659 research outputs found

    Architectural and Urban Spatial Digital Simulations

    Get PDF
    This study concerns digital tools and simulation methods necessary for the description, conception, perception, and analysis of spatial architectural and urban design. The purpose of the study is to categorize, analyse, and describe the influence of digital simulation tools and methods in architectural and urban design. The study analyses techniques, applications, and research in the field of digital simulations of architectural/urban ensembles while also referring to the benefits of their use both at the level of scientific and spatial perception of architectural/urban design

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Geovisualization

    Get PDF
    Geovisualization involves the depiction of spatial data in an attempt to facilitate the interpretation of observational and simulated datasets through which Earth's surface and solid Earth processes may be understood. Numerous techniques can be applied to imagery, digital elevation models, and other geographic information system data layers to explore for patterns and depict landscape characteristics. Given the rapid proliferation of remotely sensed data and high-resolution digital elevation models, the focus is on the visualization of satellite imagery and terrain morphology, where manual human interpretation plays a fundamental role in the study of geomorphic processes and the mapping of landforms. A treatment of some techniques is provided that can be used to enhance satellite imagery and the visualization of the topography to improve landform identification as part of geomorphological mapping. Visual interaction with spatial data is an important part of exploring and understanding geomorphological datasets, and a variety of methods exist ranging across simple overlay, panning and zooming, 2.5D, 3D, and temporal analyses. Specific visualization outputs are also covered that focus on static and interactive methods of dissemination. Geomorphological mapping legends and the cartographic principles for map design are discussed, followed by details of dynamic web-based mapping systems that allow for greater immersive use by end users and the effective dissemination of data

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    The Analysis of Open Source Software and Data for Establishment of GIS Services Throughout the Network in a Mapping Organization at National or International Level

    Get PDF
    Federal agencies and their partners collect and manage large amounts of geospatial data but it is often not easily found when needed, and sometimes data is collected or purchased multiple times. In short, the best government data is not always organized and managed efficiently to support decision making in a timely and cost effective manner. National mapping agencies, various Departments responsible for collection of different types of Geospatial data and their authorities cannot, for very long, continue to operate, as they did a few years ago like people living in an island. Leaders need to look at what is now possible that was not possible before, considering capabilities such as cloud computing, crowd sourced data collection, available Open source remotely sensed data and multi source information vital in decision-making as well as new Web-accessible services that provide, sometimes at no cost. Many of these services previously could be obtained only from local GIS experts. These authorities need to consider the available solution and gather information about new capabilities, reconsider agency missions and goals, review and revise policies, make budget and human resource for decisions, and evaluate new products, cloud services, and cloud service providers. To do so, we need, choosing the right tools to rich the above-mentioned goals. As we know, Data collection is the most cost effective part of the mapping and establishment of a Geographic Information system. However, it is not only because of the cost for the data collection task but also because of the damages caused by the delay and the time that takes to provide the user with proper information necessary for making decision from the field up to the user’s hand. In fact, the time consumption of a project for data collection, processing, and presentation of geospatial information has more effect on the cost of a bigger project such as disaster management, construction, city planning, environment, etc. Of course, with such a pre-assumption that we provide all the necessary information from the existing sources directed to user’s computer. The best description for a good GIS project optimization or improvement is finding a methodology to reduce the time and cost, and increase data and service quality (meaning; Accuracy, updateness, completeness, consistency, suitability, information content, integrity, integration capability, and fitness for use as well as user’s specific needs and conditions that must be addressed with a special attention). Every one of the above-mentioned issues must be addressed individually and at the same time, the whole solution must be provided in a global manner considering all the criteria. In this thesis at first, we will discuss about the problem we are facing and what is needed to be done as establishment of National Spatial Data Infra-Structure (NSDI), the definition and related components. Then after, we will be looking for available Open Source Software solutions to cover the whole process to manage; Data collection, Data base management system, data processing and finally data services and presentation. The first distinction among Software is whether they are, Open source and free or commercial and proprietary. It is important to note that in order to make distinction among softwares it is necessary to define a clear specification for this categorization. It is somehow very difficult to distinguish what software belongs to which class from legal point of view and therefore, makes it necessary to clarify what is meant by various terms. With reference to this concept there are 2 global distinctions then, inside each group, we distinguish another classification regarding their functionalities and applications they are made for in GIScience. According to the outcome of the second chapter, which is the technical process for selection of suitable and reliable software according to the characteristics of the users need and required components, we will come to next chapter. In chapter 3, we elaborate in to the details of the GeoNode software as our best candidate tools to take responsibilities of those issues stated before. In Chapter 4, we will discuss the existing Open Source Data globally available with the predefined data quality criteria (Such as theme, data content, scale, licensing, and coverage) according to the metadata statement inside the datasets by mean of bibliographic review, technical documentation and web search engines. We will discuss in chapter 5 further data quality concepts and consequently define sets of protocol for evaluation of all datasets according to the tasks that a mapping organization in general, needed to be responsible to the probable users in different disciplines such as; Reconnaissance, City Planning, Topographic mapping, Transportation, Environment control, disaster management and etc… In Chapter 6, all the data quality assessment and protocols will be implemented into the pre-filtered, proposed datasets. In the final scores and ranking result, each datasets will have a value corresponding to their quality according to the sets of rules that are defined in previous chapter. In last steps, there will be a vector of weight that is derived from the questions that has to be answered by user with reference to the project in hand in order to finalize the most appropriate selection of Free and Open Source Data. This Data quality preference has to be defined by identifying a set of weight vector, and then they have to be applied to the quality matrix in order to get a final quality scores and ranking. At the end of this chapter there will be a section presenting data sets utilization in various projects such as “ Early Impact Analysis” as well as “Extreme Rainfall Detection System (ERDS)- version 2” performed by ITHACA. Finally, in conclusion, the important criteria, as well as future trend in GIS software are discussed and at the end recommendations will be presented

    Proceedings of the 3rd Open Source Geospatial Research & Education Symposium OGRS 2014

    Get PDF
    The third Open Source Geospatial Research & Education Symposium (OGRS) was held in Helsinki, Finland, on 10 to 13 June 2014. The symposium was hosted and organized by the Department of Civil and Environmental Engineering, Aalto University School of Engineering, in partnership with the OGRS Community, on the Espoo campus of Aalto University. These proceedings contain the 20 papers presented at the symposium. OGRS is a meeting dedicated to exchanging ideas in and results from the development and use of open source geospatial software in both research and education.  The symposium offers several opportunities for discussing, learning, and presenting results, principles, methods and practices while supporting a primary theme: how to carry out research and educate academic students using, contributing to, and launching open source geospatial initiatives. Participating in open source initiatives can potentially boost innovation as a value creating process requiring joint collaborations between academia, foundations, associations, developer communities and industry. Additionally, open source software can improve the efficiency and impact of university education by introducing open and freely usable tools and research results to students, and encouraging them to get involved in projects. This may eventually lead to new community projects and businesses. The symposium contributes to the validation of the open source model in research and education in geoinformatics

    Web-based Implementation of Winter Maintenance Decision Support System Using GIS and Remote Sensing, May 2005

    Get PDF
    Winter maintenance, particularly snow removal and the stress of snow removal materials on public structures, is an enormous budgetary burden on municipalities and nongovernmental maintenance organizations in cold climates. Lately, geospatial technologies such as remote sensing, geographic information systems (GIS), and decision support tools are roviding a valuable tool for planning snow removal operations. A few researchers recently used geospatial technologies to develop winter maintenance tools. However, most of these winter maintenance tools, while having the potential to address some of these information needs, are not typically placed in the hands of planners and other interested stakeholders. Most tools are not constructed with a nontechnical user in mind and lack an easyto-use, easily understood interface. A major goal of this project was to implement a web-based Winter Maintenance Decision Support System (WMDSS) that enhances the capacity of stakeholders (city/county planners, resource managers, transportation personnel, citizens, and policy makers) to evaluate different procedures for managing snow removal assets optimally. This was accomplished by integrating geospatial analytical techniques (GIS and remote sensing), the existing snow removal asset management system, and webbased spatial decision support systems. The web-based system was implemented using the ESRI ArcIMS ActiveX Connector and related web technologies, such as Active Server Pages, JavaScript, HTML, and XML. The expert knowledge on snow removal procedures is gathered and integrated into the system in the form of encoded business rules using Visual Rule Studio. The system developed not only manages the resources but also provides expert advice to assist complex decision making, such as routing, optimal resource allocation, and monitoring live weather information. This system was developed in collaboration with Black Hawk County, IA, the city of Columbia, MO, and the Iowa Department of transportation. This product was also demonstrated for these agencies to improve the usability and applicability of the system
    • …
    corecore