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Localization & Mitigation of Cascading Failures in Power Systems,

Part III: Real-time Mitigation

Linqi Guo, Chen Liang, Alessandro Zocca, Steven H. Low, and Adam Wierman

Abstract— Cascading failures in power systems propagate
non-locally, making the control of outages extremely difficult.
In Part III of this work, we leverage the properties of tree
partitioning developed in Parts I and II to propose a distributed
control strategy that offers strong guarantees in both the
mitigation and localization of cascading failures. Specifically
we adopt a recently developed distributed frequency regulation
approach, called the Unified Control, that integrates primary
and secondary control as well as congestion management at
frequency control timescale. When the balancing areas over
which the Unified Control operates form a tree partition, our
proposed strategy will regulate the system to a steady state
where the impact of initial line outages is localized within
the areas where they occur whenever possible and stop the
cascading process. When initial line outages cannot be localized,
the proposed strategy provides a configurable design that
involves and coordinates progressively more balancing areas for
failure mitigation in a way that can be optimized for different
priorities. We compare the proposed control strategy with the
classical automatic generation control (AGC) on the IEEE 118-
bus and 2736-bus test networks. Simulation results show that
our strategy greatly improves overall reliability in terms of the
N − k security standard, and localizes the impact of initial
failures in majority of the load profiles that are examined.
Moreover, the proposed framework incurs significantly less load
loss, if any, compared to AGC, in all of our case studies.

I. INTRODUCTION

Grid reliability is traditionally enhanced through redundant
transmission lines that can maintain connectivity in the
face of line outages. Higher connectivity however can also
exacerbate the propagation of component failures, potentially
leading to large-scale blackouts. In Parts I [1] and II [2] of
this paper, we propose a complementary approach to grid
reliability that switch off certain existing lines to partition the
grid into regions that are connected in a tree topology. Tree
partitioning will contain the impact of line failures within
each region, thus reducing the risk of large-scale blackouts.

Parts I and II focus on establishing failure localization
as a general property of tree partitioning independent of
generation and load injections. We therefore adopt a per-
spective that assumes injections keep unchanged after a non-
cut failure (and are changed only after a bridge failure
according to a generic balancing rule that re-balances power
in each island). Although the tree-partition properties can
be of independent interest for various applications, this
perspective is both unrealistic and too pessimistic for failure
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mitigation. It does not leverage the fact that frequency control
mechanisms adjust injections of controllable generators and
loads immediately in response to a line outage, at a faster
timescale than post-contingency line tripping (usually from
thermal processes). In Part III, we supplement the cascading
failure model of Parts I and II to capture the mechanism
through which fast timescale dynamics affects power flow
redistribution and failure propagation. The integrated failure
model is not only more realistic, but also offers an additional
means to mitigate cascading failure through a better design
of the frequency control mechanism.

Contributions of Part III of this paper: We integrate

a distributed frequency control strategy with tree partition-
ing to provide provable failure mitigation and localization

guarantees. To the best of our knowledge, this is the first
attempt to leverage results from the frequency regulation
literature in the context of cascading failure, bringing new
perspectives and insights to both literatures. Our control
strategy guarantees that, whenever it is feasible to avoid
it, failures do not propagate (see Section II for a rigorous
definition), and that the impact of failures are localized as
much as possible in a manner configurable by the system
operator.

We introduce the main idea of this new control strategy
in Section III. The key piece of our design builds upon the
Unified Controller (UC), a recent mechanism developed in
the frequency regulation literature [3]–[7]. We specifically
leverage the ability of UC to enforce line limits at a fast
timescale whenever possible. Our design revolves around the
properties that emerge when the balancing areas that UC
manages form a tree partition. More specifically, in Section
IV, we characterize how UC responds to an initial failure
when it operates over a tree partition, and prove that a
non-critical failure is automatically mitigated and localized.
Later, in Section V, we discuss how tree partitioning enables
the system operator to configure its mitigation strategy to
minimize the impact of critical failures, and prove that UC
can be extended to detect such scenarios as part of its normal
operation.

In order to establish these results, we propose an integrated
failure propagation model in Section II, which lies at the
interface between fast timescale frequency dynamics and
slow timescale line tripping process. Further, we prove new
results on the UC optimization problem using the spectral
representation of DC power flow equations established in
Part I of this work [1]. Lastly, we apply classical results
from convex optimization to show that critical failures can
always be detected in a distributed fashion.

In Section VI, we compare the proposed control strategy
(tree partitioning + UC) with classical Automatic Generation
Control (AGC) using the IEEE 118-bus and 2736-bus test
networks. We demonstrate that by switching off only a
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small number of transmission lines and adopting UC as
the fast timescale controller, one can significantly improve
overall grid reliability in terms of the N − k security
standard. Moreover, in a majority of the load profiles that
are examined, our control strategy localizes the impact of
initial failures to the regions where they occur, leaving the
operating points of all other balancing areas unchanged. This
decoupling property across balancing areas can be important
in practice. Lastly, we highlight that when load shedding is
necessary, the proposed strategy incurs significantly smaller
load loss.

Load shedding to mitigate cascading failure has been
studied in the literature, e.g., using reinforcement learning
[8], by shedding only the interruptible part of each load [9],
adaptively using affine control based on observed states [10],
formulated as a DC OPF problem [11], or by treating the
cascading process as a discrete-time optimal control problem
[12]. DC power flow model is used in [10]–[12] as in this
paper. Unlike these works, however, we do not propose
separate load shedding schemes to be implemented at the
slow (power flow) timescale. Instead, load and generation
control under the UC framework is performed as part of
frequency regulation in fast timescale, during both normal
operation and in a contingency.

II. INTEGRATED FAILURE PROPAGATION MODEL

The failure propagation model in Part II assumes the
injections remain unchanged after a non-cut failure (and
change only after a bridge failure). This is both unrealis-
tic and too pessimistic since this perspective ignores fast
timescale dynamics that respond to line failures immediately,
which can potentially drive the system to a post-contingency
equilibrium with different injections.

To account for this, we present an integrated cascading
failure model that incorporates frequency control dynamics
and generalizes the steady-state DC failure model in Part II.
This model offers more flexibility in controller design and
enables us to address challenges in failure mitigation using
tools from the frequency regulation literature.

A. Fast Timescale Dynamics

Consider a power transmission network described by
the graph G = (N , E). Using the definitions in Ta-
ble I where most variables represent deviations from their
pre-contingency nominal values, we describe the post-
contingency linearized frequency dynamics by the standard
model:

θ̇j = ωj , j ∈ N (1a)

Mjω̇j = rj + dj −Djωj −
∑

e∈E

Cjefe, j ∈ N (1b)

fij = Bij(θi − θj), (i, j) ∈ E . (1c)

The above differential-algebraic equations model the fast
timescale response of the system to a transmission line
failure. The post-contingency injection deviation pj(t) :=
rj +dj(t) consists of the post-contingency disruption rj and
system response dj(t). The vector d(t) := (dj(t), j ∈ N )
models frequency control and their values are determined
by a feedback control law (an uncontrollable constant-power
load is simply a special case where the control law sets

TABLE I: Variables associated with buses and transmission lines.

θ := (θj , j ∈ N )
bus voltage angle deviations from pre-
contingency values

ω := (ωj , j ∈ N )
bus frequency deviations from pre-
contingency values

r := (rj , j ∈ N ) system disturbances

d := (dj , j ∈ N )

power injection deviations from pre-
contingency values for generator buses;
controllable load deviations from pre-
contingency values for load buses

p := (pj , j ∈ N )
aggregate post-contingency injection devia-
tion

dj , dj , j ∈ N
upper and lower limits for the adjustable
injection dj

Djωj , j ∈ N
aggregate generator damping for generator
buses; aggregate load frequency response
for load buses

Mj , j ∈ N inertia constants

f := (fe, e ∈ E)
branch flow deviations from pre-
contingency values

fe, fe
, e ∈ E upper and lower limits for branch flow de-

viations

n := |N | number of buses

m := |E| number of transmission lines

C ∈ R
n×m

post-contingency incidence matrix of G:
Cje = 1 if j is the source of e, Cje = −1
if j is the destination of e, and Cje = 0
otherwise

B := diag(Be, e ∈ E)
branch flow linearization coefficients that
depend on line susceptances, nominal volt-
age magnitudes and reference phase angles

corresponding dj(t) ≡ dj). We assume in this paper that
the feedback controller is stabilizing and drives the closed-
loop system towards an equilibrium as long as the post-
contingency disruption r := (rj , j ∈ N ) can be feasibly
mitigated (see Section V for more discussion).

Definition 1. A state x∗ := (θ∗, ω∗, d∗, f∗) ∈ R
3n+m is said

to be a closed-loop equilibrium or simply an equilibrium
of (1) if the right hand sides of (1a)(1b) are zero and (1c)
is satisfied at x∗.

The frequency dynamics (1) implies that an equilibrium
x∗ satisfies

w∗ = 0, p∗ = r + d∗ = Cf∗, f∗ = BCT θ∗.

In other words, x∗ is a solution of the DC power flow model.1

The equilibrium to which the closed-loop system (1)
converges determines the post-contingency DC power flow
solution and therefore the cascading process. By explicitly
modeling fast timescale frequency control dynamics as part
of the cascading process, our model offers more flexibil-
ity in controller design. Different choices of d(t) induce
different cascading failure models. For instance, as shown
in Appendix VI, if we adopt droop control for d(t), the
failure model in Part II of the paper (where injections do not
change after a non-cut failure, and a bridge failure impact
the injections following a certain power balancing rule R)
can be readily recovered. As another example, if AGC is
adopted for d(t), the cascading process will unfold in a way
where injections and line flows are changed even after a

1In primary frequency control literature (see [3], [5] for instance), the
right hand side of (1a) is not required to be zero for an equilibrium point
x∗. We impose this requirement on (1a) here as our discussion focuses
on controllers that achieve secondary frequency control and thus ω∗ = 0
always holds. Our model and results can be readily extended to the case
where ω∗ 6= 0; see Appendix VI for more details.



non-cut failure. Since traditional AGC does not enforce line
limits (congestion is managed at a slow timescale), some
lines may carry flows above their thermal limits and are
tripped subsequently.

This integrated model offers an additional means to mit-
igate cascading failures through a better design of the fre-
quency control mechanism. Our proposed approach leverages
this extra freedom and adopts a recent frequency control ap-
proach known as Unified Controller (UC) for d(t). In contrast
to traditional AGC, UC drives the closed-loop system to an
equilibrium that respects line limits whenever possible. We
will show in Section IV that it will in fact localize the impact
even of bridge failures.

A key insight of [3]–[7] is that a closed-loop equilibrium
x∗ of (1) is also an optimal solution of a certain optimiza-
tion problem that can be determined explicitly. Different
frequency controllers d(t) induce different dynamics (1),
whose closed-loop equilibria solve optimization problems
with corresponding objective functions and constraints. As
such, different frequency controllers can alternatively be
modelled by the underlying optimization problems that their
equilibria solve. We take this perspective when we discuss
the design of UC in the following sections.

B. Unified Controller (UC)

UC is a control approach recently proposed in the fre-
quency regulation literature [3]–[7]. Compared to classical
droop control or Automatic Generation Control (AGC) [13],
UC integrates primary control, secondary control, and con-
gestion management simultaneously at the frequency control
timescale. The key feature of UC we use here is that the
closed-loop equilibrium of (1) under UC solves the following
optimization on the post-contingency network:

min
θ,ω,d,f

∑

j∈N

cj(dj) (2a)

s.t. ω = 0, (2b)

r + d− Cf = 0, (2c)

f = BCT θ, (2d)

ECf = 0, (2e)

f
e
≤ fe ≤ fe, e ∈ E , (2f)

dj ≤ dj ≤ dj , j ∈ N , (2g)

where cj(·)’s are associated cost functions that penalize
deviations from the last optimal dispatch (and hence attain
minimum at dj = 0), (2b) ensures secondary frequency
regulation is achieved, (2c) guarantees power balance at each
bus, (2d) is the DC power flow equation, (2e) enforces zero
area control error [13], (2f) and (2g) are the flow and control
limits. The matrix E encodes balancing area information as
follows. Given a partition PUC = {N1,N2, · · · ,Nk} of G
that specifies the balancing areas in secondary frequency

control, E ∈ {0, 1}|P
UC|×n

is defined by Elj = 1 if bus
j is in balancing area Nl and Elj = 0 otherwise. An edge
e ∈ E is called a tie-line if its endpoints belong to different
balancing areas in PUC [5], [13]. As a result, the l-th row
of ECf = 0 ensures that the branch flow deviations on the
tie-lines connected to balancing area Nl sum to zero.

UC is designed so that its controller dynamics, combined
with the system dynamics (1), form a variant of projected
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Fig. 1: An illustration of the failure propagation model.

primal-dual algorithms to solve (2). It is shown in [3]–[7]
that when the optimization problem (2) is feasible, under
mild assumptions, the closed-loop equilibrium under UC is
globally asymptotically stable and it is an optimal point of
(2). Such an optimal point is unique (up to a constant shift of
θ) if the cost functions cj(·) are strictly convex. This means
that, after a failure (cut set or not), the post-contingency
system will be driven by UC to an optimal solution of (2)
(under appropriate assumptions). We refer the readers to [3]–
[7] for specific controller designs and analysis.

We have introduced two distinct partitions of a power net-
work so far: the tree partition P tree in Part I and the balancing
area partition PUC. In general, P tree and PUC can be different.
However, when they do coincide, the underlying power grid
inherits analytical properties from both tree partition and UC,
making the system particularly robust against failures. Our
proposed control strategy leverages precisely this connection,
as we present in more detail in Section III.

To create a tree partition whose regions coincide with the
balancing areas over which UC operates, we may have to
switch off some tie-lines of PUC. The selection of these tie-
lines can be systematically optimized, e.g., to minimize line
congestion or inter-area flows on the resulting network; see
[14] for more details. We henceforth assume that P tree =
PUC, which means that the bridges and the tie-lines of the
power network G coincide.

C. Failure Propagation

In full generality, the control strategy that we introduce
applies to both generator failures and line failures. However,
to simplify presentation, we focus on line failures in this
paper. Recall from Part II that we describe the cascading
failure process by keeping track of the set of outaged lines
B(n) over n ∈ {1, 2, . . . , N} at steady state. Instead of
simply assuming that power flows redistribute according to
the DC model with the same injections, we now assume
that the system evolves at a fast timescale according to the
frequency dynamics (1) during transient and converges to a
closed-loop equilibrium. This equilibrium can be interpreted
as an optimal solution of a certain optimization problem. For
instance, if UC is adopted as the frequency control method,
the equilibrium will be the optimal solution of (2). At the
new closed-loop equilibrium, overloaded lines are tripped
and the cycle repeats, as illustrated in Fig. 1. The crux of our
failure propagation model lies in the interplay between the
slow timescale line tripping process and the fast-timescale
dynamics.

More specifically, for each stage n ∈ {1, 2, . . . , N},
the system evolves according to the dynamics (1) on
the topology G(n), and converges to an equilibrium point
x∗(n) = (θ∗(n), ω∗(n), d∗(n), f∗(n)) that solves an opti-
mization problem over G(n). If all the branch flows f∗(n)



Fig. 2: Flowchart of the events after an initial failure under the proposed
control strategy.

are within the corresponding line limits at equilibrium, then
x∗(n) is a secure operating point and the cascade stops.
Otherwise, let F(n) be the subset of lines whose branch
flows exceed the corresponding line limits. The lines in F(n)
operate above their limits in steady state, so we assume they
trip at the end of stage n; i.e., B(n + 1) = B(n) ∪ F(n).
Line overloads during the transient phase before the system
converges to x∗(n) are considered tolerable because the
transient dynamics in (1) does not last long enough to
overheat a line [5] (spanning only seconds to a few minutes).
This process then repeats for the subsequent stages.

Definition 2. Given a cascading failure process described
by B(n), with n ∈ {1, 2, . . . , N}, the set B(1) is said to

be its initial failure. An initial failure B(1) is said to be

critical if the UC optimization (2) is infeasible over G(1) :=
(N , E\B(1)), or non-critical otherwise.

To formally state our localization result, we define the
following concept to clarify the precise meaning of a region
being “local” with respect to an initial failure.

Definition 3. Given an initial failure B(1), we say that a

tree-partition region Nl is associated with B(1) if there exists
an edge e = (i, j) ∈ B(1) such that either i ∈ Nl or j ∈ Nl.

As we discuss below, our control strategy possesses a
strong localization property for both non-critical and critical
failures in the sense that only the operation of the associated
regions are adjusted whenever possible.

III. PROPOSED CONTROL STRATEGY: SUMMARY

Our strategy consists of two phases: a planning phase
in which a tree partition of the network is created and
an operation phase in which UC actively monitors and
autonomously reacts to line failures as part of its normal
operation.2 Fig. 2 illustrates the sequence of events after an
initial failure.

A. Planning Phase: Tree Partitioning of Balancing Areas

Each balancing area of a multi-area power network is
managed by an independent system operator (ISO). Although

2Besides the planning phase application here, tree partitioning can also be
used as a post-contingency emergency measure in the same way controlled
islanding is applied; see Part I [1, end of Section I].

these areas exchange power with each other as prescribed by
economic dispatch, their operations are relatively indepen-
dent and it is desirable to ensure that system disturbances
in one area do not have a significant impact on the other
areas. This is usually achieved via the zero area control
error constraint in secondary frequency control [13], and is
enforced in UC with (2e). As mentioned in Section II, such
balancing areas typically do not form a tree partition of the
transmission network, as redundant lines are believed to be
critical in maintaining N−1 security of grid [13], [15], [16].

We propose to create a tree partition whose regions
coincide with the balancing areas over which UC operates.
This can be done by switching off a subset of the inter-
area tie-lines so that the resulting reduced graph (see Section
IV in Part I [1]) forms a tree. The switching actions only
need to be carried out in the planning phase, as line failures
that occur during the operating phase do not affect the tree
partition already in place.3 It is interesting to notice that
when the subset of lines to switch off is chosen carefully, tree
partitioning not only localizes the impact of line failures, but
can also improves overall reliability. This seemingly counter-
intuitive phenomenon is illustrated by our case studies in
Section VI-A.

B. Operating Phase: Extending Unified Controller

Once a tree partition is formed, the power network under
UC operates as a closed-loop system and responds to distur-
bances such as line failures or loss of generator/load in an
autonomous manner. In normal conditions where the system
disturbances are small, UC always drives the power network
back to an equilibrium point that can be interpreted as an
optimal solution of (2). This is the case, for instance, when
non-critical failures (see Definition 2) happen, and therefore
such failures are always properly mitigated.

However, in extreme scenarios where a major disturbance
(e.g., a critical failure) affects the system, the optimization
problem (2) that UC aims to solve can be infeasible. In other
words, it is physically impossible for UC to achieve all of
its control objectives after such a disturbance. This makes
UC unstable (see Proposition 6) and, may lead to successive
failures. There is therefore a need to extend the version of
UC proposed in [3]–[7] with two features: (a) a detection
mechanism that monitors the system state and detects critical
failures promptly; and (b) a constraint lifting mechanism that
responds to critical failures by proactively relaxing certain
constraints of (2) to ensure system stability can be reached
at minimal cost.

Our technical results in Section V-A suggest a way to
implement both components as part of the normal operation
of UC. System operators can prioritize different balancing
areas by specifying the sequence of constraints to lift in
response to extreme events. This allows the non-associated
regions to be progressively involved and coordinated in
a systematic fashion when mitigating critical failures. We
discuss some potential schemes in Section V-B.

C. Guaranteed Mitigation and Localization

We show in detail in Sections IV and V that the pro-
posed strategy provides strong guarantees in the mitigation

3In fact, line failures can lead to “finer” tree partitions as more regions
are potentially created when lines are removed from service.



and localization for both non-critical and critical failures.
Specifically, it ensures that the cascading process is always
stopped (a) after a non-critical failure by the associated
regions, and the operating points of non-associated regions
are not impacted in equilibrium; and (b) after a critical failure
when constraints in (2) are lifted in a progressive manner
specified by the system operator. Thus the proposed strategy
can always prevent successive failures, while localizing the
impact of the initial failures as much as possible.

IV. LOCALIZING NON-CRITICAL FAILURES

In this section, we consider non-critical failures, as defined
in Section II, and prove that such failures are always fully
mitigated within the associated regions.

We first characterize how the system operating point
shifts in response to such failures. Recall that if an ini-
tial failure B(1) is non-critical, the UC optimization (2)
is feasible and thus the new operating point x∗(1) :=
(θ∗(1), ω∗(1), d∗(1), f∗(1)) satisfies all the constraints in
(2). In particular, none of the line limits is violated at x∗(1)
by (2f), i.e. x∗(1) is a secure operating point and the cascade
stops (F(1) = ∅). Moreover the power flows on bridges
remain unchanged in equilibrium from their pre-contingency
values, as the next result says. Note that all branch flows may
deviate from their pre-contingency values during transient.

Lemma 4. Given a non-critical initial failure B(1), the new

operating point x∗(1) prescribed by the UC satisfies f∗
e (1) =

0 for every bridge e.

This lemma, proved in Appendix I, shows that tree parti-
tioning enables UC to achieve more than what it is originally
designed for in [3]–[7]: the extended UC not only enforces
zero area control errors through (2e), it also guarantees zero
flow deviations on all tie-lines.

The following proposition is another result of this type,
which clarifies how tree partitioning induces a localization
property in UC. See Appendix II for a proof.

Proposition 5. Assume cj(·) is strictly convex and achieves

its minimum at dj = 0 for all j ∈ N . Given a non-
critical initial failure B(1), if a tree-partition region Nl is

not associated with B(1), then at equilibrium x∗(1) we have
d∗j (1) = 0 for all j ∈ Nl.

The intuition of this proposition is easy to explain:
Lemma 4 implies that the tie-line flows, which are the only
coupling among regions, are zero in equilibrium; thus the
UC optimization (2) over different regions are “decoupled”
and hence the operating points of non-associated regions
should remain unchanged. Such “decoupling”, however, is
only achieved over a tree partition; that is, if the balancing
areas that UC operates over do not form a tree partition,
Proposition 5 may not hold even when all tie-line flows
remain unchanged.

As an example, consider the double-ring network intro-
duced in Part I [1] as shown in Fig. 3. If we put the left
and right rings as two balancing areas, and enforce the flow
deviations on the two tie lines (G,L) and (G′, L′) to be zero,
then the phase angle differences θG− θL and θG′ − θL′ also
remain unchanged. As a result, we see from

θG−θG′ = (θG−θL)+(θL−θL′)+(θL′ −θG′) = θL−θL′

Fig. 3: A double-ring network.

that θG−θG′ is fully determined by θL−θL′ . In other words,
the branch flow over (G,G′) depends on the branch flow over
(L,L′) and, hence, the two regions cannot be decoupled.
This example suggests that a rigorous proof for Proposition
5 is more technical and involved. We refer the readers to
Appendix II for how such a subtlety on region “separation”
is precisely resolved by Lemma 15 from Part I [1] that relates
the solution space of L = CBCT to tree partitions.

Two remarks are in order. First, Proposition 5 reveals
that with the proposed control strategy, when the system
converges to an equilibrium after a non-critical failure,
the injections and power flows in non-associated regions
remain unchanged, even though they fluctuate during tran-
sient according to (1). Our control scheme guarantees that
non-critical failures in a balancing area do not impact the
operations of other areas, achieving stronger balancing area
independence than that ensured by zero area control error
alone.

Second, unlike the scheme in Part II [2], cut set failures are
treated in exactly the same way as non-cut failures provided
that they are non-critical. Furthermore, the impact of a cut
set failure is localized to the associated regions. This is in
stark contrast with the global impact of a bridge failure in
Part II [2] and is the key benefit of integrating UC with tree
partitioning.

V. CONTROLLING CRITICAL FAILURES

We now consider the case where the initial failure is criti-
cal. This may happen when a major generator or transmission
line is disconnected from the grid.

A. Unified Controller under Critical Failures

Since UC is a concept that has emerged from the fre-
quency regulation literature, the underlying optimization (2)
is always assumed to be feasible in existing studies [3]–[7].
As such, little is known about the behavior of UC if this
assumption is violated when a critical failure happens. We
now characterize the limiting behavior of UC in this setting.

In order to do this, we first formulate the exact controller
dynamics of UC. Unfortunately, there is no standard way to
do this as multiple designs of UC have been proposed in
the literature [3]–[7], each with its own strengths and weak-
nesses. Nevertheless, all of the proposed controller designs
are (approximately) projected primal-dual algorithms for the
optimization problem (2) satisfying two assumptions that we
now state. Let λi, for i ∈

{

1, 2, · · · , n+ 3m+
∣

∣PUC
∣

∣

}

, be
the dual variables corresponding to the constraints (2c)-(2f).

UC1: For all j ∈ N , dj ≤ dj(t) ≤ dj is satisfied for all
t. This is achieved either via a projection operator that maps
dj(t) to this interval or by requiring the cost function cj(·)
to approach infinity near these boundaries.



UC2: The primal variables f, θ and the dual variables λi

are updated by a primal-dual algorithm4 to solve (2).

Proposition 6. Assume UC1-UC2 hold. If (2) is infeasible,

then there exists a dual variable λi such that:

lim sup
t→∞

|λi(t)| = ∞.

See Appendix III for a proof. Proposition 6 implies that,
after a critical failure, UC cannot drive the system to a proper
and safe operating point. It is a form of instability in the
sense that at least one dual variable will take arbitrarily
large values, and suggests a way to detect critical failures.
Specifically, since Proposition 6 guarantees that at least one
dual variable becomes arbitrarily large in UC operation when
(2) is infeasible, we can set thresholds for the dual variables
and raise an infeasibility warning if any of them exceeds their
thresholds. By doing so, critical failures can be detected in
a distributed fashion during normal operation of UC.

Since non-critical failures may also cause relatively large
dual variable values in transient states, the choice of the
thresholds inevitably involves tradeoffs. Tighter thresholds
allow critical failures to be detected more promptly, yet also
lead to a larger false alarm rate. In practice, these thresholds
should be chosen carefully by the operator in accordance to
specific system parameters and application scenarios.

B. Constraint Lifting as a Remedy

In the event of a critical failure, it is impossible for UC
to simultaneously achieve all of its control objectives and
constraints. This can lead to instability and thus successive
failures. We can mitigate this by progressively lifting certain
constraints from UC in two different ways without compro-
mising the basic objective of stabilizing the system:

• The zero area control error constraints (2e) between spe-
cific pairs of balancing areas can be lifted. In practice,
this means the controller now involves more balancing
areas in failure mitigation.

• Loads can be shedded, which is reflected in (2) by en-
larging the range [dj , dj ] for corresponding load buses.

By iteratively lifting the two types of constraints above,
one can guarantee the feasibility of (2) and ensure that the
system converges to a stable point that is free from successive
failures. This, however, comes with the cost of potential load
loss, and thus must be carried out judiciously.

The iterative relaxation procedure can follow predeter-
mined rules specified by the system operator to prioritize
different objectives. As an example, one can minimize load
loss by relaxing possibly all area control error constraints
before relaxing injection bounds on load buses. This will
utilize all the contingency and regulation reserves globally
across all regions to meet demand before shedding load
as a last resort. In contrast, if the localization of failure
impact should be prioritized, the operator can choose to first
lift load injection bounds in the associated areas and then
progressively lift area control error constraints to get more
balancing areas involved.

4We do not consider the specific variants of primal-dual algorithms that
are proposed in different designs of UC, since the standard primal-dual
algorithm is often a good approximation.

VI. CASE STUDIES

In this section, we evaluate the performance of the pro-
posed control strategy on the IEEE 118-bus and IEEE
2736-bus (the Polish network) test systems, with respect to
N − k security standard and localization performance under
different levels of system congestion.

A. N − k Security under Different Congestion Levels

We first focus on system robustness with respect to N −
k security standard on the IEEE 118-bus system. This test
network has two balancing areas shown as Region 1 and
Region 2 in Appendix IV. To form a tree partition, three lines
(15, 33), (19, 34), and (23, 24) are switched off and this new
network is referred as the revised network in sequel.

We compare UC on the tree-partitioned revised network
and classical AGC on the original network. UC is modeled
by the optimization problem (2) and AGC is modeled by (2)
without the line limits (2f). A failure scenario is said to be
vulnerable if the initial failure leads to successive failures
or loss of load. To compare the performance between our
proposed approach and AGC, we collect statistics on (a)
vulnerable scenarios as a percentage of the total simulated
scenarios, and (b) load loss rate (LLR) which is defined as
the ratio of the total load loss to the original total demand.
We do not perform time-domain simulations, but assume
the closed-loop systems under UC and AGC converge to
their respective equilibrium points that solve corresponding
optimizations respectively.

The failure scenarios are created as follows. First, we
generate a variety of load injections (as summarized in
Table IV in Appendix V) by adding random perturbations
to the nominal load profile from [17] and then solve the DC
OPF to obtain the corresponding generator operating points.
Second, we sample over the collection of all subsets that
consist of k transmission lines of the IEEE 118-bus test
network. Finally, for each sampled subset of k lines, we
remove all lines in this subset as initial failure and simulate
the cascading process thus triggered. Our simulations cover
the cases k = 1, 2, 3, resulting in roughly 138,600 failure
scenarios.

Fig. 4(a) shows the average, minimum, and maximum
percentage of vulnerable scenarios across all sampled fail-
ure scenarios, while Fig. 4(b) plots the complementary
cumulative distribution (CCDF) of the load loss rates. The
simulation results show that the proposed control incurs
both substantially fewer vulnerable scenarios and much less
loss of load in all cases compared to AGC. This differ-
ence is particularly pronounced when multiple lines are
tripped simultaneously (k = 2, 3). We highlight that in our
simulations, UC operates over the tree-partitioned network
(while AGC operates over the original network) in which
some of the tie-lines are switched off and hence some
transfer capacity is removed from the system. Moreover, the
newly created bridge (30, 38) in the tree partition is never
vulnerable under the proposed control in all the scenarios we
have studied.

We then illustrate the improvement of the proposed ap-
proach over AGC under different congestion levels. To do
so, we scale down the line capacities to α = 0.9, 0.8, 0.7
of the base values and collect statistics for all single line
initial failures (k = 1). Our results are summarized in Fig. 5,
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Fig. 4: System robustness in terms of the N − k security standard.

which again show that the proposed approach significantly
outperforms AGC in all scenarios, especially those in which
the system is congested. Again, the bridge (30, 38) in the
tree partition is never vulnerable under the proposed control
in these scenarios.

B. Localized Failure Mitigation

In this subsection, we consider a specific constraint lifting
rule that progressively involves other regions by relaxing area
control error constraints only if local load shedding within
the associated regions is not enough to make problem (2)
feasible. This rule prioritizes localization of the initial failure.
With this rule implemented, we show that the proposed
control strategy can localize cascading failures within the
associated regions with negligible load loss. The experiments
are carried out over two networks: (a) a further-decomposed
tree partition of the IEEE 118-bus test network, and (b) a
much larger-scale Polish network consisting of 2736 buses
and 3504 transmission lines.

For the IEEE 118-bus test network, we switch off 4
additional lines, which refines the tree partition used in the
previous subsection since it further decomposes Region 2
into two balancing areas (as shown in Fig. 7 in Appendix IV).
The generator capacities are scaled down by 60% so that the
total generation reserve is roughly 20%. We create different
congestion levels by scaling the line capacities according
to a factor α = 0.9, 0.8, 0.7 and iterate over all single
transmission lines as initial failures. The injections are the
same as that for the N − 1 test in the previous subsection.

The statistics on the fraction of vulnerable scenarios and
LLRs for this experiment are summarized in Table II. We
observe that the proposed control strategy never incur more
than 2.21% LLR across all tested injections and congestion
levels. Furthermore, for this specific network, the proposed
approach localizes all failures to the associated regions, i.e.,
the tie-line constraints are never lifted. This localization
phenomenon can more clearly be noticed in Fig. 6(a), which
shows the CCDF of the number of generators whose oper-
ating points are adjusted in response to the initial failures.
The majority of failures lead to operating point adjustments
on less than 15 generators, which is roughly the number
of generators within a single region. The small portion of
failures that impact more than 15 generators are bridge
failures, which by definition have two associated regions and
thus more “local” generators.

For the Polish network, we switch off 78 transmission lines
from the original network, creating a tree partition with 4
regions of 1430, 818, 359 and 129 buses respectively. Similar

TABLE II: Statistics on failure localization over the IEEE 118-bus test
network.

Line Capacity α = 0.9 α = 0.8 α = 0.7

Avg. % of Vul. Sce. 3.53 3.68 3.82

Avg. (Max.) LLR(%) 0.55 (1.06) 0.56 (2.17) 0.59 (2.21)

TABLE III: Statistics on failure localization over the Polish network.

Line Capacity α = 0.9 α = 0.8 α = 0.7

Scenarios Mitigated with
one Region (%)

92.39 88.63 86.91

Scenarios Mitigated with
2-3 Regions (%)

6.44 9.48 10.40

Scenarios Mitigated with
All Regions (%)

1.17 1.89 2.69

Avg. (Max.) LLR(%) 0.05 (2.93) 0.05 (2.94) 0.07 (3.24)

Avg. # of Gen. Adj. 6.52 11.66 16.37

to the setup for the IEEE-118 test network, the generation
capacities are scaled properly so that the total generation
reserve is roughly 20%, and the line capacities are scaled
down to α = 0.9, 0.8, 0.7 to create different congestion
levels. We then iterate over all single line failures and the
statistics from our experiments are summarized in Table III.
Our results show that for this test network, more than 86%
of the single line failures can be mitigated locally within
a single region for all congestion levels. In addition, the
worst case LLR is roughly 3% across all simulated scenarios,
with an average that is no higher than 0.07%. Similar to the
IEEE 118-bus test network, the number of generators whose
operating points are adjusted by the proposed control strategy
in response to the failures is small, as shown in Fig. 6(b),
confirming failure localization.

VII. CONCLUSION

Across Part I, II, and III of this paper, we have proposed a
new approach to grid reliability. It provides strong analytical
guarantees of both the localization and mitigation of cascad-
ing failures. In Part I, we establish a fundamental theory and
analytical characterizations of power systems from a spectral
perspective and introduce the concept of tree partition. We
then demonstrate in Part II that the tree partitioning network
structure provides a precise characterization of line failure
localizability. Finally in Part III, we integrate tree partitioning
and unified controller for frequency regulation to mitigate
line failures in real time. Our case studies on the IEEE 118-
bus and 2736-bus test systems show that the proposed control
scheme can greatly improve overall reliability compared to
the current practice. In particular, the new control prevents
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successive failures from happening while localizing the im-
pacts of initial failures. When load shedding is inevitable,
the proposed strategy incurs significantly less load loss.

This work can be extended in several directions. First,
our model builds upon linearized swing and power flow
dynamics, which are accurate for small deviations but less
so under large disruptions. It is thus crucial to understand
how the non-linearity and large deviations impact our results.
Second, the proposed control strategy may require certain
tie-lines to be switched off to create a finer tree partition.
It would be useful to optimize the selection of these lines
(see [14] for more details). Third, in addition to power
flow redistribution, line capacities also play important roles
in the cascading process, but our current theory does not
incorporate them in a way that is convenient for analysis. It
is important to investigate how adjustments on line capacities
can be incorporated in our framework to further improve
system reliability. Finally, it will be important to understand
the tradeoff between grid redundancy and tree partitioning
in achieving optimal grid reliability. Adding redundancy
helps maintain connectivity and transfer capacity in line
failure events, while tree partitioning can localize failure
propagation and reduce the risk of large-scale blackouts. A
good solution likely needs to take both aspects into account
and locate a sweet spot in between.
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APPENDIX I
PROOF OF LEMMA 4

To simplify the notation, we drop the stage index (1)
from x∗ and denote x∗ = (θ∗, ω∗, d∗, f∗). Given a bridge
e = (j1, j2) of G, removing e from G partitions G into
two connected components, say C1 and C2. Without loss of
generality, assume j1 ∈ C1 and j2 ∈ C2. For a region Nv

from P , we say Nv is within C1 if for any j ∈ Nv we
have j ∈ C1. It is easy to check from the definition of tree
partitions that any region Nv from P is either within C1 or
within C2, and e is the only edge in G that has one endpoint
in C1 and the other endpoint in C2.

Let P ′ be the set of regions within C1 from P , and let

1P′ ∈ {0, 1}|P|
be its characteristic vector (that is, the l-th

component of 1P′ is 1 if Nl ∈ P ′ and 0 otherwise). Given
two buses i and j, we denote i → j if (i, j) ∈ E and j → i
if (j, i) ∈ E . With these notations, from (2e), we have

0 = 1
T
P′ECf∗

=
∑

l:Nl∈P′

∑

i∈Nl





∑

j:j→i

f∗
ji −

∑

j:i→j

f∗
ij





=
∑

i:i∈C1





∑

j:j→i

f∗
ji −

∑

j:i→j

f∗
ij





= f∗
e +

∑

i:i∈C1





∑

j:j→i,j∈C1

f∗
ji −

∑

j:i→j,j∈C1

f∗
ij



 (3)

where (3) follows because the only edge with one endpoint
in C1 and the other endpoint in C2 is e. Note that

0 =
∑

(i,j)∈E1

(

f∗
ij − f∗

ij

)

=
∑

i:i∈C1





∑

j:j→i,j∈C1

f∗
ji −

∑

j:i→j,j∈C1

f∗
ij





where E1 is the set of edges with both endpoints in C1. From
(3), we see that f∗

e = 0. Since the bridge e is arbitrary, we
have thus proved the desired result.

APPENDIX II
PROOF OF PROPOSITION 5

To simplify notation, we drop the stage index (1) from
the equilibrium x∗ and denote x∗ = (θ∗, ω∗, d∗, f∗), p∗ =
r + d∗.

First, we construct a different point x̃∗ = (θ̃∗, ω̃∗, d̃∗, f̃∗)
by changing certain entries of x∗ as follows: (a) replace d∗j
with d̃∗j = 0 for all j ∈ Nl; (b) replace f∗

e with f̃∗
e = 0

for e ∈ E that have both endpoints in Nl; and (c) replace

θ∗ by a solution θ̃∗ = L†p̃∗ obtained from solving the DC

power flow equations with injections p̃∗ = r+ d̃∗. All other
entries of x∗ remain unchanged in x̃∗. Since cj(·) attains its
minimum at dj = 0, x̃∗ achieves at most the same objective
value (2a) as x∗. Thus x̃∗ must be an optimal point of (2),
provided it is feasible.

When the cost functions cj(·) are strictly convex, the
optimal solution to (2) is unique in d∗ and f∗ (θ∗ is also
unique up to an arbitrary reference angle). As a result, if the
constructed point x̃∗ is feasible, We can then conclude that
x̃∗ = x∗ (up to an arbitrary reference angle).

We now prove the feasibility of x̃∗. The construction of
x̃∗ ensures that (2e)(2f)(2g) are satisfied. If we can show that

f̃∗ = BCT θ̃∗, then since θ̃∗ is obtained by solving the DC

power flow equations from CBCT θ̃∗ = p̃∗, constraints (2c)
and (2d) are also satisfied, proving the feasibility of x̃∗. It

thus suffices show f̃∗ = BCT θ̃∗. To do so, we first establish
the following lemma:

Lemma 7. For any tree-partition region Nz in P , we have

∑

j∈Nz

p∗j =
∑

j∈Nz

p̃∗j = 0.

Proof. Let 1Nz
∈ R

|N | be the characteristic vector of Nz ,
that is, the j-th component of 1Nz

is 1 if j ∈ Nz and 0
otherwise. Summing (2c) over j ∈ Nz , we have:

∑

j∈Nz

p∗j = 1
T
Nz

Cf = (ECf)z = 0,

where (ECf)z is the z-th row of ECf .

For Nl, we have p̃∗j = 0 for j ∈ Nl by construction and

hence
∑

j∈Nl
p̃∗j = 0. For Nz that is different from Nl,

we have p̃∗j = p∗j for any j ∈ Nz by construction. Thus,
∑

j∈Nz
p̃∗j = 0, completing the proof.

Consider now a region Nw that is different from Nl. In
this case, we do not change the injections from x∗ when
constructing x̃∗, thus p∗j − p̃∗j = 0 for all j ∈ Nw. From

Lemma 7, we see that
∑

j∈Nz

(

p∗j − p̃∗j
)

= 0 for all z.

Since both (p∗, θ∗) and (p̃∗, θ̃∗) satisfy the DC power flow
equations, we have

CBCT
(

θ∗ − θ̃∗
)

= p∗ − p̃∗.

By Lemma 15 of Part I, we then have θ∗j − θ̃∗j is a constant

over Nw, and thus

θ̃∗i − θ̃∗j = θ∗i − θ∗j

for all i, j ∈ Nw. This in particular implies

f̃∗
e = f∗

e = Be(θ
∗
i − θ∗j ) = Be(θ̃

∗
i − θ̃∗j )

for all e = (i, j) such that i ∈ Nw or j ∈ Nw.

Finally, consider the region Nl. We have p̃∗j = 0 by

construction. From Lemma 7 we have
∑

j∈Nz
p̃∗j = 0 for

all z. Thus by Lemma 15 of Part I and CBCT θ̃∗ = p̃∗, we

know θ̃∗i = θ̃∗j for all i, j ∈ N l. This implies that for any

edge e = (i, j) within Nl, we have

f̃∗
e = 0 = Be(θ̃

∗
i − θ̃∗j ).

As a result, f̃∗
e = Be(θ̃

∗
i − θ̃∗j ) for all e ∈ E and the proof

is concluded.



APPENDIX III
PROOF OF PROPOSITION 6

First, collect in the vector x = (θ, ω, d, f) ∈ R
3n+m all

the decision variables of the UC optimization (2) and rewrite
it in a more standard form as

min
d≤d≤d

c(d) (4a)

s.t. Ax ≤ g (4b)

Cx = h, (4c)

where A,C, g, h are matrices (vectors) of proper dimensions
from the optimization (2). Let λ1, λ2 be the corresponding
dual variables to (4b) and (4c), respectively, and set λ :=
[λ1;λ2] ([·; ·] here means matrix concatenation as a column).
We can then write the Lagrangian for (4) as

L(x, λ) = c(p) + λT
1 (Ax− g) + λT

2 (Cx − h).

By the assumption UC2, we know that:

λ̇1 = [Ax − g]+λ1
(5a)

λ̇2 = Cx− h, (5b)

where the projection operator [·]+λ1
is defined component-

wise by

(

[x]+λ1

)

i
:=

{

xi if xi > 0 or (λ1)i > 0

0 otherwise.
(6)

Consider two closed convex sets S1 = {x|Ax ≤ g, Cx = h}
and S2 = {x|d ≤ d ≤ d}. If the optimization (2) is
infeasible, then S1 ∩ S2 = ∅. As a result, we can find
a hyperplane that separates S1 and S2: there exists q ∈
R

3n+m, q0 ∈ R such that

qTx > q0, ∀x ∈ S1 and qTx ≤ q0, ∀x ∈ S2.

This then implies the system










Ax ≤ g

Cx = h

qTx ≤ q0

is not solvable. By Farkas’ Lemma, we can thus find vectors
w1, w2, w3 such that w1 ≥ 0, w3 ≥ 0 (the inequality is
component-wise), ATw1 + CTw2 + qw3 = 0, and gTw1 +
hTw2 + q0w3 = −ǫ < 0.

Define z = [w1;w2]. We then see that under the UC
controller, we have for any t:

zT λ̇(t) = wT
1 [Ax(t) − g]+λ + wT

2 (Cx(t) − h)

≥ wT
1 [Ax(t) − g]+λ + wT

2 (Cx(t) − h)

+ w3(q
Tx(t)− q0) (7a)

≥ wT
1 (Ax(t) − g) + wT

2 (Cx(t) − h)

+ w3(q
Tx(t)− q0) (7b)

=
(

ATw1 + CTw2 + qw3

)

x(t)

−
(

wT
1 g + wT

2 h+ w3q0
)

= 0 + ǫ > 0,

where (7a) follows from w3 ≥ 0 and assumption UC1, which
ensures x(t) ∈ S2 and thus qTx(t)−q0 ≤ 0, and (7b) comes

from w1 ≥ 0 and the fact that [x]+λ ≥ x for all x (the
inequality is component-wise). Consequently,

zTλ(t) − zTλ(0) > ǫt

and thus

lim
t→∞

zTλ(t) = ∞.

Finally, by noting

lim
t→∞

zTλ(t) ≤ wT
1 lim sup

t→∞
|λ1(t)|+ |w2|

T
lim sup
t→∞

|λ2(t)| ,

the desired result follows.

APPENDIX IV
ONE LINE DIAGRAM OF IEEE 118-BUS TEST NETWORK

The original IEEE 118-bus test network is shown by the
solid lines and nodes in Fig. 7, in which the balancing areas
are connected by multiple tie-lines, yielding a trivial tree-
partition region as the whole network. For our experiments
in Section VI-A, we switch off three lines (15, 33), (19, 34),
and (23, 24) to form a two-region tree partition, shown as
Region 1 and Region 2 (which consists of Region 2(a) and
Region 2(b)) in the diagram. For our experiments in Section
VI-B, we further switch off the lines (77, 82), (96, 97),
(98, 100), (99, 100) to create a three-region tree partition.

APPENDIX V
FAILURE SCENARIOS FOR N − k SECURITY SIMULATION

To provide a comprehensive comparison between the
proposed control strategy and AGC, we generate 136,000
failure scenarios (as summarized in Table IV) and simulate
the corresponding cascading processes.

We adopt data from MatPower [17] as the nominal load
profile, and add up to 25% random perturbations to the base
value. For k = 1, 2, 3 initial line failures, we generate 100,
15, and 15 load profiles and further compute the optimal
generation dispatch by DC OPF. For each load profile, we
iterate over every single transmission line failure, and sample
3,000 and 5,000 failure scenarios for k = 2, 3 line failures
respectively. In total, 136,000 failure scenarios are simulated
for each control method.

TABLE IV: Simulation setup for N − k security evaluation.

Case k = 1 k = 2 k = 3

# of Load Profiles 100 15 15

# of Sampled Failures 186 3000 5000

Total Scenarios 18600 45000 75000

APPENDIX VI
RECOVERING PREVIOUS MODELS

The dynamic model (1) in Section II models secondary
frequency control where the frequency deviations ω(t) are
driven to zero. When we focus on controllers that only
achieve primary frequency control, the equilibrium frequency
ω∗ may be nonzero. That is, as the system converges in this
sense, the phase angles θ∗(t) do not necessarily stay at a
constant value, but may change in constant rate over time.
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Fig. 7: One line diagram of the IEEE 118-bus test network with three balancing areas. Dashed blue lines are switched off to create a tree partition with 2
regions. Then dashed green lines are switched off to further partition Region 2 into 2 smaller regions. Solid blue and green lines are resulted bridges.

In such context, we can modify (1) as follows to describe
primary frequency dynamics:

Mjω̇j = rj + dj −Djωj −
∑

e∈E

Cjefe, j ∈ N (8a)

fij = Bij(θi − θj), (i, j) ∈ E . (8b)

By relaxing the requirement on ω∗ = 0 at equilibrium, the
above model enables extra freedom in the choice of dj . We
now show that by using the classical droop control [13] as
the dynamics for dj’s in (8), the cascading failure models
from Part II and previous literature such as [18], [19] can
be readily recovered. Indeed, as shown in [5], the closed-

loop equilibrium of (8) under droop control is the unique5

optimal solution to the following optimization on the post-

5The equilibrium is unique up to an arbitrary reference phase angle.

contingency network:

min
θ,ω,d,f

∑

j∈N

d2j

2Zj

+
Djw

2
j

2
(9a)

s.t. r − d−Dω = Cf (9b)

f −BCT θ = 0 (9c)

p
j
≤ rj − dj ≤ pj , j ∈ N , (9d)

where Zj’s are the generators’ participation factors [13]. By
plugging (9c) into (9b), it is easy to check that any feasible
point x = (θ, ω, d, f) of (9) satisfies

∑

j rj =
∑

j(dj +
Djωj). Cauchy-Schwarz inequality then implies that

(

∑

j∈N

rj

)2

=

[

∑

j∈N

(dj +Djωj)

]2

≤
∑

j∈N

(

d2j

2Zj

+
Djω

2
j

2

)

∑

j∈N

(2Zj + 2Dj) ,



for which equality holds if and only if

dj =
Zj

∑

j (Zj +Dj)

∑

j

rj , ωj =

∑

j rj
∑

j (Zj +Dj)
. (10)

Therefore, if the control limits (9d) are not active, (10) is
always satisfied at the optimal point x∗ = (θ∗, ω∗, d∗, f∗).

Now, consider a line e being tripped from the transmission
network G, and for simplicity assume the control limits (9d)
are not active. If e is a bridge, the tripping of e results in two
islands of G, say D1 and D2, and two optimization problems
(9) correspondingly. For l = 1, 2,

∑

j∈Dl
rj represents the

total net power imbalance in Dl, and therefore (10) implies
that droop control adjusts the system injections so that the
power imbalance is distributed to all generators proportional
to their participation factors in both D1 and D2. If e = (i, j)
is not a bridge, denoting the original flow on e before it is
tripped as fe, then ri = fe, rj = −fe and rk = 0 otherwise.
As a result, we have

∑

j∈N rj = 0 in this case and thus
(10) implies the system operating point remains unchanged
in equilibrium, i.e., dj = ωj = 0, ∀j ∈ N . Moreover, one
can show that this still holds when (9d) is active with a more
involved analysis on the KKT conditions of (9). This droop
control mechanism recovers the failure propagation model in
Part II and underlies some of previous results in the literature
on cascading failures in power systems [18]–[20].
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