1,608 research outputs found

    Less is More: Real-time Failure Localization in Power Systems

    Get PDF
    Cascading failures in power systems exhibit non-local propagation patterns which make the analysis and mitigation of failures difficult. In this work, we propose a distributed control framework inspired by the recently proposed concepts of unified controller and network tree-partition that offers strong guarantees in both the mitigation and localization of cascading failures in power systems. In this framework, the transmission network is partitioned into several control areas which are connected in a tree structure, and the unified controller is adopted by generators or controllable loads for fast timescale disturbance response. After an initial failure, the proposed strategy always prevents successive failures from happening, and regulates the system to the desired steady state where the impact of initial failures are localized as much as possible. For extreme failures that cannot be localized, the proposed framework has a configurable design, that progressively involves and coordinates more control areas for failure mitigation and, as a last resort, imposes minimal load shedding. We compare the proposed control framework with Automatic Generation Control (AGC) on the IEEE 118-bus test system. Simulation results show that our novel framework greatly improves the system robustness in terms of the N-1 security standard, and localizes the impact of initial failures in majority of the load profiles that are examined. Moreover, the proposed framework incurs significantly less load loss, if any, compared to AGC, in all of our case studies

    Cascading Failures and Contingency Analysis for Smart Grid Security

    Get PDF
    The modern electric power grid has become highly integrated in order to increase the reliability of power transmission from the generating units to end consumers. In addition, today’s power system are facing a rising appeal for the upgrade to a highly intelligent generation of electricity networks commonly known as Smart Grid. However, the growing integration of power system with communication network also brings increasing challenges to the security of modern power grid from both physical and cyber space. Malicious attackers can take advantage of the increased access to the monitoring and control of the system and exploit some of the inherent structural vulnerability of power grids. Therefore, determining the most vulnerable components (e.g., buses or generators or transmission lines) is critically important for power grid defense. This dissertation introduces three different approaches to enhance the security of the smart grid. Motivated by the security challenges of the smart grid, the first goal of this thesis is to facilitate the understanding of cascading failure and blackouts triggered by multi-component attacks, and to support the decision making in the protection of a reliable and secure smart grid. In this work, a new definition of load is proposed by taking power flow into consideration in comparison with the load definition based on degree or network connectivity. Unsupervised learning techniques (e.g., K-means algorithm and self-organizing map (SOM)) are introduced to find the vulnerable nodes and performance comparison is done with traditional load based attack strategy. Second, an electrical distance approach is introduced to find the vulnerable branches during contingencies. A new network structure different than the original topological structure is formed based on impedance matrix which is referred as electrical structure. This structure is pruned to make it size compatible with the topological structure and the common branches between the two different structures are observed during contingency analysis experiments. Simulation results for single and multiple contingencies have been reported and the violation of line limits during single and multiple outages are observed for vulnerability analysis. Finally, a cyber-physical power system (CPS) testbed is introduced as an accurate cyber-physical environment in order to observe the system behavior during malicious attacks and different disturbance scenarios. The application areas and architecture of proposed CPS testbed have been discussed in details. The testbed’s efficacy is then evaluated by conducting real-time cyber attacks and exploring the impact in a physical system. The possible mitigation strategies are suggested for defense against the attack and protect the system from being unstable

    Localization & Mitigation of Cascading Failures in Power Systems, Part III: Real-time Mitigation

    Get PDF
    Cascading failures in power systems propagate non-locally, making the control of outages extremely difficult. In Part III of this work, we leverage the properties of tree partitioning developed in Parts I and II to propose a distributed control strategy that offers strong guarantees in both the mitigation and localization of cascading failures. Specifically we adopt a recently developed distributed frequency regulation approach, called the Unified Control, that integrates primary and secondary control as well as congestion management at frequency control timescale. When the balancing areas over which the Unified Control operates form a tree partition, our proposed strategy will regulate the system to a steady state where the impact of initial line outages is localized within the areas where they occur whenever possible and stop the cascading process. When initial line outages cannot be localized, the proposed strategy provides a configurable design that involves and coordinates progressively more balancing areas for failure mitigation in a way that can be optimized for different priorities. We compare the proposed control strategy with the classical automatic generation control (AGC) on the IEEE 118-bus and 2736-bus test networks. Simulation results show that our strategy greatly improves overall reliability in terms of the N-k security standard, and localizes the impact of initial failures in majority of the load profiles that are examined. Moreover, the proposed framework incurs significantly less load loss, if any, compared to AGC, in all of our case studies

    Localization & Mitigation of Cascading Failures in Power Systems, Part III: Real-time Mitigation

    Get PDF
    Cascading failures in power systems propagate non-locally, making the control of outages extremely difficult. In Part III of this work, we leverage the properties of tree partitioning developed in Parts I and II to propose a distributed control strategy that offers strong guarantees in both the mitigation and localization of cascading failures. Specifically we adopt a recently developed distributed frequency regulation approach, called the Unified Control, that integrates primary and secondary control as well as congestion management at frequency control timescale. When the balancing areas over which the Unified Control operates form a tree partition, our proposed strategy will regulate the system to a steady state where the impact of initial line outages is localized within the areas where they occur whenever possible and stop the cascading process. When initial line outages cannot be localized, the proposed strategy provides a configurable design that involves and coordinates progressively more balancing areas for failure mitigation in a way that can be optimized for different priorities. We compare the proposed control strategy with the classical automatic generation control (AGC) on the IEEE 118-bus and 2736-bus test networks. Simulation results show that our strategy greatly improves overall reliability in terms of the N-k security standard, and localizes the impact of initial failures in majority of the load profiles that are examined. Moreover, the proposed framework incurs significantly less load loss, if any, compared to AGC, in all of our case studies.Comment: arXiv admin note: text overlap with arXiv:1904.0546

    Modeling Fault Propagation Paths in Power Systems: A New Framework Based on Event SNP Systems With Neurotransmitter Concentration

    Get PDF
    To reveal fault propagation paths is one of the most critical studies for the analysis of power system security; however, it is rather dif cult. This paper proposes a new framework for the fault propagation path modeling method of power systems based on membrane computing.We rst model the fault propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP system and make them suitable for large-scale power systems, we propose a model reduction method for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE 14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction, and the simulation results show a new success and promising approach to the engineering domain
    corecore