50 research outputs found

    A biomechanical approach for real-time tracking of lung tumors during External Beam Radiation Therapy (EBRT)

    Get PDF
    Lung cancer is the most common cause of cancer related death in both men and women. Radiation therapy is widely used for lung cancer treatment. However, this method can be challenging due to respiratory motion. Motion modeling is a popular method for respiratory motion compensation, while biomechanics-based motion models are believed to be more robust and accurate as they are based on the physics of motion. In this study, we aim to develop a biomechanics-based lung tumor tracking algorithm which can be used during External Beam Radiation Therapy (EBRT). An accelerated lung biomechanical model can be used during EBRT only if its boundary conditions (BCs) are defined in a way that they can be updated in real-time. As such, we have developed a lung finite element (FE) model in conjunction with a Neural Networks (NNs) based method for predicting the BCs of the lung model from chest surface motion data. To develop the lung FE model for tumor motion prediction, thoracic 4D CT images of lung cancer patients were processed to capture the lung and diaphragm geometry, trans-pulmonary pressure, and diaphragm motion. Next, the chest surface motion was obtained through tracking the motion of the ribcage in 4D CT images. This was performed to simulate surface motion data that can be acquired using optical tracking systems. Finally, two feedforward NNs were developed, one for estimating the trans-pulmonary pressure and another for estimating the diaphragm motion from chest surface motion data. The algorithm development consists of four steps of: 1) Automatic segmentation of the lungs and diaphragm, 2) diaphragm motion modelling using Principal Component Analysis (PCA), 3) Developing the lung FE model, and 4) Using two NNs to estimate the trans-pulmonary pressure values and diaphragm motion from chest surface motion data. The results indicate that the Dice similarity coefficient between actual and simulated tumor volumes ranges from 0.76±0.04 to 0.91±0.01, which is favorable. As such, real-time lung tumor tracking during EBRT using the proposed algorithm is feasible. Hence, further clinical studies involving lung cancer patients to assess the algorithm performance are justified

    A Composite Material-based Computational Model for Diaphragm Muscle Biomechanical Simulation

    Get PDF
    Lung cancer is the most common cause of cancer related death among both men and women. Radiation therapy is the most widely used treatment for this disease. Motion compensation for tumor movement is often clinically important and biomechanics-based motion models may provide the most robust method as they are based on the physics of motion. In this study, we aim to develop a patient specific biomechanical model that predicts the deformation field of the diaphragm muscle during respiration. The first part of the project involved developing an accurate and adaptable micro-to-macro mechanical approach for skeletal muscle tissue modelling for application in a FE solver. The next objective was to develop the FE-based mechanical model of the diaphragm muscle based on patient specific 4D-CT data. The model shows adaptability to pathologies and may have the potential to be incorporated into respiratory models for the aid in treatment and diagnosis of diseases

    Long-term outcome of meniscus and cruciate ligament stabilization in the injured knee.

    Get PDF
    De lange termijn resultaten van meniscale suturen en voorste kruisband reconstructies worden geëvalueerd. Meniscale suturen in stabiele knieën geven de beste resultaten. De kans op het ontwikkelen van vroegtijdige degeneratieve veranderingen (arthrose) is 4 maal hoger bij meniscus herstel in instabiele knieën (vorste kruisband deficient) tov. meniscus herstel in stabierle knieën

    Steady-state anatomical and quantitative magnetic resonance imaging of the heart using RF-frequencymodulated techniques

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the United States and Europe and generates healthcare costs of hundreds of billions of dollars annually. Conventional methods of diagnosing CVD are often invasive and carry risks for the patient. For example, the gold standard for diagnosing coronary artery disease, a major class of CVD, is x-ray coronary angiography, which has the disadvantages of being invasive, being expensive, using ionizing radiation, and having a ris k of complications. Conversely, coronary MR angiography (MRA) does not use ionizing radiation, can effectively visualize tissues without the need for exogenous contrast agents, and benefits from an adaptable temporal resolution. However, the acquisition time of cardiac MRI is far longer than the temporal scales of cardiac and respiratory motion, necessitating some method of compensating for this motion. The free-running framework is a novel development in our lab, benefitting from advances over the past three decades, that attempts to address disadvantages of previous cardiac MRI approaches: it provides fully self-gated 5D cardiac MRI with a simplified workflow, improved ease-of-use, reduced operator dependence, and automatic patient-specific motion detection. Free-running imaging increases the amount of information available to the clinician and is flexible enough to be translated to different app lications within cardiac MRI. Moreover, the self-gating of the free-running framework decoupled the acquisition from the motion compensation and thereby opened up cardiac MRI to the wider class of steady-state-based techniques utilizing balanced steady-state free precession (bSSFP) sequences, which have the benefits of practical simplicity and high signal-to-noise ratio. The focus of this thesis was therefore on the application of steady- state techniques to cardiac MRI. The first part addressed the long acquisition time of the current free-running framework and focused on anatomical coronary imaging. The published protocol of the free- running framework used an interrupted bSSFP acquisition where CHESS fat saturation modules were inserted to provide blood-fat contrast, as they suppress the signal of fat tissue surrounding the coronary arteries, and were followed by ramp-up pulses to reduce artefacts arising from the return to steady-state. This interrupted acquisition, however, suffered from an interrupted steady-state, reduced time efficiency, and higher specific absorption rate (SAR). Using novel lipid-insensitive binomial off-resonant RF excitation (LIBRE) pulses developed in our lab, the first project showed that LIBRE pulses incorporated into an uninterrupted free-running bSSFP sequence could be successfully used for 5D cardiac MRI at 1.5T. The free-running LIBRE approach reduced the acquisition time and SAR relative to the previous interrupted approach while maintaining image quality and vessel conspicuity. Furthermore, this had been the first successful use of a fat-suppressing RF excitation pulse in an uninterrupted bSSFP sequence for cardiac imaging, demonstrating that uninterrupted bSSFP can be used for cardiac MRI and addressing the problem of clinical sequence availability. Inspired by the feasibility of uninterrupted bSSFP for cardiac MRI, the second part investigated the potential of PLANET, a novel 3D multiparametric mapping technique, for free-running 5D myocardial mapping. PLANET utilizes a phase-cycled bSSFP acquisition and a direct ellipse-fitting algorithm to calculate T1 and T2 relaxation times, which suggested that it could be readily integrated into the free-running framework without interrupting the steady-state. After initially calibrating the acquisition, the possibility of accelerating the static PLANET acquisition was explored prior to applying it to the moving heart. It was shown that PLANET accuracy and precision could be maintained with two-fold acceleration with a 3D Cartesian spiral trajectory, suggesting that PLANET for myocardial mapping with the free-running 5D radial acquisition is feasible. Further work should investigate optimizing the reconstruction scheme, improving the coil sensitivity estimate, and examining the use of the radial trajectory with a view to implementing free-running 5D myocardial T1 and T2 mapping. This thesis presents two approaches utilizing RF-frequency-modulated steady-state techniques for cardiac MRI. The first approach involved the novel application of an uninterrupted bSSFP acquisition with off-resonant RF excitation for anatomical coronary imaging. The second approach investigated the use of phase-cycled bSSFP for free-running 5D myocardial T1 and T2 mapping. Both methods addressed the challenge of clinical availability of sequences in cardiac MRI, by showing that a common and simple sequence like bSSFP can be used for acquisition while the steps of motion compensation and reconstruction can be handled offline, and thus have the potential to improve adoption of cardiac MRI. -- Les maladies cardiovasculaires (MCV) représentent la principale cause de décès aux États-Unis et en Europe et génèrent des coûts de santé de plusieurs centaines de milliards de dollars par an. Les méthodes conventionnelles de diagnostic des MCV sont souvent invasives et comportent des risques pour le patient. Par exemple, la méthode de référence pour le diagnostic de la maladie coronarienne, une catégorie majeure de MCV, est la coronarographie par rayons X qui a comme inconvénients son caractère invasif, son coût, l’utilisation de rayonnements ionisants et le risque de complications. A l’inverse, l'angiographie coronarienne par résonance magnétique (ARM) n'utilise pas de rayonnements ionisants, permet de visualiser efficacement les tissus sans avoir recours à des agents de contraste exogènes et bénéficie d'une résolution temporelle ajustable. Cependant, le temps d'acquisition en IRM cardiaque est bien plus long que les échelles temporelles des mouvements cardiaques et respiratoires en jeu, ce qui rend la compensation de ces mouvements indispensable. Le cadre dit de « free -running » est un nouveau développement de notre laboratoire qui bénéficie des progrès réalisés au cours des trois dernières décennies et tente de remédier aux inconvénients des approches précédentes pour l'IRM cardiaque : il fournit une IRM cardiaque en cinq dimensions (5D) complètement « self-gated » , c’est-à-dire capable de détecter les mouvements cardiaques et respiratoires, forte d’une implémentation simplifiée, d’une plus grande facilité d'utilisation, d’une dépendance réduite vis-à-vis de l'opérateur et d’une détection automatique des mouvements spécifiques du patient. L'imagerie « free- running » augmente la quantité d'informations à disposition du clinicien et est suffisamment flexible pour être appliquée à différents domaines de l'IRM cardiaque. De plus, le « self-gating » du cadre « free-running » a découplé l'acquisition de la compensation de mouvement et a ainsi ouvert l'IRM cardiaque à la classe plus large des techniques basées sur l'état stationnaire utilisant des séquences de précession libre équilibrée en état stationnaire (bSSFP), qui se distinguent par leur simplicité d’utilisation et leur rapport signal sur bruit élevé. Le thème de cette thèse est donc l'application des techniques basées sur l'état stationnaire à l'IRM cardiaque. La première partie porte sur le long temps d'acquisition de l'actuel cadre « free-running» et se concentre sur l'imagerie anatomique coronaire. Le protocole publié utilise une acquisition bSSFP interrompue où des modules de saturation de graisse (CHESS) sont insérés de façon à fournir un contraste sang-graisse puisqu’ils suppriment le signal du tissu graisseux entourant les artères coronaires, et sont suivis par des impulsions en rampe pour réduire les artefacts résultant du retour à l'état stable. Cette acquisition interrompue souffre cependant d'un état d'équilibre interrompu, d'une efficacité temporelle réduite et d'un débit d'absorption spécifique (DAS) plus élevé. En utilisant les nouvelles impulsions d'excitation radiofréquence (RF) binomiales hors -résonance insensibles aux lipides (LIBRE) développées dans notre laboratoi re, ce premier projet montre que les impulsions LIBRE incorporées dans une séquence bSSFP ininterrompue et « free-running » peuvent être utilisées avec succès pour l'IRM cardiaque 5D à 1,5 T. L'approche « free-running LIBRE » permet de réduire le temps d'acquisition et le DAS par rapport à l'approche interrompue précédente, tout en maintenant la perceptibilité des artères coronariennes. En outre, il s'agit de la première utilisation réussie d'une impulsion d'excitation RF supprimant la graisse dans une séquence bSSFP ininterrompue pour l'imagerie cardiaque, ce qui démontre le potentiel d’utilisation de la séquence bSSFP ininterrompue pour l'IRM cardiaque et résout le problème de la disponibilité de la séquence en clinique. Inspirée par la faisabilité d’utilisation de la séquence bSSFP ininterrompue pour l'IRM cardiaque, la deuxième partie étudie le potentiel de PLANET, une nouvelle technique de cartographie 3D multiparamétrique, pour la cartographie 5D du myocarde via l’imagerie « free-running ». PLANET utilise une acquisition bSSFP à cycle de phase et un algorithme d'ajustement d'ellipse direct pour calculer les temps de relaxation T1 et T2, ce qui suggère que cette méthode pourrait être facilement intégrée au cadre « free - running » sans interruption de l’état d'équilibre. Après calibration de l'acquisition, nous explorons la possibilité d'accélérer l'acquisition statique de PLANET pour l'appliquer au cœur. Nous démontrons que l'exactitude et la précision de PLANET peuvent être maintenues pour une accélération double avec une trajectoire 3D cartésienne en spirale, ce qui suggère que PLANET est réalisable pour la cartographie du myocarde avec une acquisition radiale 5D « free-running ». D'autres travaux devraient porter sur l'optimisation du schéma de reconstruction, l'amélioration de l'estimation de la sensibilité de l’antenne et l'examen de l'utilisation de la trajectoire radiale en vue de la mise en œuvre de la cartographie 5D « free-running » T1 et T2 du myocarde. Cette thèse présente deux approches utilisant des techniques de modulation de fréquence radio en état stationnaire pour l'IRM cardiaque. La première approche implique l'application nouvelle d'une acquisition bSSFP ininterrompue avec une excitation RF hors résonance pour l'imagerie anatomique coronaire. La seconde approche porte sur l'utilisation d’une séquence bSSFP à cycle de phase pour la cartographie 5D T1 et T2 du myocarde. Ces deux méthodes permettent de répondre au défi posé par la disponibilité des séquences en IRM cardiaque en montrant qu'une séquence commune et simple comme la bSSFP peut être utilisée pour l'acquisition, tandis que les étapes de compensation du mouvement et de reconstruction peuvent être traitées hors ligne. Ainsi, ces méthodes ont le potentiel de favoriser l'adoption de l'IRM cardiaque

    Diseases of the Chest, Breast, Heart and Vessels 2019-2022

    Get PDF
    This open access book focuses on diagnostic and interventional imaging of the chest, breast, heart, and vessels. It consists of a remarkable collection of contributions authored by internationally respected experts, featuring the most recent diagnostic developments and technological advances with a highly didactical approach. The chapters are disease-oriented and cover all the relevant imaging modalities, including standard radiography, CT, nuclear medicine with PET, ultrasound and magnetic resonance imaging, as well as imaging-guided interventions. As such, it presents a comprehensive review of current knowledge on imaging of the heart and chest, as well as thoracic interventions and a selection of "hot topics". The book is intended for radiologists, however, it is also of interest to clinicians in oncology, cardiology, and pulmonology

    Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions

    Full text link
    Medical Image Analysis is currently experiencing a paradigm shift due to Deep Learning. This technology has recently attracted so much interest of the Medical Imaging community that it led to a specialized conference in `Medical Imaging with Deep Learning' in the year 2018. This article surveys the recent developments in this direction, and provides a critical review of the related major aspects. We organize the reviewed literature according to the underlying Pattern Recognition tasks, and further sub-categorize it following a taxonomy based on human anatomy. This article does not assume prior knowledge of Deep Learning and makes a significant contribution in explaining the core Deep Learning concepts to the non-experts in the Medical community. Unique to this study is the Computer Vision/Machine Learning perspective taken on the advances of Deep Learning in Medical Imaging. This enables us to single out `lack of appropriately annotated large-scale datasets' as the core challenge (among other challenges) in this research direction. We draw on the insights from the sister research fields of Computer Vision, Pattern Recognition and Machine Learning etc.; where the techniques of dealing with such challenges have already matured, to provide promising directions for the Medical Imaging community to fully harness Deep Learning in the future

    Diseases of the Chest, Breast, Heart and Vessels 2019-2022

    Get PDF
    This open access book focuses on diagnostic and interventional imaging of the chest, breast, heart, and vessels. It consists of a remarkable collection of contributions authored by internationally respected experts, featuring the most recent diagnostic developments and technological advances with a highly didactical approach. The chapters are disease-oriented and cover all the relevant imaging modalities, including standard radiography, CT, nuclear medicine with PET, ultrasound and magnetic resonance imaging, as well as imaging-guided interventions. As such, it presents a comprehensive review of current knowledge on imaging of the heart and chest, as well as thoracic interventions and a selection of "hot topics". The book is intended for radiologists, however, it is also of interest to clinicians in oncology, cardiology, and pulmonology
    corecore