulness-of which are fundamentally

33



subjective to an individual user’s context [114, 123], is generally considered a user-

centric area of machine learning research. For that reason, much of the work in this field

has aimed to formalise qualitative measures of human understanding into quantitative

metrics of system performance [12, 22, 117, 124].

For example, in [117], the authors suggest the explanation quality of a system can be

appraised through a mix of subjective and objective measurements. These measure-

ments are: user satisfaction (e.g. the clarity and utility of the explanation); mental

modeling (e.g. the ability to understand individual decisions and identify strengths

and weaknesses of the machine learning model); task performance (e.g. whether user

ability to complete the task is improved by using the system); trust assessment (e.g.

whether the system is trustable); and correctability (e.g. the user can rectify incorrect

decisions). A mix of subjective and objective metrics allows developers to measure user

opinion of explanation quality (through user satisfaction, mental model and trust as-

sessment), as well as determine whether the explanations actually approve on practice

in an applied environment (via task performance and correctability).

Though attempts to empirically evaluate explanation methods without user feedback

are growing more common, these metrics typically rely on justifications that expla-

nation has improved algorithmic performance or comparisons against model-agnostic

and/or interpretable model baselines [22, 125, 126]. We are less aware of methods

which attempt to assess explanation quality by exploiting similarity information. In

this respect, we suggest our work in modelling the relationship between a query, its

neighbour set in a latent space and the retrieved explanation, is relatively unique.

2.3.3 CBR as an Explainable Methodology

Case-based Reasoning is often cited as a grey-box algorithm, where transparency and

justification of system outcomes are borne from the fact decision-making is based on

comparisons to previous cases [7, 127]. This is a stark comparison to black-box algo-

rithms like deep learners, where attempting to clarify the process which has lead to a

particular decision is extremely difficult. This is in no small part due to the manner in

which it reflects a human’s mechanism for learning from experience [9, 11], making it

a recognisable method of explanation for many people.

This statement is challenged by [12], who states that decision-making of a CBR system

can be significantly less transparent if the presented solution is not clearly aligned with

the query case, which is arguably the most common scenario in which a mental model

is disrupted. In such circumstances, the similarity calculations which had lead to a

particular recommendation can be displayed, presenting an opportunity for justifica-

tion. However, if the user’s conceptualisation of the model is inaccurate, then this will
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interfere with the transparency of the decision and force the user to re-evaluate their

mental model. Given the expectation that scenarios will occur where the user is asked

to collate information to interpret decision-making, it could therefore be argued that

CBR is closer to an interpretable model than a fully transparent algorithm.

Even this relatively straightforward example highlights the inter-dependency of differ-

ent explanatory components and demonstrates an interesting contrast to the knowledge

containers in CBR. Though not among the four knowledge containers proposed by [13],

there is a clear relationship between the containers and explanation. Some works have

used the knowledge container model to align a user’s explanation need with the knowl-

edge stored in a particular container [7, 12, 19]. For example, the case-base container

is often highlighted as a useful tool for explanation, as it is straightforward to demon-

strate the outcome of other known scenarios in comparison to the current query [7, 127].

This means it is well placed for justification of decisions, but only poorly equipped to

explain underlying concepts behind case features. These questions (which typically

target improving the user’s ability to conceptualise the ideas behind case composition,

such as “what does this feature mean” or “how does case x represent problem y”) are

directly linked with the the contents of the vocabulary container [12]. However, the

vocabulary container may struggle to demonstrate the relevance of features (beyond

obvious overlaps) to decision-making at any specific point in time, as this is a task

better handled by the similarity container. In turn, justification of what makes these

features similar is perhaps better demonstrated by extracting high-level analytics (such

as parallel co-ordinate graphs [128]) using knowledge from the case-base.

However, unlike the knowledge containers in CBR, the principles of explanation usually

contribute to better explanatory capabilities of a system when they are all fully formed.

Since an explanation need is very tied to the certain explanatory methods, others cannot

usually be used to circumvent lack of another method - a user who does not understand

the concepts of case composition will likely not be satisfied with an explanation formed

from justification for example.

From the perspective of explanation, DMLs are perhaps more similar to CBR than any

other deep learning architecture. Much like how similar cases can be used as a point of

comparison to explain the output of a CBR system, the same could be achieved with

DMLs [111]. This is of course domain dependent - if the user does not understand the

features of the comparative example as raw input, then this becomes significantly more

challenging. This is because the new representation learned by DML will not be under-

standable to the user, as its an abstract of the original input. This will impact a user’s

ability to conceptualise what each of the output features mean. Justification of system

decisions is still possible using case-by-case similarity comparisons with knowledge from
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the case-base, while the similarity knowledge is still pertinent for demonstrating the

relevance of two cases to one another. A key difference is the vocabulary container,

which is poorly placed to support conceptualisation. Overall it indicates DMLs could

fit the CBR methodology’s knowledge containers, and that these containers could be

useful to model the explanatory capabilities of the systems.

2.4 Conclusion

To summarise the findings from our review of the literature, we have discussed the

fundamentals of CBR and the knowledge container model. We have provided a brief

introduction to the vocabulary container as a means to conceptualise the process of

identifying case structure and features. We highlight specifically approaches for devel-

oping representations for text cases, including statistical and learned methods. Fur-

thermore, we have discussed the similarity container to represent the process of case

comparison. Overall our examination of the literature has suggested that these knowl-

edge containers are implemented separately, despite the overlap between them. We will

explores this further in the next chapter, where we discuss implementation details for

several of the algorithms.

DMLs could provide a means to bridge the gap between the vocabulary and similarity

knowledge containers. In this chapter we have introduced the concept of deep metric

learning, and detailed how DMLs are split into three related components: (a) a neural

architecture capable of receiving multiple simultaneous inputs; (b) a metric-based loss

function; and crucially (c) a training strategy to optimise DMLs through sampling.

Our exploration of this area has identified close links between DMLs and CBR, which

we intend to explore further with our contributions in Chapters 4 and 5. In the next

chapter we will demonstrate how DMLs leverage the learning of non-linear feature

combinations to learn a latent space optimised for similarity computations.

Finally, we have reviewed literature surrounding explanation of machine learning ar-

chitectures. Our findings indicate the similarity-based methods, including CBR and

DMLs, are well pre-disposed towards explanation. This is because they mimic the way

in which humans themselves approach problems (i.e. by comparing the current situa-

tion to relevant past experiences). Overall we believe this is indicative that similarity

also offers a good research avenue to explore evaluating the quality of explanations. We

explore this further in Chapter 6.
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Chapter 3

Technical Aspects of Machine

Learning

In the previous chapter, we presented a review of literature examining similarity for

pre-processing, classification and explanation. In this chapter, we will describe the

algorithmic implementation details which will be used throughout the thesis. In par-

ticular, we will discuss both case-based reasoning and deep learning in detail, with the

latter emphasising the technical aspects of deep metric learning algorithms.

3.1 Case-Based Reasoning (CBR)

CBR is a methodology, not a specific technology [9, 11]. It describes a group of tech-

niques which are co-ordinated in their objectives by the knowledge containers. In the

following subsections, we will discuss the methods we have adopted for the vocabulary

and similarity containers. These are necessary because DML architectures are inca-

pable of learning a representation directly from the raw input text. The adaptation

container is out of the scope of this thesis, so we do not explore relevant algorithms

here.

3.1.1 Vocabulary Knowledge

Machine learning methods typically struggle to work directly with raw text. Instead,

this text must be converted into a numerical vector representation, which can then be

used as input to machine learning algorithms. Although there are a number of ways to

perform this process, in this thesis we examine learning representations using statistical

and learned approaches specifically. In the following subsections we will discuss how

representations based on the statistical measures can be practically implemented using
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term-frequency / inverse-document-frequency. Then we will examine how word embed-

dings which leverage semantic relatedness knowledge by training on word co-occurrence

can be learned using Word2Vec.

Statistical Approach - tf-idf

As stated in Section 2.1.1, term-frequency / inverse-document-frequency (tf-idf) en-

ables the numerical representation of a document through quantification of the relative

uniqueness of terms within that document when compared with the rest of the corpus.

The intuition here is that terms which appear frequently within a document are integral

to the overall meaning of the document. These terms should help to uniquely identify

the document among others. However, terms which frequently appear throughout the

corpus are less likely to uniquely identify any individual document. The trade-off be-

tween terms which define document meaning and how novel these terms are within the

corpus as a whole is captured in the term-frequency and inverse-document-frequency

components of the function respectively.

The tf-idf score of a term is calculated using Equations 3.1, 3.2 and 3.3.

tf(t, d) = ft,d (3.1)

idf(t,D) = log
N

|{d ∈ D : t ∈ D}|
(3.2)

tfidf = tf · idf (3.3)

Where t is any given term, d is a document within a corpus D (such that d ∈ D) and

N is the total number of documents within the corpus.

Firstly, the tf score of each term t in a document d is captured. This is (in its simplest

form) a count of the number of times that the term appears in that document. Then

the idf score of each term is calculated by taking the logarithmic of the total number

of documents N divided by the number of documents which contain the term (d ∈ D :

t ∈ D). The resulting idf score will be large if the term appears in few documents, and

small if the term appears in many documents. It is also worth noting that while the tf

score must be calculated for each term in each document, the idf score will be the same

for a specific term across all documents. Finally, the tf and idf scores are multiplied

to give a tf-idf score for that term in regards to that document. The scores for each

term within a document are compiled into a vector to create a representation for that

document as a whole.

38



The representations gained through tf-idf have a score per term which is featured in

the corpus. Though this can be controlled by considering only the n top scoring or

most frequent terms across the corpus, the representations learned by this method are

still very sparse. Furthermore, they are generally not robust to large corpora with very

varied vocabulary. This method tends to perform better in domains with small and

confined vocabularies, such as terminology-focused technical work. This means that

tf-idf should be well placed to support representation learning for the textual notes

maintained by telecommunications engineers in our use case.

Learned Approach - Word Embeddings

Word embeddings are vectors which store values describing the latent or semantic

features of a word in relation to a corpus. Typically these word embeddings are learned

by training using knowledge of word co-occurrence in the training data. As a result,

the learned word embeddings exist in a feature space which is optimised such that

semantically related words are closer together then semantically unrelated words. This

allows algebraic functions to be performed on the vectors to return related words - the

most famous example of this being: vector(‘Queen’) = vector(‘King’) - vector(‘Man’) +

vector(‘Woman’). Furthermore, the representations learned maintain these properties

even when combined to create representations for longer passages of text (such as

sentences or documents), while still being comparable because the same dimensionality

is maintained. The representation of documents learned using the word embeddings

is therefore theoretically optimised for further similarity computation or measurement

because the training stage incorporates the principles of semantic relatedness.

In this thesis, we explore word embeddings more deeply through the Word2Vec algo-

rithm (see Section 2.1.1). Word2Vec is comprised of a simple neural network architec-

ture with a single hidden layer. As input, the algorithm receives the entire training

corpus converted into one-hot encoding and segmented into ‘sliding windows’ of an

adjustable length of sequential text, such that one window is a single input to the net-

work. Windows are described as sliding because they sequentially consider potentially

overlapping portions of a sentence. Each of these windows contains a ‘target term’,

which is the term whose semantic features are being learned during that iteration of

the network, as well as the contextual terms before and after the target term. Impor-

tantly, because a term is likely to appear multiple times within a document, target

terms feature in multiple windows beside a range of context terms, which helps the

network to learn an overview of how corpus vocabulary is related. Dividing the slid-

ing window into target terms and context means that there are two distinct training

strategies available; Continuous Bag of Words (CBOW), where the goal of training is

to learn a hidden layer which can be used to predict the target term, or Skip-Gram,
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where the goal is to predict the context words using the target term. After training,

it is the hidden state (i.e. the transformation of an input term created by the hidden

layer) which is used as the vector representation of the term.

Continuous Bag of Words (CBOW): The goal of training a CBOW model is to

develop representations which are useful to predict a target term given knowledge of

its context. Given a sequence of training words (w1, w2, ..., wT ), the objective of the

model can be represented as maximising the log probability of:

1

T

T∑
t=1

log p(wt|wt−c, ...wt−1, wt+1, ..., wt+c) (3.4)

where T is the size of the training corpus, while t is the index for the target term from

within that corpus, such that t ∈ T . Each wt exists within a window of contextual

terms, the limits of which are given by −c (for words preceding wt) and c (for words

following wt) respectively.

To provide a step-by-step breakdown of how the objective function for CBOW models

produces loss, consider the following steps:

• We iterate through each term wt in a corpus T (
∑T

t=1).

• For each term we calculate the logarithmic probability of that term appearing

given our knowledge of contextual terms (log p(wt|wt−c, ...wt−1, wt+1, ..., wt+c).

• Finally, the probabilities are summed and we divide by T to normalise the output

( 1
T

∑T
t=1 log p(wt|wt−c, ...wt−1, wt+1, ..., wt+c)).

Skip-Gram: The goal of training a skip-gram model is to develop representations

which are useful to predict the contextual terms surrounding the target terms. Given

a sequence of training words (w1, w2, ..., wT ), the objective of the model can be repre-

sented as maximising the log probability of:

1

T

T∑
t=1

∑
−c<=j<=c, j 6=0

log p(wj |wt) (3.5)

Given that in the skip-gram model we are trying to predict the context of wt, we can

use j to represent the index of the contextual term we are trying to predict within the

bounds of −c and c. Note that j cannot equal 0, because this would be the index of

the target term wt.

This function produces loss for training the system in the following manner:

• We iterate through each term wt in a corpus T (
∑T

t=1).
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The cat sat on the mat and took a nap in front of the fire where it slept peacefully.
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Figure 3.1: CBOW and Skip-Gram Word2Vec Models (adapted from [46])

• For each term, we find the contextual terms within the bounds of −c and c

(
∑
−c<=j<=c, j 6=0).

• For each context term wj we calculate the logarithmic probability of that term

appearing in the context of the target term, wt (log p(wj |wt)).

• Finally, the probabilities of the contextual terms for all target

terms are summed and we divide by T to normalise the output

( 1
T

∑T
t=1

∑
−c<=j<=c, j 6=0 log p(wj |wt)).

3.1.2 Similarity Knowledge

Retrieval within a case-base is fundamentally reliant on having knowledge of what

makes cases similar. As we have noted in our literature review (See Section 3.1.2), this

means that similarity knowledge is a central underpinning of the CBR system. As we

are focusing on learning representations for text, we turn our attention to vector-based

similarity functions where no hand-crafted feature knowledge is required. In this section

we provide an introduction to vector-based similarity functions, and explain how they

support the k-nearest neighbour algorithm to classify a query by comparing it to a

neighbour set of related cases. We also detail LSH, an approximate-nearest neighbour

algorithm which reduces the complexity of neighbour comparisons with the drawback

of slightly impacting accuracy.
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Vector-Based Similarity Functions

Vector-based similarity functions refer to a family of methods which are designed to

measure the similarity between numerical vectors. These functions are typically based

upon mathematical proofs. Vector-based similarity functions do not rely on domain-

specific knowledge models, and are therefore equally applicable to any numerical vector.

Vector-based similarity functions assume that all case features have equal weighting,

and that cases are consistently ordered so that features maintain the same index in the

feature vector. As a result, these functions are often applied to learned case represen-

tations where a knowledge model is unavailable or prohibitively expensive to produce

(such as that of our use case). However, they can equally be applied as a local sim-

ilarity function contributing towards a global similarity aggregate. This is typically

done in domains where a case is formed of structured (such as feature-value pairs) and

unstructured (free-text, images, etc) data.

In this thesis we consider two vector-based similarity functions: euclidean distance and

cosine similarity.

Euclidean Distance: is a function to measure the straight-line distance between two

points in a multi-dimensional space. This can be represented as:

d(a, b) =

√√√√ N∑
i=1

(ai − bi)2 (3.6)

Where the function d() represents Euclidean distance, and a and b represent two vectors

of matching length N defining co-ordinates in a multi-dimensional space. The function

iterates over each vectors to find the difference between the values at each index i. The

differences are squared (to guarantee a positive value), then summed. The square root of

the total is then taken, to transition back from squared distance into a normal distance

metric. In this manner, euclidean distance is highly dependant on the magnitude of

each of the compared vectors.

The output of the function is a distance metric - a value which will be high if the vectors

are different, and low if the vectors are similar. Additionally, it will be unbounded;

identical vectors will have a distance of 0, while very different vectors can have a

potentially infinite distance between them. For similarity calculations, it would be

desirable if relationship between vectors could be represented as a bounded value. This

can be achieved by sim = 1
1+d(a,b) . The output of this operation will be a value

between 0 and 1, where 1 is representative of identical vectors. It is worth highlighting

that dissimilar vectors will only tend towards 0, and never reach it, due to the nature

of the conversion.
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Cosine Similarity: is a function to measure the similarity of two vectors based on

their relative orientation. Unlike Euclidean distance, cosine similarity anticipates that

the magnitude of the compared vectors is dissimilar (though the dimensionality should

still be equal). Therefore, capturing a straight-line distance is an unfair comparison.

Instead, measuring the angle of the orientation difference between vectors is more ac-

curate as a measure of similarity. This can be captured by:

cos sim(a, b) =

∑N
i=1 aibi√∑N

i=1 a
2
i

√∑N
i=1 b

2
i

(3.7)

Applying the cosine rule, we can calculate the angle between two vectors by taking the

quotient of their dot product divided by the product of their lengths. To find the dot

product of vectors a and b we calculate the sum of the products of the corresponding

values at each index, giving us
∑N

i=1 aibi. Additionally, the length of a vector is defined

by the square root of the sum of its squared co-ordinates. We can therefore calculate the

product of the two vectors lengths by applying
√∑N

i=1 a
2
i

√∑N
i=1 b

2
i . The output of this

function will give a value bounded between -1 (representing that the vectors are exactly

opposite) and 1 (representing that the vectors are identical). However, the output of the

function is bounded to between 0 and 1 in situations where the features of the compared

vectors are all positive. Typically, text representations exist within the positive space

because the learned features are non-negative. For example, in representations learned

by tf-idf cannot be negative, as both term frequency and inverse document frequency

rely on the presence of the term at least once in the corpus.

In this manner, we can calculate the similarity of two vectors in a multi-dimensional

space on the basis of either the straight-line distance between them, or the angle between

their orientation. This demonstrates how we can calculate the similarity between cases

whose features are represented by a vector of values. Next we will examine how the

similarity values can be used to rank candidate cases for return given a query case.

k-Nearest Neighbour

k-Nearest Neighbour (kNN) is an algorithm designed to classify a query case by consid-

ering the class labels of similar cases in the feature space. The intuition is that similar

cases will have a similar distribution of features, and are therefore likely to have the

same class label. In this manner kNN can be viewed as a microcosm of the mentality

that governs CBR as a methodology; that similar problems have similar solutions.

As an instance-based non-parametric learner, the kNN algorithm is not ‘trained’

through the input of labelled data. Instead, the algorithm requires a dataset of la-

belled cases to which it can refer to continuously. The algorithm classifies a query
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based upon a (potentially weighted) vote of the k most similar examples from this set

of labelled data. The value k is an integer to threshold the number of neighbours to

consider during the voting process. The similarity between cases is calculated using a

similarity function, such as the Euclidean distance or cosine similarity functions which

are described above. Weighted variations of kNN ensure that the most similar cases

will have more weight during voting. The overall process of kNN is demonstrated in

Algorithm 1.

Algorithm 1: k-Nearest Neighbour Algorithm

1 kNN: kNN(q,X , k)
2 for x in X do
3 S := S.append(sim(q, x))
4 end
5 X := X .sort(X,S,<)
6 for i = 1 . . . k do
7 NN := NN.append(y(xi))
8 end
9 qy := vote(NN)

10 return qy

In Algorithm 1, q is a query case, X is a set of labelled cases whose labels can be

accessed with the function y() and k is an integer detailing the number of neighbour

votes to consider. Firstly, the algorithm calculates the similarity between q and every

example x ∈ X . This is used to sort X in descending order of similarity to the query.

Finally, the algorithm extracts the labels from k most similar cases from the sorted X
to create the nearest neighbour set NN . The vote() function then performs a count

of the number of times a label appears in order to produce a label qy for the query.

Conventionally, this vote is a simple majority weighted vote, where the class label is

decided by the class with the most representatives in the neighbour set. This can also

be adapted to similarity-weighted voting, where more similar neighbours have more

input to the classification decision.

Although effective in any domain where the problem can be represented as a vector

representation, due to the need to iterate over the training set for every query, kNN can

quickly become computationally expensive. The complexity of kNN can be represented

as O(ndk), where n represents the number of examples in the training set, d represents

the dimensionality of the vectors being compared and k is the number of neighbours

considered for classification. In real-world settings, where it is not unusual for large

quantities of complex data to be generated daily, kNN can be prohibitively expensive.

For this reason, there has been much research into reducing the expensiveness of the al-

gorithm by approximate-Nearest Neighbour algorithms. In the next section we explore
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one such algorithm, Locality Sensitive Hashing (LSH) in greater detail.

Locality-Sensitive Hashing (LSH)

LSH defines a family of algorithms which use locality-sensitive hashing functions to

cluster information These hashing functions are described as locality-sensitive because

there is high probability that similar instances share the same function, but low prob-

ability that dissimilar instances share that function:

P
(
h(xi) == h(xj)

)High, if DW (xi, xj) is Low

Low, if DW (xi, xj) is High
(3.8)

In Equation 3.8, P () is a probability function, h() is a hashing function and xi and xj

are arbitrary examples from within a dataset X . By hashing the space in this manner

the complexity of identifying an example’s locality becomes sub-linear.

To achieve this in its simplest form, LSH uses random projections to hash the feature

space. This method divides the feature space into separate ‘buckets’ by partitioning

the space using a configurable number of random divisions called ‘projections’. Every

example in the dataset is indexed into a bucket and empty buckets are discarded. To

formalise this process, let us consider a random projection, v, with the same dimen-

sionality as x. Since there is more than one projection into the space, v belongs to an

ordered set V . To index each example in a dataset, x ∈ X , we identify the relevant

bucket by calculating a hash key, H, formed from a series of binary values, hi, which

are indicative of that example’s relationship to each projection. Effectively, this process

identifies ‘which side of the projection’ the example inhabits within the space and are

calculated by thresholding a dot product comparison:

hi =

0, if x · vi < 0

1, if x · vi >= 0
∀vi ∈ V (3.9)

H is then the ordered concatenation of each hi it contains, allowing it to act as an

identifier for a specific bucket. As the indexing system is based upon a similarity

comparison, the buckets preserve locality information from the original distribution of

the space and there is a high probability that similar examples are allocated to the

same bucket (supporting the declaration in Equation 3.8). These buckets are therefore

well-placed to quickly identify the locality of an instance, allowing nearest neighbour

calculations to only be performed between occupants of the same bucket. This is sig-

nificantly computationally faster and cheaper than brute-force neighbour calculations.
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3.2 Neural Networks and Deep Learning

As DMLs are neural in nature, in this section we provide an introduction to the general

concepts of neural networks and deep learning. This will clarify that training of a

neural network allows learning of non-linear feature combinations to create an abstract

representation of the original input data. This is a fundamental advantage of DMLs over

representation learning methods which operate on feature reduction, such as Principle

Component Analysis, and so it is necessary we provide a general introduction to the

mathematical foundation of the concept.

Neural networks are a collection of biologically inspired machine learning algorithms.

As parametric representation learners, neural networks receive large amounts of input

data to ‘learn’ a transformative function that will convert input data into a represen-

tation which is more effective for classification or regression tasks (note that in this

work, we focus on classification due to the nature of our use cases). Though motivated

by the neural networking systems which exist within the brain, neural networks are

more closely related to calculus graphs and rely on backpropagation (known in math-

ematics as reverse-mode differentiation) throughout training to learn to approximate

linear or non-linear functions. The importance of deep learning architectures (from the

perspective of this thesis) is the ability to leverage non-linear activations to generate a

representation of the input data which is optimised to meet a given objective. These

aspects are very important when we move on to discuss the capability of DMLs, and

so we provide a working introduction to them here.

3.2.1 Neural Networks

With a few exceptions, neural networks are considered a supervised learning method,

as their development requires a set of example data (the training set) where the desired

output is already known. Shallow networks are composed of three layers - an input

layer, a ‘hidden’ layer and an output layer - each of which are composed of a number of

neural nodes which are linked to every node on the previous layer by a set of weights

and biases. Deep neural networks have multiple hidden layers, allowing them to learn

deep functions (hence their namesake). Data is input to the neural network and is

fed through in sequence, with each layer of the network reliant upon the output of

the preceding layer. As each node of the input layer represents an individual feature

from the input data, this means that every feature has an impact on all nodes in the

hidden and output layers. This is important, because it means each node can leverage

combinations of input features from previous layers to feed into its value. Therefore,

each layer of the network creates a representation of the input data built upon a learned

combination of the raw features. The learned representation is flexible, as it is does
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not suffer from the reliance upon task-specific rules or algorithms which often plagues

manually-coded features.

To formalise learning in a neural network, let us consider a dataset of cases, x ∈ X .

Each case is comprised of a numerical vector of feature values such that, x =

(xf1, xf2, ..., xfm), where m denotes number of features. When input to a neural net-

work, each of these features occupies a single node in the input layer. Each node in

the input layer is connected to every node in the subsequent hidden layer h by a set

of weights w ∈ W . Each weight is a learned parameter which controls the level of

contribution of each feature of the input case to each node of the hidden layer, meaning

W is a matrix of dimensions m × |h|. Therefore we can weight each feature of the

input by taking the dot product of x and W . Each of the weighted input features are

then summed with a set of learned bias values B, a vector of bias of size |h| such that

there is a bias variable for each hidden node. Finally, a derivable activation function

a() is applied to the output of that summation to allow non-linear combination of in-

puts. It is important that the activation is derivable, to allow training to occur using

backpropagation, and non-linear, as this allows the network to approximate non-linear

relationships between features in the data. We summarise this for the hidden layer

overall as:

h(x) = a(x ·W +B) (3.10)

The output of the hidden layer is a new vector representation of the original input data

in which each feature is developed from a non-linear combination of input data features.

The representation can then be passed to the next layer in the network architecture,

which may be another hidden layer or an output layer.

When passed to a subsequent layer, the function becomes nested. This means that

features from the previous layer are fed into a subsequent layer, allowing the features

learned at the previous layer to be combined together and transformed (with non-linear

activation functions) to create a new representation. This process can be repeated

multiple times as desired to learn a representation of the data which is built upon

combinations of combinations of features. We can represent this as:

hl+1(x) = al+1(hl(x) ·W l+1 +Bl+1) (3.11)

We can see that the transformation of the data at the subsequent hidden layer, hl+1, is

obtained by obtaining the dot product of the previous layer, hl, and the weight matrix

for the new layer, W l+1, then summing the biases, Bl+1, before finally applying the

activation function, al+1. In such a manner, the function can become repeated multiple
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times. Hence the neural network becomes ‘deep’, giving rise to the title deep learning.

This is valuable because it means the model can learn to leverage information which is

only available by making multiple combinations of features, which is typically difficult

to build into hand-crafted knowledge models. Furthermore, the trainable weights within

the neural network model adapt as feature combinations are learned.

At the output layer, the data must be converted to a format that is appropriate to meet

network objectives. For classification, this requires that the input data be attributed

to one of multiple distinct groupings called ‘classes’. To achieve this, the network cal-

culates a probability distribution which is indicative of class membership. Calculating

the probability distribution requires a priori knowledge of the number of classes in the

training data, meaning that conventional deep learning and neural network architec-

tures are incapable of handling problems with unknown classes. The distribution is

typically calculated using a softmax function:

Softmax(x) =
exi∑|Y |
j exj

(3.12)

The output of the softmax function is a vector of the same dimensionality as the size

of the set of unique items in the label set, |Y |, and the values of which sum to a total

of 1. A label is decided for the input data by the highest probability value.

Considering our analysis, we can represent the transformation of input data to predict

a label as the function θ():

θ(x) = Softmax(hn(x)) (3.13)

where n is the number of hidden layers in the network.

3.2.2 Training a Neural Network

Given our understanding of how data is transformed throughout the network, we will

now discuss how the network is trained to achieve its objective. Here the term ‘training’

refers to the update of network weights and bias values as informed by the data. We

can decompose the concept of training into three distinct steps:

• Identifying the objective of the model, and formalising how well network output

meets this objective using a loss function.

• Using information provided by the loss function to calculate the gradient of the

error using backpropagation.

• Updating the weights and biases of the network to reduce the error using an
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optimizer function.

A neural network aims to meet an ‘objective’ by learning to model a function using

knowledge elicited from input data. The purpose of a loss function is to quantify the

difference between network output and expected output. We can describe the value

obtained as output from this function as ‘loss’ or ‘error’. Training then becomes a

matter of reducing the error produced by a loss function until it converges to a global

optima, at which point we know that we have modelled the function to the best of

the capabilities of the network architecture. Since the purpose of deep learning is to

approximate an unknown function, it is unlikely (though not impossible) that we will

reach perfect performance such that this loss value will be 0.

In classification, the purpose of the network is to attribute the input data to one of

multiple classes. As we have intimated above, we can calculate the probability of the

data belonging to one of these classes using a softmax function. The output of this

function will give us a vector which sums to a total of 1 where we can use the index

with the highest value as an indicator of class membership. Ideally the output of this

would be a one-hot encoded vector where the probability for the correct classification is

1 and the rest of the values are 0. Therefore, the error becomes the difference between

the real one-hot encoded class label, y(x), and the probability distribution as predicted

by the neural network, θ(x). We can calculate this using Mean Squared Error (MSE):

L(X, θ) =
1

2N

N∑
i=1

(
θ(xi)− y(xi)

)2
(3.14)

where N is the number of items in the training set. From this we can quantify the extent

to which the network meets its objective. This knowledge will allow is to calculate the

gradient of the error for each individual weight using backpropagation.

While we have used a straightforward example in this description, it is worth emphasis-

ing that the loss function is a measurement of how well the network meets its objective.

As a result, the loss function should complement the objective of the network, meaning

that there have been a number of different loss functions developed to meet the needs of

different objectives. In Section 3.3 we examine two of the most popular loss functions

for deep metric learning in more detail and discuss how they support the objective of

clustering similar cases.

Given an understanding of how much a network deviates from its objective (in the

form of loss), we can now ‘train’ the network to reduce this deviation. This is achieved

through data-driven alteration of the weights and biases (collectively referred to as

‘weights’ henceforth) that exist between the hidden layers of the network. To do this
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we need to understand the contribution of each individual weight to the total loss

value. We can identify this by calculating the gradient of the loss function with respect

to each weight. Because the activation functions are derivable, we can capture this

information using backpropagation, an algorithm which relies heavily on the chain rule

from calculus. After we have identified the gradient of the loss function with respect

to each weight, we can use an optimiser function to adjust the weights using gradient

descent.

3.3 Deep Metric Learning

Using our knowledge of deep learning as detailed in the last section, we now explore

the unique traits of several DML architectures, including Siamese Neural Networks and

Triplet Networks. We provide an in-depth exploration of each network and describe in

detail how each architecture and metric-based loss function contributes to learning of

a latent space optimised for similarity calculations.

Though individual architectures possess distinct nuances, there are several themes

which are consistent across DMLs. With this in mind, let us introduce some gen-

eral notation used throughout this thesis. Let X be a set of labelled cases, such that

for x ∈ X , the function y(x) returns the class label, y, of case x. In the context of

this paper, we will define matching cases as those which have the same class while

non-matching cases will have differing classes. The embedding function θ is an appro-

priate parameterisation of any function used to create the vectorised representation of

a given x, while the function Dw represents an arbitrary metric function to measure

the distance between two vector representations.

3.3.1 Siamese Neural Networks

Siamese Neural Networks (SNN) are deep metric learners which receive pairs of cases

as input to learn a matching task. The SNN architecture consists of two identical

embedding functions, which usually take the form of neural networks. The output

of these embedding functions, θ(), are feature embeddings for each member of the

input pair. During training it is these embeddings that are used for any distance

computations, thereby ensuring iterative model refinement through. Input pairs are

labelled as either matching or non-matching respectively and the network is trained to

differentiate between matching and non-matching pairs. Correspondingly, the objective

of training is to minimise the distance between the generated embeddings for matching

pair members while maximising the distance between embeddings for non-matching

pair members. Thus the overall goal of the network is the development of a space

optimised for similarity-based return.
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To achieve this goal, each training pair, p ∈ P, consists of two cases from the training

set, p = (x̂, ẍ). Whether the pair is matching or non-matching is governed by the rela-

tionship of the pivot case, x̂, to the passive case, ẍ and motivated by a matching criteria.

Though this matching criteria can in effect be anything (such as the presence/absence

of certain features, expert annotation or cluster membership), in its simplest form, the

pair’s relationship class is established by comparing class labels of its members (i.e.

y(x̂) with y(ẍ)). For this we use function Y (p), which returns p’s relationship class la-

bel, such that Y (p) = 0 to symbolise a matching pair when y(x̂) = y(ẍ), and Y (p) = 1

to symbolise a non-matching pair when y(x̂) 6= y(ẍ).

Figure 3.2: Siamese Neural Network Architecture

During training the network develops a multi-dimensional embedding based upon the

input training pairs, P. This is facilitated by having the shared layers; essentially

these layers enable the SNN to generate an embedding for each member of a pair (see

Figure 3.2). Thereafter members can be compared using a distance metric, DW , which

influences the computation of the loss. The loss function formulates the pair prediction

error on the basis of matching and not matching error predictions, since it is distance-

based the loss also causes the network to directly learn a similarity metric. In the

following subsections we will examine this distance-based loss in more detail.

SNNs were originally designed to use ‘contrastive loss’, as introduced in [14]. Con-

trastive loss is calculated by summing the results of the individual loss formulas for

genuine (matching) and impostor (not matching) pairs. Genuine pairs are penalized

by loss LG for being too far apart, while negative pairs are penalized by LI if their

distance falls within the given margin value. We can observe this in Figure 3.2 and

Equations 3.15, 3.16, 3.17.

LG = (1− YA) ·DW
2 (3.15)

LI = YA · (max(0, α−DW ))2 (3.16)

L = LG + LI (3.17)
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The result is that distance between constituents of genuine pairs are minimised over the

course of training whilst ensuring that impostor pairs maintain at least a set margin of

α distance apart. The similarity metric is therefore directly learned by the network, as

it is implicitly defined by the loss function.

Variable Definition

x̂ One half of the input pair. We describe it as the pivot instance, as
the value of Ya is decided by comparing ẍ to it

ẍ One half of the input pair. We describe it as the passive instance, as
the value of Ya is decided by comparing it to x̂

L The loss function which is passed to the network
LG The loss component specifically for genuine pairs
LI The loss component specifically for impostor pairs
Ya The variable which represents the true matching status of the

pair - 0 means genuine, while 1 means impostor
Dw A function to calculate the distance between θ(x̂) and θ(x′)
θ() A parametric embedding function, usually in the form of a neural

network
α The margin value which must exist between impostor pairs

Table 3.1: Details of Contrastive Loss

Taking a closer look, contrastive loss is the comprised of the summation of two loss

functions, but these loss functions only activate when the appropriate pair match is

presented. The function LG will only return a value when a genuine pair is presented

to the network (otherwise it will return zero), while the function LI will only return a

value when the an impostor pair is presented. This functionality is controlled by the

value ya. Since ya is set to either 0 (if the pair is genuine) or 1 (if the pair is impostor)

a specific loss function can be called for each type of pair.

The loss function for genuine pairs (LG) only activates when a genuine pair is called.

This is controlled by (1−ya). If ya represents the relationship of an impostor pair, then

it becomes equal to 1. This results in the function becoming 0(Dw
2) which produces

a zero for return. If ya is equal to 0, then the equation simply becomes Dw
2, which is

the distance between θ(x̂) and θ(ẍ) squared. If the distance between instances is large,

then the loss itself is large and weights are more influenced to change. If the distance

between instances is small then the generated loss value is low so weights receive less

update. The result is that the pivot and passive instance are decreasingly penalised

until they occupy the exact same space.

The loss function for impostor pairs (LI) only activates when an impostor pair is called,
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again controlled by the variable ya. If ya represents the relationship of a genuine pair

(i.e. it is equal to 0), then the function will return 0. In the impostor loss function, if

the distance between pair members is larger than the specified margin, then subtracting

it from the margin α will result in 0 being returned, as controlled by max(0, α−Dw).

Note that the max() function ensures that only a loss value which is greater than or

equal to zero will be generated. If the distance between pair members is smaller than

the margin, then this will result in a value between 0 and α, which will be returned.

As a result, the maximum loss which can be returned by an impostor pair is the value

of α, which will be returned if the passive and pivot instance are identical. This is an

interesting contrast to the genuine loss, which can create a potentially infinite loss value

dependent on the distance between pair members (see Figure 3.3 for a visualisation).

α

α
Distance between pair members

Lo
ss

𝐿

𝐿

Figure 3.3: Graph demonstrating contrastive loss

Pair Classification as a Proxy for Representation Goodness

As stated above, an SNN is trained to make predictions about a pair’s label - i.e.

matching or non-matching. We can use this as one method to evaluate representation

goodness. At test time the SNN can obtain a predicted pair label by comparing DW

with the margin threshold α. If Dw is less than α then the network judges the pair

to be genuine, otherwise it is classified as an impostor. The question then becomes

how this can be applied to unseen test data. For classification problems, a label for an

unseen test example, xq, can be obtained by pairing it with a representative training

example from each class, (x̄i, ..., x̄m), where m is the number of classes. In problems

without class knowledge, the representatives can be selected from each cluster.

However, this poses another question in how class/cluster representatives should be

selected. Intra-class variation means that selecting an unsuitable representative may

result in an incorrect classification. To avoid this, representatives can be selected based

upon prototypical instances within a class/cluster. We can then use a distance weighted
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voting algorithm to determine the classification of a query example from its nearest class

prototype neighbour (x̄i). Note that only genuine pairings with x̄i contribute to the

classification vote:

vote(ci) =
m∑
j=1

wj ∗ [Y (ci, y(x̄j)) (1− Y (x̄j , xq))] (3.18)

wj =
1√

(
∑

i |f iθ(xq)− f iθ(x̄j)|2)
(3.19)

The classification with the highest vote is deemed to be the classification of xq. The

weighting is based on Euclidean distance between examples using their feature embed-

dings from the network.

3.3.2 Triplet Networks

Triplet networks (TN) are DMLs which learn from three input cases simultaneously.

Together described as a triplet, these inputs are the anchor case (xa), a positive case

(x+) and a negative case (x−). The anchor case acts as a point of comparison, meaning

that the positive and negative cases are dictated by their relationship to the anchor (i.e.

matching and not matching respectively). Similar to the SNN, the objective during

training is to minimise the distance between an anchor and its associated positive

case and maximise the distance between an anchor and its associated negative case.

However, considering three cases at once ensures that update of weights is more focused.

This is because the SNN is learning based on only one aspect at any given time (e.g.

either pair members are alike, or not), meaning that more pairs are required to build

the full picture. Considering three cases at once allows the triplet network to better

understand the context of the anchor case.

A triplet network is comprised of three identical embedding functions, each of which

creates an embedding for an input (see Figure 4.6) before the error is calculated using

triplet loss:

L = DW (θ(xa), θ(x+))−DW (θ(xa), θ(x−)) + α (3.20)

Like contrastive loss (see Equations 3.15 - 3.17), triplet loss is a distance based function.

The formula will generate a loss value in situations where the distance between the an-

chor case and the negative case, DW (θ(xa), θ(x−)), is less than the distance between
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the anchor case and the positive case, DW (θ(xa), θ(x+)). The network is therefore pe-

nalised until matching cases are closer than non-matching cases. A minimum boundary

between non-matching cases is enforced by the margin α.

Variable Definition

xa The anchor example. During training this instance should meet the
matching criteria for x+ and not for x−.

x+ The positive example. During training this instance should meet the
matching criteria for xa and not for x−.

x− The negative example. During training this instance should meet the
matching criteria for neither xa nor x+.

Dw A function to calculate the distance between two examples.
θ() A parametric embedding function, usually in the form of a neural

network
α The margin value which must exist between impostor pairs

Table 3.2: Details of Triplet Loss

Unlike in contrastive loss, triplet loss considers three output embeddings simultane-

ously to inform its comparisons. The anchor example is compared to both the positive

example and the negative example in DW (θ(xa), θ(x+)) and DW (θ(xa), θ(x−)) respec-

tively. This means the network from two pair comparisons at the same time, allowing

the loss function to better incorporate knowledge of the space. Furthermore, an im-

portant distinction between contrastive and triplet loss is that while the former relies

on an explicit matching label, this information is only implicitly captured in the triplet

(in the form of the positive and negative examples). Contrastive loss is fully reliant

on this pair label to generate loss (where ya controls which aspect of the loss func-

tion is activated). The combination of considering only a single pair and basing the

comparison on a binary value mean that networks trained with contrastive loss learn

a matching function. However, in triplet loss because two pairs are being compared

(anchor-positive and anchor-negative), the function is enabled to consider relative sim-

ilarity of the pairings. Matching examples are not forced to the same point - only to

be more similar than non-matching examples (plus a threshold margin value). This

means that the loss function is significantly more robust to intra-class variance. Fur-

thermore, the objective of the function is more closely aligned with similarity-based

return. Overall, the differences between the functions are indicative that contrastive

loss is more useful in settings where matching is required, while triplet is more useful

in circumstances where fine-grained similarity knowledge is important.
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Figure 3.4: Triplet Network Architecture

3.4 Conclusion

To summarise our observations from this chapter, we have discussed specific implemen-

tation and mathematical details for several algorithms which support the vocabulary

and similarity knowledge containers in CBR. The purpose of this is to highlight that

CBR is a methodology supported by a range of algorithms, the properties of which can

be broadly categorised using the knowledge container model. From our exploration of

several example algorithms, it is clear that the vocabulary and similarity knowledge

containers are traditionally fulfilled by algorithms which have little no overlap between

one another, thereby preventing knowledge from either container from impacting the

algorithm within the other. For example, and specifically of interest to this thesis,

knowledge of case relationships play no role in the representation which is learned to

characterise case features. We highlight DMLs could offer a bridge between the vo-

cabulary and similarity containers specifically, as the representations they learn are

guided by similarity. This is because DMLs are deep learning architectures which learn

a representation optimised for similarity comparisons by considering the relationships

between input cases during training.

Training of DMLs is enabled by the neural network architecture, which is able to learn

non-linear combinations of input features to develop a new representation. DMLs

are characterised by combination of (1) a network architecture capable of comparing

multiple examples simultaneously and (2) a metric-based loss function which will utilise

the knowledge between input cases to guide formation of network parameters. As our

investigation in this Chapter and in Section 3.3 has emphasised, the output of these loss

functions are fully dependent on the similarity between input examples; ergo, to allow

the loss function to actually update the parameters within the neural network, samples

must be selected such that the comparison will generate loss. This demonstration

identifies the third crucial component of a DML architecture - a training strategy. The

training strategy will ensure that the combination of input examples (be they pair,
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triplet or a subset of examples) will actually generate loss to contribute to network

development. Intuition would suggest a training strategy should incorporate similarity

knowledge between examples, as has often been explored in the literature [18, 96, 102].

Such a strategy would need to target complex areas of the space while maintaining

knowledge of the overall distribution of examples. We discuss our work towards the

development of two strategies for optimising the training of DMLs in Chapter 4.
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Chapter 4

Similarity Knowledge for

Training Deep Metric Learners

We are motivated by our findings in Chapter 2 and Chapter 3 to develop several train-

ing strategies for DMLs which leverage traditional techniques from CBR and meta-

learning. In doing so, over the course of this chapter we aim to demonstrate the

impact that traditional methods can have to improve the training of DMLs. Firstly,

we examine meta-learning research in Boosting to explore the feature space and exploit

complex knowledge. Our initial findings indicate that utilising similarity information is

promising for training Siamese Neural Networks. However our proposed sample selec-

tion method is computationally expensive and unsuitable for large or complex datasets.

Once again taking inspiration from traditional machine learning techniques, we are in-

spired by methods to reduce the complexity of similarity comparisons to develop a

training strategy suitable for Triplet Networks. Incorporating Approximate-Nearest

Neighbour (a-NNs), we introduce a locality-sensitive batching strategy, which uses the

locality of examples to create batches as an alternative to the commonly adopted ran-

domly minibatching. Our results demonstrate this method to offer better performance

on three image and two text classification tasks with statistical significance. Impor-

tantly most of these gains are incrementally realised with as little as 25% of the training

iterations, and are computationally inexpensive in comparison to our initial strategy.

This chapter is structured as follows. In Section 4.1 we state the primary contribu-

tion which is addressed by this chapter, and how this is broken down into a number

of secondary contributions. In Section 4.2 we present several novel sample selection

strategies for pair-based architectures such as the Siamese Neural Network. This sec-

tion is further broken down into the following subsections: in Section 4.2.1 we formalise
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pair creation and its role in SNN learning before we introduce the concepts of pair or-

dering and informed pair selection employed in our work; in Section 4.2.2 we present

a comparative study of the proposed methods with results on the MNIST, IMDB and

SelfBACK datasets appearing in Section 4.2.3.

We reflect on our results and the limitations of the proposed strategies in Section 4.3,

which allows us to identify several key areas of improvement. We identify an avenue

forward in Section 4.4, where we present a novel batching strategy for Triplet Networks

which is based on the ideals of similarity we had pursued previously. This section is

divided into a number of subsections to structure our contribution: in Section 4.4.1 we

review the triplet network architecture and identify several different training strategies

for our evaluation. In Section 12 we present our method for creating locality-sensitive

triplets. In Section 4.4.2 we layout the details of our evaluation while in Section 4.4.3

we discuss the results of our experiments and our accuracy on several datasets. Finally

in Section 4.5 we provide some conclusions.

4.1 Research Question and Contributions

In this chapter we explore the hypothesis that training efficiency of DMLs can be

improved by incorporating techniques from traditional methods of machine learning,

such as meta-learning and CBR. With that in mind, the research question we aim to

answer in this chapter is:

• How can techniques from traditional machine learning methods (such as CBR

and meta-learning) be incorporated into strategies to improve training efficiency

of DMLs?

In our work towards answering this research question, we highlight the primary con-

tribution of this chapter. We introduce several training strategies for DMLs which are

inspired by research in meta-learning, curriculum learning and CBR. Experiments on

public datasets from multiple domains illustrate that the proposed strategies improve

training efficiency of DML architectures. This contribution can be further divided into

a number of secondary contributions:

1. Taking inspiration from current research into optimising the training of DMLs

and historical research into meta-learners, we introduce two methods for informed

pair selection (DYNE and DYNEE) that optimise pair creation by leveraging the

concepts of exploration and exploitation.

2. Encouraged by the results of recent work in curriculum learning we introduce a
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pair complexity heuristic for ordering that draws on knowledge about the neigh-

bourhood properties of pairs.1.

3. Building on the limitations of our pair selection strategies, and motivated by

techniques from CBR (see Section 2.1.2), we present an incremental locality-

sensitive batching strategy for triplets (LSB) which allows the batching to evolve

alongside example representations over the course of training.

4.2 Siamese Neural Networks

The Siamese Neural Network (SNN) is a deep learning architecture which trains upon

pairs of input data to learn a metric space in which training instances can be placed.

The expectation of paired learning is that the learned space can better represent salient

relationships between pairs which can then be better captured in Euclidean space.

Originally used in binary classification tasks such as signature verification [14] and face

recognition [15], SNNs have recently been generalised to multi-class classification [17].

Central to SNN learning is the use of similarity knowledge to gauge closeness of data

points such that it provides a meaningful matching criterion. The expected outcome

of SNN training is to have instances deemed similar to be mapped closer together. As

SNNs are metric learners that develop a new representation of the original data, in a

classification setting they require a non-parametric learner (such as k-NN) to perform

the explicit classification. However, a benefit of SNNs is that they do not require full

class knowledge during training, as they are learning on the basis of whether pairs meet

the matching criteria, not whether they belong to a specific label. For this reason, recent

work has demonstrated these networks can perform effectively even when working with

extremely limited training data, such as in a one-shot learning environment [17].

Surprisingly, pair selection and ordering have been given little attention in SNNs, de-

spite showing promising results in the closely-related Triplet Networks (TNs) [18, 78].

Pair selection and ordering directly informs the data relationships that the network

will learn and be trained upon, thereby directly influencing the metric developed by

the network. With our review of the literature in mind (see Section 2.2.3), it is our

view that these strategies play an important role in both improving training time and

ensuring high overall performance of SNNs. Pair selection and presentation order are

likely to be particularly relevant in data-budgeted scenarios where there are only a

small number of annotated examples.

In this section we discuss the importance of pair selection strategies and their effect

1The code associated with this contribution is publicly accessible at https://github.com/RGU-
AI/Informed-Pair-Selection
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Figure 4.1: The SNN learning process

on training. We are of the opinion that only by understanding the impact of sample

selection in multiple-input networks can we build upon these ideas for application to-

wards recent advancements in deep metric learners. For this reason we start with SNNs.

Although we limit our scope to SNNs, the contribution from this section is applicable

to other neural network architectures that learn from multiple examples - particularly

triplet [16] and matching networks [77].

4.2.1 Training with Pairs in an SNN

The SNN architecture consists of two neural networks that share identical weights and

are joined at one or more layers [14]. SNNs receive pairs of examples as input during

both training and testing to develop similarity knowledge at an object-to-object level.

We summarise the notation used in this chapter to assist presentation of the differ-

ent pair creation strategies. For an in-depth discussion of the parameters, please see

Table 3.1. Let X be a set of labeled examples, such that example, x ∈ X and y(x)

is a function that returns the class label, y, of x. P is a set of pairs (p1, ...pn) that

form the paired training batches for input to the SNN (see Figure 4.1). Each training

pair, p ∈ P, consists of a pair of examples, p = (x̂, x′), where x̂ is a pivot example

whose relationship to passive example x′ dictates whether the pair is of class genuine,

or impostor. Here the pair’s relationship class is easily established by comparing class

labels y(x̂) with y(x′). For this we use function, Y (p) or Y (〈x̂, x′〉), which returns, p’s

relationship class label, such that Y (p) = 0 when y(x̂) = y(x′), and Y (p) = 1 when

y(x̂) 6= y(x′). Typically x̂, x′ are randomly selected, to form the genuine and impostor

relationship pairs for training.

During training the network develops a multi-dimensional embedding based upon the

input training pairs, P. This is facilitated by having the shared layers; essentially

these layers enable the SNN to generate an embedding for each member of a pair

(see Figure 4.1). Thereafter members can be compared using a distance metric, DW ,

which influences the computation of the two loss components: loss due to pairs being
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further apart when they should not be, LG; and loss due to pairs being too close when

they should be further apart, LI . Contrastive loss, L (as in Equation 4.3), is commonly

used to guide the sub-network weight update for model learning by combining these two

losses - genuine LG and impostor LI [15]. It essentially formulates the pair prediction

error on the basis of genuine and impostor error predictions. The use of both genuine

and impostor error means that the similarity metric can be directly learned by the

network through the comparison of the actual pair label YA (equal to 0 for genuine and

1 for impostor pairs) and the distance, Euclidean or otherwise, between pair members,

DW .

This means that distance between constituents of genuine pairs are minimised over the

course of training, whilst ensuring that impostor pairs maintain at least a set margin

of M distance apart.

LG = (1− YA) ·DW
2 (4.1)

LI = YA · (max(0, α−DW ))2 (4.2)

L = LG + LI (4.3)

The output of the identical neural networks (or ‘sub-networks’) form feature embed-

dings, fθ, for each member of the input pair. During training it is these embeddings that

are used for any distance computations, thereby ensuring iterative model refinement

through contrastive loss based back propagation.

In the following sections we introduce pair creation strategies for SNN training, with

strategies that are informed by knowledge about areas of difficulty (exploitation) and

strategies that balance this with the need for problem space coverage (exploration).

Explorative Pair Selection

It is important to note that P only represents a small subset of all possible pairs which

can be obtained by exhaustively pairing all examples in the training set (the total size of

which would be |X |2). The result is that P gives a narrow view of instance relationships.

We can improve this by initiating multiple pair selection sessions throughout training.

Doing so allows us to explore the relationships between examples more thoroughly.

Specifically instead of a static P, we can create a P for each cycle of training, where a

cycle will consist of a set number of training epochs.

Algorithm 2 lists the steps involved with random creation of a Explore pair set, where

given n, a call to PRND(n) assigns n pairs to P:= PRND(n). Here x̂ and its paired

members x′1 and x′2 are randomly selected from X with the only condition that the two

pairs formed must provide the necessary genuine and impostor representatives; such
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Algorithm 2: Algorithm to create the Explore Set

1 Explore: PRND(n)
2 PI , PG := ∅
3 for i = 1 . . . n/2 do
4 x̂ := rnd selection(X )
5 x′1 := rnd selection(X ) ∧ y(x̂) 6= y(x′1)
6 x′2 := rnd selection(X ) ∧ y(x̂) = y(x′2)
7 PI := PI ∪ p(x̂, x′1)
8 PG := PG ∪ p(x̂, x′2)
9 end

10 Explore := PI ∪ PG
11 return Explore

that Y (PI) is 0 and Y (PG) is 1.

Exploitative Pair Selection

Inspired by uncertainty sampling and boosting we can utilise information that we gain

during the previous training cycle to inform pair selection for the next training cycle.

Here instead of only exploring the problem space randomly, we integrate an exploitation

phase such that pair selection will be guided by sampling in areas found to be ‘hard’

for the learner. Specifically for each pi ∈ P we use the network’s predictions, Y (pi) and

associated loss to rank elements in P. We extract the ‘hardest’ ranked pairs (i.e. pairs

with the highest loss), from which we generate new pairs to form the exploitation set.

We represent the ratio of exploit to explore as β. The main idea is to use this ratio to

guide pair creation in areas of uncertainty (See Algorithm 3).

Algorithm 3: Algorithm to create the Exploit Set

1 Exploit: PNN (P ′)
2 PI , PG := ∅
3 for pi ∈ P ′ where P ′ ⊂ P and |P ′| = β do
4 p′i = (NN1(x̂), NN1(x

′))
5 if Y (p′i) = 0 then
6 PG:=PG ∪ p′i
7 end
8 if Y (p′i) = 1 then
9 PI := PI ∪ p′i

10 end

11 end
12 Exploit := PI ∪ PG
13 return Exploit
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For each selected pair, we find the nearest neighbour of each member within each

pair using function, NNi. By taking the neighbours of the original difficult pair, we

generalise network attention to the complex area of the space without overfitting on

specific examples. These neighbours form the basis for a new pair for our training set.

It is worth noting here that it is possible to develop the entire training set by using the

exploit algorithm and setting β equal to 1. We found this to be detrimental to training,

as the network tended to overfit to specific difficult areas, become trapped in a local

optima and develop a distorted feature embedding as a result. Hence we suggest using

an Explore-Exploit ratio to prevent this.

Explorative and Exploitative Pair Selection

A mixed approach that allows the learner to both explore and exploit requires pair

selection that can utilise pairs formed using both strategies from previous subsections.

We accomplish this by randomly creating pairs to perform early exploration of the

feature space through a ‘dry run’ of training the network for a small number of epochs

(typically ten or less) which helps to initialise network weights. Thereafter we use the

ratio β to generate a new set of exploit pairs (as in Algorithm 3); and the rest will

consist of a new set of explore pairs (as in Algorithm 2).

Algorithm 4: Algorithm to combine Explore and Exploit Sets

1 Explore&Exploit: PHY BRID(P)
2 b := β · |P|
3 for pi ∈ P do
4 L:= L.append(L(θ, pi))
5 end
6 P:= P.sort(P, L, <)
7 for i = 1 . . . b do
8 P’ := P’.add(pi)
9 end

10 Exploit := PNN (P ′)
11 Explore := PRND(P \ P ′)
12 return Explore ∪ Exploit

The loss, L, for each pi is maintained in L, which is based on current network parameters

θ. Pairs are sorted in decreasing order of loss and the top β pairs are used for exploit

pair generation and the rest generated through the explore strategy. This process is

repeated multiple times during training, as the areas of the feature space that the

network will find complex will very likely change as the network ‘learns’ by refining θ.

Note that NNi’s similarity computations are influenced by feature embeddings on the

basis of the latest θ - i.e. they are based on activations of the last network layer at the

64



current point in training.

It is also important to note that the suggested algorithms do not sample from a larger

training set than the baseline method. It is merely the way in which instances are paired

that changes. For example, in a data-budgeted scenario where only 1% of a dataset is

available (such as in one of our evaluations later in this chapter), these algorithms will

operate within that budget and will not sample additional data from the training set.

Heuristic Ordering for Self-Paced Learning

To develop a structured ordering method for our pairs, we take inspiration from com-

plexity measures used in neighbourhood analysis for case-based reasoning systems [129].

The basic idea is that an area is considered complex when neighbourhoods of exam-

ples are found to be non-homogeneous in terms of their class labels. We adopt this for

complexity analysis C for a given pair p (instead of a single example) as in Equation 4.4.

C(p) =

∑
i

∑
j EQ(Y (p), Y (〈NNi(x̂), NNj(x

′)〉))∑
i

∑
j (1− EQ(Y (p), Y (〈NNi(x̂), NNj(x′)〉))

(4.4)

The numerator in the complexity ratio counts the number of pairs formed in the neigh-

bourhood that differ from the class of the original pair and denominator counts those

that are of the same pair label (i.e. is it an impostor or genuine pair). Here NNi(.)

denotes the ith nearest neighbour of a given example. We create all possible pairs

between x̂’s and x′’s neighbourhoods (see Figure 4.2). For any given pair, function Y

returns the pair’s class label (0 for genuine and 1 impostor). With self-paced learning

we can use any of the pair selection strategies and sort pairs by the complexity metric

for model training.

4.2.2 Evaluation

The aim of our experiments is two fold. Firstly, we aim to investigate the effect of in-

corporating a pair creation method by analysing three variations of pairing strategies:

no strategy, a dynamic strategy (exploration) and an informed dynamic strategy (ex-

ploration/exploitation). Secondly, we aim to investigate the effect of complexity-based

ordering, giving us an unordered and an ordered variation of each strategy and a total

of six candidate approaches:

1. Base: Pairs are unordered, and are not updated throughout training. As such

this is a static, standard paired-training used for SNNs - the baseline.

2. Base*: As Base but now with pairs ordered .
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represent neighbour relationships which match the original pair relationship, while red
links represent neighbour relationships which do not match the original pair.

3. DynE: Pairs are unordered, but pair are updated (hence dynamic) using the

exploration algorithm throughout training.

4. DynE*: As DynE but now with pairs ordered.

5. DynEE: Pairs are unordered, and are updated (hence dynamic) using the explore

and exploit algorithm according to some β ratio.

6. DynEE*: As DynEE but now with pairs ordered.

We use the ‘*’ postfix to indicate complexity-based ordering over those that have no

ordering. We evaluate these algorithms using two different criteria. First, we perform

a one-tail t-test to establish statistical significance at a confidence level of 95% on

classification accuracy from network output on image classification, sentiment analysis

and HAR tasks. Secondly, we examine each algorithm’s capacity to learn over time by

analysing averaged accuracy on each test set for increasing number of training epochs.

Datasets

Four datasets were used in our evaluation: MNIST, IMDB, SelfBACK-Thigh and

SelfBACK-Wrist. For each dataset we divided available examples into the training

and test set as identified by their documentation. Then we extracted a budget from

the training set, which acted as our total budget for training (i.e. while the training

set could be paired in any way, we could not use any examples outwith the budget).

We then tested on the full test set for each dataset. In such a manner our evaluation

emulated budgeted learning.
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For MNIST, we split dataset into 60,000 training and 10,000 test images. We allocated

a budget of 1% of the full training set (600 images) and tested on the full test set. For

IMDB we adopted a budget of 10% of the training set (2,500 reviews) and tested against

the full test set (25,000). Reviews were preprocessed before submission to the network

using Word2Vec [46] and averaging the word vectors to form a document vector [50].

This resulted in a single movie review being represented as a vector of 300 features.

Within the SelfBACK dataset, for our experiments we remove any users that have less

than 60 seconds of recorded data per activity, leaving 24 users. Data was split into 3

second windows, with 900 features per example. Our goal in the SelfBACK dataset

is to classify user activity based on minimal information pertaining to them. This is

important for personalised HAR model generation to minimise demand on the user

for labels [130]. Data is split into training and test sets within each user so that our

training set consists of 4 windows (12 seconds) of data for each activity and the test

set is the remaining data.

In MNIST and IMDB we performed our evaluation using a 10-fold cross-validation

design, while in SelfBACK we divide each user into their own train and test set and

average the results from all users. Each algorithm is therefore compared based upon

the same initial sample as taken from the dataset, though the way in which this is

exploited to form training pairs differ between algorithms.

Network Architecture

For the MNIST and IMDB datasets we used a 3-layer perceptron with a batch size of

16 for each of our sub-networks. We then trained these architectures for 100 epochs.

For the SelfBACK dataset, we used a 5-layer convolutional network (as in [27]) with

a batch size of 8 for each sub-network. This architecture was trained for 50 epochs to

prevent overfitting on the smaller dataset. All architectures used ReLU activations and

computations for test classification adopt Euclidean distance on feature embeddings at

the similarity layer. Table 4.1 provides information on network hyperparameters.

We found that increasing regularization by decreasing batch size improves convergence

speed on all methods, likely due to the limited number of examples. Decreasing the

batch size gives DynEE and DynEE* flexibility to extract a relevant exploitation set,

and offers more opportunity to update network weights appropriately.
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Sub-network (layers) Total epochs Exploitation ratio β

MNIST MLP (3 Dense) 100 |P |/6

IMDB MLP (3 Dense) 100 |P |/10

SelfBACK Convolutional (3 Conv., 2 Dense) 50 |P |/4

Table 4.1: Summary of relevant network hyperparameters
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Figure 4.3: Demonstration of increasing levels of exploitation on IMDB dataset.

Ratio of Exploration to Exploitation

We experimented to understand the impact of the ratio of exploration to exploitation,

β, for each dataset. As identified above, over-exploiting a given dataset can cause

overfitting and have negative effects on accuracy. We therefore sampled various β to

determine the optimum for each dataset. We observed that high levels of exploitation

are beneficial at the start of training, but cause overfitting towards the end. Intu-

itively, this suggests that exploitation would function optimally as a decay parameter

- something we will explore in future work (see Section 7.1).

We established optimal β for each dataset: |P |/6 for MNIST, |P |/10 for IMDB and
|P |/4 for both SelfBACK datasets. This means that for DynEE and DynEE*, at

every training cycle, this proportion of the pairs were generated based upon exploiting

knowledge from the previous training iterations and the rest of the pairs were sampled

according to the explore strategy. We repeat the pair selection process every five epochs

68



for DynE, DynE*, DynEE and DynEE*.

4.2.3 Results

Our results demonstrate that using a pairing strategy will improve network performance

on all of the investigated datasets (see Table 4.2 and Figure 4.4). On every dataset

using either DynE or DynEE boasts faster convergence and greater accuracy than the

Base method. In one instance (MNIST), DynEE achieves a statistically significant

higher optima than any other method. Though complexity-based ordering offers mixed

results, we observe that an ordered method (DynE*) ultimately achieves the greatest

accuracy on three of the four compared datasets. The results for each dataset appear in

Table 4.2 with bold font used to indicate maximum accuracy for a dataset and asterisks

indicating statistical significance with 0.95 confidence.

Our Contributions

Training Base Base* DynE DynE* DynEE DynEE*

MNIST 25% 57.50 29.19 61.05 27.04 67.00 29.37

50% 68.24 52.96 75.16 59.24 81.93* 69.09

75% 72.03 63.47 80.76 72.78 86.78* 83.12

100% 75.51 70.74 84.53 82.21 90.05* 88.92

IMDB 25% 50.28 50.00 50.00 50.18 50.01 50.16

50% 72.35 78.11 76.87 81.08* 73.08 79.52

75% 83.66 83.56 84.36 84.55 84.10 84.54

100% 83.95 83.32 84.30 84.26 84.13 84.13

SB - Wrist 20% 31.70 40.92* 31.19 28.62 33.38 31.18

50% 58.25 64.82* 62.37 60.46 61.54 57.46

70% 62.39 67.07 66.02 64.58 66.07 65.61

100% 67.32 68.71 68.72 70.49 69.22 67.43

SB - Thigh 20% 40.79 44.46 43.12 43.76 45.31 46.03

50% 60.91 61.24 60.78 61.30 58.11 58.24

70% 66.31 66.84 67.59 69.37 65.71 63.71

100% 71.81 73.89 73.46 75.20 74.39 70.63

Table 4.2: Summary of algorithm performance throughout training
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Figure 4.4: Results on the MNIST, IMDB and SelfBACK datasets
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Dynamic Informed Pair Selection

On MNIST, we can distinguish that both DynEE and DynE begin to outperform Base

from as little as 15 and 20 epochs respectively. The difference between DynEE and

Base is statistically significant from epoch 40 onward. In IMDB we observe that DynE

and DynEE reach superior performance to that of Base with only 60% and 70% of the

training epochs required. Similarly, DynE and DynEE demonstrate faster convergence

to optima on the SelfBACK-Wrist dataset, though not on SelfBACK-Thigh. On both

SelfBACK datasets, the proposed methods ultimately converge to a higher optima than

Base can achieve.

These results suggest that the informed explorative and exploitative pair selection

strategies present greater insight into the space than can be achieved through the static

pairing method of the baseline. They support our hypothesis that a suitable training

strategy can improve the performance of SNNs.

Heuristic Ordering for Self-Paced Learning

Ordering proves most effective in the IMDB dataset, where all ordered methods sig-

nificantly outperform their unordered counterparts. Both DynE* and DynEE* reach

new optima at 65% and 70% of the training epochs required for Base to converge.

In MNIST, all ordered methods performed comparably worse than their unordered

counterparts. However, only Base* underperforms the baseline and both DynEE*

and DynE* outperform Base from epochs 55 and 80 onwards respectively. On

SelfBACK-Wrist, Base* demonstrates statistically significant improvements over the

Base method until epoch 30 and (though DynE* obtains the best accuracy), converges

faster than other methods. On SelfBACK-Thigh, DynE* consistently outperforms the

Base method from very early in training and ultimately achives a much superior ac-

curacy.

We take these results as evidence that curriculum learning is effective at dealing with

noisy or complex datasets. MNIST has non-complex class boundaries, suggesting that

ordering will be less effective. However, both SelfBACK datasets have considerable

noise, specifically the wrist dataset, as accelerometers on wrist lead to greater degrees

of freedom in movement and hence is more noisy than the thigh. Additionally we

observe that ordering performs well on IMDB, which is a sentiment analysis dataset.

Different people can have different thresholds for enjoyment and different preferences,

meaning they can describe the exact same event with different sentiments. This means

there can be considerable complexity at the boundary between positive and negative

classes.
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In summary, the results demonstrate that a pair selection strategy will improve the per-

formance of an SNN. In every tested dataset, the use of a non-ordered pairing strategy

offers faster convergence and enables greater accuracy to be achieved, though selecting

the most effective strategy depends on the task. In one domain DynEE even allows

the SNN architecture to significantly outperform the baseline in terms of classification

accuracy. Furthermore, although ordering is not effective in every scenario, incorpo-

rating a sample ordering based upon neighbourhood-complexity analysis can speed up

convergence on noisy or complex datasets. Specifically, DynE* operates very effec-

tively in these situations. This is likely because it is performing an ordered exploration

of the feature space, which allows it to gradually improve its knowledge to better deal

with complex areas.

4.3 Reflections

We have demonstrated the need for a reasoned training strategy for SNNs. We have

presented four contributions towards addressing this need, highlighting the importance

of a pair selection strategy and noting both an explorative algorithm, explore-exploit

algorithm and an ordering method for pairs and have shown on four different datasets

that each is suitable in different scenarios. Namely, informed pair selection offers a

greater view on the problem space when needed and ordering allows a network to

develop a structured training regime which is robust to dataset complexity. Thus we

conclude that use of an appropriate pairing strategy will improve network performance,

though selecting an optimal strategy is task dependant. Furthermore our results are

indicative that a pairing strategy which has its roots in similarity comparisons will

be more effective than random pairing. Thus the intuition behind using similarity to

inform our thinking seems to be well-founded, and implies that our hypothesis for this

chapter is supported.

However, the suggested method has a limitation in the form of its computational com-

plexity, which is prohibitive to its use on large or complex datasets. Let us explore

this more deeply by considering the three steps of DynEE (and the fourth step of

DynEE*) using a simple complexity analysis:

• Sort the output of the previous epoch based on the loss generated by each pair.

Sorting can vary in complexity based on the method used (quicksort, mergesort,

heapsort, etc) so in theory this step could be optimized. However, an ideal solu-

tion would be to prevent the need for sorting at all.

• Extract the exploitation set and find the most similar pair to each previously
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difficult pair. This is the most expensive step in the process as kNN has a com-

putation complexity of O(nd + kn), where n is the size of the set of examples

(in this case, the number of examples in the exploit set), d is the operations re-

quired for a single distance calculation and k is the number of neighbours. This

is because calculating the distance between a query and all items in the training

set has a complexity of O(nd), while looping through all items in the training set

to return the neighbour set has a complexity of O(kn). In our implementation,

because we are only actually interested in identifying the single nearest neighbour

(i.e. k = 1) the complexity is actually O(nd+n). However we perform this calcu-

lation twice (once for each member of the pair, x′ and x̂ respectively), giving an

overall complexity of O(2(nd+ n)). This is the most expensive step in the algo-

rithm, and the main impediment from expanding to larger datasets. More than

that however, it is also an obstacle to applying the algorithm to other deep metric

learners. In triplet networks for example, the complexity of the algorithm would

become O(3(nd + n)), as each member of the triplet would need to be replaced.

We can represent this as s, as indicative of the number of samples input to the

neural network simultaneously. This gives an overall complexity of O(s(nd+n)).

• Create the explore set. This is the cheapest step in the DynEE algorithm, as

the complexity of selecting a random partner for each case in our explore set is

less than O(n2(2(logn))). Firstly, every case in the explore set must be iterated

over, giving a complexity of O(n). For each item, the explore list must be filtered

using a Boolean comparison to create the matching and non-matching sets, so the

complexity becomes O(n2). Finally, from each list we select a random partner

for the case, which has a complexity of less than O(2(logn)). It is difficult to

surmise the exact complexity, as the size of the matching and non-matching sets

are dependent on the distribution of the dataset. However, we know that the

number of examples in both sets cannot sum to greater than n. Thus the overall

complexity is guaranteed to be less than O(n2(2(logn))). Though this may seem

expensive, it is actually the cheapest method of creating a set of pairs, as this

complexity would correspond exactly to the baseline for creating random pairs.

• (DynEE* only) Identify the curriculum. In the case of DynEE*, an additional

step of the algorithm would require the calculation of loss contribution of each

member of the combined explore and exploit sets before passing this to a sorting

algorithm. The contribution is particularly expensive to identify, as it requires

each pair to be fed through the network to receive the new representation be-

fore an accurate loss score could be calculated. The complexity to identify loss

contribution is O(2ph), where p is equal to the number of pairs in the training
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set and h is equal to the number of operations required for the transformations

performed by parameters of the neural network. The pairs and their associated

scores could then be sent to a sorting algorithm which will provide an additional

level of complexity (though as stated above, this could be optimized).

The total complexity of DynEE and DynEE* is therefore:

O(DynEE) = O(sort+ s(nd+ n) + n2(2(logn))) (4.5)

O(DynEE*) = O(sort+ s(nd+ n) + n2(2(logn)) + 2ph+ sort) (4.6)

Where sort is representative of the complexity for the sorting algorithm which is used.

From our complexity analysis of DynEE, it is apparent that there are several areas of

where computational efficiency could be improved. In particular, it would be desirable

to reduce the expensive nearest neighbour calculation which prevents upscale of the

algorithm to other deep metric learners with larger simultaneous input (such as triplets

or subsets). Additionally, if possible the removal of the initial ranking and sorting of

the list to identify the exploitation set should be avoided.

Our investigation into methods to improve the efficiency of the similarity knowledge

container in CBR show potential to answer these limitations. In particular, we highlight

the approximate-Nearest Neighbour (a-NN) methods which are useful to reduce the cost

of brute force nearest neighbour calculations. In the following section, we will discuss

how have been inspired by research in CBR to adapt an a-NN method as an inexpensive

training strategy for triplet networks.

4.4 Triplet Networks

Triplet networks are deep metric learners which learn to optimise a feature space us-

ing similarity knowledge gained from training on triplets of data simultaneously. The

architecture relies on the triplet loss function to optimise its weights based upon the

distance between triplet members. Composition of input triplets therefore directly im-

pacts the quality of the learned representations, meaning that a training scheme which

optimises their formation is crucial. However, an exhaustive search for the best triplets

is prohibitive unless the search for triplets is confined to smaller training regions or

batches. Accordingly, current triplet mining approaches use informed selection applied

only to a random minibatch, but the resulting view fails to exploit areas of complexity

in the feature space.
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In Section 2.2.3 we discussed the different aspects to consider when developing a train-

ing strategy for deep metric learners. To summarise our discussions, often these training

strategies make use of random minibatches extracted from the training set to offset the

complexity of utilising the full set. For example, in [18], the authors ‘mine’ optimal

triplets for network training from within this minibatch by identifying what they de-

scribe as semi-hard combinations - i.e. triplets which produce sufficiently large loss

to improve weight formation without causing oscillation. Though mining triplets from

minibatches offers reduced complexity to methods which target the full training set,

it has a key disadvantage. While random minibatches allow an overview of the distri-

bution of the training set, they offer no additional measures to target complex areas

such as class boundaries. This is particularly important for triplet networks, because

(as with other deep metric learners) their loss is distance-based. With that and our

hypothesis for this chapter in mind, in this thesis we suggest convergence of DML ar-

chitectures can be achieved faster by considering the locality of examples to inform the

creation of minibatches.

In this section we highlight the importance of optimising batch selection before triplet

mining approaches are applied. To this end, we propose a novel algorithm, Locality-

Sensitive Batching (LSB), which uses locality sensitive methods to focus on example

clusters as a substitute for random minibatches for a starting point of further triplet

mining. This method can provide the necessary focus on complex class boundary areas

to improve training efficiency. Furthermore, as indicated by research in curriculum

learning [95], in particular self-paced learning [104], it would be desirable for any batch

selection method to be relevant to the network’s current parameter set. Therefore the

method proposed in this chapter uses the latest network output to inform its clustering.

The result is that the batches of input data created by LSB are based upon an up-to-

date representation of the latent space, and as such faithfully represent current ‘difficult’

potential triplets for network input. Though locality-sensitive methods can be more

expensive than random minibatching, this can be offset by adopting Approximate-

Nearest Neighbour (a-NN) methods. In this work we suggest Locality Sensitive Hashing

(LSH).

Our findings demonstrate that different batching strategies offer different insights into

the space. Training on the full space using a brute force method allows a triplet

network to understand the entire distribution of examples, but using the extent of

available knowledge quickly becomes expensive. Minibatched strategies provide a ran-

domly sampled overview of the space, but omit potentially useful information about

complex areas. On the other hand locality-sensitive batches offer comprehensive focus

on a region in the space. However one needs to be aware that focusing in this manner
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Minibatch Original Locality-Sensitive 
Minibatch

Figure 4.5: Visualisation of the different insights offered into the feature space by dif-
ferent training schemes. Left (Minibatch) is created by randomly sampling the original
distribution. Right (Locality-Sensitive Minibatch) is created by applying LSB to the
original distribution.

can be detrimental unless an understanding of the full space is also maintained (see

Figure 4.5).

4.4.1 Training with Triplets in a TN

Triplet networks are deep metric learners which learn from three input examples simul-

taneously. These inputs are the anchor example (xa), a positive example (x+) and a

negative example (x−), which together are described as a triplet. The anchor example

acts as a point of comparison, meaning that the positive and negative examples are

dictated by their relationship to the anchor (i.e. matching and not matching respec-

tively). The goal of training is to create a space optimised for similarity-based return

by minimising the distance between an anchor and its associated positive example while

maximising the distance between an anchor and its associated negative example.

A triplet network is comprised of three identical ‘sub-networks’ (see Figure 4.6). Typ-

ically a deep learning architecture, which can be as shallow or as deep as necessary.

Each sub-network creates an embedding for one input (i.e. an individual member of

the triplet) before the error is calculated using triplet loss.

Let us summarise the notation used in this section. For a detailed breakdown, please

see Table 3.2. Let X be a set of labeled examples, such that example, x ∈ X and y(x)

is a function that returns the class label, y, of x. In the context of this chapter, we will

define matching examples as those which have the same class (y(x+) = y(xa)) while

non-matching examples will have differing classes (y(x−) 6= y(xa)). The embedding

function θ is an appropriate parameterisation of any one of the identical sub-networks

creating the vectorised representation of a given x. We can then represent triplet loss
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Figure 4.6: Batched triplet network training on the CIFAR10 dataset. The represen-
tations learned by each sub-network for each input image are improved over time by
using knowledge around the relationship between inputs during training.

L as so:

L = max(0, (DW (θ(xa), θ(x+))−DW (θ(xa), θ(x−)) + α)) (4.7)

Where DW is a function to calculate the distance between two embeddings and α is the

margin which must exist between an anchor and negative example. This formula will

generate a loss value in situations where the anchor example is closer to the negative

example than it is to the positive example. The network is therefore penalised until

similar cases are placed closer together in the feature space. The max() function ensures

that only loss values greater than zero impact network weights.

However, there are some issues with this. As the network approaches convergence,

random formation of triplets has an increased likelihood to provide triplets which will

generate a loss of zero. This is because the feature space will be approaching optima.

The result is the network will train for increasing periods of time with decreasing

improvements to its weights; hence the importance of sample selection and training

optimisation. Simply put, we want to form triplets which will maximise loss for the

improvement of the network and allow it to converge towards optima more quickly.

Creating Triplets

Let us first identify a baseline algorithm for randomly creating triplets from the full

training set, where T () is a function to create a triplet.

In Algorithm 5, is matching() is a function which separates X (or any subset) into two

sets, Pos and N eg, based on each member’s relationship to a given anchor example xa
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Algorithm 5: Create random triplets from full training set.

1 Random: XRND(n)
2 for xa in X do
3 Pos, N eg = is matching(xa,X )
4 x+ := rnd selection(Pos)
5 x− := rnd selection(N eg)
6 Ti := T (xa, x+, x−)
7 T = T ∪ Ti
8 end
9 return T

(see Algorithm 6). Members of Pos have a matching class label with xa and N eg have

a non-matching class label. Note that this function could be adapted to be non-class

reliant (i.e. by altering the if statement in the is matchingfunction to consider cluster

membership or presence of a particular feature in its comparison of xa and xi).

Algorithm 6: Extract the set of matching and non-matching examples from X .

1 Matching: is matching(xa,X )
2 Pos = ∅
3 N eg = ∅
4 for xi . . .X do
5 if y(xi) = y(xa) then
6 Pos = Pos ∪ xi
7 else
8 N eg = N eg ∪ xi
9 end

10 return Pos, N eg

Algorithm 5 is relatively inexpensive to perform, but as mentioned above, there is no

guarantee that the created triplets will result in any loss for the network. This is a

problem which gets worse over the course of training as the optimal representation of

the space is approached.

To counter these issues, there must be some concept of identifying triplets which are

meaningful for training - an informed approach. However, checking every example is

too expensive. Hence the importance of extracting minibatches. By examining mini-

batches of the data at a time, the complexity of an informed approach is considerably

reduced. The question then becomes how best to identify subsets of the data which

lend themselves to minibatches. While many active learning approaches are applied

on randomly sampled batches to get an overview of the space, based on findings from

our literature review (see Section 2.2.3), we suggest that the batching method is an

important design consideration, and by selecting the appropriate method significant
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improvements can be made.

Creating Triplets from a Random Minibatch (MR)

Hereon, we use the term ‘minibatch’ to refer to any subset of X . Minibatches which are

representative of the original space can be easily created using Algorithm 7. This can

be trivially adapted to ensure stratification in cases of class imbalance. In Algorithm 7

m is a minibatch of examples from X , such that m ⊂ X . M is then the complete set

of minibatches and the function M() creates a set of minibatches from within X .

Algorithm 7: Develop random triplets from a minibatch.

1 Random Minibatch: XMR(n)
2 M =M(X )
3 for mi . . .M do
4 for xa in mi do
5 Pos, N eg = is matching(xa,mi)
6 x+ := rnd selection(Pos)
7 x− := rnd selection(N eg)
8 Ti := T (xa, x+, x−)
9 T = T ∪ Ti

10 end

11 end
12 return T

Though training using minibatches of examples in this way reduces the potential num-

ber of triplets (thereby reducing pairwise similarity computations and complexity), it

does not provide any focus on complex areas of the feature space. This is because the

random selection of the minibatch allows it to be representative of the data distribution

as a whole, without allowing any room for specific localised knowledge of the feature

space. Clustering methods offer potential to fill this gap, but are difficult to justify due

to their high initial resource requirements. In the next section, we will describe how

we adopted methods from locality-sensitive hashing to inform the creation of clusters.

Locality-Sensitive Batching (LSB)

It is clear that the greater the loss generated by a given input, the greater its con-

tribution to the network weights (hence the intuition behind [18]). Because triplet

networks utilise a distance-based loss, the contribution of a given triplet is decided by

the distance between its constituent members. With that in mind, the most appropri-

ate triplet for a given anchor is likely to exist within the same locality. In this section,

we detail how we adapt Locality-Sensitive Hashing (LSH) to develop locality-sensitive

batches for network training.
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In the literature, LSH is often used to reduce complexity for similarity comparisons (see

Section 3.1.2). However, each bucket can also effectively be considered as a cluster. We

have found that the these clusters offer a good alternative form of batch selection to

random minibatching with only trivial adaptation (see Lines 2-18 of Algorithm 8).

Furthermore, we ensure that the information from clustering is up to date by basing

our locality informed clusters on the latest network output, θ. The intuition is that this

will allow the network to maintain focus on complex areas which are most relevant to

its current parameters. Hence, on the first epoch of the network the input data is split

into batches by using LSH on the original data representation (i.e. LSH(X )), while

in all subsequent epochs input data is batched by using LSH on the network output

(i.e. LSH(θ(X ))). We make this distinction as the network is initialised with random

weights and so performing LSH on its output before any training has occurred would

not produce meaningful batches.

In Algorithm 8, LSH is a function to extract a set of locality-sensitive buckets from

X and b is an individual bucket from within B, such that b ∈ B. Finally, pure() is

a function which returns True if the selected bucket contains only a single class (or

False otherwise) and R is an empty set which is eventually populated with anchor

cases which exist in pure clusters or as the sole member of a cluster. Naturally, as the

network converges we expect the number of impure buckets to decrease (see Figure 4.7).

Figure 4.7: Distribution of examples in buckets throughout training. As training pro-
gresses the number of impure buckets decreases.

As buckets are created using locality knowledge, feeding triplets into the network can

enforce sequential learning. This in turn can be problematic, because the implicit

curriculum could be non-optimal. With that in mind, we need to randomise the order

of the triplets to allow an understanding of the overall distribution of the space. We

do this in two ways. Firstly, if we fail to identify a cluster for a given example (or if

the cluster identified is ‘pure’), we randomly combine it with other examples where a

cluster could not be identified to create a triplet. Secondly, we input the triplets we

have gained from our buckets to the network in a random order (see Lines 19-25 of

Algorithm 8).
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Algorithm 8: Develop random triplets from a bucket.

1 Locality-Sensitive Batching: XLSB(n)
2 if epoch = 1 then
3 B = LSH(X )
4 else
5 B = LSH(θ(X ))
6 R = ∅
7 for bi . . .B do
8 if not pure(bi ) then
9 for xa in bi do

10 Pos, N eg = is matching(xa, bi)
11 x+ := rnd selection(Pos)
12 x− := rnd selection(N eg)
13 Ti := T (xa, x+, x−)
14 T = T ∪ Ti
15 end

16 else
17 R := R ∪ bi
18 end
19 for xa . . . R do
20 Pos, N eg = is matching(xa, R)
21 x+ := rnd selection(Pos)
22 x− := rnd selection(N eg)
23 Ti := T (xa, x+, x−)
24 T = T ∪ Ti
25 end
26 shuffle(T )
27 return T

4.4.2 Evaluation

In this section, we offer details of our evaluation of the proposed method. We perform

an empirical comparison of the representations gained from each training scheme, using

k-NN accuracy as a proxy for representation goodness. We evaluate this using two dif-

ferent criteria. Firstly we perform a one-tail t-test to establish statistical significance at

a confidence level of 95% on classification accuracy from network output. Secondly, we

examine each algorithms’ capacity to learn over time by comparing averaged accuracy

on each test set for increasing number of training epochs. This is important because

improvements that LSB offers are likely to be in the form of training efficiency.

The goal of these experiments is to analyse the difference that each batching method

offers as a starting point for further active learning approaches. Accordingly we identify

two batching strategies for comparison:
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Dataset Sub-Network (Layers) Epochs Minibatches Batch Size Projections

MNIST MLP (3 Dense) 10 1000 50 18

CIFAR10 CNN (4 Conv., 2 Dense) 100 1000 40 18

STL-10 CNN (4 Conv., 2 Dense) 100 250 40 6

IMDB MLP (3 Dense) 20 1000 40 12

REUTERS MLP (2 Dense) 10 90 138 5

Table 4.3: Summary of relevant network hyperparameters

1. Minibatched Random (MR): Triplets are randomly generated from within

a minibatch of the training set. Minibatches are distinct and contain non-

overlapping examples. This algorithm will act as our baseline for comparison.

2. LSB Random (LSB): Triplets are randomly generated from within a local neigh-

bourhood of each anchor case in the training set. These neighbourhoods are

distinct and contain non-overlapping examples. Anchors which have a ‘pure’

neighbourhood are randomly combined to create triplets.

In both instances, we ensure that every example in the training set is utlised as an

anchor only once per training epoch. This means that there are as many triplets per

training epoch as there are examples in the training set. Classification is performed

using k-NN, where k = 3 and similarity is measured using cosine similarity.

Network Architecture

All architectures used ReLU activations and the Adam optimizer [131] and produced

an output representation of the size 128. For all other variables, including number of

batches for networks using MR and number of projections for networks using LSB, we

implemented an empirical evaluation to identify the best performing hyperparameters

for each dataset (see Table 4.3). Note that since projections in LSH are random, the

number of buckets can vary between runs. This is because there is potential to create

empty buckets which are discarded. Therefore, it is more suitable to maintain the

number of projections as constant. Batch sizes were set such that they were a multiple

of the number of labels contained in each dataset (i.e in MNIST there are 10 classes,

so the batch size was a multiple of 10).

Datasets

We have used several datasets across different problem domains to provide a robust

evaluation of the versatility and utility of LSB. The reduced complexity of LSB means

82



Classification Dataset Method
Accuracy throughout Training (%)

25% 50% 75% 100%

Image

MNIST
MR 95.98 96.66 96.95 96.99

LSB 95.81 96.93 97.19 97.40*

CIFAR10
MR 57.81 64.41 66.55 66.68

LSB 62.65* 66.68* 68.44* 69.02*

STL-10
MR 50.26 57.79 60.76 61.67

LSB 50.97 61.16* 61.51* 61.63

Text

IMDB
MR 85.86 87.39 87.90 88.04

LSB 87.75* 87.80 88.30* 88.33

REUTERS
MR 74.42 75.01 76.02 76.47

LSB 77.13* 78.03* 78.32* 78.68*

Table 4.4: Summary of algorithm performance throughout training

that it is viable to utilise the entire training set during training, and for us to evaluate

on larger and more complex datasets than was previously computationally viable when

using the DynEE strategy. We selected 3 popular image classification datasets from

the literature (MNIST, CIFAR10 and STL-10). These datasets were selected because

of the triplet network’s utility in image-based search and to demonstrate our algorithm

as applicable in this domain. We did not use data augmentation in any case, as our

goal was merely to compare the two batching methods. We also selected two text clas-

sification datasets (IMDB and Reuters) to investigate the capability of triplet networks

for our intended use case of experience transfer for telecommunication engineers, as

this relies upon text data as input.

Text datasets were pre-processed using the Keras library, as was also used for imple-

menting the deep learning architectures throughout this thesis. The vocabulary for

each dataset used the 5,000 most common words in the case of IMDB and the 1,000

most common words in the case of Reuters. Out of vocabulary words were discarded.

Each example in the IMDB dataset was converted to a vector using tf-idf, while the

examples in the Reuters dataset were converted to binary vectors. All parameters were

set following an initial empirical evaluation. In all situations, 5-fold cross-validation

was used to create distinct train and test sets. This was because we were not aiming

for state-of-the-art, but to empirically demonstrate that different batching methods can

impact network performance to a statistically significant degree.
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4.4.3 Results

The results for each dataset appear in Table 4.4 with bold font used to indicate the

highest achieved accuracy for a dataset and asterisks indicating performance which is

better than the baseline with statistical significance at 95% confidence. As can be

observed, LSB outperforms the baseline on all tested datasets with significance for at

least some portion of training. On 3 of the 5 tested datasets (MNIST, CIFAR10 and

Reuters), LSB achieves a statistically significant improvement on accuracy at the end

of training. On every tested dataset LSB converges to optima faster, approximating

the baseline performance with only 50% of the required training or less.

On MNIST, though differences are less pronounced during early training, our approach

does converge to a statistically significant higher accuracy. The advantages of LSB can

be seen on CIFAR10, where it outperforms MR from very early in training, achieving

performance improvements that are statistically significant from 10% of training on-

wards. Though it would seem from Table 4.4 that the baseline for STL-10 converges

to the same accuracy as LSB, we actually converge to optima much earlier in training.

By 50 epochs, the accuracy achieved by LSB is already at 61.16%, which is a 4% im-

provement over MR at the same number of epochs. On the IMDB dataset, we observe

that LSB has great benefits very early in training, with less improvements as time goes

on. This is because LSB can focus on the complex boundary cases that are difficult

to classify. The similar performance achieved is indicative of the difficulty to wholly

separate the positive and negative viewpoints in this task. It is interesting to note the

superior performance of LSB on the Reuters dataset. MR struggles when faced with

many classes or imbalanced data. This is not a problem for LSB, as the method is

only concerned with a small neighbourhood of the space. Thus we suggest these results

seem indicative that LSB is more suitable in problems with class imbalance.

4.5 Conclusions

To conclude, in this chapter we presented work towards confirming our hypothesis

that techniques from traditional machine learning, such as meta-learning and CBR,

could improve the training efficiency of DMLs. To this end, we presented contributions

through the development of several new training strategies from DMLs, based around

exploring and exploiting knowledge of the feature space (DynE and DynEE), heuristic

ordering of pairs (Base*, DynE* and DynEE*) and locality-sensitive batching (LSB).

Our initial study focused on the concepts of exploration and exploitation, as popu-

larised by boosting in meta-learning, to develop several training schemes for SNNs.

Here we introduced the DynE and DynEE algorithms, where the former explored the
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space to identify new pairings to inform network training, and the latter exploited

areas of known difficulty to augment this exploration. We also identified a pair heuris-

tic ordering approach that was applicable to both algorithms, based on the concept

of curriculum learning. Results of our evaluation of these algorithms demonstrated

promising improvements to training efficiency, but highlighted that the approaches

were prohibitively expensive to adapt to more complex DML approaches. To answer

these limitations, we introduced a locality-sensitive minibatching method, LSB, which

utilises locality information to inform selection of minibatches for training a triplet

network. The networks trained using LSB obtained better accuracy than random mini-

batching methods on our evaluation task, suggesting that locality-sensitive minibatches

are a better starting point for further active learning approaches. The value added by

LSB is a direct indication of how techniques from CBR can improve the efficiency of

training DMLs.

In both of the described circumstances, our evaluation utilised knowledge from multiple

domains captured in public datasets, and demonstrated that the proposed strategies

often improved the training efficiency of the DMLs on which they were applied. In

particular, we highlight that the improvements presented by LSB were statistically

significant compared to the baseline at some point in training for all tested datasets.

Therefore, we consider that the work we have demonstrated in this chapter supports our

hypothesis, though we acknowledge that further study would be required to understand

whether similar impact could be observed in other domains and datasets.
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Chapter 5

Similarity Knowledge for

Transfer of Experience

In the previous chapter, we explored the use of similarity to optimise the training of

Deep Metric Learners. In this chapter, we build upon our work by applying DMLs as

a component of a CBR system on two real-world use cases. These use cases focus on

leveraging textual records of experience to provide decision support in complex work

domains. Sufficiently understanding the similarity between work elements in these

sectors presents an opportunity to improve transfer of experiential content [4] and

provide services such as work recommendation [23]. Within the context of this thesis,

we highlight field provision of services for telecommunication organisations as a domain

to explore this area.

Service provisioning for telecommunication organisations can be very broadly defined as

the “making available of resources necessary for a service by allocating those resources

in a carrier’s network” [132]. In practicality, this means ensuring that the various

network components necessary for a customer to receive connectivity are available and

operational. This can be a challenging task, as the nature of telecommunications means

that the infrastructure for maintaining the network are normally dispersed throughout

the service delivery area (which is typically a large geographical region, such as a

country). For a telecommunication organisation, it is therefore necessary to have a

workforce dedicated to the installation and upkeep of network components in the field to

ensure continuous service delivery to customers. It is common within complex services

provisioning that the personnel which fulfill this required technical work gradually

become highly skilled in their domain. In this thesis specifically, we highlight the

telecommunications engineering force whom develop expertise in network equipment

installation and repair. To ensure continuous service delivery, they traditionally are
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allocated tasks. A task, in this scenario, represents either a time-constrained action

to perform on a piece of equipment or an investigation regarding a delayed step of a

wider network process. Field engineers record information about the tasks they have

completed in free text documents called “notes”. These notes form an heterogeneous

base of mixed types of information, such as work order, identified problem, failure

reason, task progression, task context, and sometimes informal recommendation.

This work is motivated by the need to learn similarity from a user’s perspective. We

believe that using notes written by engineers themselves as the information source for

a similarity metric will ensure that the cases retrieved through similarity-based return

are more representative of this point of view. In essence, we wish to achieve a similarity

model which is indicative of what a domain expert’s own experiences have lead them to

believe is the truth. We believe this can be achieved by basing it on experts’ notations

regarding the subject. Beyond this however, the notes offer potential as a multi-faceted

source which can inform a number of decision support systems. The notes are a large

semi-structured source of information detailing specific experiences of human experts

in the field. Thus, we view this as an opportunity to develop a corporate memory of

human experience, improving the effectiveness of engineers in the field and enabling

business robustness to the departure of experts from employment.

However, as we have intimated previously, understanding how to represent and compare

records of human experience is traditionally a difficult task. Cases using hand-crafted

features or a knowledge model solicited from domain experts would be costly to produce

and would require wide-scale user involvement to ensure that they were reflective of the

majority of opinion. Therefore we have investigated methods of learning representa-

tions for textual records. It is our intuition that the representations learned by DMLs

should be particularly suitable for this task, as they optimise the learned representa-

tion for similarity-based return (as we have explored in Chapter 3, and demonstrated in

Chapter 4), which is a key aspect of this task. In this chapter we demonstrate the utility

of two case-based retrieval systems which incorporate DMLs in their vocabulary and

similarity knowledge containers on two industrial use cases within the domain of deci-

sion support for telecommunication engineers. It is our intention that this highlights

the real-world application of the research in this thesis.

This chapter is split into the following sections. In Section 5.1 we highlight the pri-

mary contribution of this chapter and discuss how it is broken down into a number

of secondary contributions. In Section 5.2 we provide an introduction to the problem

domain of service provisioning for telecommunication organisations. We use this to

structure the description of each of our use cases, in Sections 5.3 and 5.4 respectively.

Each use case subsection is further divided into a description of the problem, details
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of the evaluation methodology and evidence of the deployed applications. We offer

some conclusions and highlight why we believe this work supports our hypothesis in

Section 5.5.

5.1 Contributions

In this chapter we explore the hypothesis that DMLs present an opportunity to combine

the similarity and vocabulary knowledge containers as a component of a CBR system.

Our collaboration with an industrial research partner allows us the opportunity to

explore this hypothesis on real-world data captured by domain experts during the

daily workings of a telecommunications organisation. Therefore, in this chapter we aim

to answer the research question:

• How effective are DMLs at fulfilling the traditionally separate roles of the ’vocabu-

lary’ and ’similarity’ knowledge containers in the context of transfer of experience

between experts and non-experts of telecommunications engineering?

Through our work towards answering this research question, we highlight the primary

contribution of this chapter. We compare methods of developing a similarity model

for transfer of experience using free-text data sources. Our findings demonstrate that

DMLs can learn to produce representations optimised for similarity calculations which

offer clear improvement over dense representations gained from word embeddings, but

require refinement to outperform statistical methods. To this end, we offer several

secondary contributions:

1. Firstly, we examine our ability to learn task similarity using expert-written doc-

uments (engineers’ notes) provided by a telecommunication organisation.

2. We introduce two real-world use cases to highlight the real world applicability of

the proposed methods. The first use case examines recommendation of additional

information to perform dynamic decision support for engineers in the field - trans-

fer of experience between experts (see Section 5.3). The second use case examines

the transfer of experience between expert and non-expert personnel within the

telecommunications work sector (see Section 5.4). We demonstrate how both of

these use cases are achievable by learning similarity models empowered by DMLs.

3. We perform a short comparative study of developing representations from expert-

written documents for similarity-based return on the basis of their accuracy on

two simple classification tasks from our use cases.

88



5.2 Provision of Services for Telecom Organisations

Within field service provisioning industries there is increasing interest into the empow-

erment of workers to ensure the right expert knowledge is used at the right level in the

decision process. In [23], the scheduling system interactively allocates tasks which em-

powered telecommunication engineers thanks to a personalised recommendation system

that suggested tasks to an engineer based on their history of completed tasks. However,

the increasing complexity of tasks lead to situations where engineers struggle to evalu-

ate accurately the required work on tasks which are nearby and within their skill set.

The amount of tasks generated every day across all business divisions can be very large

- for example, in the telecommunications organisation who provided data for our use

case, an average of 2,670 new tasks are generated every day. Time is often wasted by

an engineer’s need to develop a schedule to optimise his working day, which can further

exacerbate the problem they face in finding appropriate work with the correct context

information at the right time. This question becomes more critical when the type of

services are inherently dynamic, such as when high priority tasks are raised that require

an engineer’s immediate attention, and require that he must abandon tasks which he

might be unable to revisit on time. In a worst case scenario these tasks may miss

their deadline, either because an engineer can no longer return to them or potentially

because they overlooked them in the first place.

5.2.1 Stakeholders

In this section we briefly describe the roles and responsibilities of the main stakeholder

groups impacted by our use cases.

Field Engineers

Field engineers are the group of highly-trained workers who install and maintain the

required technologies to support the delivery of telecommunications services to the

organisation’s customer-base. The groups’ chief responsibility is to maintain the dis-

tributed telecommunication technologies across the country, meaning that there are

different groups of engineers serving different regions within the UK. They are referred

to as ‘field’ engineers, as the work primarily requires installation or maintenance to be

performed in the field, and off-site of a central location.

The workforce dedicated to these tasks are specially trained with appropriate skills to

complete the work. This includes early on-the-job training in the form of an appren-

ticeship, and continuous professional development through training courses to advance

and improve their capabilities. Engineer achievement of training is stored within a

skills matrix, where their professional ability is formalised as a set of ‘skills’. Each skill
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refers to a specific technical competency that the engineer is able to practically apply.

These skills are associated with the tasks that engineers are asked to perform, and it is

ensured during task allocation that an engineer does not receive a task they do not have

the skills for. However, the telecommunication equipment that the engineers maintain

can be impacted by a broad variety of factors. While the skills required for the work

can (in most cases) be identified in advance of the task being attempted, there is often

a requirement for the engineer to adapt after the task has started. For example, a

routine inspection of a generator can transform into a repair task if it is revealed that a

specific component is broken. Alternatively, an engineer may be dispatched to resolve

connectivity issues for a customer, and this requires diagnosis to identify the root of the

problem. As a result, the work is highly reliant on an engineer’s previous experiences

and capabilities.

The engineer’s create textual records of these experiences in engineer notes. These

notes are required to document task progression and completion as part of work force

auditing. Although they originated as this purpose, we believe these textual records of

experience can be useful to inform decision-support systems. As such, they act as the

basis for our similarity models in both use cases. We discuss the relationship between

tasks and notes, as well as the structure of notes, in Section 5.2.2.

We discuss the development of a system to support engineers to complete a task by

providing additional information in our first use case in Section 5.3. This use case

demonstrates capability of transferring information between domain experts.

Desk-Based Planning Agents

Planning agents are the desk-based staff who support field engineers in their work by

performing administrative duties, identifying incoming tasks, and supporting the com-

pletion of tasks. As these staff are not field-based and do not personally survey the

tasks up for completion, their decision-making is primarily informed by knowledge pro-

vided by engineers. The most explicit form of this information is the notes recorded by

engineers to report the progress of each task (described officially as ‘Further’ notes, but

known informally as task updates). Though these agents develop aptitude in under-

standing some aspects of telecommunication engineering, they are not experts nor do

they benefit from the experience or training that technical experts receive. The result

is an increased likelihood of human-error and decreased efficiency when they interpret

engineer notes, particularly in cases where the notes are complex.

One of the responsibilities of planning agents is to incorporate knowledge sourced from

task updates to identify and regulate suitable task intervention or assistance (see Fig-

ure 5.1). We describe this process as anticipating the next ‘scenario’ for a given task.
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Task Note
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Desk-Based 
Agent

Scenario

Figure 5.1: Desk-based agents (Non-Experts) supporting engineers (domain experts)
to complete their tasks. If a task is completed, then the desk-based agent will sign off
on the work. If the task is incomplete, then it is the agent’s role to organise a suitable
scenario to progress the task.

We discuss the development of a system to support the desk-based staff to anticipate

the appropriate scenario using engineer notes as a data source in our second use case in

Section 5.4, representing the transfer of experience between experts and non-experts.

Management

Though a record of human experience, the notes generated by engineers also act as an

auditing tool. The notes allow management to maintain a record of worker performance,

and this can be compared against best practice and company policy. Information from

the notes could be combined with data from other sources to perform this work force

auditing. Generally however, this procedure would use summary data analysis of the

range of sources to check that the worker was meeting various performance targets.

However, specific notes can also be used during these discussions, particularly if areas of

improvement or further training are identifiable from the notes. In this thesis we focus

on the interactions between engineers, as well as the interactions between engineers

and desk-based agents, so we consider feedback into these management processes as

out of scope. However it is worth highlighting management as a potentially impacted

stakeholder group if further work with the notes as a data source is pursued.

5.2.2 Tasks Notes

In this domain, a task typically represents a time-sensitive activity on a piece of equip-

ment (such as maintenance, installation or decommissioning) or interacting with and
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Figure 5.2: The relationship between telecoms tasks and engineer recorded notes.

responding to customer inquiries (both home and business). As part of work force au-

diting, field engineers record information about the tasks they have completed in text

documents called “notes”. These notes form a knowledge-base of experiential content

and are comprised of rich, heterogeneous information. The notes are categorised based

upon their contents. For example, Order notes contain information about the work

requirements of a task. Details of task completion are stored in Closure notes, while

records of task failure and the reason behind it are stored in Further notes. Lastly,

an engineer can enter additional miscellaneous information about a task in its in User

notes.

The notes are a semi-structured source of expert information describing a specific task.

However, they are made complex by the fact that only certain note types may be

present in certain tasks. For example, a task which has never been attempted will only

be associated with Order notes, while there may be both Further and Closure notes

describing another task if it had been failed at least once before it was successfully

completed. Furthermore, a task will often not only be associated with multiple different

types of notes, but also multiples of the same note type (i.e. two Further notes if the

task has been failed twice). However, certain note types (such as Order notes) will

never be duplicated. Figure 5.2 displays the relationship between notes and tasks for

two examples. In this Figure, Task TSK001 is an example of a newly created task,

where only the Order notes have been generated. Meanwhile, TSK097 is an example of

a task that has been attempted twice and failed (notice two Further notes) before being

successfully completed (detailed in the Closure notes). In both instances the engineer

has declined to add more information in the User notes.
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5.3 Use-Case 1: Transfer of Experience Between Experts

In UC1, we aim to develop a system which facilitates transfer of experience between

experts. Specifically we aim to achieve this through development of a method to access

and prioritize tasks which fall within the engineers’ capabilities, experience and are of

relevance to the business at that point in time. A recommender system has potential to

fill this gap [133], but responses to a fuzzy logic recommender [23] suggested that users

resented the lack of clarity behind its recommendations and felt that recommendations

of the system were not indicative of their own perspective. The ability to explain a

system’s recommendation, or display a level of transparency which allows the user to

understand the reasoning behind that recommendation, encourages trust between a

system and its users [134]. In answer to this, we have built a Case-Based Reasoning

(CBR) system with greater transparency and drawing on free text documents recorded

by the engineers’ themselves to inform its similarity model. In doing so, an engineer’s

experience is being shared with others to support their decision-making (allowing them

to answer the question ”based on the experiences of my colleagues, is this task relevant

to my skill set and therefore something I can achieve?”). Thus, in this use case we

focus on how we utilised the complex information source of engineer notes to develop a

similarity model which can act as a basis for additional information recommendation.

Additional information can take many forms and assist an engineer in the field in

different ways. We formally view additional information in this use case as the provision

of extra knowledge which can contribute to the successful completion of a task. Of

particular interest is additional information which may allow a user to pre-emptively

identify possible task failure and potentially avoid it. In this manner, we hope to either

prevent task failure or ‘fail fast’ such that minimum resources are wasted on a doomed

task.

5.3.1 Use-Case 1: Evaluation

In this use case, we demonstrate a similarity model generated based upon Order notes,

which are representative of the original work order calling for the task to be completed.

Since an Order note is created at the same time as the original task, this guarantees

that a task can be used to query the model immediately upon creation. This is an

important component of a timely system, as it would be less useful to query the model

after a task has already been allocated, or even failed.

For the purposes of comparison we have created a simple classification task where notes

are classified according to one of four work types. The quality of the learned repre-

sentations are assessed by their performance on this classification task. We extracted
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two months of Order notes written by telecommunication engineers between March and

April 2018. We filtered out any note which contained less than 50 characters, as we

judged them not to be adequately meaningful. This resulted in a dataset of 1,610 notes

split into four classes - Cabling (CAB - 227 notes), Jointing (JRT - 789 notes), Over-

head (OVH - 503 notes) and Power Testing (PTO - 91 notes). These classes represent

the primary required competence which is associated with each note.

Experimental Setup

Although a subject study would be desirable to understand whether the model develops

a score which is representative in an expert’s opinion, we will empirically evaluate the

model using a simple classification task as a proxy. We compare several methods

of learning representations for text documents on the basis of their performance on

a similarity-based return classification task. This allows us to determine the most

suitable method to use as a basis for our model. Specifically, we consider a statistical

method (tf-idf), a learned method (doc2vec) to text representation and two deep metric

learners (Siamese Neural Network (SNN) and Triplet Network (TN)). In addition, as

our research has demonstrated that the performance of a deep metric learner can be

enhanced through the selection of a suitable training strategy (see Chapter 4), we also

consider an SNN which uses DynE and DynEE sample selection and a TN enhanced

with Locality-Sensitive Batching (LSB).

The dataset was split into train and test sets for evaluation using 5-fold cross evalua-

tion. The Doc2Vec feature size was 300 as this was found to be the optimal parameter

through empirical evaluation. We used a gridsearch to identify the best combina-

tion of features for our tf-idf algorithm. Using the Python Natural Language ToolKit

(NLTK) 1 platform, stop words were removed using NLTK’s list of English stop words

and stemming was performed, and the top 500 most common words were transformed

into tf-idf features for each task. Further text pre-processing was not performed as the

text contained many examples of domain-specific terminology, which could be lost if

aggressive pre-processing was performed. The resulting vectors were very sparse, with

most tasks having 10 or fewer non-zero features. Finally, the hyperparameters for the

SNN and TN algorithms are presented in Table 5.1.

All sub-networks were composed of multi-layer perceptrons with 3 layers. Networks

were intentionally shallow, as the small amount of data provided by the use case meant

training vast quantities of weights and biases within a very deep network would be

challenging. Each layer had 128 nodes and used ReLU activations. Due to the difference

in training speeds and how quickly the networks approach convergence, we trained all

1The Python NLTK library, available here: https://www.nltk.org/
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Architecture Sub-Network Epochs Minibatches Batch Size

SNN MLP (Dense, 3 Layer) 50 81 16

TN MLP (Dense, 3 Layer) 50 81 16

Table 5.1: Hyperparameters of networks for training on UC1 dataset.

networks for 50 epochs and at each epoch we record accuracy at multiple values of k.

This allows us to report in our results accuracy of these k values at the epoch which

achieved peak accuracy for the respective architecture and training scheme.

Selecting Parameters for DynEE and LSB

We performed some simple analysis to select the β ratio for DynEE and the number

of projections for LSB. We set up a small experiment, examining the accuracy values

achieved over the course of 50 training epochs at a k value of 3. For both DynEE and

LSB, we then compared a range of parameters for each of the methods, investigating

a range of β exploitation ratios between 0 and |P |/2 (50%) and projections between 0

and 6 for LSB. Methods were run every epoch to inform the creation of the next epochs

training set. We used five-cross fold validation, and plotted polynomial trendlines of

the results (see Graph 5.3). This allowed us to quickly identify suitable parameters for

each of the methods.

As seen in Graph 5.3a, the trend line indicated that no exploitation would benefit

the architecture during early training. However, later training (tending towards epoch

50) would be continue to converge to optima with a small proportion of exploitation

knowledge (10 or 20%), while the baseline SNN would begin to overfit. As a result,

we selected a β exploitation ratio for DynEE of |P |/10 to compare against a baseline

SNN with no training strategy. This means that 10% of the training pairs at any one

time were formed through exploitation, while the remainder were randomly generated to

provide exploration. We anticipated that this was indicative that the SNN with DynEE

would take longer to converge than the baseline SNN, but that it would obtain a superior

accuracy from better approximating the optima when convergence was reached.

Our comparison of the number of projections for LSB, as seen in Graph 5.3b, was

indicative of more promising behaviour. The baseline TN seemed to overfit almost

immediately, while increasing projections would train to reach better accuracy before

overfitting. This implied the LSB method would be more robust to overfitting, and

the idea was supported by the fact that between epochs 20 and 40, the classification

accuracy for representations learned by architectures using p > 1 were statistically sig-

nificantly better than the baseline TN (using a one-tailed T-Test and with a confidence
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of 95%). Peak accuracy values were obtained in early training using 3 projections to

divide the space. However, later training suggested that setting p to 4 or 5 would avoid

overfitting for longer. With these results in mind, we selected p = 5 as the parameter

for our experiments, but we also highlighted p = 3 and p = 4 for further investigation.

5.3.2 Use-Case 1: Results and Discussion

The results are presented in a graphical comparison in Figures 5.4. Performance on

this task is generally capped between 71% and 72%, regardless of whether tf-idf or

Doc2Vec features are used, implying a difficult task. The lower overall accuracy may be

representative that the dataset is not large enough to achieve better accuracy. Overall

we can observe that the representations learned by DMLs on Doc2Vec embeddings

are better clustered, as evidenced by the improved accuracy at all values of k. The

representations learned from tf-idf vectors generally perform better at lower values

of k, though the raw data achieves better performance at high values of k. This is

likely because of the sparseness of the tf-idf vectors. The notes are typically short,

meaning that it is not unusual for tf-idf vectors to have a small number of non-zero

indices. When transforming the input with the DML, this could mean it is more

difficult to learn the weighting for feature combinations. These combinations could be

important, as the classification is likely dependent on the presence/absence of certain

key combinations of terms (evidenced by the better performance of tf-idf at high values

of k). The Doc2Vec embeddings are dense, avoiding this problem and giving the DMLs

more comprehensive input data. However, the raw Doc2Vec representations are limited

by a small amount of training data, meaning that they struggle to learn the semantic

relatedness between terms within the notes, and therefore between tasks. It is likely

that the DMLs therefore are capable of improving Doc2Vec representations as they fill

this gap by spending additional training time to learn the similarity between tasks.

SNN Architectures

Overall, results from the baseline SNN and the SNN using the DynE and DynEE train-

ing strategies demonstrate good performance on this task. When learned on Doc2Vec

embeddings, classification performance on the representations gained from SNN, SNN

DynE and SNN DynEE demonstrates noticeable improvement to kNN classification of

the raw embeddings at all values of k. While the baseline SNN is comparable at lower

values of k (until k = 10 for SNN DynE and k = 7 for SNN DynEE respectively), we

observe that SNN DynE and SNN DynEE leads to improved clustering of the dataset

over the baseline, particularly at larger values of k. In fact, SNN DynEE is comparable

to the baseline TN and TN LSB for classification accuracy on most cluster sizes. This is

likely because of the small size of the dataset; previously we had highlighted dataset size
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Figure 5.4: Accuracy of similarity-based return classification on UC1 dataset at in-
creasing values of k, using representations learned with TF-IDF and Doc2Vec.
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and a complexity as a barrier for the adoption of DynEE. However, in small datasets

such as this it is evident that the training strategy does offer improvement beyond the

baseline. This supports our conclusions about the algorithm in Section 4.2.3.

Results on the tf-idf feature vectors are mixed. In small cluster sizes (k <= 5), all

of the SNN architectures demonstrate noticeable improvement over kNN classification

performance on the raw tf-idf vectors, but the baseline outperforms them in larger

clusters (k > 11). SNN DynEE maintains comparable performance in medium sized

clusters (7 <= k <= 11), while both SNN and SNN DynE underperform the baseline.

As we have intimated above, we suspect this is due to the sparsity of the tf-idf feature

vectors. Interestingly, SNN DynEE achieves the best performance of any DML at

medium and larger values of k (k >= 9). This implies that SNN DynEE is better

able to learn to separate difficult parts of the vocabulary, something we will explore in

future (see Section 7.1).

TN Architectures

Similar to the SNN architectures, both the TN architectures demonstrate noticeable

improvements in classification accuracy over the Doc2Vec embedding baseline. This is

particularly evident when the similarity-based return relies on only a single value of k

to perform its classification (i.e. k = 1), as TN LSB obtains the top accuracy by a wide

margin here and is on the cusp of statistical significance. This is a good indication that

LSB is capable of mapping similar tasks to very similar regions of the space, which

is evidenced by TN LSB’s strong performance on classification using small k values

(k <= 9). It is interesting to note that in larger clusters, the baseline TN architecture

started to outperform TN LSB (k >= 19). This could be indicative that the number of

projections used (5) presented too great a focus on difficult cases, and was warping the

learned latent space to fit these complex cases. To investigate, we captured statistics

for bucket contents using LSB with 3, 4 and 5 projections during the course of our

experiments. We demonstrate our findings in Table 5.2.

We can observe that the number of buckets required is generally large for the raw data.

Given that each projection has two sides, the maximum number of buckets that the

space can be divided into is 2p. Since empty buckets are discarded, we do not guarantee

that all buckets will have contents. However, tending towards the use of all buckets

is a good indicator that data points in the latent space are very spread out. We can

observe this on the raw Doc2vec representations, particularly when only using 3 or 4

projections. After even a single training epoch, we notice that the number of required

buckets is much less, highlighting that data is being clustered to a smaller region of the

space. Furthermore, the average complexity (number of classes) of the buckets tends to
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Projections @Epoch No. Buckets Pure(%) Complex(%) Complexity

TF-IDF

3

0 8 0 100 3.98

1 3.2 0 100 3.63

10 4.4 0 100 3.40

25 4.6 4.35 95.65 3.31

50 4.6 0 100 3.30

4

0 16 0 100 3.88

1 3.60 0 100 3.54

10 7.80 20.51 79.49 3.00

25 5.40 0 100 3.45

50 8.6 13.95 86.05 2.72

5

0 32 0.62 99.38 3.60

1 6.6 3.03 96.97 3.14

10 8.4 9.52 90.48 3.08

25 9.6 10.42 89.58 2.92

50 11.4 7.02 92.98 2.61

Doc2Vec

3

0 8 10 90 3.08

1 4.80 0 100 3.57

10 5.20 7.69 92.31 3.42

25 7.40 8.11 91.89 3.20

50 5.6 10.71 89.29 3.17

4

0 15.8 10.13 89.87 3.10

1 4.40 0 100 3.51

10 5.4 16.67 83.33 3.14

25 7.40 13.51 86.49 3.03

50 8 11.11 88.89 2.82

5

0 23 28.70 71.30 2.57

1 9 11.11 88.89 3.08

10 9 11.11 88.89 3.18

25 13 15.38 84.62 2.90

50 11 18.18 81.82 2.62

Table 5.2: LSB statistics for tf-idf and Doc2Vec experiments on UC1 dataset

increase at the start of training, but decrease with every epoch thereafter, evidencing

that similar data points are being clustered together.

On the tf-idf vectors, we see mixed results. The representations gained from the baseline

TN architectures outperform the raw tf-idf vectors when the similarity-based return
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task uses low values of k (3 <= k <= 9), but underperforms at high values. The

TN LSB consistently underperforms the other architectures on this task. This may be

because dividing the space into buckets using projections is likely to produce large and

extremely complex buckets in sparse spaces. There is evidence to support this idea in

Table 5.2. We can observe that even though the raw tf-idf representations were divided

into the maximum number of buckets available, these buckets were still highly complex

and tended to contain representatives from 3 or 4 classes. This likely meant that TN

LSB started training with difficult triplets, which we know from curriculum learning

research can lead to stunted network development.

5.3.3 Use-Case 1: Recommending Additional Information

We suggest that based upon the developed similarity model, we can recommend addi-

tional information to users with the purpose of supporting their work. Specifically, we

will identify the likelihood of potential risk categories to an incoming task and make a

recommendation based on knowledge from the notes to counter the risk where appro-

priate. Though we focus on recommendation of risk information in this work, the same

principle can apply to other problems and domains with similarly recorded expertise.

Firstly, we extract a set of risk categories from the Further notes of previously failed

tasks. These categories are an abstraction of specific risks that are collected into a

single related concept (i.e. both “the customer was not ready” and “the customer

was not present” would fall into the Customer risk category). This presented us with

six risk categories - Contractor, Customer, Duct Blockage, External Event, Planning

and Time. These categories were formed based upon feedback from telecommunication

engineering experts and the most common sources of risk. For example, though Duct

Blockage is a reasonably specific point of failure, it is a very common one. Equally, while

the category External Events covers many different hazards (i.e. dangerous animals,

adverse weather, etc), it is much rarer for any individual risk to cause task failure.

We then label each failed task based upon the risk category which caused its failure.

Note that any given task may have been failed more than once and so can be associated

with multiple labels. Also note that these labels only apply to tasks which have already

been failed - we do not generate risk category labels for tasks that were successful on

their first attempt or have yet to be attempted (i.e. the tasks that lack Further notes).

To perform the recommendation of risk information, we can then submit a query case

to the similarity model to retrieve a return set. However, instead of considering all

possible tasks, we only consider tasks which are associated with Further notes (and

therefore at least one risk label). We can then perform a vote weighted by similarity

to gauge the likelihood of a given risk occurring in the query task (see Figure 5.5). We
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perform this vote in the following manner.

Q Q

Figure 5.5: Recommending risk information using similarity-weighted vote from learned
representations. If the triangles represent successfully completed tasks, while the circles
represent tasks that failed at least once, then we can observe only the latter feed into
the weighted by similarity vote to recommend risk.

Let us describe an individual risk category as r and a function to induce a score for the

risk category of an unseen example r(). We will also describe a task as x and our full

set of task examples as X. Similarly we will identify a failed task as x̂, such that x̂ ∈ X̂
and X̂ ⊂ X. We can retrieve a label for a given failed task using the function y(x̂). We

compare a query, q, with its set of nearest failed neighbours, x̂NN . To develop a score,

each risk category is calculated by the following formula:

r(q) =
1

k

k∑
i

sim(xNNi , q) · sr (5.1)

where k denotes the neighbourhood size parameter and si denotes a binary value

‘switch’ which is set to 1 if xNNi has previously failed due to the given risk (i.e.

r = y(x̂)), or 0 otherwise. What this means is that a risk category’s score is based

upon a similarity weighted vote of its nearest failed neighbours. In this manner, we can

develop a score of the likelihood for the occurrence of each risk in a given query.

Recommendations to Resolve Risks

Though it is useful to demonstrate the likelihood of individual risks to an engineer,

this is not necessarily helpful if they do not understand how to circumvent those risks.

Therefore, we also generate a recommendation to answer any sufficiently likely risks.

This is achieved by comparing each individual risk category score against a threshold.

We have three possible classifications of risk - Low (r(q) < 30%), Medium (r(q) > 30%

and r(q) < 60%) and High (r(q) > 70%). The recommendations themselves are based

upon the most common successful solution derived from the Closure notes of previously

failed task. For example, most of the Closure notes suggest that many task failures
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relating to the Customer label can be avoided by phoning the customer ahead of time.

It is worth noting that this will not necessarily prevent the task itself from failing. If the

Customer has still not completed necessary pre-work, then the task will fail regardless.

It does however offer an opportunity to ‘fail fast’ (i.e. prevent the engineer wasting

time traveling to the customer’s location). This in itself will improve productivity, as

the engineer will then be free to complete another task.

Although simple, these prototypical risk solutions are easily generalisable within any

of the given risk categories. Furthermore, as they are representative of the notes, they

draw on what the experts themselves (in this case telecommunication engineers) have

commonly found to be a successful approach. Though the recommendations are cur-

rently confined to a singular generalisable recommendation for any given risk category,

in future work we seek to develop personalised representations based upon the notes

associated with the nearest failed neighbours which have since been succeeded based

upon Closure notes.

An example of the system is presented in Figure 5.6. Note the text area on the left

provides details of the original task, while the window on the right details the scoring

across the list of risk categories. The bottom window is used to provide a recommen-

dation - notice that the greatest risk being Contractor is highlighted and the system

recommends that the user contact the Contractor in advance to ensure that the work

is ready to begin.

Previously Failed Tasks and Progressed Tasks

Field service provisioning is a field where large scale jobs can frequently occur. These

jobs are usually broken down into a series of related, often sequential, tasks which

we describe as a work chain. Therefore, this environment must be considered when

recommending additional risk information. Equally, there is potential for tasks to have

been failed by one engineer before being attempted by another. Thus it is necessary

for our system to consider at least some evidence of task history in order to make its

recommendations.

We adopt a strict stance towards failure in task history for our additional information

recommender; if a task, or any of the previous tasks in its work chain, has ever been

failed previously, then we make a strong recommendation to counter this risk. The

system will still display scoring for other risk categories, but will highly recommend

that action be taken to answer this specific risk. Furthermore, it will highlight that this

task (or a member of its work chain) has been failed in the past and provide the Further

notes regarding the failure. These notes include contact information for the engineer

that previously attempted the task, as well as specific information on the failure. This
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Figure 5.6: Additional information recommendation for a medium risk task

enables the engineer to form a response to the risk or contact the engineer for further

information as required.

An example of the recommendation made regarding a previously failed task is shown

in Figure 5.7. We can observe that the right text area has been extended to include the

Further notes of the previously failure. Note also that the bottom text area highlights

which risk category caused this task to fail on its previous attempt. If more than one

Further note was associated with this task, then all previously written Further notes

would appear in the right text area. Similarly, if a previous task in the work chain had

failed, the bottom window would identify this.

5.4 Use-Case 2: Transfer of Experience Between Experts

and Non-Experts

In this use case, we explore the transfer of experiential knowledge between expert and

non-expert users. To achieve this, we have selected a problem where engineers rely on

input from the supporting desk-agents in order to progress towards completion of a task.

This allows us to understand how DMLs could perform in a situation of asymmetrical
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Figure 5.7: Additional information recommendation for a previously failed task

experience levels. Furthermore, this use case is highly revealing about the practical

requirement for real-world systems to be explainable, something which we explore in

more depth in Chapter 6.

As we have alluded to previously, the maintenance and installation of telecommunica-

tion equipment is often a multi-stage process. The treatment of complex orders (such as

fibre access installation) requires decomposition into a chain of tasks, together described

as an ‘order journey’. Each individual task can involve various external dependencies

(e.g. traffic management, hoist, and digging) and be subject to hazards or delays.

Throughout the journey, planning agents must decide the next action to progress the

order on the basis of the textual notes reported by technical engineers. However, under-

standing these notes can be challenging for non-experts in the field of telecommunication

engineering. A recommender system offers means to support the desk-based agents in

their work and pave the way for potential automation of some diagnosis operations in

future. However, such a system would need to prove its trustworthiness for real-world

application through transparent and explainable decision-making. Therefore, to sup-

port planning agents we have developed a recommender system to identify the most

appropriate scenario for a given query note.
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5.4.1 Use-Case 2: Evaluation

In this use case we demonstrate a similarity model based upon Further notes. These

Further notes are important, as they are the mechanism by which the engineer can up-

date on the status of a task, and they are also the foundation for a desk-based planning

agent’s decision-making. We performed an exploratory evaluation to understand the

effectiveness of different representation learners on the task of scenario classification

using a dataset extracted from our use case.

We extracted 46 days worth of engineering note data, spread between the months of

May, August, September and October. In total, we extracted approximately 6,800

task notes over 33 unique scenario types (classes). We then removed any class which

contained less than 5 examples. It also became clear that a certain scenario, “No New

Action Required” (NNR), was fully reliant on external information and not on the

contents of the note. This was because the NNR class was only relevant if a scenario

had already been organised for a given task. Based upon feedback gained from co-

creation with the user group, we decided to remove this class until the external data

source was available. The resulting dataset contained 5,343 notes spread between 29

classes. There was notable class imbalance, with the rarest class containing only 7 notes

while the most populated class contained 1,120 (see Table 5.3).

Experimental Setup

Using this dataset, we created a classification task where notes were classified according

to one of 29 scenarios (see Table 5.3). The dataset was divided into distinct training

and test sets using 5-fold cross-validation. We considered both a statistical (term

frequency/inverse document frequency) and a learned (Doc2Vec) method of learning

representations. For each of these representations, we performed additional learning

using a baseline SNN, an SNN with DynE training strategy and an SNN with SNN

using DynEE strategy. We also considered a baseline TN architecture, and a TN which

leveraged the LSB training strategy. We focused on similarity-based classification, and

adopted kNN for this purpose.

The hyper parameters for both representation learners were optimised using a grid

search (an exhaustive search of all combinations of hyper parameters for a given al-

gorithm). In the case of tf-idf, data was pre-processed by removing stop words and

stemming words to their root form using the Python NLTK platform. We then con-

sidered the 300 most common unigrams (n-gram range of 1) to build a representation.

Finally, this output was normalised using cosine normalisation. For Doc2Vec, a window

size of 10 was used to identify semantically related words and generated a representation

of 300 features. The hyperparameters for the SNN and TN algorithms are presented
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Scenario No. of Examples

Aerial Cable Required 22

ARLLAOH 7

Asset Assurance Required 55

C002 - New Circuit D Side 51

C004 - Plan Do Installation 154

C017 - D-Pole Validation 105

Customer Readiness and Sales Query 333

Customer Access 41

Complete 345

Dig Required 614

Duct Work Required 11

Exchange Equipment Required 18

Faulty E Side 350

Frames Work Required 60

Hazard Indicator 93

Hoist Required 286

Hold Required 127

Line Plant Required 36

Manhole Access Required 25

New Site Required 10

No Access 164

No Dial Tone 28

Out of Time 1120

Planning Required 431

Polling Required 319

Survey Required 32

Track & Locate Required 193

Traffic Management Required 198

Underground Work Required 124

Total 5353

Table 5.3: Number of examples within each class of UC2 dataset.

in Table 5.4.

All sub-networks were composed of multi-layer perceptrons with 3 layers. Each layer

had 128 nodes and used ReLU activations. Due to the difference in training speeds and

how quickly the networks approach convergence, we trained all networks for 25 epochs
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Architecture Sub-Network Epochs Minibatches Batch Size

SNN MLP (Dense, 3 Layer) 25 81 16

TN MLP (Dense, 3 Layer) 25 81 16

Table 5.4: Hyperparameters of networks for training on UC2 dataset.

and at each epoch we record accuracy at multiple values of k. This allows us to report

in our results accuracy of these k values at the epoch which achieved peak accuracy for

the respective architecture and training scheme.

Finally, similar to UC1 we performed a short empirical analysis to understand the

most appropriate parameter settings for DynEE and LSB. As a result of this empirical

analysis, we selected a β ratio of 20% and 10% for SNN DynEE architectures trained

on tf-idf vectors and Doc2Vec embeddings respectively. We elected to use 5 projections,

meaning a maximum allocation of up to 32 buckets, for our implementation of TN LSB

across both experiments.

5.4.2 Use-Case 2: Results and Discussion

The results of the experimentation can be seen in Figure 5.8. Tf-idf offered superior

performance on this problem when compared to Doc2Vec. We surmise that this is for

two reasons. Firstly, Doc2Vec (like other neural network based approaches) commonly

requires a large training set to function very effectively. Pre-training of a Doc2Vec

model is also not valid here, due to the high usage of unique technical vocabulary in the

notes. Secondly, the likely scenario for a given note is highly reliant on the technical

vocabulary which is used to describe the work performed as part of the task. This

is evidenced by the extremely good performance of tf-idf when only a single nearest

neighbour is considered to inform the classification. The text leading to a scenario

being recommended is quite specific, however, there is a large variety in the way this

is expressed in the notes. As a result, very small clusters are good for recommending a

class label for unseen data. However, due to the large number of classes in the dataset,

the imbalance between the number of examples within certain classes and the sparsity of

tf-idf representations, class boundaries in the latent space are likely to be poorly formed.

This explains the diminishing accuracy of similarity-based classification as the size of k

increases. Furthermore, the partner company who provided the dataset had previously

attempted a simple rule-based token-matching approach, but its performance did not

match either of the above methods. This suggests that the additional information that

tf-idf offers about term rarity (in the form of its idf portion) is important.

Although none of the DML architectures achieved the performance of the tf-idf with
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a k value equal to 1, they demonstrated much better clustering of the data at high

values of k. The similarity-based classification at k = 1 was very likely affected by the

transition from sparse vectors to the dense representations learned by DML architec-

tures, making it difficult for DMLs to learn to emulate the strong performance of very

small clusters in tf-idf. However, the dense representations meant that DMLs were

able to learn relationships between feature groups to make the clusters more robust

at scale. As a result, all DML architectures learned to produce representations which

noticeably outperformed the raw representations when the neighbourhood considered

for classification was larger than k = 7.

All DMLs learned to produce representations which outperformed those produced by

the Doc2Vec baseline at all values of k. The justification of this is likely that the

Doc2Vec struggled to learn to model the problem with the limited number of training

examples. The DML architectures effectively offered an additional, targeted, training

phase. This training phase was augmented with knowledge of similarity between ex-

amples, allowing the DMLs to learn more effective representations for similarity-based

classification. However, they were limited by the Doc2Vec algorithm’s inability to learn

effective relationships between terms in the UC2 dataset, and therefore the results show

less improvement over the baseline than those obtained at larger values of k on tf-idf

representations.

SNN Architectures

All three SNN architectures performed well on the UC2 dataset using either tf-idf or

Doc2Vec representations. Generally, the SNN and SNN DynE architectures performed

comparably to one another across both tasks. Using tf-idf vectors as input, SNN

and SNN DynE underperformed the baseline when small neighbourhood sizes were

considered for classification (k <= 5), but outperformed the baseline at larger values

of k. This is indicative that the latent space learned by the architectures is better

structured for larger clusters of examples. On the Doc2Vec representations, all three

SNN architectures performed extremely well, outperforming both TN architectures.

We take this as indicative that the problem defined in UC2 is closer to a matching

problem which is where SNN excels. This is supported by the strong performance of

the raw tf-idf vectors when k = 1, as this suggests that the classification is reliant on

matching vocabulary.

SNN DynEE was the top performing DML across both representations on the UC2

dataset. On the tf-idf representations, the SNN trained with DynEE training scheme

achieved results comparable to the baseline from k = 3 and outperformed the baseline

at all larger k values. At the largest sampled value of k, k = 21, SNN DynEE achieved
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Figure 5.8: Accuracy of similarity-based return classification on UC2 dataset at in-
creasing values of k, using representations learned with TF-IDF and Doc2Vec.
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a peak accuracy of 71.6%, while tf-idf only achieved 57.1%. These vast improvements

demonstrate the significantly improved clustering of data achieved by training using

similarity information. On the Doc2Vec embeddings, the SNN DynEE performs well

when only a single neighbour is considered for the classification. When larger neigh-

bourhoods are considered for classification, SNN DynEE performs comparably with

the other SNN architectures, which are the top performers on this task. Overall the re-

sults from both representations on UC2 dataset are indicative that the DynEE training

strategy is effective for emphasising complex boundaries to support improved training

of the SNN architecture.

TN Architectures

The TN architectures generally underpeform our expectations on the UC2 dataset.

We would have anticipated that the additional information provided by training on

a triplet would cause the architecture to have an overwhelming advantage. However,

although the TN architecture performs comparably to the SNN DynEE when using

tf-idf vectors as input, it does not achieve superior accuracy and TN LSB is the worst

performing architecture. Interestingly, the baseline TN actually converged more rapidly

(see Figure 5.9), but the SNN DynEE was able to leverage complexity information to

converge to a better optima. The graph also reveals that TN trained using the LSB

training strategy started at a much lower accuracy, but showed greater improvement

over the course of training. This could suggest that when dividing the feature space

into buckets in preparation for sample selection, the buckets were very complex and

offered a difficult starting point for training. This is evidenced in Table 5.5, where

we can observe that before training (@Epoch 0) the buckets of tf-idf vectors are more

complex than those which contain Doc2Vec embeddings. We know from curriculum

learning research that starting with ‘difficult’ examples can be detrimental to training,

and this may be the case here.

5.4.3 Use-Case 2: Recommending Scenarios for Incoming Tasks

We have deployed a prototype of the described recommender system applied to our use

case and accessible on the company intranet as a web application (see Figure 5.10). The

deployed application currently makes use of tf-idf representations supported by kNN

to inform its recommendations, due to the effectiveness of this setup as demonstrated

by our experiments. When a query is entered, the text is converted to tf-idf represen-

tations and classified by kNN to make a recommendation from the known 29 scenario

labels to support desk-based agents decision-making. For example, in Figure 5.10 the

system has recommended the scenario AER (Aerial Cable Required). In response to
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Figure 5.9: Training speed of architectures on UC2 task with tf-idf representations,
using accuracy at k = 3 as a proxy for convergence.

a recommendation, users may feedback on whether it is ‘good’ or ‘bad’ and option-

ally enter feedback text and a corrected label. In future iterations of the system, this

feedback will be used to update the classifier using a feedback engine which has been

developed by the company partner. The user can access an ordered list of other po-

tential scenarios by selecting ‘Recommending Other Scenarios (ordered per confidence

score)’.

5.5 Conclusion

In this chapter we have presented our work towards proving the hypothesis that DMLs

present an opportunity to fulfil the vocabulary and similarity knowledge containers

within a CBR system. To this end we have introduced two real-world use cases from

industry which aim to leverage similarity information to enable transfer of experiential

content. Over both of our use cases, we have demonstrated similarity models built

upon textual documents written by experts as a source. In UC1 we use our model to

facilitate sharing of experience between experts by generating additional information to

support experts while in the field. We have focused on the pre-emptive identification

of risk categories and build on common solutions from the notes to recommend a

possible work around for these risks. In UC2 supported non-expert decision-making by

leveraging information provided by experts, in the form of a recommender system to

suggest suitable task intervention through scenarios.

Across these use cases we have investigated deep metric learners as a mechanism to
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Projections @Epoch No. Buckets Pure(%) Complex(%) Complexity

TF-IDF

3

0 8 0 100 23.93

1 4 0 100 22.12

10 6 10 90 13.86

25 5.8 6.90 93.10 13.79

4

0 16 0 100 20.38

1 6.6 6.06 93.94 17.61

10 9.6 10.42 89.58 12.78

25 9.2 8.70 91.30 11.51

5

0 32 0 100 16.76

1 8 0 100 16.01

10 7.6 10.53 89.47 12.90

25 15 10.67 89.33 9.70

Doc2Vec

3

0 8 0 100 21.95

1 3.2 0 100 21.85

10 3.8 0 100 22.45

25 4.4 9.19 90.91 17.40

4

0 16 0 100 17.98

1 3.8 5.26 94.74 21.58

10 5.2 11.54 88.46 18.82

25 4.2 14.29 85.71 16.48

5

0 32 0 100 13.76

1 6 6.67 93.33 19.16

10 5 4.00 96.00 18.46

25 7.2 13.89 86.11 16.16

Table 5.5: LSB statistics for tf-idf and Doc2Vec experiments on UC2 dataset

combine the vocabulary and similarity knowledge containers of a case-based reasoning

system. This has demonstrated promising results, and highlighted some areas which

require further study. In particular, our chosen use cases were much more vocabulary

reliant than we had previously anticipated. As a result of this, tf-idf representations

performed better than expected. However, DMLs demonstrated capability to improve

clustering of the data: in UC1, there was evidence that DMLs supported better clus-

tering of the data in small neighbourhood sizes; while in UC2 the results indicated

that DMLs were capable of of improving the complex class boundaries created by the

sparse tf-idf representations in the imbalanced dataset. On the other hand, the DMLs

demonstrated universal improvement over the Doc2Vec representations on both use

113



Figure 5.10: The recommender system developed during the research on use case 2.
The application allows a user to enter a query note, and recommends an appropriate
scenario.

cases. This may be because of the limited training set for the learned method, but

is more likely due to the dense representation of the Doc2Vec being a better basis for

metric learning. This proposes an interesting avenue of future work, which we will

further explore in Section 7.1. Our results therefore suggest that DMLs can learn to

produce representations optimised for similarity calculations which offer clear improve-

ment over dense representations gained from word embeddings, but require refinement

to outperform statistical methods.

More than this, these use cases have been very revealing about the needs for explainabil-

ity. Although we were unable to perform a user test with the developed application for

UC1, a recurring theme in the feedback from stakeholders throughout development in-

dicated they were keenly interested in why specific risks were highlighted. Throughout

our discussions with users in UC2, there was continual interest in supporting desk-based

staff to learn on the job by providing explanations for why the recommended scenario

was suitable for a given query. This ties to our background knowledge of the area,

where it was explicitly discussed that stakeholders were keen to more deeply under-

stand the autonomous model and information they were working with to better inform

their working practice. In Chapter 6 we discuss the development of an explainabil-

ity framework designed to support desk-based staff and engineers by integrating with

machine learning systems. We explore its development specifically on the problem

associated with UC2.
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Chapter 6

Similarity Knowledge to Support

Explanation

One of the advantages of similarity-based architectures is that they are generally pre-

disposed towards explanation (see Section 2.3.3). As we highlighted on the use cases

within the previous chapter, there is a need at an operational level for users to bet-

ter understand the systems they are using to achieve superior working performance,

nurture trust and ultimately increase productivity [128, 134]. In a real-world case, the

quality and benefits of explanation depend on how timely and comprehensively they

are produced. However, explanations are typically crafted to respond to specific user

needs and specific applications [135, 136, 128]. This practice is both time-consuming

and inefficient. We believe that there are overlaps between the requirements of an

explanation for different applications. We are therefore motivated to create a general

purpose explanation framework which can interface with a broad variety of projects

across an organisation to reduce the cost of provisioning an explanation for individual

applications.

In this chapter we present a framework formed of three components; a classification

engine, an explanation generation engine and a feedback loop to ensure iterative refine-

ment (see Figure 6.1). The framework is modular, allowing the classification engine to

be switched with other learned models as necessary. The explanation engine operates

upon the classification engine’s output (as well as some external knowledge bases), to

explain system decision-making. It achieves this by incorporating a catalogue of ex-

plainability techniques to provide transparency around system decision-making, and

improve user understanding of the source data. Two progressive levels of explanation

content have been developed: low-level explanations which provide key insights on the

data; and high-level explanations which generate relevant sentence summaries. The
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Figure 6.1: A flow diagram of the developed system, displaying its linked components.

progressive approach allows increasing levels of complex, context-aware explanations

as users require.

We demonstrate the capabilities of this framework with the real-world use case of

improving the transfer of information between telecommunication field engineers and

desk-based planning agents (see Section 5.4). This recommender acted as the classifi-

cation engine to test our framework, and allowed the opportunity to co-create various

explanation methods with a real user base. The goal of the system is therefore to

identify the appropriate scenario for a desk-based agent given an engineering note and

explain why that scenario was selected. Though we demonstrate the application of this

model to a specific use case, our method can be adapted to any reasoning task.

Furthermore, we extend our analysis to include an investigation of the relationship

between explanation quality and similarity knowledge between a query, its neighbour set

and its explanation. To this end, we introduce two novel similarity-based metrics, called

Meet-In-The-Middle (MITM) and Trust-Your-Neighbours (TYN) respectively. Using

these metrics, we generate some interesting analysis and insight into use of similarity

for measuring explanation quality.

6.1 Contributions

In the final contribution chapter of this thesis, we explore explainability of DML ar-

chitectures. Specifically, we present work towards proving our hypothesis that, as they

are fundamentally similarity-based architectures, the output of DML architectures can

be explained effectively in situations where multiple user groups of varying domain

expertise are using the system. To this end, in this chapter we explore our third and
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final research question of this thesis:

• How can we explain the output of similarity-based architectures (including DMLs)

intended to support user groups of varying domain expertise, and how can we

autonomously evaluate the quality of produced explanations?

Towards answering this question, we present the primary contribution of this chapter.

Here, we describe the development of an explainability framework based upon one of

our use-cases, and assess the quality of these explanations with feedback from two

stakeholder groups of differing levels of expertise from within a telecommunication

organisation - (expert) engineers and (non-expert) desk-based agents. Furthermore,

we propose two novel autonomous evaluation methods for explanation, and compare

their performance on an empirical study using statistical text representation methods

and DMLs. The results highlight the practical utility of a hierarchical explanation

framework, as well as the value of similarity knowledge as a starting point for research

into the evaluation of explanations. We summarise this contribution through a number

of novel secondary contributions:

1. We outline the development and implementation of a modular explainability

framework and detail several of its sample modules as applied to the real-world

problem of supporting desk-based planning agents in the telecommunications en-

gineering domain.

2. We perform a qualitative evaluation to understand user opinion on the quality

of provided explanations with feedback from two user groups of different levels

of expertise. The results indicate that the judgement of what forms a good

explanation changes based on domain-expertise: experts preferred explanations

to mirror their reasoning, while non-experts emphasised task performance.

3. We explore the correlation between the quality of an explanation and similarity

knowledge within the latent space using two novel metrics: Meet-in-the-Middle

(MITM) and Trust Your Neighbours (TYN). Results from an empirical study

comparing representations gained from tf-idf, SNN and TN highlight that simi-

larity is a promising starting point to model the quality of explanation.

6.2 Development of Explanation Strategies

Use case 2 (see Section 5.4), offered a platform for co-creation to identify what the

users considered important aspects of explanation. Meetings with engineers, desk-based

agents and their managerial representatives occurred weekly throughout development of

the framework. The results of these sessions revealed that the overwhelming desire from
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co-creation participants was that explanations should be counterfactual, supporting

findings in [120]. Co-creation participants were specifically interested to understand

why a certain scenario was recommended before another, and what made a given note

unique among similar notes. Furthermore, there was an acknowledgement throughout

co-creation that desk-based agents would require more clarity around their explanations

than engineers would, but that this would also be down to an individual. One example

cited was that an experienced desk agent may well know more than an apprentice

engineer. Therefore, the framework should be flexible to give the level of explanation

support that is required.

With the results of this co-creation in mind, in this chapter we present a framework of

explainability mechanisms that support a classification engine by explaining its output.

The idea is to have multiple levels of explanation support by providing explainablil-

ity methods of increasing contextual awareness. In this work, we divide explanation

mechanisms into two categories:

• Low-level explanations methods allow the user to visualise key information

that provide insight to system decision-making and support interpretation.

• High-level explanation methods augment one or more low-level explanations

with contextual information to enable more comprehensive explanation.

As this is initial work towards an explainability framework, we have constructed two

example low level explanation modules, and one high-level explanation module and

integrated them within the framework. Furthermore, as inspired by [12], we highlight

each goal that a specific module is designed to achieve. It is our eventual goal that

the framework is completely modular and will expand so that both ’off the shelf’ and

novel explanation methods are integrated. To this end, the framework structure we

have proposed is intended to be easily extensible. It is outwith the scope of this thesis

to develop further explanation methods for integration with this framework, but this

could serve as an avenue of future collaboration with our industry partner.

Though the use case we have selected for discussion in this paper is confined to the

use of textual data, the goal of the framework is to be data agnostic. The idea is that

this will provide a resource for developers within the telecommunication organisation

to easily and quickly integrate with their projects. Effective cataloguing (i.e. allowing

searching by explanation type, the explanation goal it supports and data type) is key

to provisioning a maintainable and accessible framework.
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6.2.1 Low-Level Explanations

Low-level explanation methods describe key information directly extracted from the

data itself or generated as part of the decision-making process. In the literature these

are described as analytic explanations [22].

Confidence Measures

We can establish the confidence of our predictions with the traditional method of using

similarity as a proxy [136]. If similarity is sufficiently high, we can be confident that

our classification is correct. We base our confidence on the similarity of the nearest

neighbour from a given label. Confidence measures can be seen as a form of justifying

the decision which has been made by the system.

Word Overlap and Scoring

Scoring features to identify their contribution to algorithmic decision-making is a com-

mon trope throughout traditional AI methods [137, 128] and the subject of growing

work in modern neural methods [138, 139]. Researchers in this area have identified

that it is important for users to understand the differences between a query and its

neighbours [128]. With this in mind, we designed this module to promote understand-

ing of the impact that note vocabulary has on system decision-making. The overlap

component identifies key terms which appear both in the query and within the neigh-

bour set of a particular label. This enables the user to quickly visualise key similarities

or differences between the notes and inform about complementary terms from similar

notes in the corpus. The word scoring module then measures the activation of terms to

highlight the influence of each term’s local similarity on selection of a given neighbour

note.

A key aspect of this module is correctability, as it offers the user a simple interface

to highlight non-relevant keywords which were included in the explanation, and report

relevant key words which were missing. In turn, this allows update of the explanation

to improve it for similar users, as part of end-to-end debugging of explanations [140].

Additionally, this method can be extended to cover phrases or embedding-based ap-

proaches [135]. Word scoring and identification of overlapping terms is a method of

improving the user’s ability to understand the underlying concepts of system decision-

making and improve interpretability of the process.

6.2.2 High-Level Explanations

While low-level explanations identify key information about the query or recommen-

dation, they are potentially inaccessible to non-expert users. In these scenarios, it
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I cannot complete this task because Place
in ACR queue for aerial cable and pole
renewal. Please pass to CSS queue Id ACR
queue. The line has been proven good to
the exchange, Dro job. Pole has been hit by
tree and is leaning. 2 spans of aerial cable
needs renewing. Battery contact was
detected towards the end customer.

Query Note

Neighbour Note 3
Neighbour Note 2

Neighbour Note 1

I cannot complete this task because Please 
place this in the planners queue 
APRMR1RR. Please pass to CSS queue Id 
APRMR1RR. The line has been proven good 
to the DP, 20 pair aerial cable has been 
brought down by a fallen tree. A new cable 
needs erecting between DP13. A line 
disconnection was detected towards the 
end customer.

Compare

Overlapping

[line], [aerial], [cable], 
[pole], [battery], 
[contact], [customer], 
[tree]

Non-Overlapping

[disconnection], [DP], 
[pair]

Sentence Similarity
Pair disconnected 
at pole. 0.95

No spare pairs at 
DP 0.63

Line is 
disconnected. 0.41

Query 
Case-Base

…

Query 
Case-Base

…

Sentence Similarity
Pole has been hit 
by tree 0.98

Battery contact 
was detected. 0.55

Aerial cable is 
disconnected. 0.39

Summary of Differences

Summary of Similarities

Figure 6.2: Summarisation of similarities/differences between a query note and a set
of neighbours.

would be helpful to give the information context by incorporating relevant background

knowledge. High-level explanations cover verbal and visual explanations [22], which are

generated by building on insights from low-level (analytic) explanations. In this work,

we use the example of generating summaries to contextualise similarities and differences

between notes based on the output of the ‘word overlap and scoring’ component.

Summarisation of Similarities/Differences

We consider a method of extractive summarisation to create a verbal explanation of

similarities and differences between a query note and its neighbour set. First introduced

in [141] as a means to create abstracts for journal papers, extractive summarisation is

reliant upon the identification, extraction and combination of content representative

sentences to summarise a document. It is applicable in domains where documents share

unique technical vocabulary, such as law reports [142] or research papers with similar

focus [143]. Our method of summarisation builds upon those mentioned. Given a query

and a neighbour note (or set thereof), we are interested in summarising the similarities

or differences. This means we are generating a summary from a list of overlapping

and non-overlapping terms, as opposed to generating a summary from a full document.

Essentially, we are augmenting the technical vocabulary which is highlighted by the

low-level ‘word overlap and scoring’ mechanism and giving context to that information

with free text.
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From the notes, we generate a case-base of sentences which will act as summaries. Each

note is divided into multiple sentences by slicing at natural end points (such as the end

of a sentence, or beginning of a new topic). We transform these sentences in the same

way as our full dataset, which in the case of the above problem means that their word

contents have been stemmed, stop words removed and transformed using tf-idf. When

the classification model is queried, we identify overlapping (or non-overlapping) words

between the query and its return set. We transform this list with our representation

learner to create a vector which is used to query our summarisation case-base and find

the most similar sentence to act as a summary of similarities (or differences). This

process is demonstrated in Figure 6.2. Words can be weighted using their idf score to

emphasise rare terms and we can integrate aspects of query expansion from information

retrieval research and augment queries with further information using local context.

This summarisation method produces a sentence in the engineers own words. This is

useful for two reasons. Firstly, when engineers use the system it can be reassuring and

trust building for them to see the difference clearly in their own words. Secondly, in

the instances where non-experts are using the system, the summary of similarities and

differences can expose them to language that engineers use in a controlled environment

and supported by the other low-level explanation methods. This can improve learn-

ing about the original source data. However, autonomously evaluating the quality of

explanations gained in this manner is traditionally difficult. In the next section, we

discuss our attempt to model the quality of explanations using similarity knowledge.

6.3 Similarity Knowledge for Evaluating Explanations

Relying on user feedback means it is difficult to benchmark the usefulness of explanation

methods before they are expanded to other user groups. It would be advantageous if we

could identify consistent patterns of what makes a ‘good’ explanation. Given that the

method of classification we have proposed leverages similarity knowledge to inform its

decision-making, it seems reasonable to investigate the similarity between examples as

a potential indicator of explanation quality. Consider for example, the above proposed

methods of explanation. By leveraging knowledge of what makes two examples ’similar’

(or indeed, ’dissimilar’), we are able to produce low-level and high-level explanations to

help the user understand why these examples are similar. Therefore, intuition suggests

that the quality of the explanation is tied to similarity. We therefore propose two

novel methods of similarity-based explanation scoring which we introduce as Meet-In-

The-Middle (MITM) and Trust-Your-Neighbours (TYN). Both of these metrics aim to

quantitatively model the area of ‘information need’ that is suggested by a query. While

MITM explicitly considers the relationship between a query and its neighbour set in
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mid(x,c(N)) 

n2

x

e
n3

n1

c(N)

Figure 6.3: Capturing the MITM score

its scoring mechanism, TYN implicitly considers this relationship. We describe both

mechanisms in more detail below.

6.3.1 Meet-In-The-Middle (MITM)

The MITM metric attempts to model the user’s ‘information need’ from an explanation

to enable scoring of whether the retrieved explanation meets that need. We propose

that the information need experienced by a user in a similarity-based system is typically

the understanding of the similarities and differences between the user’s query and the

neighbour set responsible for its classification. We base our approach on the observation

that the query note, the notes used to produce the explanation (from summarisation)

and the notes used to identify the classification label are all linked. We then take (and

discuss through experiments) the assumption that if the meaning of a query note x and a

neighbour n1 is understood by the user, then the meaning of the sentences built from the

same vocabulary as x and n1 will likely be understood too. This intuition is supported

by our findings from co-creation with real users. Therefore, in a latent space the

representation for the information need can be hypothesised to exist within the range

of values between the representation for a query and the centroid of representations for

its neighbour set.
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Although better understanding of each individual user is required to pinpoint where

exactly within this range the specific information need may lie, we can approximate

with a certain degree of accuracy by taking the midpoint to act as a proxy. By doing

so, we are explicitly considering the exact point in the space which would summarise

the relationship between them. The midpoint can be seen as the point where a note,

were it to exist, would contain a perfect blend of the information contained within

the query and the neighbour set. Therefore, this midpoint could be seen as the most

appropriate summary to describe the similarities/differences between two notes. With

that in mind, it is our intuition that the distance between the midpoint and the actual

explanation which is retrieved, could act as a metric for the quality of the explanation.

To extract the MITM score Ms for a given query x we firstly we take the centroid of

the neighbours n ∈ N using the function c() (see Equation 6.1). Using the centroid

allows us to represent the neighbour set as a single point within the feature space. We

can then identify the midpoint between the x and c(N) (Equation 6.2). Finally, we use

a distance metric DW to measure the distance between mid(x, c(N)) and the retrieved

explanation e (Equation 6.3).

c(N) =

∑|N |
i=1 ni
|N |

(6.1)

mid(x,N) =
x+ c(N)

2
(6.2)

Ms = DW (mid(x,N), e) (6.3)

The MITM score Ms for an explanation is therefore captured as a real value. We

demonstrate this process graphically in Figure 6.3.

6.3.2 Trust-Your-Neighbours (TYN)

As many of the background research works indicate, explanation knowledge is informed

by the relationship between the query and the classification. With that in mind, it

would seem foolish to disregard any query information in a potential metric. However,

in similarity-based algorithms the neighbour set maintains some query knowledge. This

occurs because the neighbour set is identified based upon the query’s placement into

the feature space. Therefore, query knowledge is implicitly captured. We can use

that knowledge to inform the development of another metric - Trust-Your-Neighbours

(TYN).

TYN follows an assumption that the information need associated with a query is less
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Figure 6.4: Capturing the TYN score

concerned with specific differences between the query and its neighbour set. Instead,

the information need is associated with a user’s inability to comprehend the region of

the space into which the query has been placed. In other words, TYN measures would

sit well with the assumption that the user is likely unable to understand why examples

in the neighbour set are similar to each other. Therefore, a useful explanation is one

which helps the user to understand the relationship between these neighbours.

To extract the TYN score Ts for a given explanation, we make some adaptation to the

MITM formula. Similar to MITM, we firstly we take the centroid of the neighbours

n ∈ N using the function c() (see Equation 6.4). We then use a distance metric DW

to measure the distance between the neighbour set centroid c(N) and the retrieved

explanation e (Equation 6.5).

c(N) =

∑|N |
i=1 ni
|N |

(6.4)

Ts = DW (c(N), e) (6.5)

124



This allows us to capture the TYN score Ts for an explanation as a real value. We

demonstrate this process graphically in Figure 6.4.

6.4 Evaluation

Evaluating the quality of explanations is traditionally difficult due to their inherent

subjectivity. The needs of different user groups can be very different, which is reflected

in their expectations of what an explanation should offer. With this in mind, we evalu-

ate the quality of explanations using qualitative feedback from telecommunication field

engineers. Technical experts were selected to identify whether explanations emulated

their decision process, as requested during co-creation. We retrieved qualitative feed-

back on explanation quality from individual engineer comments verbally communicated

during a beta test of the software. We also extracted structured feedback from desk-

based agents during a pilot test of the software. This allows analysis of results from

two distinct user groups and insight into two separate ways in which the system would

be used.

Engineers and desk-based agents provided feedback using an expanded version of the

application presented in Section 5.4. We applied the explainability framework to our

recommender system from this use case, and upgraded the interface to include expla-

nations (see Figure 6.5. The application uses the explainability framework to explain

the ordered list of recommendations. We compare the query to each label by aggre-

gating the explanations for each note within the kNN neighbourhood that possesses

that label. The confidence of the recommendation of each scenario is based upon the

similarity of the nearest neighbour with that label, while direct note comparisons (e.g.

the word scoring and overlap) are aggregated using a distance-weighted average. The

focus of this explanation is therefore linked to identifying the most suitable scenario

to be recommended. This allows the system to demonstrate the similarities and dif-

ferences between a query and each label by displaying the identified overlapping and

non-overlapping terms ordered by their score. A sentence summary (generated by the

method defined in Section 6.2.2) then contextualises this information. There is also a

mechanism for the user to feedback on the explanation to improve further query note

explanation mechanisms. Finally, supporting information is highlighted for the label

and each query.

6.4.1 Evaluating the Explanation Framework

We measure the effectiveness of our explanation by applying the model suggested

in [117]. The model divides evaluation of an explainable systems into five different

headings: user satisfaction (e.g. the clarity and utility of the explanation); mental
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Figure 6.5: The recommender system from UC2 (see Section 5.4, supported by the
explainability framework proposed in Section 6.2

model (e.g. the ability to understand individual decisions and identify strengths and

weaknesses of the model); task performance (e.g. whether user ability to complete the

task is improved by using the system); trust assessment (e.g. whether the system is

trustable); and correctability (e.g. the user can rectify incorrect decisions). We examine

each of these aspects in turn.

Results and Discussion

In total we observed 23 interactions between engineers and the system, and obtained

feedback from desk-based agents for a further 30 interactions. All engineers provided a

simple positive/negative score on whether the provided explanation was useful, while

all desk-based agents used this score to indicate it supported them in their work. We

therefore use results from engineers to measure user satisfaction, and feedback from
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Table 6.1: Example of qualitative feedback on explanation quality from field engineers.

Query

Drop Wire already up at
front of property but landlord
wants the customer drop wire
moved to the wall of the flat
which is above the flat roof
and to drill out where the
socket is required is out to the
flat roof.

Recommended Scenario (Action) Out of Time (Re-allocate en-
gineer)

Keywords

Overlap
[flat, 3.33] [roof, 2.76] [wire,
1.43] [drop, 1.18] [abov, 0.7]

Non-Overlap
[one,0.29] [insid,0.29]
[coil,0.28] [side.,0.27]
[build,0.27]

Summary

Similarities
Drop wire is already up at
front of property.

Differences
I have fitted the socket inside
and left a coil of cable.

Feedback

Roof is rightly highlighted.
Fair explanation since engi-
neer faced additional steps on
the customer site (drill out)

desk-based agents to measure task performance. This distinction resembles the different

scenarios in which we expect the system to be used.

Qualitative feedback was provided by 17 engineers and all 30 of the recorded inter-

actions with desk-based agents. While engineers tended to give a feedback comment

per explanation per class, desk-based agents supplied one comment to summarise their

feedback on all explanations and classifications for a given scenario. This is likely due

to the difference in feedback capture mechanisms. Engineers were given opportunity to

share all their thoughts during a closed beta test of the software, so had time to give

detailed replies. Desk-based agents on the other hand were piloting the software as part

of daily work, and looking to maximise their efficiency. Furthermore, while engineers

tended to focus on whether explanations justified each of the top-n recommended sce-

narios, desk-based agents tended to prioritise the classification of a scenario and mainly

commented on whether explanations supported only the correct recommendation. As
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a result, feedback from engineers is more granular and descriptive of explanation qual-

ity, while desk-based agent feedback is shorter and focuses on task performance. An

example of feedback from an engineer (and the explanation case it refers to) can be

seen in Table 6.1.1

User satisfaction with the system seems reasonably high. Of the 23 interactions with

the system, 15 (65%) engineers left positive feedback regarding the explanation quality.

In almost all cases (7 of 8 or 87.5%) where negative feedback was provided by engi-

neers, the explanation was associated with an incorrect classification. This suggests

that when a user discovers an error in the system decision-making, they are also likely

to find a fault in its explanation of that decision. Word matching and scoring was the

most popular explanation mechanism, with almost every observed engineer discussing

the selected words (both formally as recorded comments and informally with the re-

searcher). Though summaries were observed, they were not discussed in the same level

of detail. This is indicative that domain experts require less contextualisation from an

explanation to understand it, likely because they can infer their own context. This was

an interesting (if somewhat expected) contrast to desk-based agents, who tended to

prefer the retrieved sentence summaries of similarities/differences.

In 20 of the 30 recorded interactions (67%) between desk-based agents and the system,

the explanation supported or improved their task performance. In 2 of these inter-

actions, the classification was only partially correct, but the explanation supported

a correct classification. This was an interesting finding, since one of the failings of

the extracted dataset was that it did not demonstrate any examples where multiple

scenarios could be recommended simultaneously, whereas this was a possibility in real-

life. It was interesting to see that the explanation made the system more robust to

this, as the retrieved sentences gave desk-agents more information to support their

decision-making. Overall the cases where classification and explanation were dually

complement to identify the complete expected result, has contributed to a good level

of correctability with the system. In 1 instance the classification of the system was

completely incorrect but the retrieved explanation supported the desk-based agent to

make the correct classification.

Although both user groups understood that the model was reliant on task note vo-

cabulary, there was a tendency to misunderstand the learned model as simple token

matching. As such, engineers often criticised the lack of keywords identified for certain

notes, even when they had little or no impact on model decisions. In one example,

an engineer stated that ‘leaning’ and ‘tree’ should be highlighted as key words, even

1Full details of all feedback cannot be disclosed in this thesis due to the presence of confidential
data in several of the comments.
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though the word leaning is too generic to be represented by the vocabulary. Similarly,

many desk-based agents would report cases of missing key words when these terms had

no impact on decision-making. This is indicative that users were able to understand

some aspects of system decision-making (e.g. that it was vocabulary-based), but un-

able to mentally model the entire system. In future work, we aim to improve this (see

Section 7.1).

Although not directly related to trusting the explanation itself, something that was

interesting to observe was the lack of trust that desk-based agents displayed towards

the system in general. Though not recorded in structured feedback, verbal comments

to the researcher indicated there was suspicion that the system was being used to audit

working procedure, and this generally lowered user engagement. This was exacerbated

by the feedback components because agents felt the system was aimed to assess their

understanding of the job and to ensure their reasoning processes were appropriate. This

was obviously not the case. Still, this feedback demonstrates a good example of how

areas of the workforce feel threatened by implementation of smart automatisation, and

that having an explanation component does not necessarily resolve those fears.

Our model offers a means for users to submit corrections, which was well received

by engineers. Of the 23 interactions with the system, 15 (65%) engineers made use

of the feedback system to highlight missing or non-relevant words and phrases. This

included both engineers who had left positive feedback about an explanation, and

engineers who had left negative feedback about the system, suggesting that partial

explanations were able to satisfy the explanation need in some cases, but not others.

Several engineers commented that they felt more comfortable with the system due to

this feedback component. This suggests that correctability of an explanation is an

important consideration when users are deciding whether to trust the system. This

may be something that could be resolved by prolonged use of the system, allowing

engineers and agents to actually experience how their feedback updates the system.

We plan to explore this further in future work.

6.4.2 Similarity Knowledge for Evaluating Explanations

We investigate the relationship between explanation quality and the two proposed met-

rics, MITM and TYN. The purpose of this investigation is to identify whether these

metrics can be used to model explanation quality. Since our explanations are classful

(i.e. there is an explanation per recommended class), this is reflected in MITM and

TYN. We therefore suggest 2 different metrics across with 3 unique scenarios, giving a

total of 6 potential scoring metrics for evaluation of explanation quality. We therefore

consider the following six metrics:
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1. MITM-B: The distance between the midpoint of the original query note and

the centroid of nearest neighbours of that class (computed from an average of

the queries for overlapping and non-overlapping keywords) and the explanation

center point (computed from an average of the representations for the returned

sentences to summarise similarity and differences).

2. MITM-S: The distance between the midpoint of the original query and the cen-

troid of nearest neighbours of that class (computed by only considering overlap-

ping keywords) and the representation of the sentence used to explain similarities.

3. MITM-D: The distance between the midpoint of the original query and the

centroid of nearest neighbours of that class (computed by only considering non-

overlapping keywords) and the representation of the sentence used to explain

differences.

4. TYN-B: The distance between the returned explanation (computed from an

average of the representations for the returned sentences to summarise similarity

and differences) and the centroid of nearest neighbours of that class (computed

from an average of the queries for overlapping and non-overlapping keywords).

5. TYN-S: The distance between the returned explanation (computed only from

the representations for the returned sentence to summarise similarity) and the

centroid of nearest neighbours of that class (computed by only considering over-

lapping keywords)

6. TYN-D: The distance between the returned explanation (computed only from

the representations for the returned sentence to summarise differences) and the

centroid of nearest neighbours of that class (computed by only considering non-

overlapping keywords).

We apply the MITM and TYN scoring metrics to three different representations for

explanations from the UC2 dataset, including the statistical measure tf-idf and two

DMLs (SNN and TN). To obtain representations for the explanations using DMLs,

we trained an SNN and a TN using the full UC2 dataset following the results of our

experimentation in Section 5.4, using tf-idf vectors as input. We then used the trained

architectures to convert the tf-idf representations of the notes into the representation

learned by DMLs. The explanations acted as unseen test data (which did not form

part of training) and after training were converted into DML representations. Thus

this enabled us to compare MITM and TYN against sparse tf-idf representations, and

the dense DML representations.
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We compared the output of the MITM and TYN metrics with a ground truth for expla-

nation quality presented by telecommunication engineers. To perform this comparison,

we obtained the output for the six metrics (MITM-B, MITM-S, MITM-D, TYN-B,

TYN-S, TYN-D) for each of the explanations that were generated in response to real

engineer queries. We were then able to compare them directly to the binary feedback

of explanation usefulness as provided by these engineers. This allowed us to examine

the correlation of whether these scores demonstrated any trends for predicting useful

or non-useful explanations.

Results and Discussion

Firstly we consider the MITM and TYN scoring metrics when applied to tf-idf repre-

sentations of the provided explanations. A visualisation of the results can be seen in the

graphs in Figure 6.6. For each graph, the y-axis is distance and the x-axis is a unique

identifier for each interaction. For readability we have ordered the graphs by increasing

score, allowing us to identify situations where a threshold is clearly visible. In this

work we use Euclidean distance to calculate similarity between examples. Analysing

the results, it would appear that both summary metrics (MITM-B and TYN-B, which

combine the query generated for similarities and differences) show a consistent pattern.

Explanations which are very similar to the estimated point of information need (the

midpoint or centroid for MITM or TYN respectively) tend not to be useful. Instead,

most useful explanations (as identified by engineers) tend to exist at least a set dis-

tance away from this point. We propose this is because this offers room for ‘context’

to be built into the explanation. If the explanation is too similar to the exact point

of information need, then it does not add the necessary additional information that

would allow a user to understand what is changing. This is an interesting observation,

as it suggests that explanation requires some additional elements from outside the orig-

inal query or neighbour set in order to be useful. The finding is supportive of similar

outcomes reported in research of counterfactual explanations.

From the results, it also seems that MITM is generally better at modelling the quality

of explanations describing differences between the query and its neighbour set, while

TYN is more promising for scoring explanation of similarities. Given the differences

between the two metrics, this observation suggests that understanding the differences

between a query and its neighbour set requires an understanding of how these are

linked, which the midpoint in MITM provides. However, understanding the similarity

between query and neighbour set is difficult without understanding the region of the

space into which the query has been placed. We highlight this as a valuable finding

which could help inform the development of explanation quality metrics in future.
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Figure 6.6: Using representations from tf-idf, a comparison of MITM and TYN scoring
metrics and correlation with explanation quality.

Examining each interaction in more detail (from Figure 5), interactions 13 and 17 seem

to be exceptions to these observations. For interaction 13, the engineer feedback states

that the outcome and the explanation was a distinct possibility“but at this stage in the

task was more likely to be a risk than a definite outcome”. So the explanation was valid,

but could not leverage temporal information to better inform its findings - something

which could be targeted in future. For interaction 17, both of the summary metrics
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(MITM-B and TYN-B) allocate it a very high score. The interaction involved the

system attempting to explain an incorrect classification. This suggests that interaction

17 involved a query which was allocated to a sparse region in the latent space, which may

offer some reasoning as to why it does not follow general trends of other interactions.

Another outlier is interaction 15, an interaction where a useful explanation was experi-

enced by the user. By almost all metrics this interaction is judged to be very similar to

the identified point of information need. For other interactions this has typically been

an indicator of non-useful explanation. This suggests that there is room for simply

rewording statements and have them act as useful explanation, but the situations in

which this is useful will be rarer.

If we consider the results of MITM and TYN as applied to the output of DML archi-

tectures, then we notice a considerable change to our insights (See Figures 6.7 and 6.8).

For both DML architectures, the summary metrics MITM-B and TYN-B do not seem

to demonstrate a consistent pattern. This is indicative that the summary metrics are

incompatible with DMLs, potentially because of the way in which these architectures

are trained. If we consider how the summary metrics are calculated, the representation

for the explanation is formed from a list of overlapping and non-overlapping keywords

as identified from the user’s original query, and the neighbour set used in its classifi-

cation. This means we collect information from several different sources. When this is

converted to a tf-idf vector, the impact is localised to specific features and the vector

is still sparse. Even if it is unlikely for the features to appear together, this means that

the impact is relatively minimal as the latent space is also sparse. However when this

is applied to DMLs, the combination of features are converted into a dense representa-

tion. The learned weight matrices may not have seen similar combinations of features

during training, which would have an impact on the output representation. This could

explain the lack of pattern in the summary metrics, though we will study this further.

Looking at the representations gained from an SNN, in most circumstances a lower

MITM or TYN score is associated with more useful explanations. This is particularly

noticeable in MITM-D, where most non-useful explanations obtained a normalised score

greater than 0.7, and only a single useful explanation (19) was above this threshold.

This outlier may be explained by the fact that explanation 19 was associated with an

incorrect classification, where the engineer highlighted that it lacks keywords from the

text, and as a result was only ‘somewhat useful’. A similar, though less pronounced,

relationship is demonstrated in TYN-D. While this pattern is not replicated exactly in

the representations gained from TN, we can see indicators that this pattern is beginning

to form (particularly once again in MITM-D and TYN-D).
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Figure 6.7: Using representations from SNN, a comparison of MITM and TYN scoring
metrics and correlation with explanation quality.
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Figure 6.8: Using representations from TN, a comparison of MITM and TYN scoring
metrics and correlation with explanation quality.
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Overall we take this as indicative that latent spaces which are learned by leverag-

ing similarity knowledge between examples will be more responsive to similarity-based

scoring mechanisms. Specifically, the matching knowledge learned by SNN architec-

tures seems to be well aligned with the MITM and TYN metrics we have suggested

in this chapter when comparing explanations derived from similarities and differences

between the query and the neighbour set used for classification. We plan to pursue

this even further in future work, with the goal of deriving a meaningful and accurate

method of autonomously evaluating explanations for similarity-driven machine learning

algorithms.

6.5 Conclusions

In this chapter, we have explored how we can explain the output of similarity-based

architectures, including DMLs, to multiple user groups. To that end, we have de-

scribed the development of a framework to promote explainability of machine learning

methods within a telecommunication organisation. We have motivated and explored

the application of this framework to the specific use case of explaining technical engi-

neer notes to non-technical planning personnel. An evaluation of this framework over

two distinct user groups, engineers and desk-based agents, demonstrates several key

differences between them which impacts how they use the system. In particular it is

interesting to note the different ways in which these two groups judge the quality of an

explanation. For engineers, it is about whether the explanation follows their reason-

ing, while desk-based agents are more concerned with whether it supports their work.

Overall, we believe the feedback from both stakeholder groups highlights the utility of

similarity-based architectures as explainable machine learners for the task of transfer

of experience.

Beyond this, we have also investigated the relationship between similarity and expla-

nation quality by introducing the two metrics MITM and TYN. Overall, these metrics

seem to indicate that similarity and explanation quality do share a relationship, but

that it is quite complex - an explanation cannot simply be described as ’good’ if it is

within the locality of the query. A deeper understanding of the explanation is required

(for example, is it describing similarities or differences between a query and an out-

come) is required to understand the most appropriate method to leverage similarity

knowledge as a component of a metric. In this regard, further exploration is required

to fully understand how we can autonomously evaluate explanations with similarity

knowledge.
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Chapter 7

Conclusion

In this thesis, we presented our hypothesis that similarities between CBR and DMLs

present an opportunity for integration where both methods will benefit. Specifically

we anticipate that training of DML architectures can be improved by considering clus-

tering research from other machine learning techniques, and that DMLs present an

opportunity to combine the similarity and vocabulary knowledge containers as a com-

ponent of a CBR system. Furthermore, as DMLs are fundamentally similarity-based

architectures we believe that their output can be explained effectively in situations

where multiple user groups of varying domain expertise are using the system.

To ensure systematic investigation of these claims, we identified three research ques-

tions:

1. How can techniques from traditional machine learning methods (such as CBR

and meta-learning) be incorporated into strategies to improve training efficiency

of DMLs?

2. How effective are DMLs at fulfilling the traditionally separate roles of the ’vocabu-

lary’ and ’similarity’ knowledge containers in the context of transfer of experience

between experts and non-experts of telecommunications engineering?

3. How can we explain the output of similarity-based architectures (including DMLs)

intended to support user groups of varying domain expertise, and how can we

autonomously evaluate the quality of produced explanations?

We systematically explored these research questions across Chapters 4, 5 and 6 of this

thesis and presented the following contributions:

1. We introduce several training strategies for DMLs which are inspired by research
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in meta-learning, curriculum learning and CBR. Experiments on public datasets

from multiple domains illustrate that the proposed strategies improve training

efficiency of DML architectures.

2. We compare methods of developing a similarity model for transfer of experience

using free-text data sources. Our findings demonstrate that DMLs can learn to

produce representations optimised for similarity calculations which offer clear im-

provement over dense representations gained from word embeddings, but require

refinement to outperform statistical methods.

3. We describe the development of an explainability framework based upon one of

our use-cases, and assess the quality of these explanations using novel autonomous

evaluation methods and user feedback. The results highlight the practical utility

of a hierarchical explanation framework.

In Chapter 4 we presented several novel training strategies for SNNs and TNs which

leveraged previous research in meta-learning and CBR respectively. Initial experimen-

tation with SNNs trained using our proposed Dynamic Exploration (DynE) and Dy-

namic Explore and Exploit (DynEE) strategies to leverage exploration and exploitation

knowledge presented promising results across several public datasets, but expansion to

more complex problems and DML algorithms was limited by the high complexity of

the DynEE algorithm. This complexity was primarily caused by the expensive near-

est neighbour calculations to identify the exploitation set. To resolve this, we were

inspired by Locality-Sensitive Hashing (LSH) from CBR research to develop an inex-

pensive training strategy for TNs. The Locality-Sensitive Batching (LSB) strategy was

capable of inexpensively dividing the latent space into a number of buckets to capture

the locality of complex regions of the space. By randomly creating triplets from within

complex buckets to inform our exploitation knowledge, and joining pure buckets for

triplet generation as exploration knowledge, we were able to maintain the concepts of

exploration and exploitation whilst reducing the computational cost. Results across

several problem domains demonstrate the effectiveness of using similarity-based tech-

niques (such as boosting from meta-learning, and LSH from CBR) to improve the

training of DMLs.

In Chapter 5 we applied DMLs to the problem of experience transfer for service pro-

visioning within telecommunications using expert-written task notes as a data source.

We divided this problem into two use cases: UC1, where we learned similarity mod-

els with the intention of enabling transfer of experience between expert engineers by

recommending additional information to support task completion; and UC2, where

we created a similarity-based recommender system to enable transfer of experience
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from engineers to non-expert desk staff. On both of these use cases we performed a

comparative study to understand the best method to represent the data for similarity

calculations, comparing tf-idf, Doc2Vec and several DML architectures. Our findings

indicated a surprising reliance on specific vocabulary to inform classification, evidenced

by the strong performance of tf-idf vectors in both experiments. However, in both use

cases we could also observe that DMLs contributed to better clustering of the data, par-

ticularly noticeable on dense Doc2Vec representations. We use this as evidence of our

second contribution in this thesis, and highlight that DMLs can bridge the gap between

the traditionally separate vocabulary and similarity knowledge containers. However,

we are also motivated to suggest further work in this area in Section 7.1.

Finally, in Chapter 6 we presented our work towards an explanation framework. The

goal of this framework is to interface with a range of machine learning applications

within our company partner, but in this work we have focused on developing explana-

tion strategies to support similarity-based architectures such as that in UC2. Motivated

by literature around explanation types as an influence, we suggest both low-level ex-

planations (confidence and term overlap) as well as a high-level explanation (extractive

summarisation of similarities and differences) which leverage similarity knowledge to

inform their explanations. Feedback from both expert engineers and non-expert desk-

based staff indicate that the explanations are useful to support their work, highlighting

the utility of explaining the output of similarity-based architectures to support stake-

holder groups of multiple experience levels interacting with the same machine learning

system. Furthermore, we have investigated similarity information as a means to au-

tonomously judge the quality of explanations, and introduced two novel metrics, Meet-

In-The-Middle (MITM) and Trust-Your-Neighbours (TYN), for this purpose. Prelimi-

nary results on a task with user feedback on the quality of explanations suggests that

there is a relationship between similarity and explanation quality. This is particularly

noticeable when using representations obtained from SNNs, where our results are in-

dicative that good explanations to explain similarities and differences between a query

and its neighbour set generally have lower MITM and TYN scores. We view this as a

good sign that the matching knowledge learned by SNNs helps to identify high-quality

explanations. We take this as evidence that similarity knowledge is a useful starting

point to study autonomous evaluation of explanation quality, but highlight that further

work is required to truly understand this relationship. We propose several avenues in

Section 7.1.

Overall, we consider the contributions we have made in this thesis as a good indication

that our hypothesis is correct. Our findings have demonstrated that there are genuine

benefits for both CBR systems and DML architectures when knowledge from one field
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of research is applied to the other. For DMLs, we have demonstrated this is the case

by applying techniques from meta-learning and CBR to build training strategies which

outperform baseline methods. For CBR, we have demonstrated the ability to create

a robust similarity model for a real world problem by leveraging DMLs to learn a

representation. Finally, we have demonstrated the explainability of decisions produced

using similarity-based methods with real users, and highlighted the capability of metrics

for autonomous evaluation of explanation quality using similarity knowledge. With

these factors in mind, we propose that our hypothesis is supported by the findings of

this thesis.

7.1 Future Work

We have identified several avenues for further research from this thesis. We conclude

this thesis with some thoughts on each of our contribution chapters and how they can

be further developed.

Considering the training strategies we have suggested in Chapter 4, we feel that the

results we have obtained on public datasets are good evidence that DML training

strategies able to mix exploration of the space and exploitation of complex areas are

a promising research avenue. An area we discussed in some length was the balance

between exploration and exploitation, and how over emphasis on one of these concepts

was detrimental to strategy effectiveness. It would be interesting to explore how the

appropriate ratio of exploration and exploitation changes over the course of training

through decay parameters. Somewhat tangential information from curriculum learning

research highlights that it is ill advised to start training with complex examples, so our

intuition is that we would like a training strategy where the focus gradually shifts from

exploration towards exploitation. Therefore we very much view our contributions in

this chapter as a first step towards better understanding the role of these concepts for

training similarity-based architectures in future.

In Chapter 5 we highlighted that we suspected that the sparseness of the tf-idf vectors

played some role in their improvements over performance achieved by DMLs in specific

neighbourhood sizes. We are inspired by this to consider whether we could develop

a strategy which would better enable DMLs to process very sparse vectors. Such a

contribution would likely evolve from work in case completion from CBR, once more

highlighting the synergy of these these two areas. If we were to pursue this avenue,

it would be our goal to enable DMLs to learn similarity between incomplete cases,

or cases with a minimal number of non-zero features. Furthermore, we noted that

the DML architectures (and the SNN in particular) was better able able to divide

complex regions of the space, due to their focus on throughout training on the concept of

140



’matching’. This implies that DMLs would be more capable in tasks which conventional

CBR systems found difficult, such as domains which require aggressive clustering of

examples as differences between cases are very small (such as anomaly detection in

medical imaging). One manner in which this could be achieved is by developing a

training strategy which could leverage knowledge of specific features to identify areas

of complexity in the space (potentially in a semi-supervised capacity). In doing so,

the exploitation we have proposed in this thesis would become better adapted to fine-

grained problems where differences between specific features are important. These

contributions would improve DMLs as a viable architecture to fulfill the similarity and

knowledge containers of a CBR system.

Finally, we are eager to continue to explore the role of similarity to provision and

evaluate explanations of machine learning architecture decisions, as we have begun in

Chapter 6. We see a good amount of evidence to support that similarity knowledge

is important to achieve this, both from literature and from our experiences over the

course of this thesis. In future work, we plan to extend the framework to incorporate

explanations which acknowledge sequential and co-occurring scenarios, as these are

necessary concepts for full automation. We also aim to apply this framework to further

use cases, enabling us to better understand the explanation needs of users from different

work types and experience levels. We are also specifically interested in improving users

ability to mental model the decision-making process of machine learning systems. In the

use case we presented, the produced explanations primarily targeted feature relevance

- highlighting to engineers and desk-based agents why the recommended solution was

appropriate by highlighting the overlapping and non-overlapping features between the

query and its neighbour set. We had originally imagined this would improve their

ability to mentally model the system, and by understanding why the system viewed

two cases to be similar would be sufficient. However, while the users understood that

vocabulary played a role in system decision-making, they failed to understand that

these words played only a minor role. Therefore, it would be useful to develop an

explanation to holistically describe the similarity-based return process, and prompt

users to understand that features exist within context of each other for the purposes of

decision-making. We hope this would also improve ability to trust of the system.

Furthermore, we highlight autonomous scoring of explanation as an area of interest.

Lack of convenient scientific method to evaluate explanation quality remains a barrier

to explainability research. Inherently, similarity-based metrics, and particularly those

we have proposed here, assume that the point of explanation need can be modelled

in the same feature space as learned by a classifier. This assumption may not hold

true in every scenario requiring an explanation - for example, situations where an
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explanation is provided in a different data type from the query (i.e. text captioning of

an image), or situations where the explanation need cannot be modelled at all (such

as when the user’s explanation need is caused by the context in which the system is

being used). Furthermore, the individual metrics themselves possess limitations. For

example, MITM assumes that the user has a good understanding of the query. This

can be problematic in situations where the user does not fully understand what they

are asking of the system. Similarly, when using TYN the centroid of neighbours may in

fact be very similar to the query, which could interfere with the quality of the metric.

Lastly, our evaluation highlighted that ’timeliness’ of an explanation is an important

aspect which is not easily modelled with similarity knowledge. With these factors in

mind, it seems sensible to propose that similarity may be useful for modelling aspects of

the quality of an explanation as part of a set of features. The idea creating features for

an explanation (i.e. aspects of similarity knowledge, temporal information such as the

timeliness in which it was provisioned and contextual information about the situation

in which an explanation is provided) is appealing, as it would allow more complex

analysis of important features to dictatet explanation quality.
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