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Abstract

Lung cancer is the most common cause of cancer related death in both men and women.
Radiation therapy is widely used for lung cancer treatment. However, this method can be
challenging due to respiratory motion. Motion modeling is a popular method for respiratory
motion compensation, while biomechanics-based motion models are believed to be more
robust and accurate as they are based on the physics of motion. In this study, we aim to
develop a biomechanics-based lung tumor tracking algorithm which can be used during
External Beam Radiation Therapy (EBRT). An accelerated lung biomechanical model can
be used during EBRT only if its boundary conditions (BCs) are defined in a way that they
can be updated in real-time. As such, we have developed a lung finite element (FE) model
in conjunction with a Neural Networks (NNs) based method for predicting the BCs of the

lung model from chest surface motion data.

To develop the lung FE model for tumor motion prediction, thoracic 4D CT images of lung
cancer patients were processed to capture the lung and diaphragm geometry, trans-
pulmonary pressure, and diaphragm motion. Next, the chest surface motion was obtained
through tracking the motion of the ribcage in 4D CT images. This was performed to
simulate surface motion data that can be acquired using optical tracking systems. Finally,
two feedforward NNs were developed, one for estimating the trans-pulmonary pressure
and another for estimating the diaphragm motion from chest surface motion data.

The algorithm development consists of four steps of: 1) Automatic segmentation of the
lungs and diaphragm, 2) diaphragm motion modelling using Principal Component Analysis
(PCA), 3) Developing the lung FE model, and 4) Using two NNs to estimate the trans-
pulmonary pressure values and diaphragm motion from chest surface motion data. The
results indicate that the Dice similarity coefficient between actual and simulated tumor
volumes ranges from 0.76+0.04 to 0.91+0.01, which is favorable. As such, real-time lung
tumor tracking during EBRT using the proposed algorithm is feasible. Hence, further
clinical studies involving lung cancer patients to assess the algorithm performance are

justified.



Keywords

Lung cancer, respiratory motion, real-time motion tracking, lung biomechanical model,
Finite Element Method, Principal Component Analysis, indirect motion tracking, chest

motion, surrogate signal, Neural Networks, intra-fraction motion, inter-fraction motion



Co-Authorship Statement

The following thesis is comprised of four manuscripts: one published manuscript, and three

manuscripts submitted to journals and being under review.

In Chapter 2, “Anatomy-based algorithm for automatic segmentation of human diaphragm
in non-contrast CT images” by Elham Karami, Yong Wang, Stewart Gaede, Ting-Yim Lee,
and Abbas Samani published in J. Med. Imag. 3(4), 046004 (Nov 22, 2016) is presented.
Dr Yong Wang, an expert radiologist, helped with the manual segmentation of the
diaphragm which was required for the algorithm validation. Dr. Samani helped with the
study design and interpretation of results. | designed the algorithm, implemented the
algorithm in ITK, prepared the raw data, analyzed, and interpreted the results, and wrote

the manuscript under guidance and supervision of Drs. Samani, Lee, and Gaede.

In Chapter 3, “In-vivo lung biomechanical model for effective tumor motion tracking in
external beam radiation therapy” under review in Medical Physics Journal, by Elham
Karami, Stewart Gaede, Ting-Yim Lee, and Abbas Samani is presented. Dr. Samani helped
with the study design and interpretation of results. | developed the lung biomechanical
model, tested the model on patient data, and wrote the manuscript under guidance and

supervision of Drs. Samani, Lee, and Gaede.

In Chapter 4, “Novel PCA-based model of human diaphragm motion derived from 4D CT
Images for effective tumor motion management” under review in J. Med. Imag., by Elham
Karami, Stewart Gaede, Ting-Yim Lee, and Abbas Samani is presented. Dr. Samani helped
with study design and interpretation of results. | developed the PCA-based diaphragm
motion model, tested the model on patient data, and wrote the manuscript under guidance

and supervision of Drs. Samani, Lee, and Gaede.

In Chapter 5, “A Neural Network approach for biomechanics-based tracking of lung tumors
during External Beam Radiation Therapy (EBRT)” submitted to Expert Systems with
Applications Journal, by EIham Karami, Stewart Gaede, Ting-Yim Lee, and Abbas Samani

is presented. Dr. Samani helped with study design and interpretation of results. | developed



the model, tested the model on patient data, and wrote the manuscript under guidance and

supervision of Drs. Samani, Lee, and Gaede.



Dedication

To my loving parents who are the most honest and pure people | know.



Acknowledgements

During my graduate studies, | had the opportunity to work with several people and | would
like to seize this opportunity to thank these individuals without their supports, this

achievement would not have been realized.

| would like to thank my primary supervisor, Dr Samani, for his forward and continuous
encouragements during my PhD studies. He is one the best teachers and mentors | have
ever known and | would like to thank him for being extremely caring and supportive. | was
also very lucky to have the opportunity of being co-supervised by Dr Lee who kindly
guided me through this project and helped me develop different vision on medical
problems. The best part about being supervised by my two supervisors was that they are
both great, honest, hardworking people and working with them was a source of inspiration

for me.

| also appreciate the input provided by members of my advisory committee, Dr. Gaede,
and Dr. Wong. | also thank my colleagues here at Western for their support and frequent
constructive comments they provided which often inspired me to move forward with my

PhD project.

My deepest gratitude goes to my kind family, specially my parents. | have the most loving
parents and siblings and nothing was harder than living thousands of kilometers far from
them. Despite the huge distance, they managed to make me feel they are right here, beside

me.

Vi



Table of contents

AADSTTACT ...ttt bbb [
COo-AUthOrship SEATEMENT.........ccviiie et sre e enes iii
DT [ or: {10 USSR TO TP %
ACKNOWIBAGEMENTS ...ttt e sreesreeeeenes Vi
TaDIE OF CONTENTS ..ottt bbbt nneas vii
LISt OF TADIES ...t xi
LISE OF FIQUIES ...ttt bbbt Xiii
LISt OF APPENUICES ...ttt bbbt XiX
LiSt OF ADDIEVIALIONS .....eeiiieiecie et sre s XX
1 < INFOAUCTION 3 .ecviiiiiiiiiciieiese bbbttt be b e snenneas 1
000 R I o O 1y o RSP UPRTTPIN 1
1.2 Treatment Strategies FOr NSCLC ........cccvoiiiiiieie e 4
1.2.1  SUrQICal FESECLION......ccviiiiecieete ettt sreene s 4
1.2.2  ChemOtNEIAPY .......coiiiiiiiieieie et 4
1.2.3  Radiation therapy .......cccoeeieieiesieseseseee e 5
1.2.4  External beam radiation therapy .........ccocceoiiiiiniiiic 5

1.3 Respiratory induced target MOTION ..........cccuriiieiieienese s 7
1.3.1  Anatomy of the respiratory SYStem .........cccccevvieiieiiiic e 7
1.3.2  Physiology of the respiratory SYSteM ..........ccccevevieiiiieciieeie e 7

1.4 Motion compensation MEtNOAS .........c.coveieiiiie e 9
1.4.1  Motion encompassing Methods............cccevveiieiiiic i 10
1.4.2  Respiratory gating Methods ...........cccooviieiiiieiene s 11
1.4.3  Breath-hold methods...........cooveiiieiie e 11
1.4.4  Real-time tracking Methods ...........ccoiiiiiiiiie s 11

1.5 The proposed tracking method and theory...........cccocvvinineieienene e 13
1.6 Connected component 1abeling ..........cccooviviiiiiiiii e, 16
1.7 Simple Region Growing (SRG) Algorithm..........ccccvviiiiiiiiicscce e, 17
1.8  Circle Hough tranSformi........ccooiiiiiii i 18
1.9  The Theory of EIaStICITY.......ccoiiiiiiiieiiiccic e 20

vii



1.9.1  FiNite EIQSHICITY ..ocveieeiecc e 20

1.9.2 Infinitesimal versus finite (large) deformation ............ccccceevevviieiieieenenn, 22
1.9.3  Stress Tensor and Principle of Linear Momentum ...........c.cccccvevvevverieennnnn 22
1.9.4  Linear Elastic Material............cooiiiiiiiiiiieceee e 24
1.9.5  Hyper-elastic material.............ccocooiiiiiiiiiiiii e 25
1.10 Principal Component ANAIYSIS ..o 27
1.11 NEUFAL NEIWOTKS ..ot e 28
1.11.1 Feedforward neural NEtWOIK ..........ccooiriiiiiiiee s 31
1.11.2 Training MLP: The Back-Propagation Algorithm..............cccccoeviiveinnnnenn. 32
1.12 ReSearch ODJECLIVES ......c.cooveiiciciece e e 35
113 ThesSiS ROAUMAD ....ocveeiiieieiic sttt sre e 36
1.13.1 Chapter 2 - Anatomy-based algorithm for automatic segmentation of the
human diaphragm in NoN-contrast CT IMAGES .......cceverereriririeeeieee s 36
1.13.2 Chapter 3 - In-vivo lung biomechanical model for effective tumor motion
tracking in external beam radiation therapy.........ccoovviiiiiiiiicc e 37
1.13.3 Chapter 4 - Novel PCA-based Model of Human Diaphragm Motion
Derived from 4D CT Images for Effective Tumor Motion Management ................ 37
1.13.4 Chapter 5 - A Neural Network Approach for Biomechanics-based Tracking
of Lung Tumors during External Beam Radiation Therapy .........ccccceveviveneneninnnn. 37
1.13.5 Chapter 6 — Conclusions and future Work............c.ccoovvvrinieieninenisesn 38
1.14 RETEIENCES ... ettt nneenes 38
Chapter 2 « Anatomy-based algorithm for automatic segmentation of human
diaphragm in NoN-contrast CT IMAGES ».....cceevueiieiieerieiieiieesie et sre e sre e 46
2.1 INEOTUCTION .ottt ettt reenean 46
2.2 Diaphragm ANALOMY .......c.cocieiiiieieece ettt sae e e 48
2.3 MEENOUS ..ottt 50
2.3.1  Data ACQUISTTION ...oouiiiiiiiiiti it 50
2.3.2  Diaphragm Segmentation AIgOrithm ..o 50
2.4 RESUILS ..ottt et nreenreenee e 60
FZE S N B T 1ol U 11~ [ o SR 64
FZ0 T @70 o [od 131 [ ] o USRS 67
2.7 RETEIBNCES ... ettt bt e 68
Chapter 3 « In-vivo lung biomechanical model for effective tumor motion tracking in
external beam radiation therapy ».......cccceii i 72



1% A 10 (o Lo [T (o] o TR 72

3.2 Materials & MethOUS..........ooiiiiiiiiiieee e 76
3.2.1  Physiology of breathing ..........cccciveiiiiieiiic e 76
3.2.2  Data ACUUISTTION ...t 78
3.2.3  Lung geometry and finite element Mesh.........ccccooe v 78
3.2.4  Tissue mechanical Properties. ... 79
3.25  Boundary CONAITIONS ......ccueruiiieiiieiesie e eie et e e 79
I T D IT- o 1 o[ o PSSR 80
3.2.7  The trans-pulmonary PreSSUIE........ccivveiierieieeieerie e e eee e sie e sra e 81
3.2.8  VaAlAALION.....ccuiiiiiicicie et 83
3.2.9  IMPIEMENTALION ......ecviiiciece e e 84

3.3 RESUITS ettt nre e nre e e 84
3.3.1  Qualitative Validation..........ccccoveieeieiie i 84
3.3.2  Quantitative Validation..........ccceieeieiieiieie e 87

3.4 Discussion and CONCIUSIONS.........cccueiirieiieriaie e e see e 89

3.5 RETEIBNCES ...ttt 91

Chapter 4  « Novel PCA-based Model of Human Diaphragm Motion Derived from 4D
CT Images for Effective Tumor Motion Management »...........cccccvevvvieiieenesiieseesee e 96

A 101 (oo ot A o] o OSSPSR 96

4.2  Materials and MEthOUS ........cccooiiiiiiiiiie s 98
4.2.1  Overview of expert system for lung tumor tracking............cccocoevviveinennene 98
4.2.2  Data aCqUISITION .....cceiiiiiiiieiiesiesieeee e 100
4.2.3  Image segmentation and regiStration .............ccocoovverinenienene e 101
4.2.4  Landmark set selection using trans-finite interpolation.............cc.ccocoeenne. 101
4.2.5  Principal component analysis .........ccccuieiininininesieeeee s 104
4.2.6  Validation.......ccooiiiiiiiiie e 105

4.3 RESULTS. ..ottt sttt be e 106
4.3.1  Actual and PCA model based displacements comparison..............c......... 106
4.3.2  Biomechanics based tumor tracking results using the “true” and PCA model
based diaphragm displacements...........cccooviiiiiiiii i 113

4.4 Discussion and CONCIUSIONS. .......c.eoiuiiiiriienieiie e 115

T (=] (=] 1= S 117



Chapter5  « A Neural Network Approach for Biomechanics-based Tracking of Lung

Tumors during External Beam Radiation Therapy ».......cccccovevveveiiieieeve e e 123
5.1 INEFOTUCTION .ottt ettt 123
5.2 Materials and MethodS .........ccccviiiiiiiiiie s 126

521  Datd ACQUISTTION ....eeuiiiiiiiiiiisiesiie et 126
5.2.2  Rib motion tracking for obtaining the chest motion data ......................... 127
5.2.3  Diaphragm motion and trans-pulmonary pressure data...............ccoccevnene 129
5.2.4  Neural Networks Training ......cccooueiieiieieieiisese e 132
5.2.5  VaAlUALION ..o 134
5.3 RESUITS ..ttt bbb 135
5.3.1  Qualitative Validation...........ccccoiveiiiiiiiiie e 135
5.3.2  Quantitative validation............ccceovviiiiiiiie i 137
5.4  Discussion and CONCIUSIONS...........ceiverieiiriieie e e e 141
5.5 RETEIBNCES ...ttt ettt ns 144

Chapter 6  « Summary, Conclusion, and Future WOrk » ..........ccccccevevvvenivenesinsnnen 149
6.1 SUMMAIY .ottt n e 149
6.2  Conclusions and FUtUre DIreCHIONS .......c.ccoveiiereiieiiere e 153
6.3  ClOSING REMAIKS ......oeoiiieiice e 154

AN o] 0T a0 TSSOSO 156
Appendix A: ReSEarch ELhICS ........cccvcviiiiiiie e 156
CUTICUIUM VITBE ...ttt bbb n e 157



List of Tables
Table 1-1 The TNM staging of lung cancer. The table is adopted from Sobin et al. ......... 4

Table 2-1 Results summarizing the comparison between the automatic and manual
segmentation of the diaphragm of 9 patients using the mean distance to the closest point
(MDCP), Housdorff distance, Average Symmetric Absolute Surface Distance (ASASD)
and Symmetric RMS Surface Distance (SRMSSD). ......ccccoeiviiiiieiicie e 64
Table 3-1 The Dice similarity coefficient values between actual and simulated GTVs
(optimization step). The simulation has been performed between time point #6 (end
exhalation phase) and the other 5 time points moving backward. .............cccccooevininnnnns 88
Table 3-2 The Dice similarity coefficient values between actual and simulated GTVs
(validation step). The simulation has been performed between time point #6 (end
exhalation phase) and the other 4 time points moving forward. ............ccccceoviinnnnnnns 88
Table 4-1 Tumor displacement values in LR, AP and Sl directions obtained from “true”
diaphragm motion data and the PCA model-generated diaphragm displacement field. The
displacement errors resulting from the two different boundary conditions and the
Mean+SD values are also ProVIAE...........cooiiiiiiiiiiiee e 115
Table 5-1 Mean error in inter-fraction diaphragm motion (mm) and trans-pulmonary
pressure (cmH20) prediction for subjects #4 and #5. .......c.ccccevviieniieie s 139
Table 5-2 Dice similarity coefficient between actual Gross Tumor Volume (GTV) and the
lung biomechanical model estimated GTV for three subjects over the full respiratory
cycle. The lung biomechanical model is driven with image derived (actual) boundary
conditions. These patients were used to assess the algorithm performance in estimating
the intra-fraction MOtION VariatioN. ...........ccociiiiiiiiieee e 140
Table 5-3 Dice similarity coefficient between actual Gross Tumor Volume (GTV) and the
lung biomechanical model estimated GTV for two subjects over the full respiratory cycle.
The lung biomechanical model is driven with image derived (actual) boundary
conditions. These patients were used to assess the algorithm performance in estimating
the inter-fraction MOtION Variation. ............cooiiiiiiiiiiie s 140
Table 5-4 Dice similarity coefficient between actual Gross Tumor Volume (GTV) and the
lung biomechanical model estimated GTV for four subjects over the full respiratory
cycle. The lung biomechanical model is driven with Neural Network estimated BCs.

Xi



These patients were used to assess the algorithm performance in estimating the intra-
Fraction MOLION VAITATION. ......c.ciiiiiieie e 141
Table 5-5 Dice similarity coefficient between actual Gross Tumor Volume (GTV) and the
lung biomechanical model estimated GTV for four subjects over the full respiratory
cycle. The lung biomechanical model is driven with Neural Network estimated BCs.
These patients were used to assess the algorithm performance in estimating the inter-

TraCtiON MOTION VAITALION. ... et e e eeeneennenennnnnnne 141

xii



List of Figures

Figure 1-1 Age standardized net survival versus survival duration for prostate, female
breast, colorectal and lung cancers. Ages 15-99, Canada ( excluding Quebec), 2006-2008.
Adopted from “Canadian Cancer Statistics™. .........cocvveverieririrerieesseereeseesese e, 1
Figure 1-2 Color wash of the dose distribution for a lung cancer patient where the dose
deposited along the paths of the beam is shown in purple. Adopted from Rana et al.'? .... 6
Figure 1-3 (a) The alveolar, pleural, and trans-pulmonary pressures. (b) Changes in the
amplitude of intra-alveolar, intra-pleural, and trans-pulmonary pressures during
FESPITALOIY CYCI. ..o bbbt 9
Figure 1-4 The Gross Tumor Volume (GTV) delienated at (a) end-inhalation and, (b)
end-exhalation phase of respiration. (c) The green contour depicts Internal Target
Volume (ITV) obtained from combining the GTVs, while the Planning Target Volume
(PTV) is shown in yellow. Adopted from Glide-Hurst et al®. ...........cccoovvevvvecrerricrennene, 10
Figure 1-5 A block diagram of lung tumor tracking algorithm which involves a pre-
treatment and an intra-treatment step. (a) Pre-treatment tracking of chest surface motion
and image based estimation of the lung boundary conditions. The lung BCs include lung-
diaphragm contact surface displacements shown in orange and lung trans-pulmonary
pressure shown in purple. (b) Constructing a correlation model (e.g. using neural network
(NN) between chest surface motion data and lung boundary conditions. The NN training
requires the diaphragm to be presented in a compact form. (c) Chest surface motion
tracking during treatment and predicting the boundary conditions in real-time. (d)
Calculating lung tumor position and deformation using an accelerated lung
biomechanical MOTEL. ..o e 14
Figure 1-6 (a) An example of a binary image including three connected components. (b)
The labeled connected COMPONENTS. .......ccoiiiiiiiiiieiee e 17
Figure 1-7 (a) An image of the original circle. (b) The parametric representation of the
original circle. The local maxima point, i.e. the intersection of circles is the center of
OFIGINAL CITCIB. .ottt bbb ene s 19
Figure 1-8 A general elastic object at undeformed (time to) and deformed (time t) states.

Figure 1-9 A very small cubic particle within the elastic material. ...............ccccooveiveenen. 23

Xiii



Figure 1-10 A SINGIE NEUION......cccuiiiecieie et e et te e eae e sreees 29
Figure 1-11 The most common neuron activation functions. (a) Sigmoid, (b) tanh, (c)
=] I O PSPPSR 30
Figure 1-12 An example of feedforward neural Network............ccccoeoeiiiininciiinie, 31
Figure 2-1 (a) A schematic view of the human diaphragm where surrounding structures
(e.g. ribs and aorta) are shown, (b) an axial CT image showing the aorta and diaphragm
pillars, (c) a schematic view of the human diaphragm and (d) a coronal CT image
showing the relative positions of the thoracic organs and abdominal organs................... 49
Figure 2-2 Block diagram of the proposed segmentation method. ............c.ccccecveieiienen. 51
Figure 2-3 (a) The intersection area between the first axial slice of the 3D CT volume
and the trachea being segmented by image thresholding used to find the initial seed point
for bronchial tree segmentation. (b) The red box depicts the trachea (oval area) which is
usually present in the first axial slice of the CT image. ........cccccevvveveiieiecce e 53
Figure 2-4 (a) A coronal sub-image containing the heart which has been thresholded for
values smaller than 35 HU, (b) The zero voxels in the thresholded binary sub-image are
labeled as “contained” (blue) and “uncontained” (black) voxels, (¢) The color labeled
connected components of the “contained” voxels, and (d) Segmented heart overlaid on
LTI O BT 10 U [T SRS PO SOSUSN 55
Figure 2-5 The diaphragm’s contact surfaces with both lungs obtained from applying an
arc detection algorithm on the most inferior voxels of both lungs. ..o 56
Figure 2-6 (a) A sub-image (within the shown box) containing the heart’s contact
surface with the diaphragm, and (b) The segmented heart’s contact surface with the
diaphragm obtained from applying the Canny edge detection algorithm on the selected
SUD=IMAGE. .ttt e bbbttt bbbt nne s 57
Figure 2—7 (a) Segmented ribcage and aorta after performing morphological image
closing overlaid on the CT image and (b) Axial section of the contact surface between the
diaphragm, ribs, SPiNe, and @0MA. .........cceciveiierie e 58
Figure 2-8 The results obtained for subject #1. The 1% row depicts automatically
delineated (blue) sections of the diaphragm overlaid on their manually delineated
counterpart (white). (a) and (b) are coronal and (c) is an axial view. The 2" row depicts

3D construction of the diaphragm surface. (d) front, (e) back and (f) top views. ............ 61

Xiv



Figure 2-9 The results obtained for subject #2. The 1% row depicts automatically
delineated (blue) sections of the diaphragm overlaid on their manually delineated
counterpart (white). (a) and (b) are coronal and (c) is an axial view. The 2" row depicts
3D construction of the diaphragm surface. (d) front, (e) back and (f) top views. ............ 62
Figure 2-10 The results obtained for subject #3. The 1% row depicts automatically
delineated (blue) sections of the diaphragm overlaid on their manually delineated
counterpart (white). (a) and (b) are coronal and (c) is an axial view. The 2" row depicts
3D construction of the diaphragm surface. (d) front, (e) back and (f) top views. ............ 62
Figure 3—-1 A block diagram of lung tumor tracking algorithm which involves a pre-
treatment and an intra-treatment step. (a) Pre-treatment tracking of chest surface motion
and image based estimation of the lung boundary conditions. The lung BCs include lung-
diaphragm contact surface displacements shown in orange and lung trans-pulmonary
pressure shown in purple. (b) Building a correlation model (e.g. using neural network
(NN) between chest surface motion data and lung boundary conditions. The NN training
requires the diaphragm to be presented in a compact form. (c) Intra-treatment chest
surface motion tracking and predicting the boundary conditions in real-time. (d)
Calculating lung tumor position and deformation using an accelerated lung
biomechanical MOTEL. ..o e 74
Figure 3-2 (a) The alveolar, pleural, and trans-pulmonary pressures. (b) Changes in the
amplitude of intra-alveolar, intra-pleural, and trans-pulmonary pressures during
FESPITALONY CYCIB. ...ttt et e te e be e teeaesneenrs 77
Figure 3-3 (a) Coronal and (b) sagittal views of the lung mesh with tumor elements
AEPICTEA @S TBA. ...ttt bttt et bbb ene s 79
Figure 3—4 (a) Diaphragm nodes. (b) The trans-pulmonary pressure is applied on the lung
SUIFACE SNOWN TN TR, ... eneas 80
Figure 3-5 The lung was segmented, excluding desnse features such as tumor and major
blood vessels and airways, to be used for optimization. The left image corresponds to end
inhale phase and the right image corresponds to end exhale phase while the 3 images in
the middle represent phases IN DEIWEEN. .........ccviiii i 82
Figure 3-6 Block diagram of the proposed optimization framework for patient specicfic

calculation of trans-pulmonary pressure and Poisson’s ratio values. The optimization

XV



requires the lung FE mesh at end exhale, and the diaphragm displacement values obtained
from registration. Initial values of trans-pulmonary pressure magnitude and Poisson’s
ratio are asssigned to the model and the deformed lung mesh corresponding to the target
phase is obtained. The deformed mesh is used in conjunction with Thin Plate Spline
registration method to create the simulated image and calculate the cost. ....................... 83
Figure 3—7 Optimized values of (a) trans-pulmonary pressure and (b) Poisson’s ratio
values vs. respiration phase. Phases 1, 6 and 10 represent start exhalation, end exhalation
and end inhalation, reSPECLIVEIY. ..o e 85
Figure 3-8 CT image difference between actual “end exhalation” and “end inhalation”
CT images (a), (b), (c) and difference between actual and simulated “end inhalation” CT
images (d), (e), (f) for the 3 SUDJECTS. ........ccoiiiiiiiieee s 86
Figure 3-9 (a) Mean absolute error per landmark’s 3D position versus respiration phase.
(b) Mean distance between actual and simulated lung surfaces versus respiration phase.89
Figure 4-1 A block diagram of lung tumor tracking system. It involves four steps of (a)
pre-treatment chest surface motion tracking and image based estimation of the lung
boundary conditions. These boundary conditions include prescribed displacement
boundary conditions of lung bottom surface which is equal to diaphragm surface
displacements shown in orange and lung pleural pressure shown in purple. (b) Fitting a
function (e.g. using neural network (NN) which maps chest surface data to lung boundary
conditions. This fitting requires the diaphragm to be presented in a compact form. (c)
Intra-treatment chest surface data acquisition and mapping to boundary conditions in

real-time. (d) Calculating lung tumor position using an accelerated lung biomechanical

Figure 4-2 TFI domain meshing technique: (a) A 2D computational domain and (b) An
example of a corresponding 2D physical domain...........cccccceeveeviiiciicvc e 102
Figure 4-3 (a) 2D projection of the diaphragm’s dome in an axial plane intersecting with
segmented 71" to 11" ribs, (b) Four corners points, A,B, C and D were used to partition
the boundary of the dome, (c) Using the 7" to 11" ribs to obtain additional anatomical
landmarks for TFI and (d) The final TFI grid with 6x16 = 96 landmarks. .................... 104
Figure 4—4 Segmentation results for a diaphragm’s right dome, (a) Coronal view and (b)

SAGITEAL VIBW....cee ettt et ettt e st sta et e eneesreenneenaenneenen 106

XVi



Figure 4-5 Landmark selection for (a) patient H2 and (b) patient P6. Points shown with
‘+’ are generated by the TFI method. A subset of these points (shown with ‘0’) are
selected fOr resultS COMPANISON. .....c..oiviiiiiiiiieie e 107
Figure 4-6 “True” (solid line) and model generated (dashed line) SI positions of Group
#1 (aand b), Group #2 (c and d) and Group #3 (e and f) of landmarks. ...........cccc....... 108
Figure 4-7 The mean error per landmark (mm) in the LR(left), AP(middle) and Si(right)
directions versus respiratory phase for subjects (a) H1, (b) H2, (c) P2, and (d) P6. ...... 112
Figure 4-8 The Bland-Altman plots for subjects (a) H2 and (b) P6 indicating favorable
agreement between “true” and model generated displacement fields. ..........cccceveennnen. 113
Figure 4-9 (a) 3D FE model of the lung at end exhalation phase; (b) 3D displacement
distribution superimposed on the end exhalation phase; (c) a sagittal section of the
displacement distribution through the tumor and (d) a coronal section of the displacement
distribution through the tUMOL. ........coviii e 114
Figure 5-1 A block diagram of lung tumor tracking system. It involves four steps of (a)
pre-treatment chest surface motion tracking and image based estimation of the lung
boundary conditions. These boundary conditions include prescribed displacement
boundary conditions of lung bottom surface which is equal to diaphragm surface
displacements shown in orange and lung trans-pulmonary pressure shown in purple. (b)
Fitting a function (e.g. using neural network (NN) which maps chest surface data to lung
boundary conditions. This fitting requires the diaphragm to be presented in a compact
form. (c) Intra-treatment chest surface data acquisition and mapping to boundary
conditions in real-time. (d) Calculating lung tumor position using an accelerated lung
biomechanical MOGEL. ..........cooeii i 125
Figure 5-2 Segmented 8", 9" and 10" left ribs, 6™ and 10" right ribs and the sternum

Figure 5-3 The X, y, and z displacement component data of segmented ribs and sternum
DOAY TOF SUDJECT #2.....neeeeeete e bbb 129
Figure 5-4 (a) The diaphragm nodes. (b), (c) and (d) corresponding SI, AP and LR
displacement curves for subject #2. Each curve color in (b), (c), and (d) represents a node
OF the dIAPNIAGM. ..c.eeiii e e e e raeere e 130

XVii



Figure 5-5 Optimization framework used to calculate trans-pulmonary pressure at each
phase of respiration. In this framework, a pre-developed lung biomechanical model for
which the trans-pulmonary pressure acts as BC, is used to optimize the pressure. The cost
function is the difference between the actual CT images and the images constructed using
the deformed mesh and TPS image registration method. ...........cccccoevevvivciiesn e, 131
Figure 5-6 (a)The optimized pressure curves for subjects #1, #2 and #3. (b)The pre-
treatment (solid line) and follow-up (dashed line) optimized pressure curves for subjects

HA QNG HD. oottt r e be et e re e enee e 132
Figure 5-7 Normalized principal components of (a) chest, and (b)diaphragm motion data
L{0 STV o] [T od SRS 133

Figure 5-8 Feed forward NN used to estimate the diaphragm motion from chest motion
data. The network has one hidden layer with two N0des. ..........ccocervrieieicnenineee 134
Figure 5-9 Intra-fraction validation test. (a) Actual and NN estimated trans-pulmonary
pressure curves, and (b) diaphragm motion principal components for subject #2. ........ 136
Figure 5-10 Results obtained from inter-fraction motion estimation test. (a) Actual and
NN-estimated trans-pulmonary pressure curves, and (b) diaphragm motion principal
CcoOmMPONENLS FOr SUDJECT H4. ... e 136
Figure 5-11 (a), (b) and (c) Mean error in pressure estimation vs respiration phase. (d),

(e) and (f) Mean error in diaphragm motion estimation vs respiration phase. ............... 138

XViii



List of Appendices

Appendix A: Research EthicS.........ccccceveiiviiicieiienen, Error! Bookmark not defined.
CUrriculum VItae ......cccoveieiieie e Error! Bookmark not defined.

XiX



3D

ADCT

AAM

ANN

ASASD

COPD

CT

DIBH

EBRT

FE

FEA

FFD

GPU

GTV

ITK

ITv

MDCP

MLP

NN

NSCLC

NTCP

List of Abbreviations

Three Dimensional

Four-Dimensional Computed Tomography
Active Appearance Model

Anrtificial Neural Network

Average Symmetric Absolute Surface Distance
Chronic Obstructive Pulmonary Disease
Computed Tomography

Deep Inspiration Breath Hold

External Beam Radiation Therapy

Finite Element

Finite Element Analysis

Free Form Deformation

Graphics Processing Unit

Gross Tumor Volume

Insight Toolkit

Internal Target Volume

Mean Distance to the Closest Point
Multi-Layer Perceptron

Neural Network

Non-Small Cell Lung Cancer

Normal Tissue Complication Probability

XX



(ON)

PCA

PTV

RMS

RPM

SCLC

SRG

SRMSSD

TCP

TFI

TNM

TPS

Overall Survival

Principal Component Analysis
Planning Target Volume

Root Mean Squared

Real-time Position Management™
Small Cell Lung Cancer

Simple Region Growing
Symmetric RMS Surface Distance
Tumor Control Probability
Trans-finite Interpolation

Tumor Node Metastases

Thin Plate Spline

XXi



Chapter 1

1 « Introduction »

1.1 Lung Cancer

According to statistics, cancer is the leading cause of death in most countriesl. The
Canadian Cancer Society predicted that in 2016, 202,400 individuals will suffer from
cancer, and ~40% of them will die of this disease?. Lung and bronchus, breast, colorectal,
and prostate cancer account for half the cancer incidents, while the number of deaths caused
by lung cancer is more than the other three major cancers combined. As shown in Figure
1-1, which depicts the net survival for the four major cancers, the 5-year survival rate of

lung cancer is only 17% which is very low compared to the other three cancers.
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Figure 1-1 Age standardized net survival versus survival duration for prostate, female breast, colorectal and
lung cancers. Ages 15-99, Canada ( excluding Quebec), 2006-2008. Adopted from “Canadian Cancer

Statistics™2.



There are two types of lung cancer, small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC), with 85% of the patients being diagnosed with the latter. SCLC, which
is also known as oat cell carcinoma or small cell undifferentiated carcinoma, is the most
aggressive type of lung cancer that usually starts in the bronchi in the center of the lungs®.
NSCLC has subtypes which differ in the type of lung cells from which the disease
originates. They are grouped as NSCLC because the treatment approach for them is similar.
Adenocarcinoma, which accounts for 40% of lung cancers, starts in the glandular cells in
the outer part of the lung. Squamous cell carcinoma initiates in squamous cells lining the
bronchus. Finally, large cell carcinoma which exhibits rapid progression can grow
anywhere in the lung®.

The treatment method is decided based on patients TNM staging which denotes the status
of tumor, node, and metastasis. Table 1-1 depicts the TNM staging for NSCLC®.

Stage Tumor(T) Nodal(N) Metastasis(M) 5-year survival

0 Tis NO MO

1A Tla, b NO MO 49%

IB T2a NO MO 45%

A T2b NO MO 30%
Tla, b N1 MO
T2a N1 MO

1B T2b N1 MO 31%
T3 NO MO

HA Tla, b, T2a N2 MO 14%
T3 N1, N2 MO

T4 NO, N1 MO




B T4 N2 MO 5%
Any T N3 MO
v Any T Any N M1 1%

T denotes tumor size:

is: Carcinoma in situ

1: Surrounded by lung or visceral lung without invasion into the main bronchus.
1a: Tumor 2cm or less in greatest direction
1b: Tumor more than 2 cm but less than 3 cm in greatest direction

2: Tumor has any of: involves main bronchus, 2 cm or more from carina; or invades
visceral pleura; or associated with obstructive pneumonitis that extends to the hilar

region but does not involve entire lung
2a: Tumor more than 3 cm but less than 5 cm in greatest direction
2b: Tumor more than 5 cm but less than 7 cm in greatest direction

3: Tumor has any of: more than 7 cm; invades any of parietal wall, parietal pericardium,
mediastinal pleura, chest wall, diaphragm, and phrenic nerve; involves main bronchus at
less than 2 cm distal to the carina but not involving the carina; or associated with

pneumonitis or the entire lung, or separate tumor nodule(s) in the same lobe as primary

4: Tumor has any of: invades mediastinum, heart, great vessels, trachea, recurrent
laryngeal nerve, oesophagus, vertebral body, or carina; or separate tumor nodules in

different ipsilateral lobe to that of the primary
N denotes extent of regional Lymph Node spread
0: No regional lymph node metastasis

1. Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and

intrapulmonary nodes, including involvement by direct extension




2: Metastasis in ipsilateral mediastinal and/or sub-carinal lymph nodes

3: Metastasis in: contralateral mediastinal, contralateral hilar, ipsilateral, or contralateral

scalene, and supraclavicular nodes
M denotes distant metastases
0: No distant metastasis

1: Distant metastases present

Table 1-1 The TNM staging of lung cancer. The table is adopted from Sobin et al.®

1.2 Treatment Strategies for NSCLC

1.2.1 Surgical resection

Types of surgery used to treat (and possibly cure) NSCLC include pneumonectomy,
lobectomy, segmentectomy (or wedge resection) and sleeve resection®. Pneumonectomy is
performed by removing an entire lung and is usually needed when the tumor is close to the
center of the chest. Lobectomy involves removing the entire lobe containing the tumor(s).
In segmentectomy, only part of a lobe is removed and it is the treatment of choice when
the patient cannot withstand removing the whole lobe due to poor lung function. Sleeve
resection is used to treat cancers in large airways in the lungs and similar to
segmentectomy, the surgeon’s goal is to preserve more lung function. With any of these
operations, nearby lymph nodes are also removed to look for possible spread of the cancer.
Lobectomy is the preferred type of operation for NSCLC as it provides better local control
and overall survival (OS)’. Surgery is the standard of care for stage | and 11 NSCLC
(sometimes stage 111). However, it is often precluded due to significant co-morbidities,
poor cardiac function, or decreased pulmonary reserve exhibited by the patient®?®,

1.2.2 Chemotherapy
Chemotherapy is usually used as the main treatment method for NSCLC, when cancer has
progressed too far or the patient cannot go through surgery due to poor health conditions.

In addition, chemotherapy may be used before surgery to shrink the tumor (neoadjuvant



therapy), after surgery to kill remaining cancer cells (adjuvant therapy) or along with

radiation therapy (concurrent therapy), when surgery is not an option®°.

1.2.3 Radiation therapy

Radiation therapy becomes the optimal treatment method for NSCLC when the lung tumor
cannot be removed because of its size or location, when the patient cannot go through
surgery due to poor health conditions, or if a person does not want surgery®. In addition,
patients might receive radiation before surgery to shrink the tumor and make the operation
easier. Also, post-surgery radiation therapy is frequently used to kill the remaining cancer
cells that surgery might have missed. Finally, radiation treatment can serve as palliative
therapy to relieve symptoms of advanced NSCLC such as pain, bleeding, trouble
swallowing, and cough. As such, radiation therapy is used widely in almost all stages of
NSCLC. Radiation can be delivered using external beams or internal seeds

(Brachytherapy). The focus of this study is on External Beam Radiation Therapy (EBRT).

1.2.4 External beam radiation therapy

1.2.4.1 Three-dimensional conformal radiation therapy (3D-CRT)

In EBRT, high energy x-ray beams are used to target the cancerous tissue. In this process,
the normal tissue located along the x-ray beam paths receives some radiation dose, as
demonstrated for a sample patient in Figure 1-2. The goal of radiation treatment planning,
which decides how the prescription dose is delivered and the dose distribution, is to
maximize the tumor control probability (TCP) while minimizing the normal tissue
complication probability (NTCP)%.

While conventional 2D-RT technique usually uses opposing anterior and posterior
radiation fields, 3D-CRT uses multiple co-planar fields to maximize the tumor dose
coverage and minimize the normal tissue exposure. In 3D-CRT, a prescription dose of 66
Gy or higher is delivered to the tumor over the course of six weeks, in 30 daily fractions.
While such scheme results in low NTCP, the TCP and overall survival are low, leading

inoperable patients to forego any treatment optionst!. One solution to this problem is to



escalate the dose to NSCLC lesions, but the increase in dose is associated with increased

dose to normal lung, resulting in high NTCP.

3F Plan

Figure 1-2 Color wash of the dose distribution for a lung cancer patient where the dose deposited along the

paths of the beam is shown in purple. Adopted from Rana et al.*?

1.2.4.2 Intensity modulated radiation therapy (IMRT)

IMRT involves using an automated optimization process, known as inverse treatment
planning, to modulate the intensity of each beam delivered to the tumor. Using such
optimization process, desired tumor coverage is achieved while healthy tissue is relatively
spared. Using IMRT, higher radiation dose can be delivered to the tumor compared to 3D-
CRT.

1.2.4.3 Stereotactic ablative body radiation therapy (SABR)

Stereotactic ablative body radiotherapy (SABR) is a hypo-fractionated treatment method
which imitates the surgical knife in ablating the tumor with a high dose of radiation
delivered in fewer (usually 1 to 5) treatment sessions compared to conventional treatment
methods. A recent study'® on comparing the outcome of SABR and surgery for stage | and
I1 NSCLC patients reported a 3-year OS of 95% for patients treated with SABR which is a

significant improvement to the outcome of surgery which is 79%.



1.3 Respiratory induced target motion

1.3.1 Anatomy of the respiratory system

The lungs are passive, pyramid-shaped organs that are connected to the trachea by the right
and left bronchi. The inferior surface of the lungs is bordered by the diaphragm which is a
thin dome-shaped sheath and acts as the primary muscle of respiration. The next important
group of respiratory muscles are the external intercostals which are attached between the
ribs and maintain the width of ribcage. Due to contraction of intercostal muscle fibers, each
rib moves toward the rib above, with the overall effect of raising the ribcage and increasing
the ribcage volume, assisting in inhalation. The left and right lungs are enveloped with the
pleurae which are serous membranes attached to the mediastinum. The pleurae have two
layers of visceral and parietal pleura, the former being superficial to the lungs and the latter
being the outer layer that connects to the thoracic wall, the mediastinum, and the
diaphragm. The pleural cavity is the space between the visceral and parietal pleura. The
pleurae have two major roles. First, they produce pleural fluid which acts as lubricant to
reduce the friction between visceral and parietal pleurae and prevent trauma during
breathing. The produced lubricant is adhesive and causes the lungs to enlarge following
the thoracic wall expansion. Second, the pleurae create cavities that separate major organs
and prevent organ interference and spread of infection®®.

1.3.2 Physiology of the respiratory system

Figure 1-3 (a) depicts a schematic of the respiratory system where the lungs, pleural cavity,
trachea, and respiratory muscles are illustrated. Before inspiration, the respiratory muscles
are relaxed and the intra-alveolar pressure is equal to the atmospheric pressure. The
inspiration phase begins by contraction of the main respiratory muscles, i.e. diaphragm and
external intercostals, and expansion of the chest cavity. The diaphragm is responsible for
75% of enlargement of thoracic cavity during inspiration while the contraction of external
intercostals enlarges the thoracic cavity in lateral and AP dimensions. As the thoracic
cavity expands, the intrapleural pressure drops and the lungs expand. This lung expansion
leads to reduction of alveolar pressure; hence air flows in. At the end of inspiration, the

inspiratory muscles relax, the diaphragm is dome-shaped again and the rib cage falls



because of gravity, once the external intercostals relax. As the chest wall and stretched
lungs recoil, the volume decreases, the pressure increases; hence the air flows out. As
shown in Figure 1-3 (a), the net pressure applied to the lung is the trans-pulmonary pressure
which is the difference between the alveolar pressure and intrapleural pressure. It is

noteworthy that the spatial distribution of trans-pulmonary pressure is not uniform*4.
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Figure 1-3 (a) The alveolar, pleural, and trans-pulmonary pressures. (b) Changes in the amplitude of intra-

alveolar, intra-pleural, and trans-pulmonary pressures during respiratory cycle.

Figure 1-3 (b) depicts the temporal variations of the intra-alveolar and intra-pleural
pressures during the respiratory cycle. The diaphragm and ribcage motion cause the
temporal and spatial variations of the trans-pulmonary pressure, while the bottom surface
of the lungs undergo loading created by diaphragm motion. As such, two different
mechanisms cause the respiratory motion. These mechanisms might be out of phase and
lung disease such as Chronic Obstructive Pulmonary Disease (COPD) and cancer affect
both mechanisms. Therefore, the respiratory motion is usually irregular and difficult to

model.

1.4 Motion compensation methods

The methods used to compensate for tumor motion are divided into four groups of 1)
Motion encompassing methods, 2) Respiratory gating methods, 3) Breath-hold methods,

and 4) Real-time tumor tracking methods.
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1.4.1 Motion encompassing methods

Most radiotherapy facilities are not equipped with radiation delivery systems which
account for respiratory motion, i.e. the tumor motion is present during radiation treatment.
As such, the tumor mean position and its range of motion should be obtained prior to
treatment to plan for radiation delivery accordingly. Four-Dimensional Computed
Tomography (4D-CT) is the most popular approach which integrates organ motion into the
acquisition of the CT data set and facilitates treatment planning. Each 4D-CT data set
includes volumetric images obtained at different respiratory phases. For each 3D CT image
ina4D CT set, the Gross Tumor VVolume (GTV) can be obtained to form the Internal Target
Volume (ITV) by combining all GTVs. The GTV, ITV and Planning Target Volume (PTV)

are shown in Figure 1-4.

(@) (b) (©)
[

Figure 1-4 The Gross Tumor Volume (GTV) delienated at (a) end-inhalation and, (b) end-exhalation phase

of respiration. (c) The green contour depicts Internal Target Volume (ITV) obtained from combining the

GTVs, while the Planning Target Volume (PTV) is shown in yellow. Adopted from Glide-Hurst et al*®.

The disadvantage of motion-encompassing methods is that the volume, which is being
irradiated, is larger than the actual tumor volume, as it includes significant volume of
normal lung tissue. According to results published by Keall et al., when the tumor path
length is greater than 5 mm, other motion compensation methods can yield significant

normal tissue sparinge.
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1.4.2 Respiratory gating methods

Examining the respiratory cycle, there is a particular portion where the respiratory motion
is smaller. Respiratory gating is a motion compensation method in which the radiation
beam is on only within that particular portion of the breathing cycle, which is known as the
“gate.” The position and width of the gate is not fixed for all patients and is determined
using external or internal markers to monitor the patient’s respiratory motion'’-?2, The
disadvantage of a gating method is that the radiation administration is not continuous and
gated procedures are longer than non-gated procedures. While the gating results in tumor
motion reduction, some motion still occurs within the gate and is called “residual
motion.”?® The gate width is chosen in such a way to minimize the residual motion and

maximize the duty cycle.

1.4.3 Breath-hold methods

Breath-hold methods attempt to control the patient’s breathing volume either voluntarily
or by using an occlusion valve!®. The application of an occlusion valve allows for a
temporary block in the air flow to the patient and thus, immobilize the target. The
irradiation is performed during the target immobilization period. Deep inspiration breath-
hold (DIBH) is an alternative breath holding technique where the patient adjusts his or her
breathing according to a specific respiratory trace?*?’. Breath-hold methods require the
patients to be trained on how to breathe during the treatment planning CT and the treatment
sessions. A reproducible motion control can be achieved by asking the patients to begin
with quiet breathing, continue with two breathing periods of slow deep inspiration and
expiration and hold the breath at end inhale. Whether an occlusion valve is used or the
patients are asked to hold their breath voluntarily, the breath is held for 10 — 20 seconds for
every iteration. While breath-hold techniques are effective for tumor motion
immobilization, most lung cancer patients suffer from poor pulmonary function and have

difficulty with breath-hold procedures.
1.4.4 Real-time tracking methods
An alternative approach for respiratory motion compensation is real-time tumor tracking

where the direction of the radiation beam is adjusted dynamically to follow the tumor’s

changing position. The implementation of real-time tumor tracking requires using the MLC
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or robotic arms to control the radiation beam direction. Alternatively, the tumor can be
aligned to the beam using the couch motion. Ideally, continuous real-time tracking results
in a 100% duty cycle and the elimination of tumor-motion margin. Ideal real-time tumor
tracking involves four requirements: (1) tumor motion/deformation estimation in real-time;
(2) tumor motion/deformation prediction to account for system mechanical delays; (3)
beam alignment system; and (4) dosimetry adaptation required to account for respiration
induced lung volume variations and critical structures motion. The focus of this thesis is
the first requirement, which is tumor motion/deformation estimation in real-time. Tumor

positioning methods can be divided into two groups of direct and indirect methods.

1.4.4.1 Direct real-time tracking methods

1.4.4.1.1 Direct real-time imaging

The most straight-forward method for finding the tumor position in real-time is real-time
imaging?®. Currently, the modality of choice for lung real-time imaging is x-ray
fluoroscopy. However, x-ray fluoroscopy of most lung tumors does not provide high-
contrast images suitable for automatic image segmentation. Therefore, fiducial markers are
implanted in or near the tumor to be used as surrogate for tumor motion?2°. Fiducial
markers used for real-time imaging are high-Z metal markers which can be readily
observed in x-ray images. The possible migration of fiducial markers dictates using three
or more fiducial markers instead of one marker. By using multiple markers, the marker
migration can be detected by monitoring the distance between markers. While real-time
imaging of tumor or implanted fiducial markers results in high accuracy of tumor
positioning, the involved additional imaging radiation dose is an issue. To decrease the
radiation exposure, hybrid methods have been developed which combine non-continuous
imaging episodes with continuous monitoring of respiratory signals which are correlated

with tumor motion28-32,

1.4.4.1.2 Electromagnetic tumor tracking
An alternative approach for direct tumor tracking is to implant miniature, powered

radiofrequency (RF) coils in or near the tumor and track them electromagnetically®*-¢,
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While electromagnetic tracking is a viable alternative to radiographic tracking, it is still

invasive and unsafe due to possible risk of pneumothorax or clip migration®’.

1.4.4.2 Indirect real-time tracking methods

The second group of real-time tracking methods are indirect tracking methods where an
external respiratory signal, e.g. chest motion data, is used to find the tumor motion. To
develop a successful indirect real-time tracking method, a strong and robust correlation
between external signal and internal organ motion must be established. However, several
studies indicate that having strong and stationary correlation between 1D external signals,
e.g. spirometry or 1D chest motion data and internal organ motion is not a safe
assumption30-38-49,

Several methods have been proposed to address the non-stationary issue in indirect tumor
tracking. One solution is to monitor and update the correlation continually during treatment
by acquiring images of the tumor position synchronously with the respiratory signal®. This
can be accomplished with adaptive filter algorithms, which are designed to predict
nonstationary signals by periodically updating the empirical relationship between the input
(e.g., breathing) and the output (e.g., tumor position) signals®..

An alternative solution to adaptive filtering is to use a multi-dimensional surrogate signal
which has been shown to have stronger and more robust correlation with internal organ
motion*’. Recent studies indicate that the size of GTV can vary by up to %62*2. As such,
an effective tumor tracking method should be able to estimate the tumor volumetric

variations as well as tumor rigid motion.

1.5 The proposed tracking method and theory

A block diagram of the proposed tumor tracking method is shown in Figure 1-5.
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Figure 1-5 A block diagram of lung tumor tracking algorithm which involves a pre-treatment and an intra-
treatment step. (a) Pre-treatment tracking of chest surface motion and image based estimation of the lung

boundary conditions. The lung BCs include lung-diaphragm contact surface displacements shown in orange
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and lung trans-pulmonary pressure shown in purple. (b) Constructing a correlation model (e.g. using neural
network (NN) between chest surface motion data and lung boundary conditions. The NN training requires
the diaphragm to be presented in a compact form. (c) Chest surface motion tracking during treatment and
predicting the boundary conditions in real-time. (d) Calculating lung tumor position and deformation using
an accelerated lung biomechanical model.

As shown in Figure 1-5, we use a lung biomechanical model to predict the tumor motion
and deformation using the real-time lung boundary conditions (BCs) obtained from the
chest motion data. In our proposed lung Finite Element (FE) model, the lung boundary
conditions include the diaphragm motion and trans-pulmonary pressure. The latter is the
difference between intra-alveolar and intra-pleural pressures and it is calculated through
optimization. Many research groups have tackled lung biomechanical modeling**->2.
While existing lung biomechanical models are fairly accurate, most of them cannot be
incorporated into our lung tumor tracking algorithm. Apart from Fuerst et al. (2015) which
proposed a generative lung biomechanical model, other lung biomechanical models
suggest using a contact surface which limits the lung expansion to the segmented chest
cavity at end inhale phase. This type of modeling approach limits the real-time application
of lung biomechanical modeling as it is difficult to model different breathing patterns,
while being computationally expensive. In this study, our main goal is to improve the
results published by Fuerst et al. (2015) by incorporating our physiological knowledge
about pressure gradients and using more realistic material properties, e.g. incompressibility
parameters. Our proposed lung biomechanical model requires the real-time position of the
diaphragm and the trans-pulmonary pressure values as boundary conditions. Those BCs
are obtained from a Neural Network (NN) which inputs the chest motion data and outputs

the lung boundary conditions.

In contrast to indirect heuristic mathematical methods of lung tumor motion prediction
which rely solely on data fitting to a mathematical model®?, the proposed method is a hybrid
method of heuristic data fitting in conjunction with tissue deformation, physics based
model. The first component of data fitting model is an NN used to predict the lung BCs
from input chest surface motion data. To ensure robustness of this NN, an optimal number
of markers leading to the highest correlation between chest surface motion data and tumor

motion can be determined and used instead of a single marker. The second component is
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the lung biomechanical model which inputs the BCs obtained from the NN to output the
tumor position and geometry. This hybrid approach is believed to be more effective than
using a solely heuristic model (e.g. NN) to calculate tumor position and geometry directly
from the chest wall surface motion data. The reason is that the NN in the latter scenario is
expected to be highly complex while being prone to data overfitting. Using an accurate
lung biomechanical model in the proposed system has two advantages: 1) accuracy of
tumor motion tracking will be high and 2) tumor geometry variations during respiration
can be taken into account, paving the way for more accurate radiation dose distribution
calculation. The novelties of this tumor tracking algorithm are: 1) developing a lung
biomechanical model which is designed specifically for radiotherapy, 2) effective usage of
PCA for diaphragm motion modeling by taking advantage of Transfinite Interpolation
method for consistent landmark selection, 3) Proposing a machine learning approach for
updating the lung boundary conditions in real-time required for the biomechanics-based
tumor motion/deformation estimation. The next six sections address the theoretical

background required for developing the proposed tumor tracking algorithm.

1.6 Connected component labeling>*

In connected component labeling, the concept of pixel connectivity is used to group image
pixels into components. In fact, a connected component is a group of pixels which are
connected in some way and share similar pixel intensity values. Pixel connectivity defines
the way pixels in a 2D image (or voxels in a 3D image) are connected. In 2D, there are 3
types of connectivity, including 4-connectivity, 6-connectivity, and 8-connectivity. Here,
we assume binary input image and 8- connectivity. The 8-connectivity means that for a
specific pixel, all its neighbors that touch one of its edges or corners are connected to that
pixel. For a pixel at (x,y), its 8-connected pixels are (x +1,y), (x,y £ 1), and (x +
1,y+1).

To convert a binary image into labeled connected components, the entire image is scanned,
pixel-by-pixel (from top to bottom and left to right) to identify connected pixel regions.

The labeling operator scans the binary image and for each non-zero pixel p, examines its
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four neighbors which have already been encountered in the scan (i.e. (x —1,y), (x —
1,y—1), (x,y—1), and (x+ 1,y —1) ). If all four neighbors are 0, a new label is
assigned to p. If only one neighbor is non-zero and has been labeled, its label is assigned
to p. If more than one of the neighbors has already been labeled, one of the labels is
assigned to the p and the equivalences are noted down. Once the first image scan is
complete, the equivalent label pairs are classified into equivalence classes and each class
is assigned a unique label. Finally, the image is scanned for the second time to assign the
class labels to the connected components. For display purpose, the labels might be different
gray levels or colors. Figure 1-6 (a) depicts an example of a binary image which includes
three connected components. The application of connected component labeling algorithm

on Figure 1-6 (a) is shown in Figure 1-6 (b).

(@) (b)
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Figure 1-6 (a) An example of a binary image including three connected components. (b) The labeled

connected components.

1.7 Simple Region Growing (SRG) Algorithm

Region growing® is a simple region-based image segmentation method which is initialized
with selecting some seed points from the region of interest. The seed point selection is then
followed by examining the neighboring pixels to determine if they should be added to the
region. The initial seeds required for beginning the segmentation process can be selected

manually or automatically, while each seed can be a single pixel or a group of pixels. Here,
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we assume the number of initial seeds 1s N which are stored in N sets of S1, S2, ... and
SN. Let A contain all pixels which are adjacent to at least one of the pixels in the seed sets,
S;’s:

N N
A={x$USi|nbr(x) nUsiqe(z)} 1-1)
i=1 i=1

Where nbr(x) is the set of all immediate neighbors of x. At each step during the
segmentation process, one pixel from A is selected and examined based on a homogeneity
criterion to decide if it should be added to one of its neighboring regions, i.e. S;’s. To do
so, first the pixel’s neighboring regions are identified. S; is a neighboring region of x if
nbr(x) N Si # @. Next, the homogeneity criterion is tested on the pixel. In Adams and
Bischof®®, the criterion is to choose a pixel whose grey-value is closest to the average gray-
value of one of its neighboring growing regions. This criterion ensures that each segmented
region is as homogeneous as possible. If the examined pixel passes the homogeneity
criterion, it is added to its neighboring region while A and corresponding neighboring
region are updated. This process continues until all the pixels in the image are allocated to

one and only one of the growing regions.

1.8 Circle Hough transform

The Hough transform is a feature extraction technique suitable for features of a particular
shape which can be specified in some parametric from. The feature detection is based on a
voting procedure which finds the local maxima in a so-called accumulator space in which

the objects are represented in their parametric form.

Lines and circles are two groups of objects which can be identified in an image using the
Hough transform. For instance, a circle with radius R and center (a, b) can be described

with the parametric equations:
(x—a)*+ (y—b)?> =R? (1-2)

The Hough transform begins by creating an accumulator array with the same size as the

number of unknown parameters, i.e., three, in the case of circles. The 3D parameter space
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is hard to implement, as such, the circular Hough transform is usually performed with fixed
parameter R, making the parameter space 2D. Imagine the R parameter is fixed, i.e. we
know the radius of circle we would like to find in the image. According to (1-2), for each
non-zero pixel (X, y) in the original image, its representation in the parametric space is a
circle with center (x, y). The intersection point of all such circles in the parametric
(accumulator) space corresponds to the center of original circle. To find the intersection
point, we use the accumulator array which keeps track of the number of times the circles
pass through each point in the parametric space. The local maxima point, i.e. the
intersection of circles in the Figure 1-7 (b) is the center of circle shown in Figure 1-7 (a).
We can find multiple circles with the same radius by looking for all local maxima in the
parametric space. In the case of unknown circle radius, we can iterate through possible
radii, using the same technique described for fixed R. In this case, the parametric space is

3D and the circle can be found by finding the local maxima in the 3D accumulator array.

(@) (b)

Figure 1-7 (a) An image of the original circle. (b) The parametric representation of the original circle. The

local maxima point, i.e. the intersection of circles is the center of original circle.
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1.9 The Theory of Elasticity
1.9.1 Finite Elasticity

The theory of elasticity deals with the elastic materials and their deformation. More
specifically, it describes the material’s mechanical behavior and its deformation in the
presence of external force. In general, the deformation of an elastic object geometry can be
represented with the schematic shown in Figure 1-8, where to and t denote the undeformed

and deformed states, respectively.

Figure 1-8 A general elastic object at undeformed (time to) and deformed (time t) states.

As shown in this figure, each point P(to) at position X inside the undeformed geometry, is
relocated by deformation field u(X,t) to its new position x(X,t) and its new coordinates is
denoted by P(t). As such

x(X,t) =X+ulX,t) (1-3)

Applying the differential calculus principles on Equation (1-3) we can write

dx = dX + (Vu)dx (1-4)
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Where the displacement gradient Vu is defined as

du, Odu, OJu,

|
kax1 0X, 0X;

dus Jduz Jdus
0X, 0X, 0X;

Ju, OJdu; OJduy

X, 0X, 6X3\‘
I
/l

Using the tensor notation, Equation (1-3) can be written as
dx = FdX (1-6)

In Equation (1-6), F denotes the deformation gradient tensor. Using Equation (1-4), F is

defined as:
F=I+Vu (1-7)

where 1 is the identity tensor. To calculate the strain tensor, the relationship between the

length of dx and dX is calculated using the dot product of Equation (1-6):

ds? =dx.dx =dX.CdX (1-8)

where ds is the length of dx. In Equation (1-6), C is the right Cauchy-Green deformation

tensor and it can be written as:
C=F'F (1-9)

Equation (1-8) indicates that when C=l, the length of dx and dX is the same, implying that
the object has gone only through rigid body motion. The right Cauchy-Green deformation
tensor can be expressed in terms of displacement gradient using Equation (1-7) and the

tensor calculus principles:

C=1I1+Vu+ (VuT + (Vu)T(Vu) (1-10)
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If the tensor E is defined as

E==[Vu+ (Vuw)T + (Vu)T(Vu)] (1-11)

N| =

The right Cauchy-Green deformation tensor can be summarized as:
C=1+2E (1-12)
In Equations (1-11) and (1-12), E is the Green-Lagrange strain tensor, and its relation to

deformation gradient tensor, F, is obtained using Equations (1-9) and (1-11) :

E==[FTF-I1] (1-13)

N[ =

1.9.2 Infinitesimal versus finite (large) deformation

Depending on whether the material is going through small or large deformations, Equation
(1-11) can be used differently. When the deformation and consequently its partial
derivatives are very small, the components of (Vu)T(Va) are infinitesimal and in the

Cartesian coordinates system, E can be reduced to:

E= %[Vu + (VT (1-14)

c 1 <0ui %

y=7\ax, " axi)'l'] Shes 4o

In case of large deformations, Equation (1-11) cannot be simplified. In this research
project, we used a finite element solver called ABAQUS. It is noteworthy that ABAQUS
by default uses Equation (1-15) for strain. When the deformations are large, the geometric-
nonlinearity option must be set on in ABAQUS to use the Green- Lagrange strain tensor
E.

1.9.3 Stress Tensor and Principle of Linear Momentum

In this section, we first introduce the components of Cauchy stress and then derive the

differential equations of motion for an infinitesimal volume of the continuum material
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undergoing deformation. Figure 1-9 depicts a very small cubic particle within the elastic

material. In this Figure, e; , j = 1,2,3 are the unit vectors defined normal to the faces of the

cube and t denotes the internal traction vector defined as:

t—dF 1-16

teZ(XIJXZ + MZJXB)

T /' t—EB(XerQJXE)
X2 t—gl(Xsz:Xa) AX2
.‘__
AX]_ | b-t&‘l(‘}i"l + AXerZJXEL)
L }z(a
X1 =
X3 \ 4
Coa(Xy, X2, X3 + AX5) t_oa (X1, X5, X3)

Figure 1-9 A very small cubic particle within the elastic material.

where dF is the force applied to the differential area dA. The relationship between the

components of Cauchy stress (true stress) and the tractions vectors, t,;S is given by:

te1 = 01161 + 01283 + 01383
tep = 03161 + 0226, + 02363 (1-17)
te3 = 03161 + 03283 + O33€3
The Newton’s law of motion should be satisfied for the small volume of continuum. Using

the Cartesian coordinates systems for the cubic volume and assuming that Ax; — 0, we can

write:

at, dt,, Jt,,
B = 1-18
dx, + dx, + 0x; TP pa ( )
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where B is the body force per unit mass through the continuum, p is the mass density at
position x; representing the cube, and a is the acceleration vector at point x;. Using (1-17),
this equilibrium equation can be written in terms of Cauchy stress tensor components as:

aO'ij

+pB;=pa; i,j=1,2,3 (1-19)

The equivalent form of Equation (1-19) in tensor format is:

dive + pB = pa (1-20)

The deformation of a continuum body is described with this last relationship which is the

well-known Cauchy’s equation of motion.

1.9.4 Linear Elastic Material

The five fundamental principles of continuum physics, including the principle of
conservation of mass, the principle of linear momentum, the principle of angular
momentum, the principle of conservation of energy, and the entropy inequality, are used
to describe the mechanical response of an elastic material which undergoes specific loading
and boundary conditions. In addition to continuum physics principles, the material’s
intrinsic mechanical properties such as its stiffness, compressibility, and its active response
are required for determining the material’s deformation. In continuum mechanics, the
material’s intrinsic mechanical behavior is described using the constitutive law which
describes the relationship between stresses and strains generated in the continuum body.
The relationship between the stress and strain may be linear or nonlinear. In the linear case,

which is the simplest material model, the constitutive law is the Hooke s law:

0ij = Cijri€n (1-21)
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where o;; are the Cauchy stresses, g, are the infinitesimal strain tensor components
introduced in Equation (1-15) and C;; are the components of the elasticity tensor, which

is a fourth-order tensor with 81 coefficients. The elasticity tensor can be reduced to 21
independent coefficients by applying the continuum mechanics principles and symmetry.

The Hooke’s law can be simplified for an isotropic linear elastic material as:
O—ij = Agkké‘ij + Zﬂgij (1 - 22)

where A and u are Lame’s constants and §;; is Kronecker delta. The equivalent form of

Equation (1-22) in tensor form is:

g = /13](](1 + 2.[18 (1 - 23)

Lame’s constants can be written in terms of Poisson’s ratio and Young’s Modulus as:

1= vE _ E
T a+rna-2v)° HFT2a+v

(1-—24)

The mechanical response of an isotropic linear elastic material, under specific loading
conditions can be described using Equations (1-23) and (1-20).

1.9.5 Hyper-elastic material

The material’s mechanical response can be non-linear. Such non-linearity might be an
intrinsic characteristic of the material or a response to large (strain over 5%) deformations
that redistributes the internal forces within the material. The latter is called geometric
nonlinearity and can be expressed by linear elastic materials too. Hyper-elasticity is used

to describe materials that express both types of nonlinearity.

Theoretically, a hyperelastic material is defined based on this postulation that the strain
energy per unit volume of the material’s reference geometry can be defined using a

Helmholtz free-energy function such as U. For cases where U solely depends on the
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deformation gradient tensor, F, or other strain tensors, or strain scalar invariants, it is called

the strain energy function denoted as U(F).

The material’s mechanical behavior is characterized by the strain energy function. The
Cauchy stress tensor (true stress) can be derived based on the strain energy function for a

homogenous hyperelastic material as:

. dUR)
o=] 1F—dF (1-25)

where J is the volume ratio which can be written in terms of the deformation gradient tensor

as:

] = det(F) (1-26)
For an incompressible material, the relation (1-26) can be written as:

dU (F)
dF

o=—pl+F det(F)=1  (1-27)

where p is an indeterminate Lagrange multiplier which can be characterized as a
hydrostatic pressure. It is noteworthy that p can be determined based on the equilibrium
equations and boundary conditions defined for the hyper-elastic material. For isotropic
hyperelastic material, the following constitutive law can be derived based on the strain

energy function®®:

—2‘1IaUI+(aU+IaU)B aUBZ 1-28
o=2] [3013 FTARRETA al, ( )
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Equation (1-28) is considered as the basis for defining constitutive laws for different hyper-
elastic behaviors. In this equation, U is a function of scalar invariants, i.e. I, I, , and I3,

which are defined as:

11 = tT‘(B) = 112 + 122 + 132 (1 - 29 - a)
1
=5 [(tr(g))z - tr(BZ)] = 1207 + 22257 + 24,257 (1-29 - b)

I; = det(B) = J% = 1,%1,%15° (1-29-0¢)

where 44, 1,, and A are the principle stretches and B is the left Cauchy-Green deformation

tensor defined as:

B=FF"  (1-30)

Equation (1-28) can be used for derivation of constitutive law of isotropic hyper-elastic

materials provided that the strain energy function is known.

1.10 Principal Component Analysis

Principal component analysis (PCA) is a well-known technique for dimensionality
reduction, where only strong patterns in the data sets are maintained® %8, The
dimensionality reduction is performed through finding a reduced linear subspace which
maintains most of the variability of the data. For a given set of data on n dimensions, the
reduced linear subspace is a new coordinate system, formed by d orthogonal vectors which

are linear transformations of the original data points, i.e. d < n.

According to Hotelling’s definition of PCA®®, the principal components of data vectors
x;,1 € 1...t, are the d orthogonal vectors which maintain the maximal data variance when
the data is projected to those vectors. Let U; be the first principal component having the

maximum variance expressed by x;,i € 1...t. Given an n x t matrix X, which has t
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columns of n-dimensional centered observations, the first principal component, U,, can be
expressed as a linear combination of X:

U, =w'X (1-131)
where w = [w; ...w,,] is the weight vector. As such, the variance of U, is given by:
var(U;) = var(w'X) = wTSw (1-32)

where S is the covariance matrix of X. To find the proper w which maximizes var(U,),

we choose w to maximize w’ Sw under the condition that it has a unit length:
max w’Sw (1-33)
subject towTw =1
The optimization problem is solved using a Lagrange multiplier a:
Lw,a) =wlSw —aq,(wTw—-1) (1 —34)
Differentiating with respect to w gives n equations,
Sw = aq;w (1-35)
By pre-multiplying both sides by w” we have:
wisw=a,wiw=0a;, (1-236)

The last equation clearly indicates that a; and w are an eigenvalue and eigenvector of S
and var(U,) is maximized only if a; is the largest eigenvalue of S. As such, the reduced
linear subset which maintains the maximum variance expressed by data is formed by d

dominant eigenvectors of S, the covariance matrix of X.

1.11 Neural Networks®°9:60

Acrtificial Neural Networks (ANNSs) are mathematical models mimicking the way the
human brain processes the information. The basic component in an ANN is the neuron.
Each neuron has inputs, on which it applies a function to compute an output. Depending

on where the neuron is in the ANN, the inputs come from other neurons or from an external
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source. Each input has a weight (w) which describes its relative importance compared to
other inputs. The neuron calculates the output by applying a function f on the weighted

sum of its inputs. Figure 1-10 depicts an example of a neuron.

Input 1: X1 Output

[nput2: X2

output of neuron =Y = f(w. X; + wo. X2 + b)

Figure 1-10 A single neuron

As shown in Figure 1-10, the neuron applies the activation function f on the weighted sum
of its inputs, X1 and X2 and outputs the result. The neuron shown in this figure has a bias
input, b, in addition to its actual inputs. The main function of this bias is for shifting the
activation function which may be necessary for successful training. To be a good
representative for real world applications, the activation function is usually a non-linear
function. Some examples of activation functions are Sigmoid, tanh, and ReLU functions
shown in Figure 1-11. The Sigmoid functions is described as:
1

O'(X) =m (1—37)

As such, the output of Sigmoid is between 0 and 1. The tanh function takes a real-valued
input and squashes it to the range [-1 1]. This function can be written as:

tanh(x) = 20(2x) — 1 (1-138)

The ReLU stands for Rectified Linear Unit and is defined as:



f(x) = max(0, x)

(@)

Sigmoid

(1-39)
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Figure 1-11 The most common neuron activation functions. (a) Sigmoid, (b) tanh, (c) ReLU.
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1.11.1 Feedforward neural network

The first and simplest ANN is the feedforward network which has multiple layers, each
containing multiple neurons. Figure 1-12 depicts an example of feedforward network. As

shown in this figure, nodes from adjacent layers have connections between them.

Input layer Hidden layver Output layer

Output 1

Output 2

Figure 1-12 An example of feedforward neural network.

Three groups of nodes form the feedforward neural network. The input nodes pass the
information from the outside source to the network. These nodes do not perform any
computation on the input data. The hidden layer, which is named hidden as it does not have
direct connection with the outside world, performs computations on the input data and
transfer them to the output layer. A feedforward network can have multiple hidden layers.
Similar to the hidden layer, the output layer is responsible for computations. The output
layer transfers information from the network to the outside world. In the feedforward
network, the information moves only forward, from the input nodes, through the hidden
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layer, to the output layer. Single-layer perceptron is the simplest feedforward network
which lacks the hidden layer while a Multi-Layer Perceptron (MLP) has one or more
hidden layers. The advantage of MLP over a single layer perceptron is that MLP can learn

non-linear functions while a single layer perceptron can only learn linear functions.

1.11.2 Training MLP: The Back-Propagation Algorithm

The Multi-Layer Perceptron is trained using a method called the Backpropagation
algorithm. This training algorithm uses the gradient descent method to find the network
weights which minimize the squared error function. For a sample output neuron, the

squared error function is:
1
E=5(t-y) (1 —40)

where E is the squared error between t, target output, and y, actual output of the neuron.
The coefficient % is meant to cancel the exponent when differentiating. The
Backpropagation algorithm requires using an arbitrary learning rate which is multiplied to
the error. As such, using a constant coefficient does not change the outcome. The output

of each neuron j, is defined as:

0j = f(netj) =f <Z ijok> (1-141)
k=1

where net; is the weighted sum of the inputs to the neuron j, n is the number of inputs, w;;
is the weight between neurons i and j, and f is the activation function. The inputs to neuron
j can be outputs o, of previous neurons, or if j is in the first layer, the inputs x; to the
network. In general, the activation function f is nonlinear and differentiable. A commonly
used activation function is the Sigmoid function described earlier in (1-37), which has a

derivative of;
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Y = 1 1 2
—@=fH1-f@ (1-42)

The partial derivative of the error with respect to weight w;; is obtained using the chain

rule twice:

JE _ 0E 0o; Onet;
aWU B 60] anetj aWU

(1—43)

For the third factor in Eq. (1-43), only one term in the sum net; depends on w;;, so that:

dnet d -

J

= E ; = o 1—44
ow;;  dwy; <k=1 Wk]Ok) o ( )

For a neuron in the first hidden layer, o, is just x;. To explain why backpropagation requires

the activation function to be differentiable, note that the second factor in Eq. (1-43) is the
derivative of the output of neuron j with respect to its input which is simply the partial

derivative of the activation function f. For Sigmoid function:

60]' _ 6
Onetj B anetj

f(netj) = f(netj) (1 - f(netj)) (1-—45)

The first factor in Eq. (1-43) is straight forward to calculate for the output layer as o; = y

and

01
@E(t—}’)z =@-t) (1-46)

In the case of j being an arbitrary inner layer of the network, finding the derivative E with
respect to oj is less straight forward. To calculate the first factor, E is considered to be a

function of the inputs of all neurons L = u, v, ..., w receiving input from neuron j,
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0E(0;)  OE(nety, net,, ..., nety)

an aQi

(1-—47)

. : 9E(0; : . — .
Now, a recursive expression for % can be obtained by taking the total derivative with
J

respect to 0;.

aE_z JE oOnet; _z(@E do; ) 1— 48
60]-_ dnet; 0do; B aolanetlwﬂ ( )

leL leL

As such, by having the outputs o; of the layers which are closer to the output layer, the
derivative with respect to o; can be calculated. This gives a recursive method for

calculating the derivative of error with respect to all neurons.

To summarize:

oF _ o) 1—-49
ow;; jor - ( )
with
0E OJo; (Oj - tj)oj(l - 0]‘) if j is an output neuron,
J

6. = — =
7 0o; Onet; (Zz L6lwﬂ> oj(l - oj) if jis an inner neuron.
€

To update the weight w;;, the gradient is multiplied with a learning rate, «, and -1, to
calculate the change in weight, Aw;;. The change in weight is then added to the old weight

to calculate the new weight:
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0E
AWij = —am
—aoi(oj - tj)oj(l — oj) if jis an output neuron,
= 1-50
—Qao; (Zz 51sz) Oj(l — oj) if j is an inner neuron. ( )
€L

Note that the negative sign determines the direction of a minimum, not a maximum, of the

error function.

1.12 Research Objectives

Hypothesis: A tumor motion tracking system developed based on the lung biomechanical
model incorporated into a radiation therapy system can be used to improve lung cancer

treatment outcome.

The goal of this thesis is to develop a biomechanics-based real-time tumor tracking
algorithm. More specifically, the focus of this thesis is on algorithm development and
providing a proof of principle for the feasibility of using a biomechanics-based tumor
tracking approach. There are two challenges associated with using biomechanical
modeling for real-time tumor tracking. The first challenge is how to update the lung
boundary conditions in real-time and the second challenge is associated with FEA speed.
This thesis addresses the first challenge. The second challenge can be addressed using GPU
programming and model reduction methods which is not within the scope of this thesis. As
such, the goal of this thesis is to develop and test a pipeline for tracking lung tumors using
the biomechanical modeling approach. The breakdown of the research objectives to

achieve this goal is formulated as:

1) To develop automatic image segmentation methods for deriving the required
information for biomechanical modeling.

2) To develop an accurate lung biomechanical model designed specifically for tumor
tracking.

3) To develop a compact form mathematical model of diaphragm motion required for
updating the lung biomechanical model in real-time.
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4) To develop functions (e.g. Neural Network-based functions) for estimating the lung

boundary conditions from chest motion data.

The reader may notice that different number of subjects are used in each study, and in some
studies the number of patients is small. First, all these research projects are proof of
principle studies rather than being comprehensive clinical studies. While the number of
patients used in these studies is sufficient for our goal, further studies should be conducted
to assess the algorithm performance on larger data sets. Also, the main reason for having
small and different subject numbers is that in each study, we used different criteria to select
the patients. For instance, for diaphragm segmentation we needed subjects with CT images
covering the entire diaphragm. In the second study, which was on lung biomechanical
modeling, we selected subjects with a tumor in the right lung to avoid complications caused
by the heart motion. Also, the results of the second study are extremely sensitive to having
image artifacts close to the diaphragm. As such, we had to exclude those cases too. In the
third study, which was on diaphragm motion modeling, we picked subjects with minimum
image artifact close to the diaphragm. Finally, the fourth study uses the same subjects used
in the second study plus two more subjects used for assessing the algorithm performance

for inter-fraction motion variation prediction.

1.13 Thesis Roadmap

1.13.1 Chapter 2 - Anatomy-based algorithm for automatic
segmentation of the human diaphragm in non-contrast CT
images

A fully automatic algorithm was developed in ITK for segmentation of the full human

diaphragm required for biomechanical modeling. ITK is an open-source, cross-platform

system that provides developers with an extensive suite of software tools for image
analysis. Developed through extreme programming methodologies, ITK employs leading-
edge algorithms for registering and segmenting multidimensional data. The algorithm has
been tested on nine data sets and the results are favorable. Aside from segmenting the full
human diaphragm, the algorithm segments the diaphragm surrounding organs, including
the lungs and ribcage which are required for lung biomechanical modeling. As such, our
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first research objective was met in this chapter. This chapter is adopted from a research
paper with the same name by Elham Karami, Yong Wang, Stewart Gaede, Ting-Yim Lee,
and Abbas Samani published in J. Med. Imag. 3(4), 046004 (Nov 22, 2016).

1.13.2 Chapter 3 - In-vivo lung biomechanical model for effective

tumor motion tracking in external beam radiation therapy
A lung biomechanical model was developed for simulating the lung deformation and
tracking the tumor motion. The proposed FE model uses a novel approach for modeling
the tissue incompressibility parameter and boundary conditions leading to high accuracy
in tumor motion/ deformation estimation. This chapter is adopted from a research paper
with the same name by Elham Karami, Stewart Gaede, Ting-Yim Lee, and Abbas Samani.
It is currently being under review in Medical Physics Journal.

1.13.3 Chapter 4 - Novel PCA-based Model of Human
Diaphragm Motion Derived from 4D CT Images for Effective

Tumor Motion Management
In this chapter, a novel PCA-based model is proposed for representing the diaphragm
motion in a compact mathematical form required for real-time estimation of diaphragm
motion from chest motion data. The model was developed using 4D-CT data sets obtained
from 10 cancer patients. The results indicate favorable accuracy, paving the way towards
real-time estimation of lung boundary conditions from chest motion data. This chapter is
adopted from a research paper with the same name by Elham Karami, Stewart Gaede, Ting-

Yim Lee, and Abbas Samani. It is being under review in J. Med. Imag.

1.134 Chapter 5 - A Neural Network Approach for Biomechanics-
based Tracking of Lung Tumors during External Beam Radiation

Therapy

In this chapter, a NN-based approach is proposed for estimating the diaphragm motion and
trans-pulmonary pressure from chest motion data. The performance of NNs for addressing
the intra-fraction variations was validated by testing their performance on three subjects.
In addition, the model performance for predicting the inter-fraction variations of
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respiratory motion was tested on two subjects. This chapter is adopted from a research
paper with the same name by Elham Karami, Stewart Gaede, Ting-Yim Lee, and Abbas

Samani. It is being under review in Journal of Expert Systems with Applications.

1.13.5 Chapter 6 — Conclusions and future work
In this final chapter, an overview of the overall findings and conclusions of the thesis are
summarized while the limitations of the algorithms are discussed. This section concludes

by suggesting future directions and studies which can further build upon this work.
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Chapter 2 «  Anatomy-based algorithm for automatic
segmentation of human diaphragm in non-contrast CT

Images »

2.1 Introduction

The diaphragm is a muscular and tendinous septum which has two important roles of
separating the thorax from the abdominal organs and serving as the primary muscle of
respiration. Accurate delineation of the diaphragm in medical images is required in a
number of biomedical and clinical applications. For instance, it is used in anatomical and
functional assessment of the diaphragm®. Segmentation of the diaphragm in medical
images can also simplify segmentations of other abdominal organs such as the liver®.
Mechanical modeling has recently emerged as an attractive approach for computer assisted
medical intervention. Examples of such applications where the diaphragm geometry is
required for modeling include lung radiation therapy and liver intervention®1°. Diaphragm
segmentation is not straight-forward as routinely acquired thoracic non-contrast CT images
have low contrast such that the diaphragm image intensity distribution is similar to that of

the surrounding organs such as the heart, liver and spleen.

While there is a plethora of segmentation algorithms in the literature, most algorithms fall
into one of three approaches: edge based, region-based and classification-based. None of
these approaches or their combinations are suitable for diaphragm segmentation due to its
small thickness, heterogeneity and lack of contrast with surrounding organs. As such, most
reported diaphragm segmentation methods in the literature use modeling with a priori
knowledge of the diaphragm's anatomy to delineate its surface in non-contrast CT images.
One of the first diaphragm segmentation algorithms was proposed by Beichel et al*! where
they employed a 3D version of the Active Appearance Model (AAM) proposed earlier by
Cootes et al.'? to segment the left and right domes of the diaphragm. Another algorithm
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was proposed by Zhou et al.®* where they modelled the diaphragm as a thin plate spline
which passes through the bottom surface of the lungs. A similar approach to that of Zhou
et al. was proposed by Rangayyan et al.}* where they modelled the diaphragm domes as
quadratic surfaces. The results obtained by this group are more accurate as they used Active
Contours® to pull the initial approximate diaphragm surface towards its actual surface in
the image.

Recently, a method was proposed by Yalamanchili et al.!® where they modelled the
diaphragm as a directed graph and solved the segmentation problem by determining the
optimal surface in a volumetric graph. While applications such as biomechanical modeling
require the entire diaphragm as well as accurate diaphragm boundary conditions, the only
group who attempted to segment the entire diaphragm was Rangayyan et al. However, as
Rangayyan et al. stated in their discussion, their algorithm overestimates the lumbar part
of the diaphragm and the details of diaphragm attachments to the ribcage and spine are
missing in the final result.

In this paper, a fully automatic algorithm is presented for segmentation of the entire
diaphragm. This algorithm is a substantially refined and more accurate version of the
algorithm we presented recently!’. In the previous algorithm, the feasibility of full
diaphragm segmentation was demonstrated by applying a conceptual version of the
proposed algorithm on one case. In this study, the enhanced algorithm was applied to 9
diaphragm cases and statistics of Housdorff distance, Mean Distance to the Closest Point
(MDCP), Average Symmetric Absolute Surface Distance (ASASD) and Symmetric RMS
Surface Distance (SRMSSD) are presented. The main idea of the proposed method is that
although the diaphragm is not clearly visible in non-contrast CT images, it has contact
surfaces with its surrounding structures which can be segmented reasonably accurately in
these images. As such, the entire diaphragm can be segmented by finding its contact
surfaces with the surrounding structures followed by applying a B-spline approximation
method to connect them.

Section 2.2 provides necessary information about the human diaphragm anatomy which
was directly used in the algorithm. Section 2.3 describes the segmentation method while

Section 2.4 presents segmentation results obtained in this study. Section 2.5 summarizes
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the findings, strengths and limitations of the proposed algorithm and finally conclusions

are presented in Section 2.6.

2.2 Diaphragm Anatomy

Given that the proposed segmentation algorithm relies on anatomical information of the
diaphragm and its surrounding structures, this section describes relevant anatomical
features of the human diaphragm. The diaphragm is a dome-shaped sheath which separates
the thorax from the abdomen by serving as the floor of the former and roof of the latter.
Figure 2-1 (a) is an inferior view of the diaphragm with its attachments to the surrounding
structures. As shown in this figure, the periphery of the diaphragm consists of muscular
fibers which originate from the posterior surface of the xiphoid process, 6" to 12" ribs, the
costal cartilage, and the lumbar vertebra. The central portion of the diaphragm which is
attached to the pericardium is tendinous. The diaphragm has several openings, one of which
is located at its posterior part to allow the descending aorta to pass from the thoracic
through to the abdominal cavities®. In fact, the diaphragm is attached to the lumbar
vertebrae by means of two diaphragm pillars that wrap around the aorta as shown in Figure
2-1 (a). Figure 2-1 (b) illustrates an axial CT image acquired from a lung cancer patient. In
this image, the aorta and diaphragm'’s pillars are shown with arrow heads. Figure 2-1 (c)
illustrates a coronal view of the diaphragm where the diaphragm domes are seen in contact
with the bottom surface of the lungs while the diaphragm'’s central tendon is attached to the
pericardium. This figure also illustrates the circumference of the diaphragm originating
from the ribs, while its lateral sides are located adjacent to the 6" to 12" ribs. The relative
positions of the lungs, heart and lower 7 ribs with respect to the diaphragm are depicted in
Figure 2-1 (d) where a coronal slice of a human chest CT scan is shown.
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Figure 2-1 (a) A schematic view of the human diaphragm where surrounding structures (e.qg. ribs and aorta)
are shown, (b) an axial CT image showing the aorta and diaphragm pillars, (c) a schematic view of the human
diaphragm and (d) a coronal CT image showing the relative positions of the thoracic organs and abdominal

organs.

It is notable that the relative position of the diaphragm to its surrounding structures does
not change significantly during respiration. As such, it is expected that unlike with the
Active Appearance Model approach!, the shape variations of the diaphragm during
respiration do not affect the accuracy of this proposed algorithm, rendering it suitable for

segmenting the diaphragm in all phases of respiration to assess its function.



50

2.3 Methods

2.3.1 Data Acquisition

The 3D CT images used in this study correspond to the end exhalation phase of 4D CT
data sets acquired from the thorax and abdomen of 9 cancer patients. The patients were
scanned using a 16-slice Philips Brilliance Big Bore CT scanner (Philips Medical Systems,
Cleveland, USA) operating in helical mode. The scanning parameters are: 120 kVp and
400 mAs/slice for tube potential and current, respectively. The pitch of the couch depends
on the patient's breathing period and it was set to ~ 0.1. The intraslice pixel size of the data
varied from 0.98mm to 1.29mm while slice thickness was 3mm. The 4D CT images were
sorted into 10 respiratory phases using the Real-time Position Management™ (RPM)
system. In this study, efforts were made to include patients with various anatomies and
disease stages to investigate the robustness of the algorithm. For example, some patients
had lung and abdominal tumors located close to the diaphragm while some others had
severe lung diseases such as advanced COPD. The next section describes the segmentation

algorithm in detail.

2.3.2 Diaphragm Segmentation Algorithm

A step by step approach is employed in the proposed algorithm to segment the entire
diaphragm. Figure 2-2 illustrates an overview of the segmentation process. As shown in
this figure, the segmentation procedure begins by segmenting the diaphragm’s surrounding
organs. This is followed by segmenting each organ’s contact surface with the diaphragm.
Finally, the entire diaphragm’s surface is obtained by assembling the delineated contact

surfaces using multi-level B-spline approximation method.
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Figure 2-2 Block diagram of the proposed segmentation method.

2.3.2.1 Image denoising

Before beginning the segmentation process, all CT images used in this study were first
filtered by a curvature flow filter which was proposed by Malladi et al.’®. The advantage
of using this filter over other denoising filters is that the boundaries remain sharp and do
not become blurred. In fact, the smoothing occurs only within a region, which is very
important in the context of the proposed segmentation method. The main idea of this image
denoising method follows the level sets concept of viewing the pixel values as topographic
maps. The very small contours in the image, which correspond to spikes of noise, can be
removed by letting each contour undergo motion by a curvature obtained from solving the

following anisotropic diffusion equation:

I, = F(o)|VI|. 2-1)
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where I is the image, k is the curvature and F is the speed function.

2.3.2.2 Segmentation of the ribcage and lungs

As described in Section 2.2, the circumference of the diaphragm runs along the 6™ rib
through to the 12 rib as well as the costal cartilage. As such, the entire ribcage has to be
segmented to find its contact surfaces with the diaphragm. For this purpose, after removing
noise from the CT images, the rib cage was roughly segmented by thresholding the image
for values greater than 120 HU to capture all the bones and cartilage in the image. This
threshold value was obtained from careful assessment of the image histograms of all 9
cases to find a threshold value for separating other soft tissue from the bone and costal
cartilage. Next, connected component analysis was used to choose the largest component
of the resulting image which corresponds to the rib cage. In order to segment the lungs, the
CT images were thresholded at values between -950 HU and -300 HU. It is noteworthy
that although the average density of lung tissue is about -700 HU and is never denser than
-500 HU, we used a broader density range obtained from the image histograms to include
the fibrotic tissue. Next, the lungs were found by searching for the largest connected
component of the image which is located inside the ribcage. The result includes the left
and right lungs as well as the bronchial tree. Since the separation of the left and right lungs
is necessary for the proposed diaphragm segmentation algorithm, the bronchial tree must
be segmented and then subtracted from the output obtained in the previous stage. Several
algorithms have been proposed for bronchial tree segmentation. Most of these algorithms
use an extended version of the region growing segmentation method to delineate the
pulmonary airways?®24. In the proposed algorithm, the main aim of bronchial tree
segmentation is to separate the left and right lungs while fine details of the bronchial tree
are not necessary for diaphragm segmentation. As such, the original region growing
algorithm was used to segment the bronchial tree. In order to initialize the region growing
algorithm, the seed point was detected automatically by searching the CT axial slices one
by one, starting from the 1% axial slice. Figure 2-3 (a) illustrates the intersection of an
arbitrary axial slice of the CT image with the trachea being segmented. As shown in Figure
2-3 (b), the oval area of the trachea is usually present in the CT axial slices located above

the lung apex. Accordingly, the initial seed point for the region growing algorithm was
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detected by exploring the area of intersection to find a voxel with CT number smaller than
-950 HU. The -950 HU was used instead of the air CT number, -1000 HU, to account for
partial volume averaging. After separation of the bronchial tree and lungs, if the left and
right lungs remain connected even following bronchial tree removal, dynamic
programming can be used to separate the lungs from each other 2. However, in all the cases
used in this study, the left and right lungs were successfully separated after bronchial tree

removal.

() (b)

&—-‘

Figure 2-3 (a) The intersection area between the first axial slice of the 3D CT volume and the trachea being

segmented by image thresholding used to find the initial seed point for bronchial tree segmentation. (b) The

red box depicts the trachea (oval area) which is usually present in the first axial slice of the CT image.
2.3.2.3 Heart segmentation

As part of this study, we developed a fast and robust method for heart segmentation which
is described in this section. Given that the heart is located between the lungs in coronal
slices, it can be located using the segmented lungs. After locating the sub image which
contains the heart, it is thresholded for values smaller than 35 HU to segment the heart’s
surrounding tissue. This threshold value corresponds to the maximum of the sub image
histogram which is ~35 HU for all 9 cases. The resulting thresholded sub image, which is
shown in Figure 2-4 (a), is a binary image in which the heart appears like a cavity. In the
next step, zero voxels in each of the resulting coronal binary images are labeled as
“contained” or “uncontained” voxels. A “contained” voxel is a voxel which is bounded by
at least 4 non-zero voxels, otherwise it is labelled as “uncontained”. It is noteworthy that

using the aforementioned criteria for labeling the voxels, a voxel which is labeled as
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“contained” is not necessarily inside the heart. The result of this labeling step is shown in
Figure 2-4 (b) where the “contained” voxels are shown in blue while the “uncontained”
voxels remain black. Finally, the heart is segmented by finding the largest connected
component of the “contained” voxels in order to eliminate “contained” voxels outside the
heart. The resulting surface is then smoothed by morphological image closing. The
connected components of the “contained” voxels are shown with different colors in Figure
2-4 (c) while the segmented heart is shown in Figure 2-4 (d). The heart boundary obtained
through the proposed segmentation algorithm may not always be smooth. Nevertheless, the
diaphragm segmentation algorithm remains effective as the segmented heart is used

indirectly to segment the heart’s contact surface with the diaphragm.

(@) (b)
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Figure 2-4 (a) A coronal sub-image containing the heart which has been thresholded for values smaller than
35 HU, (b) The zero voxels in the thresholded binary sub-image are labeled as “contained” (blue) and
“uncontained” (black) voxels, (¢) The color labeled connected components of the “contained” voxels, and

(d) Segmented heart overlaid on the CT image.

2.3.2.4 Delineation of descending aorta

According to Figures 2-1 (a) and 2-1 (b), the diaphragm is attached to the lumbar spine by
means of two tendinous pillars which wrap around the aorta. In order to segment this part
of the diaphragm, the descending aorta was segmented and used to find the position of the
diaphragm's lumbar part. The aorta segmentation has been tackled by many groups such as
Behrens et al. and Avila-Montes et al. who used Hough transform for this purpose?#.
Since segmentation of the entire aorta is not necessary in this context, the position of the
lumbar spine, which is the spine portion below the lungs, was used to find the approximate
location of the descending aorta. For this purpose, a volume around the spine which,
according to the human anatomy includes the aorta, was extracted from the CT image.
Next, Hough transform was used to find the aorta in each axial slice of the extracted

volume.
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2.3.2.5 Segmenting the diaphragm contact surfaces with adjacent anatomical
structures

In order to segment the diaphragm's contact surfaces with its adjacent structures, first, all

the segmented anatomical structures were dilated with a structuring element of size 1.

Segmentation of the contact surfaces between these structures and the diaphragm is

described in the following subsections.

2.3.2.5.1 Lung

As shown in Figures 2-1 (c), the diaphragm is in contact with the bottom surface of the
lungs. As such, the diaphragm domes were segmented by developing an algorithm which
uses the coronal slices of the CT image to find the arc shaped curves at the bottom surface
of the lungs in each slice. For each lung, the algorithm begins with reading the coordinates
of the voxels from one end of the lung's bottom surface. Based on the shape of the lung's
bottom surface in the coronal slices, the algorithm first finds 5 consecutive voxels which
have ascending height by marching towards the other end of the bottom surface. Once
found, they are stored as the first diaphragm voxels in that coronal slice. Finding more such
voxels is continued as long as the arc's peak is not reached. Once the height of a specific
voxel starts to decline, the criteria for choosing a voxel as the diaphragm's voxel changes
to having descending height. The application of this algorithm to the lung's most inferior

voxels is illustrated in Figure 2-5.

Figure 2-5 The diaphragm’s contact surfaces with both lungs obtained from applying an arc detection

algorithm on the most inferior voxels of both lungs.
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2.3.2.5.2 Heart

In order to find the heart-diaphragm contact surface, a narrow box around the bottom part
of the heart was considered and Canny edge detection method was used to segment the
diaphragm edges in this area. The size of the box is adjusted automatically for each coronal
slice by first finding the most left, right and inferior voxels of the heart in the coronal slice.
The coordinates of the box vertices are; (L+10, B-5), (L+10, B+5), (R-10, B+5) and (R-10,
B-5), where L is the most left, R is the most right and B is the most inferior voxel in each
coronal slice. The box coordinates and Canny filter parameters were obtained empirically
by testing all 9 cases and averaging between them. The Canny filter parameters were set
to: Lower Threshold = 8, Upper Threshold=10 and Variance=10. After applying Canny
edge detection to the area within the box, only the closest detected edge to the heart is
selected as the diaphragm’s contact surface with the heart. The result is shown in Figures
2-6 (a) and 2-6 (b).

Figure 2-6 (a) A sub-image (within the shown box) containing the heart’s contact surface with the
diaphragm, and (b) The segmented heart’s contact surface with the diaphragm obtained from applying the

Canny edge detection algorithm on the selected sub-image.
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2.3.2.5.3 Ribs, lumbar spine, and descending aorta

After segmentation of the ribcage and descending aorta, we used the same concept
described in Sec. 2.3.2.5.2 for heart segmentation to segment the contact surfaces between
the diaphragm and these organs. For that purpose, we first used morphological image
closing to combine the ribcage and aorta as shown in Figure 2-7 (a). Next, the image voxels
were labeled as “contained” and “uncontained” similar to what was done for the heart
segmentation, thereby, allowing the boundary between the “contained” voxels and closed
ribcage shown in Figure 2-7 (a) to be found. Finally, the inferior part of the obtained
boundary, which is located below the lungs, was found and selected as the contact surface

between the ribcage, aorta and diaphragm. The result is shown in Figure 2-7 (b).

(a) (b)

Figure 2-7 (a) Segmented ribcage and aorta after performing morphological image closing overlaid on the
CT image and (b) Axial section of the contact surface between the diaphragm, ribs, spine, and aorta.

2.3.2.5.4 Multilevel B-spline

For interpolation between the diaphragm fragments obtained to approximate its entire
surface, the B-spline approximation technique was used. However, it is known that a trade-
off exists between the surface smoothness and segmentation accuracy. As such, the
multilevel B-spline approximation proposed by Lee et al. was used for approximating the
diaphragmatic surface in order to circumvent the aforementioned trade-off?®. The

multilevel B-spline technique is based on the B-spline method of function
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fitting/approximation to a set of scattered data represented by P = {(x., y., z.)}. The
function z = f(x,y) which approximates P can be formulated as a uniform bicubic B-

spline function which is defined by a control lattice @ overlaid on a 2D plane as follows.

3

3
flx,y) = z By (s)Bi(£)P(i+)(j+1) » 2-2)

k=0 1=0
Wherei = |x]—1,j =1yl —1,s =x—|x|,l =y — |yl. By and B, are uniform cubic B-
spline functions. As such, function fcan be derived by solving for ¢;; that best

approximates the data in P. These control points can be determined by using a least squares

based approach, leading to:

_ By (s)B(t)z,
22=0 Zg=o(Ba(5)sz (t)z ,

The multilevel B-spline approximation is a hierarchical version of B-spline approximation

o (2-3)

technique. In this method, a hierarchy of control point lattices, @,, @, ..., @, are used to
find the approximation function f where 0 and h correspond to the coarsest and finest
lattices, respectively. The approximation process begins with applying the B-spline
approximation technique on the coarsest grid to find the general shape of the object which
is further refined in following steps. The function f;, obtained from the first step leaves a
deviation of A1Z, = z. — fy(x,, y.) for each point (x.,y,,z.)in P. In the following step,
the finer grid @, is used to find the function f; which approximates the deviation AZ.. As
such, f, + f; results in a smaller deviation for each point. Repeating this algorithm results
in a more accurate approximation of P.

The accuracy of the output depends on the size of the finest mesh or the largest level used
in the multilevel B-spline approximation method. In this study, the diaphragm portions
segmented in the previous steps were interpolated using B-spline interpolation method with
initial grid size of 4 and level 6, leading to favorable segmentation results.

The final step in this diaphragm segmentation algorithm is to obtain the end points of
diaphragm'’s attachments to the spine. It is known that the diaphragm's pillars are attached
to the third lumbar vertebra®®. As such, an algorithm was developed to find the location of

the third vertebra in the CT image by finding the location of the transverse processes of the
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third vertebra. For this purpose, first the start point of the right 12%" rib, where it is attached
to the spine, was found. Hence, a narrow volume with 40mm X 60mm cross section
located below and at the right side of this point was inspected from top to bottom to find
the third connected component. The location of the third lumbar vertebra was used to
determine the circumference of the diaphragm close to the spine.

The proposed algorithm was implemented using ITK. The desktop used in this study was

a core i7 intel, 2GHz. Parallel programming and multithreading was not used at this stage.

2.4 Results

Qualitative assessment: To validate the algorithm, all the images were manually
segmented by an experienced radiologist. Figures 2-8, 2-9 and 2-10 illustrate the results
obtained for three patients. The top row of each figure shows the automatically delineated
(blue) sections of the diaphragm overlaid on their manually delineated counterparts
(white). Figures 2-8 (a &b), 2-9 (a &b) and 2-10 (a &b) illustrate automatically delineated
coronal sections of the diaphragm overlaid on their manually delineated counterparts while
Figures 2-8 (c), 2-9 (c) and 2-10 (c) depict the same results for an axial slice of the
diaphragm. The results were evaluated by comparing the automatically segmented
contours with those segmented manually and independently by the radiologist. In general,
there is a very good agreement between the automatic and manually segmented contours.
The strong agreement exists close to the lungs, ribcage and aorta. As it is expected, the
errors mainly occur close to the heart and coastal cartilage due to the difficulties in
segmentation of these organs. However, only a small portion of the diaphragm is in contact
with the heart and coastal cartilage. As such, we expect that the overall accuracy is not

affected by these errors.
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(d) (€) (f)

Figure 2—-8 The results obtained for subject #1. The 1% row depicts automatically delineated (blue) sections
of the diaphragm overlaid on their manually delineated counterpart (white). (a) and (b) are coronal and (c) is
an axial view. The 2" row depicts 3D construction of the diaphragm surface. (d) front, (e) back and (f) top

views.
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Figure 2-9 The results obtained for subject #2. The 1% row depicts automatically delineated (blue) sections
of the diaphragm overlaid on their manually delineated counterpart (white). (a) and (b) are coronal and (c) is

an axial view. The 2" row depicts 3D construction of the diaphragm surface. (d) front, (e) back and (f) top

views.

(d) (€) (f)

o A\

Figure 2-10 The results obtained for subject #3. The 1% row depicts automatically delineated (blue) sections

of the diaphragm overlaid on their manually delineated counterpart (white). (a) and (b) are coronal and (c) is
an axial view. The 2" row depicts 3D construction of the diaphragm surface. (d) front, (e) back and (f) top

views.
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In Figures 2-8, 2-9 and 2-10, the bottom row of each figure illustrates different views of
the 3D surface of the patient’s diaphragm constructed using the automatic segmentation
technique. The Model Maker module in 3D slicer was used to visualize the 3D surfaces.
The model maker module is a pipeline of algorithms that start from the segmented image,
creates a binary label map from the segmented image, generates a marching cubes model

and runs triangle reduction and triangle smoothing algorithms.

Quantitative assessment: To assess the proposed technique’s accuracy, results of the
automatic segmentation of the 9 patients were compared to their manually segmented
counterparts. For this comparison, four different measures were used. The Housdorff
distance, mean distance to the closest point (MDCP), Average Symmetric Absolute Surface
Distance (ASASD) and Symmetric RMS Surface Distace (SRMSSD). Results obtained
from this comparison are summarized in Table 1. The Housdorff distance measure was
calculated for the entire diaphragm surface and for its superior portion. The superior
portion surface is the portion of the diaphragm that is in contact with the inferior surfaces
of the lungs. The latter Housdorff distance was calculated in order to facilitate comparison
with the diaphragm automatic segmentation techniques which segment only the
diaphragm’s upper surface. The table shows that the average MDCP is 2.55 mm, the
average ASASD is 2.06 mm, the average SRMSSD is 3.51 mm and finally, the average
Housdorff distance for the entire diaphragm and upper surfaces are 23.42 mm and 18.72

mm, respectively.

Subject  MDCP for Housdorff Housdorff Distance  Average Symmetric
entire Distance for for Diaphragm's Symmetric RMS Surface
diaphragm entire diaphragm  superior surface Absolute Surface  Distance
surface (mm) surface segmentation (mm)  Distance (mm)

(mm) (mm)

P #1 3.01 23.98 18.03 2.51 4.19

P #2 2.27 22.12 20.10 1.99 3.26

P #3 2.73 24.07 19.01 1.88 3.08

P#4 2.01 24.27 14.33 1.78 3.02
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P #5 2.88 22.44 21.21 2.33 3.98

P #6 3.03 2411 20.61 2.40 3.95

P #7 252 23.90 19.92 2.12 3.80

P48 2.04 23.01 17.00 164 3.01

P #9 2.43 22.86 18.23 1.93 3.30
Meant  2.55+0.39 23.42+0.81 18.72+2.13 2.0620.30 3.510.47
STD

Range  [2.01, 3.03] [22.12,24.27]  [14.33, 21.21] [1.64, 2.51] [3.01,4.19]

Table 2-1 Results summarizing the comparison between the automatic and manual segmentation of the
diaphragm of 9 patients using the mean distance to the closest point (MDCP), Housdorff distance, Average
Symmetric Absolute Surface Distance (ASASD) and Symmetric RMS Surface Distance (SRMSSD).

2.5 Discussion

A fully automatic anatomy-based algorithm was proposed for segmentation of the entire
diaphragm in non-contrast CT images which are the most common images used in the
clinic. The challenges associated with the diaphragm segmentation, such as its similar
tissue density distribution to its surrounding organs, are dealt with by using a priori
anatomical knowledge about human diaphragm. By relying more on the diaphragm’s
anatomy and less on its appearance in CT images, the proposed algorithm is robust to noise-
level and image contrast. An example of anatomical information utilized in the algorithm
pertains to the fact that a large portion of the diaphragm is in contact with the lungs and
ribcage. The lungs and ribcage have sufficient contrast with their surrounding regions in
CT images, rendering their segmentation less sensitive to noise level. Besides segmenting
the entire diaphragm and using the most accessible clinical images, the proposed algorithm
has two important features; (1) it is fast as it typically takes ~28 minutes using a core i7
desktop to segment a full diaphragm while manual segmentation by an expert took 5 hours
on average; (2) The algorithm is easy to implement; while it can be used by non-experts to
segment the diaphragm for various applications including biomechanical modeling or
function analysis. The proposed technique has a limitation pertaining to segmentation of
the sternal part of the diaphragm where the diaphragm is in contact with the costal cartilage

and the heart. The reason is that segmentation of the costal cartilage and heart is challenging
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due to their similar tissue density distribution to the surrounding anatomical structures. We
developed a reasonably accurate segmentation technique for the heart segmentation.
However, the accuracy of segmentation in that region is lower. Another limitation pertains
to a small group of subjects who have anatomical abnormalities. To address these
limitations, more rigorous algorithms should be used in the first step for segmenting the
diaphragm'’s surrounding organs which may increase the computation time. Concerning the
first limitation, since only a small portion of the diaphragm is in contact with the heart and
costal cartilage, accuracy in these regions does not affect the overall accuracy significantly.
As for the second limitation, the step by step nature of the proposed algorithm allows the
replacement of initial segmentation steps with more rigorous algorithms. However, as it
increases the computation time and the algorithm’s complexity, while only a small group
of subjects may benefit from that, developing a separate algorithm for such subjects is
justified.

The proposed algorithm might have a limitation regarding any kind of disease which affects
the diaphragm’s anatomy or the anatomy of its surrounding organs. In our data set, there
are cases where the anatomy of ribcage or aorta has been altered but the results are still
accurate as the diaphragm’s anatomy has changed in a similar way. We believe that as long
as the diaphragm is still in contact with its surrounding organs and those organs can be
segmented with the proposed segmentation methods, the proposed algorithm can be used

to segment the diaphragm effectively.

The quantitative results are listed in Table 2-1. There are four other groups who have
conducted studies on diaphragm segmentation. While the four methods proposed by those
groups are suitable for the applications they were designed for, none of them meets the
segmentation requirements for applications which involve the diaphragm’s mechanical
boundary conditions (e.g. biomechanical modeling of the diaphragm). The algorithm
proposed by Beichel et al. has two limitations. First, it was designed for segmenting the
diaphragm’s dome surface only and not the entire diaphragm. Second, their algorithm is
based on Active Appearance Models (AAM) which means it is sensitive to diaphragm
shape variations during breathing. The test data set they used for validating their algorithm

consists of 6 original and 2 computer generated data sets. Signed error between all voxels
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of the reference surface (ground truth) and the closest voxels of the model dome surface
was used to assess the segmentation accuracy. They reported an average signed error of
—0.16 + 2.95 mm for their complete data set. To facilitate comparison with this work, we
calculated the average signed error of our data set which led to a value of 0.18 + 0.08 mm
that compares well with the value of —0.16 + 2.95 mm. It is noteworthy that our results
correspond to the full diaphragm scenario while their results pertain to the diaphragm’s

upper surface only.

Unlike Beichel et al., the algorithms proposed by Zhou et al. and Yalamanchili et al. are
not sensitive to diaphragm shape variations. Both algorithms use the lung’s bottom surface
to find the diaphragm’s upper surface. The first algorithm takes advantage of the Thin Plate
Spline interpolation while the second algorithm uses a graph-based method to approximate
the diaphragm’s upper surface from the lung’s bottom surface. While both algorithms work
well for diaphragm’s upper surface segmentation, again they are not suitable for
applications where the entire diaphragm including its inferior boundaries are required (e.g.
diaphragm biomechanical modeling application). Yalamanchili et al. applied their
algorithm on 7 patients and reported an average Housdorff distance of 18.339 + 3.655
mm which is comparable with the Housdorff distance we have obtained for the superior
portion of our segmentation, 18.72 + 2.13 mm. Zhou et al. performed a step by step
validation scheme. In the first step, they used a threshold value to divide the results to two
groups of “good” and “poor”. In the second step, the average absolute shortest Euclidian
distance was used to assess the results for 30 subjects who were labeled as “good’ in the
1% step. They reported an average error of 2.97 voxels (1.8 mm) for the 30 patients they
selected from the “good” group. We believe that direct comparison between our results and
the results reported by Zhou et al. is not possible because they removed the poor results
from their study. Although we did not exclude the poor results from our data set, the mean
ASASD of our results is 2.06 mm which compares well with 1.8 mm, considering that we

segmented the entire diaphragm and not just its superior surface.

The results presented by Rangayyan et al. are closer to what is required for diaphragm

biomechanical modeling. However, as Rangayyan et al. state in their discussion, their
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algorithm overestimates the lumbar part of the diaphragm, where it is close to the spine.
This overestimation results in a different diaphragm shape compared to its real shape,
which can affect the accuracy of a respective diaphragm’s biomechanical model. In
addition, the results obtained by our group are more accurate than those reported by
Rangayyan et al. (MDCP=2.55 mm vs. MDCP=5.85 mm). It is noteworthy that their
segmentation goal is different from our segmentation goal and what they have achieved
satisfies their goal which is abdominal tumor segmentation. However, their results are not

satisfactory for diaphragm biomechanical modeling.

2.6 Conclusion

Segmentation with sufficient morphological details obtainable from the proposed
segmentation technique is a prerequisite for many biomedical applications. The major
application of the entire diaphragm segmentation is to develop accurate computational
biomechanical models of the diaphragm. Accurately segmented diaphragm can be easily
turned into a computational finite element mesh while its outline can be used to delineate
necessary boundary conditions of the model. In addition, the diaphragm computational
models can be used in various applications ranging from in-depth understanding of the
diaphragm’s physiology and developing effective diagnostic techniques of relevant
respiratory diseases to computer assisted clinical procedures such as lung cancer
radiotherapy and liver intervention. In depth understanding of the diaphragm’s physiology
can be achieved by biomechanical modelling of the diaphragm to quantify its contraction
forces and assess their variation throughout respiration cycle under normal and
pathological conditions. Lung cancer radiotherapy can also benefit greatly from accurate
biomechanical modelling of the diaphragm as a major driver of lung tumor motion during
the respiration cycle. In this case, the model can be integrated with the lung’s
biomechanical model to facilitate accurate prediction of the tumor motion, paving the way
for computer assisted motion compensation in the radiotherapy procedure. In addition,
considering that the diaphragm is an important landmark separating the thorax from the
abdomen, segmenting its surface can simplify localization and segmentation of the other

abdominal and thorax organs such as the liver.
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The results obtained in this study indicate that the proposed algorithm is capable of accurate

delineation of the entire diaphragm, paving the way for accurate biomechanical modeling

of the diaphragm necessary for many clinical applications.
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Chapter 3 « In-vivo lung biomechanical model for effective

tumor motion tracking in external beam radiation therapy »

3.1 Introduction

Lung cancer is the leading cause of cancer death in both men and women. While EBRT is
used extensively in treating lung cancer, it is associated with many difficulties due to
respiration induced tumor motion. Among various methods proposed for tumor motion
compensation, real-time tumor tracking has become popular as it can potentially lead to
high normal tissue sparing, short treatment sessions and satisfactory outcome. Real-time
tumor tracking methods are divided into two groups of direct and indirect tracking
methods. Direct tracking methods include real-time imaging of the tumor! or implanted
fiducial markers in the tumor?3, as well as tracking of signals produced by an active or
passive device fixed at or around the tumor*®. Indirect tumor tracking methods use

surrogate breathing signals to track the tumor®7-®,

Currently, X-ray fluoroscopy is the modality of choice for real-time imaging of the tumor.
This method not only leads to high radiation dose but also suffers from a lack of necessary
image contrast as most lung tumors are not visible as a high-contrast region in fluoroscopic
images. To have higher image contrast for tracking lung tumors in fluoroscopy images,
artificial markers are implanted in the patient’s body and used as a surrogate to the tumor.
This method is invasive and requires imaging, resulting in high radiation dose. Another
group of tracking methods suggest using implantable radiofrequency coils and
electromagnetic detectors to track the tumor* %1% which is again invasive. The last group
of methods suggest using external breathing signals instead of imaging. For these methods
to work well, it is required to have a strong and robust correlation between the external
signal and 3D tumor position. However, the physiology of respiratory motion implies that

the correlation between the external signal and the internal organ is not stationary*>-4,

Among the aforementioned tumor tracking methods, indirect tracking using external

breathing signals is the least invasive method. However, a number of studies, which use
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the motion of a single chest/abdomen marker as surrogate to tumor motion, indicate that
the correlation between the chest/abdomen motion and tumor motion is not strong*®4, This
indicates that this lack of desirable correlation stem from the fact that the chest and
abdominal surface motion cannot be fully characterized with one single marker. As such,
the main challenge associated with indirect tracking methods is to establish a strong and
robust correlation between the external signal and tumor motion. In addition, a recent
study®® indicates that the size of the GTV (Gross Tumor Volume) can vary by up to 62.5%
during breathing as a result of tumor deformation, leading to another important challenge.
Therefore, an ideal tumor tracking method should be capable of predicting tumor
deformation as well as its motion. In this study, we present a novel framework for tumor
tracking which uses the indirect tumor tracking approach. This approach utilizes external
breathing signals, in conjunction with a lung biomechanical model. The block diagram of
the proposed tumor tracking method, which summarizes the method, is shown in Figure 3-
1.
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Figure 3-1 A block diagram of lung tumor tracking algorithm which involves a pre-treatment and an intra-
treatment step. (a) Pre-treatment tracking of chest surface motion and image based estimation of the lung
boundary conditions. The lung BCs include lung-diaphragm contact surface displacements shown in orange
and lung trans-pulmonary pressure shown in purple. (b) Building a correlation model (e.g. using neural
network (NN) between chest surface motion data and lung boundary conditions. The NN training requires
the diaphragm to be presented in a compact form. (c) Intra-treatment chest surface motion tracking and
predicting the boundary conditions in real-time. (d) Calculating lung tumor position and deformation using

an accelerated lung biomechanical model.

As shown in Figure 3-1, we use a lung biomechanical model to predict the tumor motion
and deformation using the real-time lung boundary conditions obtained from the chest
motion data. In our proposed lung FE model, the lung boundary conditions include the
diaphragm motion and trans-pulmonary pressure. The latter is the difference between intra-
alveolar and intra-pleural pressures and it is calculated through optimization. Many
research groups have tackled lung biomechanical modeling'®%. While existing lung
biomechanical models are fairly accurate, most of them cannot be incorporated effectively
into a lung model based tumor tracking algorithm. Apart from the lung biomechanical
model proposed by Fuerst et al., other lung biomechanical models suggest using a contact
surface which limits the lung expansion to the segmented chest cavity at end inhale phase.
Such a modeling approach is highly involved computationally while it is difficult to model

different breathing patterns, hence precluding its real-time applicability. In this study, one
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of the goals we pursued is to improve the technique proposed by Fuerst et al. by
incorporating existing physiological knowledge about pressure gradients and using more
realistic material properties, e.g. incompressibility parameters, which can be employed
effectively in lung model based tumor tracking algorithms. Our proposed lung
biomechanical model requires the real-time position of the diaphragm and trans-pulmonary
pressure values as boundary conditions. As shown in Figure 3-1, those BCs can be obtained
from a Neural Network which inputs the chest motion data and outputs the lung boundary

conditions.

In contrast to indirect heuristic mathematical methods of lung tumor motion prediction,
which rely solely on a data fitting to a mathematical model?®, the proposed method is a
hybrid method of heuristic data fitting in conjunction with a tissue deformation, physics
based model. The first component of the data fitting model is an NN used to predict the
lung BCs from input chest surface motion data. To ensure robustness of this NN, an optimal
number of markers leading to highest correlation between chest surface motion data and
tumor motion can be determined and used instead of a single marker. The second
component is the lung biomechanical model which inputs the BCs obtained from the NN
to output the tumor position and geometry. This hybrid approach is believed to be more
effective than using a solely heuristic model (e.g. NN) to calculate tumor position and
geometry directly from the chest wall surface motion data. The reason is that the NN in the
latter scenario is expected to be highly complex while being prone to data overfitting. Using
an accurate lung biomechanical model in the proposed system has two advantages: 1)
accuracy of tumor motion tracking will be high and 2) tumor geometry variations during
respiration can be taken into account, paving the way for more accurate radiation dose
distribution calculation. In this paper, our focus is the last block of Figure 3-1, which is the
lung biomechanical model designed specifically for tumor tracking. The main feature of
this lung biomechanical model is that it is capable of being incorporated into the described
lung tumor tracking algorithm. Another interesting feature of this model is that the lung
tissue incompressibility is set to be variable through respiration phases. This is more
consistent with having significantly variable air content within the lung tissue throughout

respiration. Finally, we took a new approach in modeling the pressure distribution and
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calculated the pressure values through optimization, leading to more accurate modeling

results.

3.2 Materials & Methods
3.2.1 Physiology of breathing

Figure 3-2 (a) depicts a schematic of the respiratory system where the lungs, pleural cavity,
trachea, and respiratory muscles are illustrated. Before inspiration, the respiratory muscles
are relaxed and the intra-alveolar pressure is equal to the atmospheric pressure. The
inspiration phase begins by contraction of the main respiratory muscles, i.e. diaphragm and
external intercostals, and expansion of the chest cavity. The diaphragm is known to cause
75% of the thoracic cavity enlargement during inspiration while the external intercostals
contraction enlarges the thoracic cavity in the lateral and AP directions. As the thoracic
cavity expands, the intrapleural pressure drops and the lungs expand. This lung expansion

leads to reduction of alveolar pressure; hence air flows in.

At the end of inspiration, the inspiratory muscles reach relaxation state, the diaphragm
returns to its dome shape and the rib cage falls due to gravity after relaxation of external
intercostals. As the chest wall and stretched lungs recoil, the volume decreases, the pressure

increases; hence the air flows out.

As shown in Figure 3-2 (a), the net pressure applied to the lung is the trans-pulmonary
pressure which is the difference between the alveolar pressure and intrapleural pressure. It

is noteworthy that the spatial distribution of trans-pulmonary pressure is not uniform?’,
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Figure 3-2 (a) The alveolar, pleural, and trans-pulmonary pressures. (b) Changes in the amplitude of intra-

alveolar, intra-pleural, and trans-pulmonary pressures during respiratory cycle.
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Figure 3-2 (b) depicts the temporal variations of the intra-alveolar and intra-pleural
pressures during the respiratory cycle. The diaphragm and ribcage motion cause the
temporal and spatial variations of the trans-pulmonary pressure. As such, to have a more
accurate loading in our model, we consider the loading caused by the diaphragm and
ribcage separately. As discussed earlier, data required for developing the model are
acquired form 4D CT data sets. Here in this section, we explain the procedures used to
obtain this data from 4D CT data.

3.2.2 Data acquisition

In this study, 4D CT images of three lung cancer patients were used to develop the lung FE

models. Data acquisition has been described in Sec. 2.3.1.

3.2.3 Lung geometry and finite element mesh

The first step in developing the tumor tracking algorithm proposed in Figure 3-1, is
segmenting the lungs, diaphragm, and the tumor for the end exhalation phase of respiration.
To segment the lungs and diaphragm, we used a fully automatic algorithm proposed in
Karami et al.?® The lungs are segmented using a 3-step algorithm. The first two steps are
thresholding steps to first segment the ribcage and next the lower respiratory tract. In the
last step, the bronchial tree is removed from the lungs, using the region growing algorithm,
and the lung surface is smoothed using morphological image closing. The diaphragm
segmentation procedure is described in detail in Karami et al.?® The segmented lung is used
for developing the FE model and the segmented diaphragm is used for defining the
boundary conditions at the lung’s bottom surface. The tumor was segmented manually by
an expert radiologist. Since the main objective of this study is tumor tracking, the model
was developed only for the tumor-bearing lung, which was the right lung for all the
subjects. However, the model can be easily developed for including the other lung too.

After segmentation, IA-FEMesh software package was used to mesh the lung using
hexahedral elements as they are C2 continuous; hence have better performance than
tetrahedral elements. The lung mesh for one subject is shown in Figures 3-3 (a) and (b),

and the tumor elements are highlighted.
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(a) (b)

Figure 3-3 (a) Coronal and (b) sagittal views of the lung mesh with tumor elements depicted as red.

3.2.4 Tissue mechanical properties

Based on the results published by Shirzadi et al.?°, the Marlow hyperelastic model with
variable Poisson’s ratio during breathing is a suitable model for lung tissue. To use the
Marlow hyperelastic model we used the experimental data published by Zeng et al*® and
the Poisson’s ratio was obtained through an inverse optimization framework, which is

described in detail in Sec. 2.5.2.

3.2.5 Boundary conditions

The most important factor in developing a lung biomechanical model for EBRT is how to
model the loading so it can be updated in real-time. As described in Sec. 2.1, the lung
deforms due to two different mechanisms; (1) diaphragm motion; and (2) ribcage motion.
Although both mechanisms result in trans-pulmonary pressure variations, we model each
source of deformation separately to obtain more accurate and patient specific models. In
this paper, we demonstrate how each loading can be obtained from 4D CT data and
incorporated into the lung FE model. A recent study®® indicated that the trachea can move
up to 10 mm. As such, unlike some previous studies? the lung-trachea interface was free

to move. Instead, a few lung FE surface nodes located close to the lung apex were fixed to
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ensure model stability. The location of fixed nodes was obtained by monitoring the lung

surface motion in 4D CT images.

3.2.6 Diaphragm

To obtain the diaphragm motion, after segmenting the bottom surface of the lung which is
in contact with the diaphragm, The Free Form Deformation (FFD) registration method was
used to obtain the displacements of the segmented surface at each phase of respiration. The
diaphragm displacement field obtained from non-rigid registration is mapped onto the lung
FE nodes representing the lung bottom surface shown in Figure 3-4 (a). To map the
diaphragm displacement field onto the lung mesh bottom surface nodes, we used nearest
neighbor interpolation method. Finally, in accordance with the pleural fluid function of
providing mechanical coupling between the lung and chest wall, the mapped displacement
values were assigned as prescribed displacement boundary conditions in the lung FE

model?123,
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Figure 34 (a) Diaphragm nodes. (b) The trans-pulmonary pressure is applied on the lung surface shown in
red.
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3.2.7 The trans-pulmonary pressure

As described in Sec. 2.1 the net pressure applied on the lung surface is the trans-pulmonary
pressure. To model the trans-pulmonary pressure created by the ribcage motion, we applied
negative pressure on the surface highlighted in red as shown in Figure 3-4 (b). As stated in
Sec. 2.1, the pressure distribution is non-uniform while its temporal variation is non-
linear?’31:32 As such, we used the results published by Tawhaj et al.*® together with an
optimization framework to model the pressure. According to Tawhaj et al., when the
subject is in the supine position the pressure has a gradient in the anterior- posterior
direction. After defining the pressure spatial distribution with a linearly increasing function
in the AP direction, the magnitude of pressure and its temporal variations were obtained

through optimization. For this purpose, we first defined the following cost function:

ANB
o =A(1-=2) 4y B-D)

Where p is the pressure magnitude, v is the Poisson’s ratio, A is the actual lung geometry,
B is the simulated geometry of the lung obtained from FEA, {5 is the curvature of the
optimized pressure curve at time t which is used for regularization purposes and A and y
are weight factors. To obtain the A and B volumes, the actual and simulated CT images
were first masked to segment the full right lung. Next, the masked images were thresholded
for values smaller than -500 HU. The results are shown in Figure 3-6 for end inhale to end
exhale images. Using this approach, major lung features such as major airways and the

tumor are present in the segmented image leading to a more accurate pressure optimization.
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Figure 3-5 The lung was segmented, excluding desnse features such as tumor and major blood vessels and

airways, to be used for optimization. The left image corresponds to end inhale phase and the right image

corresponds to end exhale phase while the 3 images in the middle represent phases in between.

The breathing cycle is not symmetric, and exhalation usually takes longer than inhalation.
In the 4D CT images used in this study, phase #1 to phase #6 correspond to exhalation
phase, while the 6" time point (phase) corresponds to the end exhalation phase of
respiration. The exhalation phase of respiration consists of 5 time points while the
inhalation phase consists of 4 time points. Similar to the approach we took earlier in
Shirzadi et al.?®, the exhalation phase images, e.g. phase #1 to phase #6, were used to obtain
the pressure and Poisson’s ratio values while the inhalation images, e.g. phase #6 to phase
#10, were used for validation. The optimization procedure is shown in Figure 3-7. It is
noteworthy that in the optimization framework depicted in Figure 3-7, the optimized
pressure curve is the difference between the trans-pulmonary pressure at end exhalation
phase and other phases of respiration. In other words, the pressure values are not the

absolute values of pressure, but rather pressure values relative to end exhalation phase.
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Figure 3-6 Block diagram of the proposed optimization framework for patient specicfic calculation of trans-
pulmonary pressure and Poisson’s ratio values. The optimization requires the lung FE mesh at end exhale,
and the diaphragm displacement values obtained from registration. Initial values of trans-pulmonary pressure
magnitude and Poisson’s ratio are asssigned to the model and the deformed lung mesh corresponding to the
target phase is obtained. The deformed mesh is used in conjunction with Thin Plate Spline registration method

to create the simulated image and calculate the cost.

3.2.8 Validation

To validate the model, the pressure and Poisson’s ratio curves pertaining to exhalation and
inhalation phases were assumed to be symmetrical for the entire respiratory cycle. As such,
the optimized pressure values for exhalation phase where used to predict the tumor motion
for the inhalation phase of respiration. We validated the model both qualitatively and
quantitatively. To perform quantitative validation, a total of 40 landmarks were used where
20, 10 and 10 landmarks were selected in the middle of the lungs, close to the lung surface
and close to the tumor, respectively. The landmarks were selected on the inhalation phase
images including phase 6, 7, 8, 9 and 10. Phase 6 and 10 correspond to end exhalation and

end inhalation phases of respiration. Following landmark selection, the GTV and the lung
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surface were segmented for all those phases of respiration. The GTV was segmented by an
expert radiologist while the lung surface was segmented automatically. The average 3D
position error per landmark, the average Hausdorff distance between the actual and
simulated lung surfaces and the Dice similarity coefficient between the actual and

simulated tumor volumes are reported in the results section.

3.2.9 Implementation

The segmentation algorithms were developed using C++ and ITK. The lung FE model was
developed using IA-FEMesh and ABAQUS software package and the rest of the algorithm,
including the inverse optimization framework were developed in MATLAB.

3.3 Results

3.3.1 Qualitative validation

The optimized pressure and Poisson’s ratio variations over respiration phases for the 3
patients are shown in Figure 3-8. It is noteworthy that, the trans-pulmonary pressure
temporal variations agree qualitatively well with the data reported in the literature®,
Similar to the data published in the literature?’>3* the pressure is high at the beginning of
exhalation phase, it declines and plateaus until it rises again in the inhalation phase. In
addition, the first half of the curve has a positive curvature while the second half, from time
point #6 to #10, has a negative curvature which is in agreement with information published
in the literature. As shown in Figure 3-8 (a), and according to the results published by
Chiumello et al.®?, the pressure is approximately symmetrical. As such, the symmetry
assumption is valid. Also, the Poisson’s ratio variations agree well with data published
earlier in Shirzadi et al.?°, confirming our hypothesis. As expected and reported earlier in
Shirzadi et al., the Poisson’s ratio can be modelled with a quadratic function and its values

are smaller when the lung’s air content is higher, i.e. end inhalation phase.
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Figure 3-7 Optimized values of (a) trans-pulmonary pressure and (b) Poisson’s ratio values vs. respiration

phase. Phases 1, 6 and 10 represent start exhalation, end exhalation and end inhalation, respectively.

In the validation step, we ignored the second half of the curves shown in Figure 3-8, which
are obtained by optimization, and instead used the mirrored version of their corresponding
first half to predict the lung deformation during the second half of the respiratory cycle.
More specifically, in our data sets, the end exhalation phase corresponds to time point #6.
As such, for building the model, the simulation was performed between time point #6 and
the other 5 time points, moving backward. To validate the model, the optimized parameters
obtained in the previous step were used to simulate the lung deformation between time
point #6 and phase 7 to 10, moving forward. Next, the deformed mesh obtained from FEM
was used in conjunction with the Thin Plate Spline registration method to simulate the lung
images shown in Figure 3-9. The left column of this figure depicts the image difference
between actual end exhalation and end inhalation CT images while the right column
illustrates the image difference between actual and simulated end inhalation CT images for

all 3 patients.



(b)

86



87

© ()

Figure 3-8 CT image difference between actual “end exhalation” and “end inhalation” CT images (a), (b),

(c) and difference between actual and simulated “end inhalation” CT images (d), (e), (f) for the 3 subjects.

3.3.2 Quantitative validation

To validate the model quantitatively, we first calculated the Dice similarity coefficient
between the actual and simulated GTVs. The tumor tracking results for exhalation and
inhalation phases of respiration are reported in Tables 3-1 and 3-2. Table 3-1 presents the
tracking results for exhalation phase of respiration which was used for developing the
model. Table 3-2 presents the tumor tracking results for inhalation phase of respiration
which was used for validating the model. These results suggest that the Dice similarity
coefficient between the actual and simulated tumor volumes ranges between 0.78 to 0.94
while the average Dice similarity coefficient for all patients over all phases of respiration
is 0.86+0.05.

Phase number 1 2 3 4 5

Patient #1 0.80 0.90 0.87 0.90 0.90
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Patient #2 0.90 0.88 0.86 0.90 0.93
Patient #3 0.83 0.86 0.85 0.90 0.94
Mean + SD 0.84+0.05 0.88+0.02  0.86+0.01  0.90+0 0.92+0.02

Table 3-1 The Dice similarity coefficient values between actual and simulated GTVs (optimization step).
The simulation has been performed between time point #6 (end exhalation phase) and the other 5 time points

moving backward.

Phase number 7 8 9 10
Patient #1 0.90 0.88 0.79 0.82
Patient #2 0.93 0.78 0.81 0.79
Patient #3 0.93 0.85 0.80 0.84
Mean + SD 0.92+0.02 0.8440.05 0.80+0.01 0.82+0.03

Table 3-2 The Dice similarity coefficient values between actual and simulated GTVs (validation step). The
simulation has been performed between time point #6 (end exhalation phase) and the other 4 time points

moving forward.

The next quantitative validation step was performed by calculating the average error per
landmarks 3D position and the average distance between the actual and simulated lung
surfaces for all phases of inhalation phase of respiration. The results are shown in Figure
3-10. These results indicate that the mean absolute error in the landmarks’ 3D position and
the average Hausdorff surface-to-surface distance are 1.74+0.77 (mm) and 1.60+0.17

(mm), respectively which are favorable.
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Figure 3-9 (a) Mean absolute error per landmark’s 3D position versus respiration phase. (b) Mean distance

between actual and simulated lung surfaces versus respiration phase.

3.4 Discussion and Conclusions

A biomechanical model was proposed specifically for lung tumor tracking during EBRT.
One unique feature of this model is using patient specific loading and material properties
data which were obtained from 4D CT imaging data processed within an optimization
framework. The primary objectives of developing the proposed model include 1)
improving the accuracy of existing lung FE models, and 2) rendering the model adaptable
for real-time tumor tracking by defining the diaphragm and trans-pulmonary pressure
loading data such that they can be determined based on measurable chest surface motion
data. The latter is highly essential as the goal of developing the proposed model is to utilize
it in lung tumor tracking system being developed in our research laboratory for effective
lung cancer EBRT. The lung biomechanical model serves as a core component of the
system which determines the tumor location and its geometry throughout respiration before
this data is fed to a robotic system driving a linear accelerator which changes the radiation
beam orientation consistent with the tumor motion to achieve optimal EBRT outcome. The
proposed lung biomechanics model involves two types of loading. The diaphragm motion

related loading defined as prescribed displacement boundary conditions and the trans-
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pulmonary pressure arising from chest muscle contraction and relaxation. These loading
components were determined before treatment using 4D CT image data using optimization.
The trans-pulmonary pressure curves obtained through optimization agree well with the
pressure measurements reported in the literature. Another important feature of the proposed
lung biomechanics model is its treatment of the incompressibility of the lung tissue. The
model considers variable tissue incompressibility characterized by Poisson’s ratio through
various respiration phases. This is essential for studying the lung mechanics under
breathing physiological conditions as the air content within the tissue varies substantially
from the end exhalation phase (Phase 6 in Figure 3-8), where tissue incompressibility is
maximum, to the end inhalation phase (Phase 10 in Figure 3-8), where tissue
incompressibility is minimum. Poisson’s ratio variations illustrated in Figure 3-8 are
consistent with expected trend. In this work, the Poisson’s ratio was assumed to be uniform
throughout the lung volume. While this may be a good assumption in healthy lungs, a level
of deviation from this uniformity assumption is expected with lung cancer patients or
patients who have other lung disease such as Chronic Obstructive Pulmonary Disease
(COPD). Especially in the latter, the Poisson’s ratio is expected to be significantly
heterogeneous. In such cases, the Poison’s ratio has to be treated as such, leading to a multi
parameter optimization algorithm which can be solved to provide diagnostic information
in addition to data pertaining to the lung tissue mechanical properties. The proposed model
can also be used for modeling the left lung, however, the effects of heart motion should be
considered. This can be accomplished by incorporating a heart motion model. Among other
advantages of using the biomechanics approach for tumor tracking is its ability to compute
the variable lung tumor geometry throughout respiration. This can be highly advantageous
as the variable volume data can be used in conjunction with an advanced radiation dose
distribution algorithm which takes into account tumor volume geometry variation during
the course of EBRT. Results obtained from the proposed model indicate that the mean Dice
similarity coefficient between the actual GTVs and their simulated counterparts ranges
from 0.80 to 0.92. This range demonstrates reasonable accuracy of the proposed model in
predicting the tumor volume geometry variation during respiration. This accuracy can be

improved further by fine tuning the lung and tumor tissue hyperelastic properties, however,
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this is not within the scope of the present work. Further quantitative assessment of the
model was carried out by tracking the position of landmarks chosen within the lung volume
including areas close to the tumor. Over all phases of respiration, the mean absolute error
in the landmarks’ 3D position is 1.74+0.77 mm. The same was also carried out to assess
the accuracy of the lung variable surfaces obtained through the proposed model. In the
latter, the average Hausdorff surface-to-surface distance was calculated at 1.60+0.17 mm.
Biomechanical modeling of the lung has been tackled by a few other groups including
Werner et al.?®, Al-Mayah et al.?»?*2?% and Villard et al.'®, which use image-derived
boundary conditions and contact modeling, and a recent study which uses an optimization
framework to obtain the boundary conditions, i.e. pressure values?. The mean absolute
error per landmark reported by these groups ranges between 2.1 mm and 3.4 mm. These
results are favorable and encourage conducting further studies for testing the proposed
algorithm on larger data sets. As indicated earlier, one source of error in our model is the
tissue mechanical properties which is expected to be heterogeneous in patients who suffer
from lung disease. Despite assuming homogeneous tissue and assigning lung tissue
hyperelastic parameters which are not patient specific, the quantitative results obtained in
this study are quite favorable. In addition, strong agreement between the patterns of
variation for optimized pressure curves and the experimental data reported in the
literature®, indicate that the proposed model can potentially be used for studying the
physiology of breathing in normal and diseased subjects. Future work aimed at further
development of the lung tumor tracking system using the proposed lung biomechanical
model will involve demonstrating that both the diaphragm motion and pressure values can
be obtained from chest surface motion data with high accuracy. In fact, our preliminary
data generated for this purpose are very encouraging. As such, the proposed lung
biomechanical model can be used during EBRT while its parameters can be updated from
chest surface motion data, paving the way for effective tumor tracking necessary to

optimize the EBRT outcome.
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Chapter 4 « Novel PCA-based Model of Human Diaphragm
Motion Derived from 4D CT Images for Effective Tumor

Motion Management »

4.1 Introduction

Image guided procedures aimed at diagnosis or medical intervention in the abdomen and
thorax (e.g. lung External Beam Radiation Therapy (EBRT)) are very challenging, as they
tend to involve moving anatomical targets (e.g. tumor) due to respiration. If the motion of
such targets is known, data pertaining to this motion can be fed to robotic actuators and/or
a multileaf collimator (MLC) that drive the therapy or diagnosis machine such that the
intended anatomical feature is always targeted. Respiratory motion often lacks
repeatability at different breath cycles, precluding the possibility of tumor motion
prediction based solely on pre-treatment motion characterization. Moreover, in a medical
intervention, it is often not feasible to utilize real-time image guidance for tumor tracking.
For example, in medical interventional procedures involving the lung, CT imaging is the
modality of choice. This modality cannot be used intraoperatively to avoid excessive
radiation dose. Another technique was recently introduced which utilizes electromagnetic
guidance for tumor tracking 1. While proven to be effective, this technique involves using
beacon transponders placed through a needle or surgical procedure inside the tumor. An
alternate effective and non-invasive solution to this problem is using expert systems to
estimate the anatomical target motion/deformation during treatment, before it can be fed to
the robotic actuators and/or MLC system. Such systems can be developed using motion
computational modeling. These models attempt to estimate internal anatomical target
motion/deformation intraoperatively using a surrogate measurable signal. They are
developed using data measured before treatment and their corresponding target

motion/deformation output data. Using these two sets of data, a machine learning or
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physics based expert system can be developed to be used intraoperatively. The known
output parameters are typically obtained from pre-treatment imaging data acquired at
different phases of breathing cycle, while surrogate signal (input) parameters are obtained
from data acquired at corresponding phases of the breathing cycle. The latter data are
acquired using MR navigation, optical or electromagnetic tracking, spirometry, or real-
time imaging. Various motion models are available in the literature where their differences
pertain to the imaging modality and corresponding imaging data used in conjunction with
the model, type of surrogate signal and modeling method. To develop an expert system that
can be used intraoperatively as a function that inputs surrogate signal and outputs the
internal target motion parameter, one of the two mathematical or biomechanical model
approaches can be employed. Typically, in the mathematical model approach,
mathematical functions are used to find the anatomical target motion as a function of the
surrogate signal. Examples of such functions are polynomials “°, B-splines % or Neural
Networks 617, A comprehensive review on mathematical motion models in this context is
presented by McClelland et al.*8.

In contrast to the mathematical models, in the biomechanical model approach the
underlying physics of tissue deformation is utilized for the anatomical target motion
estimation. Biomechanical models used in this approach require data pertaining to tissue
mechanical properties, lung geometry and loading. The latter includes forces exerted by
the diaphragm to the bottom surface of the lungs in addition to thoracic pressure. One
effective method used with this approach is the Finite Element Method (FEM) which has
been used extensively for biomechanical simulation of the respiratory system °-26, While
biomechanical models offer great capability for motion modeling, little research has been
conducted towards their utility in real-time lung tumor tracking.

Fundamental to any anatomical target respiratory motion is the diaphragm motion
characteristics. As such, it is necessary that the diaphragm motion be characterized
effectively before incorporation in the expert system. To achieve a compact mathematical
form of the diaphragm motion, which is necessary for developing an effective expert
system, we use principal component analysis (PCA). Given the diaphragm motion is

complex, hence it requires characterization of the motion of many points on its surface for
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proper discretized motion representation. Such a large data size cannot be easily expressed
as a function of a small number of surrogate signals unless this data is represented in a
compact way. In this context, PCA is a powerful tool to mathematically represent the data
using a few parameters without significant loss of information. In 2009, McQuaid et al.
presented a PCA-based diaphragm motion model obtained from gated CT images to correct
the motion in PET images 2?8, Compared to the work of McQuaid et al., the proposed
method is more rigorous in terms of positioning anatomical landmarks and obtaining their
respective motion data. The proposed method is developed such that not only anatomical
differences among subjects are accounted for but the motion can be characterized in all
dimensions. It is noteworthy that the application of the PCA model is not limited to the
proposed lung tumor tracking algorithm. In fact, most of the mathematical respiratory
motion models use the diaphragm motion as surrogate to motion of various internal
targets®42%37, For instance, Shechter et al. 3, Xu et al. *° and Zhang et al. 3 obtain the
model input signal, e.g. respiratory phase, from Sl position of a single landmark located on
the diaphragm visible in 2D ultrasonic, fluoroscopic and 4D CT images, respectively.
Shechter et al. and Xu et al. used the diaphragm Sl position as a surrogate to tumor motion
while Zhang et al. used such a signal to obtain the respiratory phase. It is noteworthy that
although the SI motions of a single landmark on the diaphragm can be used to find the
respiratory phase, given the diaphragm’s complex motion, it does not provide sufficient
information to characterize the diaphragm motion. Hence it is inadequate for
biomechanical or mathematical models aimed at mapping the chest surface motion into
anatomical target motion. As such, for both groups of respiratory motion models using an
optimal number of diaphragm landmarks is essential for accurate target motion

management.

4.2 Materials and methods

4.2.1 Overview of expert system for lung tumor tracking
The expert system is being developed for lung tumor motion tracking in EBRT with highly
effective tumor motion management. It is driven by a patient-specific lung biomechanical

model developed using FEM which can estimate the current position/deformation of the
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lung tumor throughout respiration. Unlike other systems, which can provide position
estimates only, the system is designed to estimate both position and deformation. The latter
makes it possible to estimate the tumor shape in real-time, paving the way for yet more
effective radiation therapy by potentially using a combination of a robotic system to drive
the Linear Accelerator for tumor tracking in addition to dynamic MLC for dynamic
conformal radiotherapy. The lung geometry can be acquired using pretreatment CT image
data. For real-time lung tumor position estimation, there are two main challenges in using
such a model, namely, determining the lung boundary conditions and performing FE
computations both in real-time. To address the second challenge, GPU programming or
model reduction methods can be used. For real-time boundary conditions determination,
we propose the framework illustrated in the block diagram of Figure 4-1. The essence of
this framework is using the motion characteristics of an optimal number of external
markers distributed optimally on the patient’s chest as a surrogate for the boundary
conditions. According to data presented by Vedam et al. and unpublished data generated
in our laboratory, the diaphragm motion and pleural pressure are correlated with the chest
surface motion “°. This implies that, in principle, by real-time tracking of the chest surface
motion, the diaphragm motion can be also tracked by finding a proper function (e.g. neural
network) that maps the chest surface motion parameters to the diaphragm motion. To
develop such a function which can effectively input the chest surface motion data and
output the diaphragm motion/deformation in real-time, an essential prerequisite is that the
diaphragm motion be presented mathematically in a compact form. Developing and
rigorously evaluating such a compact mathematical form using PCA is the focus of this
work which is described in the following sections. Having such a mapping function, in
turn, makes it possible to use highly efficient lung biomechanical models (e.g. developed
using GPU) in conjunction with the mapping function for real-time tumor tracking during
EBRT.
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Figure 4-1 A block diagram of lung tumor tracking system. It involves four steps of (a) pre-treatment chest
surface motion tracking and image based estimation of the lung boundary conditions. These boundary
conditions include prescribed displacement boundary conditions of lung bottom surface which is equal to
diaphragm surface displacements shown in orange and lung pleural pressure shown in purple. (b) Fitting a
function (e.g. using neural network (NN) which maps chest surface data to lung boundary conditions. This
fitting requires the diaphragm to be presented in a compact form. (c) Intra-treatment chest surface data
acquisition and mapping to boundary conditions in real-time. (d) Calculating lung tumor position using an
accelerated lung biomechanical model.

4.2.2 Data acquisition

In this study, 4D CT images of 10 subjects, each including 10 respiratory phases, were used
to develop the PCA model. Five out of ten subjects were lung cancer patients. These
patients were scanned using a 16-slice Philips Brilliance Big Bore CT scanner (Philips
Medical Systems, Cleveland, USA) operating in helical mode. The scanning parameters
are: 120 kVp and 400 mAs/slice for tube potential and current, respectively. The pitch of
the couch depended on the patient's breathing period and was set to around 0.1. The
intraslice pixel size of the data was set to vary from 0.98 mm to 1.29 mm while the slice
thickness was set to 3 mm. The projection data were sorted using the Real-time Position
Management™ (RPM) system (Varian Medical Systems, Inc., Palo Alto, CA, USA). The
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rest of the data were obtained from POPI and DIR-LAB on-line data sets >4**2, To avoid
errors resulting from low image quality, we selected five subjects with minimum

diaphragmatic motion artifacts from the two on-line data sets.

4.2.3 Image segmentation and registration

The modeling method proposed in this investigation consists of four steps: image
segmentation, registration, and diaphragm gridding followed by PCA. Recently, we
proposed an automatic diaphragm segmentation algorithm which can be used to segment
the entire diaphragm®. Given that the primary application of the proposed diaphragm
motion model is lung biomechanical modeling and tumor tracking, we only model the
diaphragm’s dome which is in contact with the lung. Furthermore, since in our data sets
the tumor was chosen to be in the right lung, in this study we developed the motion model
for the diaphragm’s right dome. As such, the diaphragm’s right dome was segmented using
Karami et al. diaphragm segmentation algorithm. Next, non-rigid registration using Free
Form Deformation (FFD)* was used to track the diaphragm motion during breathing.
Hereafter, displacements obtained from the FFD registration will be referred to as “true”

displacements.

4.2.4 Landmark set selection using trans-finite interpolation

To use PCA for motion modeling, sufficient numbers of landmarks are required to be
selected consistently on the segmented diaphragms of all subjects involved in the study.
Ideally, distinct anatomical landmarks should be used for spatial characterization of the
diaphragm. However, a sufficiently large number of such landmarks are not visible in the
diaphragm’s CT image. Due to anatomical differences between subjects, regular grids are
not suitable for obtaining the landmarks in a consistent way. Therefore, we used trans-finite
interpolation (TFI) to obtain a consistent landmark set to discretize the diaphragm dome.
TFI involves two domains: the computational domain denoted by C and the physical
domain denoted by P. As depicted in Figure 4-2, the computational domain is a regular
grid of points where the points are mapped to the physical domain node set using blending
functions given in Eq. 1 as follows. Details of this technique are well explained by Knupp

and Steinberg *°.
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Figure 4-2 TFI domain meshing technique: (a) A 2D computational domain and (b) An example of a
corresponding 2D physical domain.
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In this equation, (§,n)€[0,1] denote coordinates of points in C the computational domain
and X, Xz, X and X are left, right, bottom and top boundaries and X;, Xgr, X1, and
X are their intersection points, respectively in the physical domain. Using this equation,
the closed shape P can be discretized by defining a N x N computational grid X, =
(i/(N-1),j/(N-1)), i,j,k=01,..,N—1 and mapping it into a set of points
defining the physical domain P.

To sample the diaphragm dome surfaces consistently among the subjects using TFI, we
first obtained their 2D projections on the axial plane as shown in Figure 4-3 (a). As
displayed in Figure 4-3 (b), the four points A, B, C and D were used to represent the

physical domain corner points and divide the domain boundary into Xz, X;, X and Xj
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segments required for the TFI method. Also, to further account for anatomical differences
between the patients and to ensure landmarks consistency in all the subjects, the relative
position of the diaphragm to the ribs was considered in the process of sampling. For this
purpose, as shown in Figure 4-3 (a), the 2D projection for each subject was overlaid on an
axial slice of the subject’s corresponding CT image, which encompassed the spine and the
11" rib. Next, the 7" to 11" ribs were segmented in the same axial slice and the centroid
of these ribs were connected to the centroid of the dome by lines as illustrated in Figure 4-
3 (c). Hence, the distinct diaphragm vertices a, b, ¢, d and e which are shown in Figure 4-
3 (c) were identified. In addition to these vertices, point f can be easily identified as an
additional vertex; hence points a, b, c, d, e and f in addition to the corner points A, B, C
and D will form the primary distinct vertices on the 2D projected area outline. To achieve
a denser landmark sampling, more vertices were identified on the outline systematically by
finding points to bridge the segments Aa, ab, bc, cD, Dd, dC, Ce, ef, fB and BA. These
points were found by further segmenting each segment using equal angles with the centroid
0 as the angle vertex. For example, the outline segment ab was further segmented by
dividing the angle zaob into equal angular intervals. With this outline discretization
scheme, Xz and X segments were presented by 6 vertices while X; and X segments were
presented by 16 vertices. These points were used in Eqg. (1) to generate the internal
landmark points in the diaphragm’s 2D projected area. The output set of landmarks of one

right diaphragm is illustrated in Figure 4-3 (d).

(@) (b)
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(©) (d)

Figure 4-3 (a) 2D projection of the diaphragm’s dome in an axial plane intersecting with segmented 7" to
11" ribs, (b) Four corners points, A,B, C and D were used to partition the boundary of the dome, (c) Using
the 7" to 11" ribs to obtain additional anatomical landmarks for TFI and (d) The final TFI grid with 6x16 =

96 landmarks.

The total number of TFI-generated landmarks for each subject was 6x16 = 96. To prepare
the data for principal component analysis, both magnitude and duration of respiratory
motion were normalized between 0 and 1 for all the subjects. This normalization was
necessary for landmark consistency, both spatially and temporally. For each subject, a 6x16
matrix corresponding to each displacement component was formed for each phase of
respiration. With 10 subjects involved in this study, 10x3 = 30 such matrices were formed
for each phase of respiration to contain displacement data in the 3 directions of superior-
inferior (SI), anterior-posterior (AP) and right-left (RL).

4.2.5 Principal component analysis

The next step for efficient modeling of the diaphragm motion is to use PCA. PCA is a
statistical procedure that can be used for mathematically presenting a set of observations
in a compact form. This is accomplished by obtaining the principal components which

contain the fundamental information of the observations’ common features. Given an
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observation matrix X of dimension N X P where each row represents a different data point
(x), using PCA each data point x can be approximated by “°:

x=Xx+Qb, (4-2)
where Q =(q4, 95, ---, gy ) 1S the matrix of the first M (M < P) eigenvectors of the covariance
matrix of X and b = (bq, b, ..., by)7 is a vector of weights. To obtain the compact form of
the diaphragm motion, PCA was performed on displacement matrices of each respiratory
phase for SI, AP and RL directions.

4.2.6 Validation

4.2.6.1 True and PCA model based displacements agreement

To evaluate the performance of the diaphragm PCA model, we first used the leave-out one
method, where 9 out of 10 subjects were used to train the PCA model and the 10" subject
was used for performance validation. This was repeated for all the 10 subjects. After
performing the leave-out one method and obtaining the model generated displacement
fields for all the 10 subjects, the average error per landmark was calculated for each patient
in LR, AP and Sl directions. In addition to calculating the average error per landmark, the
overall agreement between the model generated displacement fields and their true

counterparts were assessed by plotting the Bland-Altman plot for all the subjects.

4.2.6.2 PCA model based displacements error propagation in lung
biomechanical model

Since the primary objective of this study is geared towards lung biomechanical modeling,
the diaphragm PCA model was incorporated into a previously developed lung FE model
4748 The lung FE model proposed by Karami et al. is a model developed based on 4D CT
images of lung cancer patients*. In that FE model, the boundary conditions are diaphragm
motion and pleural pressure. To test the performance of the proposed PCA model and
assess its corresponding error propagation in biomechanical modeling, lung FE models of
three lung cancer patients (H1, H2 and P2) were developed. For each lung FE model, the
tumor displacement was calculated at the end inhalation phase relative to the end exhalation
phase of respiration as a reference, using the true diaphragm displacement values or PCA

model-generated displacement values as prescribed boundary conditions. These
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displacements were compared to their displacement counterparts obtained from the true

diaphragm displacements used as boundary conditions.

4.3 RESULTS

The segmentation result of one of the cases is shown in Figure 4-4 where two views of a
segmented right dome of the diaphragm are illustrated. This figure illustrates coronal and
sagittal views of the diaphragm overlaid on their respective CT images where the
diaphragm and bottom surface of the lung are in close contact, indicating the good quality

of segmentation.

(@ (b)

Figure 4-4 Segmentation results for a diaphragm’s right dome, (a) Coronal view and (b) Sagittal view.

4.3.1 Actual and PCA model based displacements comparison

PCA analysis indicated that the diaphragmatic motion in each direction can be represented
highly accurately using only the 7 largest eigen vectors as they include 98%, 97% and 96%
of the data information for the SI, AP and LR directions, respectively. To evaluate the
model performance, the “true” and model-generated displacement fields were calculated
for all the subjects using leave-out one method. To illustrate the errors between the “true”
and model-generated landmark positions, three groups of landmarks were selected for two
randomly selected subjects. The motion patterns and errors for other subjects follow a

similar trend. The three selected groups of landmarks are marked in Figure 4-5 with circles.
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Figure 4-5 Landmark selection for (a) patient H2 and (b) patient P6. Points shown with ‘+’ are generated by

the TFI method. A subset of these points (shown with ‘0”) are selected for results comparison.
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Figure 4-6 “True” (solid line) and model generated (dashed line) SI positions of Group #1 (a and b), Group
#2 (c and d) and Group #3 (e and f) of landmarks.

The first group of landmarks represent an AP profile along the diaphragm while the second
and third group of landmarks represent two LR profiles along the diaphragm. These
landmarks were used to assess the model performance for different locations on the
diaphragm. The “true” and model-generated positions of the selected landmarks are shown
in Figure 4-6. While the displacements shown in Figure 4-6 are in the Sl direction, results

of motion patterns in other directions (not shown) show a similar trend. As shown in this
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figure, not only the “true” and model-generated landmark positions match very well, but
also there are no significant error differences among different locations on the diaphragm.
As shown in Figure 4-6, the errors mainly occur close to the end inhalation phase, i.e.
beginning and end of the displacement curves. This may be attributed to the smoothing
nature of PCA and the fact that the two ends of the curves are less smooth compared to the
middle part. Our observations from all subjects indicate that another important source of
error is anatomical differences between patients which lead to minor inconsistencies in
gridding the diaphragm dome using the TFI technique. As shown in Figure 4-5, while
overall the TFI technique provides consistent landmarks especially in the axial plane, some
of the landmarks lack strong spatial consistency in the Sl direction. Examples of such
landmarks are landmarks #60, #76 and #92 marked in Figure 4-5 (a) and 4-5 (b). Figures
4-6 (e) and 4-6 (f) which show the relative Sl positions of these landmarks confirm that the
selected landmarks for patients P6 and H2 are not highly consistent. For instance,
landmark#92 is located inferior to landmark #60 for patient H2 while it is located slightly
superior to landmark #60 for patient P6. Because of this inconsistency, qualitative
comparison of results shown in Figures 4-6 (e) and 4-6 (f) show that errors associated with
landmarks #60 and #92 are higher compared to other landmarks as their respective “true”
and model-generated displacement curves are further apart. The same argument can be
made about landmarks #55 and #23. On the other hand, when the landmarks are highly
consistent, e.g. landmarks #12, #28, #44, #49, #51 and #53, the actual and model-generated
landmark positions match almost perfectly. The average errors per landmark between the
“true” and model-generated displacement values are reported in Figure 4-7 for LR, AP and
Sl directions. This figure includes data pertaining to four subject examples including H2
and P2 which correspond to the best and worst cases, respectively. As shown in this figure,
except for one subject (patient P2), the mean error per landmark is less than 1 mm for all
phases of respiration and in all directions. Data pertaining to other subjects show similar

values and variations.
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Figure 4—7 The mean error per landmark (mm) in the LR(left), AP(middle) and Sl(right) directions versus
respiratory phase for subjects (a) H1, (b) H2, (c) P2, and (d) P6.

Figures 4-8 (a) and 4-8 (b) illustrate Bland-Altman plots for subjects H2 and P6. These
plots show good agreement between the “true” and model-generated displacements for all
the landmarks in these subjects. As shown in these figures, except for very few outliers,
the displacement error for most of the landmarks is less than 1.5mm. The results indicate
that even the outliers did not exceed 2.0 mm. A similar trend was observed for other
subjects. Similar to what have been discussed about errors associated with individual
landmarks in Figure 4-6, Figure 4-8 shows that, in general, errors are higher for end
inhalation phase of respiration, i.e. two ends of the displacement curves. It can be seen in
Figure 4-6 that the output of PCA was smoother than the actual displacement curve, leading
to the observed differences between the two curves. It is noteworthy that natural
phenomena such as breathing are smooth, indicating that PCA model-generated
displacement values might be closer to reality compared to displacements obtained from

deformable image registration, which is regarded as “true” displacements.

@)

Bland-Altman Plot for PCA model in the Sl direction (Patient H2)
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(b)

Bland-Altman Plot for PCA model in the Sl direction (Patient P6)
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Figure 4-8 The Bland-Altman plots for subjects (a) H2 and (b) P6 indicating favorable agreement between
“true” and model generated displacement fields.

4.3.2 Biomechanics based tumor tracking results using the “true” and

PCA model based diaphragm displacements
Figure 4-9 illustrates the FE model of patient H1. This figure illustrates a 3D model of the
patient’s lung at end exhalation (Figure 4-9 (a)). Corresponding displacement magnitude
distribution developed through end exhalation to end inhalation is also shown (Figure 4-9
(b)). The figure also shows two sections of the displacement magnitude distribution
through the tumor. These sections indicate that the tumor did not lead to significant

disturbances in the displacement field.
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Figure 4-9 (a) 3D FE model of the lung at end exhalation phase; (b) 3D displacement distribution

superimposed on the end exhalation phase; (c) a sagittal section of the displacement distribution through the

tumor and (d) a coronal section of the displacement distribution through the tumor.

Table 4-1 lists the tumor displacements in SI, AP and RL directions calculated using the

PCA model-generated boundary conditions and the “true” boundary conditions in

conjunction with the lung FE model. According to this table, the mean displacement error

along the SI, AP and RL directions was less than 0.5 mm. This indicates that the proposed

diaphragm model’s error propagation in typical biomechanical models does not impact the

accuracy in tumor motion prediction significantly.

P2
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Displacement of
tumor centroid [0.21,1.76,-7.46]  [-1.06,4.99,-10.39] [-12.06, -5.00, -14.23]  [-4.30, 0.58, -10.69]

from “true” motion

data (mm)

Displacement of

tumor centroid from
[1.11, 1.77,-7.39] [-1.23, 4.22,-9.73] [-11.98, -4.95, -14.11] [-4.03,0.35, -10.41]
model-generated

motion data (mm)

[0.380.45,
Error (mm) [0.90,0.01,0.07]  [0.18,0.77, 0.66] [0.07, 0.04, 0.12] 0.2740.43,
0.28+0.33]

Table 4-1 Tumor displacement values in LR, AP and SI directions obtained from “true” diaphragm motion
data and the PCA model-generated diaphragm displacement field. The displacement errors resulting from the

two different boundary conditions and the Mean+SD values are also provided.

4.4 Discussion and conclusions

A highly accurate model, developed using PCA was proposed for diaphragm motion
characterization. This model was developed to be used as a major component of an expert
system being developed for lung tumor motion management in EBRT. The expert system
is designed to predict lung tumor motion/deformation during treatment using surrogate
signals of the patient’s chest surface motion. The premise of the expert system is the known
correlation between the chest surface motion, which can be measured non-invasively
during EBRT, and diaphragm motion. The latter motion is used as prescribed displacement
boundary conditions for a previously developed lung biomechanical model used in the
expert system. In addition to biomechanical applications, diaphragm motion modeling can
be used in a group of respiratory motion models which use diaphragm motion as surrogate
to other anatomical target motions 8303949 In the proposed model, we employed the TFI
technique to select consistent diaphragm landmarks for all subjects involved in the study.
This is extremely important to ensure diaphragm local region anatomical consistency
among the subjects. Unlike existing methods, the proposed model is 3D, while motion data

was obtained through non-rigid registration. Both qualitative and quantitative results
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indicate favorable agreement between “true” and model-generated diaphragm
displacement fields. In the results section, we showed that one source of error in the
proposed model is the few inconsistencies that occur in landmark selection. Errors
occurring due to inconsistency in selecting the landmarks can be compensated for by using
more rigorous methods for landmark selection. For example, it is possible to include more
anatomical information into the process of Transfinite Interpolation to achieve higher
consistency. Alternatively, 2D TFI used in this study can be replaced with 3D TFI to
compensate for errors resulting from inconsistent landmark selection. However, we
showed that such errors did not affect the biomechanics based tumor tracking results

significantly.

To further evaluate the PCA model, a previously developed lung FE model was used to
calculate tumor motion in three patients where the “true” diaphragm motion and the PCA
model based motion were used as the boundary conditions in the lung biomechanical
model. Comparison of results obtained from these two sets of diaphragm motion indicated
that the mean errors in tumor motion estimation for the three patients were 0.38mm,
0.27mm and 0.29mm in RL, AP and Sl directions, respectively. This confirms that error
propagation from the proposed PCA model into typical biomechanical lung model had
insignificant impact on the biomechanical model’s overall accuracy. It is noteworthy that
all subjects enrolled in this study were either lung cancer or COPD patients. Cancer and
COPD affect functionality of the diaphragm differently, while the number of subjects in
each category in this study was not sufficient for capturing all those motion patterns. As
such, better results are expected by incorporating more subjects in the process of
developing the PCA model. To compare the proposed method to the model proposed by
McQuaid et al.?®for diaphragm SI motion, we calculated the mean error per landmark for
all patients using leave-one out scheme. Using the model proposed in this study, the
mean+SD error per landmark in the Sl direction ranged between 0.1+0.1 mm and 1.3+1.0
mm for the 10 patients. This is a significant improvement to the quantitative results of
McQuaid et al. who reported for two patients an error ranging between 3.2+2.4 mm and
5.1+4.4 mm. Overall, the results of the proposed method show promising accuracy to

characterize the motion of the diaphragm and subsequently to predict lung tumor motion.
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All steps involved in the model development, including segmentation, registration and
landmark selection are fully automatic. As such, the proposed model has a good potential
to be incorporated into expert system frameworks aimed at studying and modeling
respiratory motion for various biomedical applications. One example of such framework is
the biomechanics-based real-time lung tumor tracking system described in this paper which

aims at more effective lung EBRT systems.
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Chapter 5 « A Neural Network Approach for Biomechanics-
based Tracking of Lung Tumors during External Beam

Radiation Therapy »

5.1 Introduction

According to statistics, cancer is one of the leading causes of death worldwide!. EBRT is
one of the primary treatment methods of lung cancer which is difficult to perform due to
respiration induced tumor motion. Various methods have been proposed for tumor motion
compensation, including motion encompassing methods, breath-hold methods??,
respiratory gating methods*® and real-time tracking methods®%. Among these methods,
real-time tracking methods have become popular as they can potentially lead to maximum
normal tissue sparing and short treatment sessions. Real-time tracking can be performed
directly or indirectly. Direct tracking can be done by real-time imaging of the tumor or
implanted fiducial markers® or real-time tracking of electromagnetic coils, implanted in the

tumor. The latter is done with electromagnetic tracking devices®°1213,

Although direct real-time imaging provides high accuracy in tumor motion estimation*, it
is invasive as it requires near continuous fluoroscopy, irrespective of using implanted
fiducial markers, leading to high radiation dose. The electromagnetic tracking approach is
also invasive, due to the potential risk of pneumothorax or clip migration®. In indirect
tracking methods, which are generally non-invasive, external signals are used such as
signals representing chest motion acquired using optical tracking'®. For these methods to
work well, a strong and robust correlation between the external signal and 3D tumor
position is required. However, a number of studies, which use the motion of a single
chest/abdomen marker as surrogate to tumor motion, indicate that the correlation between
the chest/abdomen motion obtained from a single marker and tumor motion is not robust
or strong for all subjects 178, These results stem from the fact that the chest and abdominal

surface motion is too complex to be fully characterized with one single marker. In addition
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to the necessity for developing robust and strong correlations between surrogate signal and
tumor motion, the tumor tracking method should account for tumor geometry variations
during breathing. A recent study indicates that the size of Gross Tumor Volume (GTV) can
vary by up to 62% during breathing *° concluding that lung tumor deformation should be

accounted for.

In this paper, we present an expert system for indirect lung tumor tracking which addresses
the limitations with current indirect tumor tracking methods. The proposed tumor tracking
framework consists of a lung biomechanical model being used for tumor
motion/deformation tracking and two neural networks which estimate the lung
biomechanical model real-time boundary conditions from chest motion data. The proposed

tumor tracking algorithm is summarized in Figure 5-1.
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Figure 5-1 A block diagram of lung tumor tracking system. It involves four steps of (a) pre-treatment chest
surface motion tracking and image based estimation of the lung boundary conditions. These boundary
conditions include prescribed displacement boundary conditions of lung bottom surface which is equal to
diaphragm surface displacements shown in orange and lung trans-pulmonary pressure shown in purple. (b)
Fitting a function (e.g. using neural network (NN) which maps chest surface data to lung boundary conditions.
This fitting requires the diaphragm to be presented in a compact form. (c) Intra-treatment chest surface data
acquisition and mapping to boundary conditions in real-time. (d) Calculating lung tumor position using an
accelerated lung biomechanical model.

As shown in Figure 5-1, the proposed algorithm consists of a pre-treatment step, where the
lung biomechanical model is built from pre-treatment 4D-CT data, and a relationship is
established between chest motion data, which is obtained from tracking an optimal number
of chest markers, and lung biomechanical model boundary conditions. The lung
biomechanical model boundary conditions include diaphragm displacement values and
trans-pulmonary pressure. The second step in the proposed algorithm is the intra-treatment
step where the real-time lung biomechanical model BCs are estimated from the chest
motion data using the mapping function developed in the first step, and the tumor
motion/deformation is calculated. Several research groups have tackled the problem of
lung tumor tracking using mathematical models in conjunction with 4D CT or CBCT
images?>2. In contrast to indirect heuristic mathematical methods of lung tumor motion

prediction which rely solely on data fitting mathematical model, the proposed method is a
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hybrid method of heuristic data fitting in conjunction with a tissue deformation, physics-
based model. The first component of the data fitting model is an NN used to predict the
lung BCs from input chest surface motion data. To ensure robustness of this NN, an optimal
number of markers leading to highest correlation between chest surface motion data and
tumor motion can be determined and used instead of a single marker. It should be noted
that in this work, we developed individualized NNs where pre-treatment data of each
patient over all respiration phases were used to develop the patient specific NN to be used
during treatment for the same patient. The second component is the lung biomechanical
model which inputs the BCs obtained from the NN to output the intra-treatment tumor
position and geometry. This hybrid approach is believed to be more effective than using a
solely heuristic model (e.g. NN) to calculate tumor position and geometry directly from
the chest wall surface motion data. The reason is that the NN in the latter scenario is
expected to be highly complex while being prone to data overfitting. Using an accurate
lung biomechanical model in the proposed system has two advantages: 1) accuracy of
tumor motion tracking will be high and 2) tumor geometry variations during respiration
can be taken into account, paving the way for more accurate radiation dose distribution
calculation. In this paper, our focus is the first block of Figure 5-1 which is the NN training
and testing. After training and testing the NN, it was incorporated into a previously

developed lung biomechanical model and the total accuracy of the system was evaluated.

5.2 Materials and methods

5.2.1 Data acquisition

In this study, patient-specific NNs were developed for five patients using 4D CT images.
These patients were scanned using a 16-slice Philips Brilliance Big Bore CT scanner
(Philips Medical Systems, Cleveland, USA) operating in helical mode. The scanning
parameters are: 120 kVp and 400 mAs/slice for tube potential and current, respectively.
The pitch of the couch depended on the patient's breathing period and was set to around
0.1. The intra-slice pixel size of the data was set to vary from 0.98 mm to 1.29 mm while
the slice thickness was set to 3 mm. Projection data were sorted using the Real-time
Position Management™ (RPM) system (Varian Medical Systems, Inc., Palo Alto, CA,
USA). Three of the patients had only one set of 4D CT images while the other two patients
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had both pre-treatment and follow-up 4D CT images. Each 4D CT data set includes 10
respiratory phases. For the first three patients, 90% of the images were used for training
the NNs and 10% of them were used for testing the NNs. This training scheme allows for
testing the proposed tumor tracking method in prediction of intra-fraction motion
variations. For the fourth and fifth patients, the pre-treatment images were used for training
the NNs and the follow-up images were used to test the NNs to assess the algorithm

accuracy in predicting the inter-fraction motion variations.

5.2.2 Rib motion tracking for obtaining the chest motion data
Chest motion data required to be used as input to the NNs was obtained through semi-

automatic segmentation of individual ribs and sternum body, followed by rigid registration
of each bone from end exhalation phase to each phase of respiration. To have sufficient
data representing the chest surface motion, we tracked the motion of 8", 9™ and 10" left
ribs, 6™ and 10" right ribs and the sternum body. The segmented ribs and sternum body are
shown in Figure 5-2. These landmarks were selected empirically by looking at motion
patterns of the individual ribs and selecting the ones which are less similar. In addition to
the rib motion signals, an AP signal was obtained from the RPM device used for sorting
the 4D CT images. As such, instead of using one chest motion signal, we used 7 X 3 motion
signals obtained from 6 chest markers and one abdominal marker, which together represent

the chest and abdomen motion more accurately.

The sternum
body

Right 6% rib

Left 8t ot
and 10% ribs

Right 10® rib

Figure 5-2 Segmented 8™, 9™ and 10™ left ribs, 6™ and 10™ right ribs and the sternum body.
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After performing rigid registration, the tip of each rib was segmented using an automatic
algorithm which finds the most anterior point of each rib, and selects a group of rib points
located within 2mm of the most anterior point. Next, the motion signals for the rib tip were
calculated by averaging the motion signals of all the points within the segmented tip. As
for the sternum body, its displacement data were obtained by finding the displacement of
its centroid. The motion signals obtained for the rib tips and sternum body are shown in

Figure 5-3 for subject #2.
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(c) (f)
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Figure 5-3 The X, y, and z displacement component data of segmented ribs and sternum body for subject
#2.

5.2.3 Diaphragm motion and trans-pulmonary pressure data

The first NN was trained to estimate the diaphragm displacement field from chest motion
data. The diaphragm displacement field at each phase of respiration was obtained through
segmenting the diaphragm-lung contact surface using the algorithm proposed by Karami
et al.?, followed by registering the segmented diaphragm to end exhalation phase
diaphragm using Free Form Deformation (FFD) non-rigid registration. To use the
diaphragm displacement fields as lung biomechanical model BCs, the calculated
deformation fields were mapped onto the bottom surface nodes of the lung FE mesh using
nearest neighbor interpolation method. The bottom surface nodes of FE mesh are shown in
Figure 5-4 (a). The displacements assigned to the diaphragm nodes are the outputs of the
first NN. For the five subjects being studied in this paper, the bottom surface of the lung
mesh has 113, 187, 89, 80, and 93 nodes, respectively. Therefore, the displacement of the
lung’s bottom surface for these patients and at each phase of respiration is characterized by
113 x 3, 187 x 3,89 x 3, 80 x 3, and 93 x 3 matrices, respectively. The diaphragm
nodes and corresponding SI, AP and LR displacement data for subject #2 are shown in
Figures 5-4 (a), (b), (c) and (d), respectively.
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(b)
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Figure 54 (a) The diaphragm nodes. (b), (c) and (d) corresponding SI, AP and LR displacement curves for

subject #2. Each curve color in (b), (c), and (d) represents a node of the diaphragm.
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The second NN was trained to estimate the trans-pulmonary pressure from chest motion
data. The trans-pulmonary pressure magnitude was obtained through optimization as
described in detail in Karami et al.?’. The optimization framework used for calculating the
trans-pulmonary pressure values is depicted in Figure 5-5. As shown in this figure, at each
phase of respiration, the pressure was calculated by comparing simulated image with its
corresponding actual CT image. The simulated image was obtained using deformed FE
mesh and Thin Plate Spline (TPS) image registration method. The optimized pressure
curves for the first three subjects are shown in Figure 5-6 (a). The pre-treatment and follow-

up optimized pressure curves obtained for subjects #4 and #5 are shown in Figure 5-6 (b).

Initial trans-pulmonary Ling bmmoclmmcal modn:%al FE analysis (deformed mesh at target
pressure {Boundary S p LG T sl  phase of respiration, e.g. End Inhale)
properties)
1 Simulated target image using deformed
mesh, segmented CT image at end
Update the pressure exhale and Thin Plate Spline
registration method

Pressure at target Caleulate the cost function using the

phase Convergence? actual and simulated images.

Figure 5-5 Optimization framework used to calculate trans-pulmonary pressure at each phase of respiration.
In this framework, a pre-developed lung biomechanical model for which the trans-pulmonary pressure acts
as BC, is used to optimize the pressure. The cost function is the difference between the actual CT images and

the images constructed using the deformed mesh and TPS image registration method.
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(a) (b)
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Figure 5-6 (a)The optimized pressure curves for subjects #1, #2 and #3. (b)The pre-treatment (solid line)

and follow-up (dashed line) optimized pressure curves for subjects #4 and #5.

5.2.4 Neural Networks Training

5.2.4.1 Data preparation

For the first three subjects, to prepare the data for training the neural networks for each
patient, PCA was performed on normalized chest and diaphragm motion data to reduce
their size (spatial reduction). It should be noted that, in this context, PCA was used to
capture the time variations of the chest motion and diaphragm motion using a compact
mathematical form. In this study, PCA indicated that for chest motion data and diaphragm
motion, 98% of information can be expressed using only 2 eigen vectors. As such, the chest
and diaphragm motion data were reduced to two 2x9 matrices, while the pressure is a 1x9
vector where 9 is the number of phases other than the reference phase. Next, all matrices
were normalized between 0 and 1 to be used for NN training. Examples of normalized
principal components of chest motion data and diaphragm motion are depicted in Figures
5-7 (a) and (b) for subject #2.
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Figure 5-7 Normalized principal components of (a) chest, and (b)diaphragm motion data for subject #2.

After normalization, the input and output vectors were divided to training and test data sets.
For that purpose, we used the leave-one-out cross validation scheme. After data division,
a NN was used for estimating the trans-pulmonary pressure and another NN was used for
estimating the diaphragm motion from chest motion data. We used feed forward networks,
with one hidden layer while the Levenberg-Marquardt algorithm was used to train the
networks. The training and testing of NNs were implemented in MATLAB. For the
remaining two subjects, as mentioned earlier, the pre-operative data was used for training
two NNs for each patient and the follow-up data was used for testing them. For subjects #4
and #5, as indicated earlier, follow up 4D CT images are available which allowed
evaluating the proposed method with inter-fractionation. For these subjects, data
preparation was similar to the first three patients, except that normalization prior to training
was eliminated to be able to model the inter-fraction variations in the magnitude of signals.

5.2.4.1.1 Accounting for base-line shift

To account for base-line shifts that occurred between pre-treatment and follow-up sessions,
we used Free Form Deformation non-rigid registration to register the end-exhale lung from
the first data set to the end-exhale lung from the second data set, and the lung FE mesh was

adjusted accordingly. The similarity measure used for registration is the mutual
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information. Here, we had to use non-rigid registration for removing the base-line shifts
because the pre-treatment images were taken with patient’s hands up beside their head,
while the follow up images were taken with patient’s hands beside their body. These
different positions affect the lung anatomy. In a more conventional clinical setting where
the patient set up is similar for planning and treatment sessions, chest surface data can be
used for rigid registration of the lung to account for base-line shifts, eliminating the need

for daily imaging sessions.

5.2.4.2 Diaphragm motion estimation using Neural Network

The NN configuration for estimating the diaphragm motion from chest motion data is
shown in Figure 5-8. As shown in this figure, the network has one hidden layer with two
neurons, and both input and output layers of NN are of size 2. The NN configuration for
pressure fitting is similar to the network used for diaphragm motion estimation except that

the output layer is of size 1.

Hidden Output

T aell Taelh-T

Figure 5-8 Feed forward NN used to estimate the diaphragm motion from chest motion data. The network

has one hidden layer with two nodes.

5.2.5 Validation

Validation was performed both qualitatively and quantitatively. For the first three patients,
data division was performed 9 times for each phase. Next, the NN was trained and tested.
For the fourth and fifth patients, the follow-up data was used to test the NNs developed
using the pre-treatment data. The performance of NNs was assessed using the mean error
in diaphragm motion and pressure estimation. A second validation was performed by
assessing the NN error propagation in the lung biomechanical model. For this purpose, the

output of NN was used as the lung BCs to predict tumor motion and deformation.
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5.3 Results

5.3.1 Qualitative validation

Results of NN training step indicate that the accuracy of data fitting depends strongly on
the marker location and the number of markers used for training. For instance, the sternum
body was not a good landmark for the subjects being studied in this paper and the results
of data fitting improved significantly for all subjects when the sternum body was removed
from the landmarks set. In addition, while the results indicate that the pressure inter-
fraction variations can be successfully obtained from chest motion data, for diaphragm
inter-fraction motion estimation, the presence of an abdominal marker is necessary.
Overall, the results indicate that with suitable marker location/number, both pressure and
diaphragm motion can be estimated from chest motion data. Figures 5-9 and 5-10 depict
examples of results obtained from intra-fraction and inter-fraction validation tests,
respectively. Figure 5-9 (a), depicts the actual trans-pulmonary pressure curves overlaid on
the pressure values predicted by the NN for subject #2. Figure 5-9 (b) illustrates the actual
principal components of diaphragm motion overlaid on the corresponding NN predicted
values for the same subject. Figures 5-10 (a) and (b) depict similar results for subject #4
which was used to test the model for inter-fraction motion variation prediction.
Qualitatively, the results obtained from NNs agree very well with the actual pressure and

diaphragm motion values.
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Figure 5-9 Intra-fraction validation test. (a) Actual and NN estimated trans-pulmonary pressure curves, and

(b) diaphragm motion principal components for subject #2.
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Figure 5-10 Results obtained from inter-fraction motion estimation test. (a) Actual and NN-estimated trans-

pulmonary pressure curves, and (b) diaphragm motion principal components for subject #4.
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5.3.2 Quantitative validation

After developing the NN, the first quantitative validation was performed by calculating
the mean error in estimating the diaphragm displacement field and trans-pulmonary
pressure values. Figures 5-11 (a), (b), and (c) depict the mean error in pressure estimation
for each test data set for the first three patients. Figures 5-11 (e), (), and (g) illustrate the
mean error per landmark in estimating the diaphragm motion for the same patients. As
shown in these figures, the absolute error in pressure estimation is less than 0.3 cmH20,
and the mean error per landmark in diaphragm motion estimation is less than 0.6 mm over
all subjects, phases of respiration, and dimensions. These results indicate high accuracy in

estimating the diaphragm motion and trans-pulmonary pressure intra-fraction variations.
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Figure 5-11 (a), (b) and (c) Mean error in pressure estimation vs respiration phase. (d), (e) and (f) Mean

error in diaphragm motion estimation vs respiration phase.

Table 5-1 represents quantitative results for subjects #4 and #5. As indicated by this table,
the mean error in diaphragm motion estimation in X, y and z directions is 0.25 (mm), 0.19
(mm) and 0.14 (mm), respectively. In addition, the mean error in pressure estimation is
0.24 (cmH20) which is favorable.
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Mean error per landmark in

. . . Mean error in pressure
diaphragm motion prediction (mm) o
estimation (cmH20)

X y z
Subject #4 0.20 0.23 0.11 0.22
Subject #5 0.29 0.15 0.16 0.25
Mean + SD 0.25+0.06 0.19+0.06 0.14+0.04 0.24+0.02

Table 5-1 Mean error in inter-fraction diaphragm motion (mm) and trans-pulmonary pressure (cmH20)

prediction for subjects #4 and #5.

The second quantitative validation was performed by incorporating the NNs in the lung
tumor tracking algorithm. For this purpose, the NN predicted boundary conditions were
used to predict the tumor motion and the results were compared to tumor tracking results
obtained from actual lung BCs. For this purpose, first the Dice similarity coefficient
between the actual tumor volume and the volume predicted by lung biomechanical model
was calculated where the lung biomechanical BCs were obtained from 4D CT images. The
results are reported in Tables 5-2 and 5-3. Next, the same calculation was performed using
the NN to obtain the lung biomechanical model BCs and calculate the tumor trajectories.
Results of the second calculation are reported in Tables 5-4 and 5-5 for estimation of intra-
fraction and inter-fraction motion variations, respectively. These results indicate that the
proposed algorithm can estimate the intra-fraction tumor motion variations with a mean
Dice similarity coefficient of 0.86+0.06. In the presence of inter-fraction motion, the Dice
similarity coefficient is reduced by 5% where the mean Dice obtained from actual BCs is
0.88+0.06 and it is reduced to 0.83+0.06. Despite the aforementioned error, the results are

still favorable.

Phase

2 3 4 5 6 7 8 9
number
Patient

0.90 0.87 0.90 0.90 0.90 0.88 0.79 0.82

#1
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Patient

0 0.88 0.86 0.90 0.93 0.93 0.78 0.81 0.79
Patient

. 0.83 0.86 0.85 0.90 0.94 0.93 0.85 0.80 0.84
Mean +

. 0.84+0.05 0.88+0.02 0.86+0.01 0.90+0.0 0.92+0.02 0.92+0.02 0.84+0.05 0.80+0.01 0.82+0.03

Table 5-2 Dice similarity coefficient between actual Gross Tumor Volume (GTV) and the lung

biomechanical model estimated GTV for three subjects over the full respiratory cycle. The lung

biomechanical model is driven with image derived (actual) boundary conditions. These patients were used

to assess the algorithm performance in estimating the intra-fraction motion variation.

Phase

2 3 4 5 6 7 8 9
number
Patient
4 0.86 0.89 0.92 0.94 0.92 0.87 0.83 0.81
Patient
4 0.86 0.90 0.86 0.95 0.94 0.90 0.85 0.79 0.83
Mean +
. 0.87+0.01 0.88+0.03 0.88+0.02 0.94+0.02 0.94+0.0 0.91+0.01 0.86+0.01 0.81+0.03 0.82+0.01

Table 5-3 Dice similarity coefficient between actual Gross Tumor Volume (GTV) and the lung

biomechanical model estimated GTV for two subjects over the full respiratory cycle. The lung biomechanical

model is driven with image derived (actual) boundary conditions. These patients were used to assess the

algorithm performance in estimating the inter-fraction motion variation.

Phase
2 3 4 5 7 8 9 10
number
Patient
“ 0.79 0.90 0.86 0.90 0.90 0.90 0.87 0.79 0.81
Patient
0.89 0.86 0.86 0.90 0.92 0.93 0.78 0.82 0.81

#2
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Patient

0 0.84 0.85 0.90 0.92 0.93 0.83 0.80 0.84
Mean +

D 0.81+0.03 0.87+0.03 0.86+0.01 0.90+0.0 0.91+0.01 0.92+0.02 0.83+0.05 0.80+0.02 0.82+0.02

Table 5-4 Dice similarity coefficient between actual Gross Tumor Volume (GTV) and the lung
biomechanical model estimated GTV for four subjects over the full respiratory cycle. The lung biomechanical
model is driven with Neural Network estimated BCs. These patients were used to assess the algorithm

performance in estimating the intra-fraction motion variation.

Phase

2 3 4 5 6 7 8 9
number
Patient
4 0.80 0.80 0.89 0.90 0.90 0.80 0.79 0.81
Patient
45 0.80 0.84 0.80 0.93 0.91 0.89 0.78 0.73 0.75
Mean +
D 0.81+0.01 0.83+0.01 0.80+0.0 0.91+0.03 0.91+0.01 0.90+0.02 0.79+0.01 0.76+0.04 0.78+0.04

Table 5-5 Dice similarity coefficient between actual Gross Tumor Volume (GTV) and the lung
biomechanical model estimated GTV for four subjects over the full respiratory cycle. The lung biomechanical
model is driven with Neural Network estimated BCs. These patients were used to assess the algorithm

performance in estimating the inter-fraction motion variation.

5.4 Discussion and Conclusions

Highly accurate NNs were developed for diaphragm motion characterization and trans-
pulmonary pressure estimation from chest motion data. These NNs were developed to be
used as a major component of an expert system being developed for lung tumor motion
management in EBRT. The expert system is designed to predict lung tumor
motion/deformation during treatment using surrogate signals of the patient’s chest surface

motion.
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The premise of the expert system is the known correlation between the chest surface
motion, which can be measured non-invasively during EBRT, and lung boundary
conditions required for a previously developed lung biomechanical model used in the
expert system. The chest motion data was obtained through segmentation and rigid
registration of five individual ribs and sternum body. Ribs do not stretch and slide as skin
can. As such, to minimize the difference between rib motion and skin motion, we picked
subjects who had less fat under their skin. An abdominal motion signal was also obtained
using the RPM marker. The diaphragm motion data was obtained using non-rigid
registration while the trans-pulmonary pressure values were obtained using an optimization
framework described in Figure 5-5. Both qualitative and quantitative results indicate

favorable agreement between “true” and NN-based prediction of lung boundary conditions.

The results presented in this paper indicate that the proposed NN-based approach can be
effectively used to predict the lung BCs from chest motion data. In addition, the results
indicate that the trained NNs work well for prediction of both intra-fraction and inter-
fraction variations in pressure and diaphragm motion. To further evaluate the NNs, a
previously developed lung FE model was used to calculate tumor motion in five patients
where the “true” BCs and the NN-based estimated BCs were used in the lung
biomechanical model. Comparison of results obtained from these two sets of boundary
conditions indicated that when the chest motion data is used to predict the lung BCs, the
accuracy of tumor motion tracking is reduced by less than 5%. This confirms that error
propagation from the NN-based boundary condition estimation into typical biomechanical

lung model had insignificant impact on the biomechanical model’s overall accuracy.

It is noteworthy that all subjects enrolled in this study were either lung cancer or COPD
patients while the previously developed lung biomechanical model was developed for
healthy subjects. As such, better results are expected by incorporating more patient specific
parameters such as nonuniform tissue mechanical properties pertaining to pathological
tissue. In addition, it is known that different patients have different breathing patterns and
the location of markers should not be fixed for all patients. In fact, the raw data used in this
study indicates significant breathing irregularities can happen from session to session but

those irregularities can be detected by using suitable markers. As such, a systematic method
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can be used to individualize chest marker location optimization to increase the BC
prediction accuracy. Real-time tracking of lung tumors has been tackled by many research
groups including methods proposed for modeling intra-fraction?® 3! and inter-fraction°32-
% variations. Such methods rely on using intermittent 4D CT%®, Cone-Beam CT%, 4D
CBCT?**, MR imaging, or using implanted fiducial markers imaged with fluoroscopy®’ to
find the intra-fraction tumor motion. However, none of these methods can adequately
image the 3D motion of the lung required for the whole treatment session. Repeated 4D
CT32% or daily CBCT?%%35 scans have also been used for measuring the inter-fraction
motion variations which are reported to be mainly caused by base-line shifts in tumor

positions relative to other organs®**.

Surrogate-driven tracking of lung tumors has been tackled by several research groups,
including more recent studies published by McClelland et al.%, Martin et al.?®, and Fassi et
al.?»2>_ All the existing tracking methods rely on Deformable Image Registration (DIR)
followed by fitting functions relating the surrogate signal to the control points used for
registration. Results presented by McClelland et al. indicate DIR-based tracking methods
perform poorly in intra-fraction motion prediction unless optimum base-line landmark
shifts are calculated and accounted for. Their results indicate that the base-line shift is not
similar for different regions of the lung leading to necessity of non-rigid image registration
performed on treatment day to account for those shifts. To address this issue, Fassi et al.
propose using daily CBCT images to find the base-line shifts. Unlike DIR-based methods
which rely on fitting a separate function for each of the control point displacements that
define the B-spline transformation, the proposed algorithm relates the surrogate signal to
lung boundary conditions, i.e. pressure and diaphragm motion. This approach results in
algorithm robustness because lung BCs are associated with the physiology of breathing
which is expected to have fewer variations over the course of treatment. Using a physics-
based model with variable boundary conditions obtained from chest surface data, allows
for accounting for inconsistent regional base-line shifts reported by other groups. Finally,
to account for patient set-up variability through treatment sessions, the lung FE mesh needs
to be adjusted accordingly. For this purpose, a high-resolution image of the chest/abdomen

surface can be acquired to be registered to the same surface segmented on the pre-treatment
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base-line image. Such a high resolution surface acquisition is possible using AlignRT®
designed and produced by Vision RT for Surface Guided Radiation Therapy. This would
eliminate the need for performing daily CBCT images required for finding the base-line
shift of control points in DIR-based tracking methods. Overall, the results presented in this
paper demonstrate the feasibility of tumor tracking using a biomechanics-based approach

paving the way towards more accurate and robust EBRT.
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Chapter 6 « Summary, Conclusion, and Future Work »

6.1 Summary

The overall goal of the thesis was to develop a surrogate-driven, biomechanics-based, real-
time lung tumor tracking algorithm to be used during EBRT. The purpose is to eliminate
the need for intra-treatment imaging or invasive procedures currently used for real-time
tracking of lung tumors. An effective surrogate-driven, biomechanics-based tracking

algorithm requires the following components:

e Automatic image processing algorithms to be used for extracting the model
requirements from 4D images.

e A robust and accurate lung biomechanical model with adaptive boundary
conditions.

e A compact form mathematical model of diaphragm motion to be used for real-
time estimation of the diaphragm motion from surrogate signals.

¢ Robust and accurate functions relating the surrogate signal to the lung boundary

conditions.

In Chapters 2-5 of this thesis, we presented the methods used to build each required

component for the proposed real-time lung tumor tracking algorithm.

In Chapter 2, a fully automatic anatomy-based algorithm was proposed for segmentation
of the entire diaphragm in non-contrast CT images. The challenges associated with the
diaphragm segmentation such as its similar tissue density distribution to its surrounding

organs are addressed using a priori anatomical knowledge about human diaphragm. In fact,
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the proposed algorithm takes advantage of the fact that the diaphragm is in contact with its
surrounding organs while those organs present sufficiently high contrast regions within the

CT images.

Image information required for the lung biomechanical modeling includes segmented lungs
and their boundary conditions such as diaphragm motion, ribcage motion, and lung-trachea
interface. Given that the proposed diaphragm segmentation algorithm segments the
diaphragm’s surrounding organs, the segmented organs can be readily used for lung

biomechanical modeling.

The proposed algorithm may have limitations pertaining to presence of pathological
conditions that may affect the diaphragm’s anatomy or the anatomy of its surrounding
organs. In our data set, there are cases where the anatomy of the ribcage or the aorta have
been altered because of pathology while the results are still sufficiently accurate as the
algorithm follows the anatomy of surrounding organs. We believe that as long as the
diaphragm remains in contact with its surrounding organs, the proposed algorithm can be
used to segment the diaphragm effectively. While these limitations may slightly affect the
diaphragm segmentation accuracy, they are not anticipated to have significant effect on the
lung biomechanical model accuracy. In fact, the diaphragm portion required for lung
biomechanical modeling is the one which is in contact with the lungs and the results

indicate that the lung-diaphragm contact surface can be segmented with high accuracy.

The major application of the entire diaphragm segmentation is to develop accurate
computational biomechanical models of the diaphragm. The diaphragm computational
models can be used in various applications ranging from in-depth understanding of the
diaphragm’s physiology and developing effective diagnostic techniques of relevant
respiratory diseases to computer assisted clinical procedures such as lung cancer
radiotherapy and liver intervention. Lung cancer radiotherapy can benefit greatly from
accurate biomechanical modelling of the diaphragm as a major driver of lung tumor motion
during respiration cycle. In this case, the model can be integrated with the lung’s
biomechanical model to facilitate accurate prediction of the tumor motion, paving the way

for computer assisted motion compensation in radiotherapy procedures.
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The results obtained in this study indicate that the proposed algorithm is capable of accurate
delineation of the entire diaphragm, paving the way for accurate biomechanical modeling
of the diaphragm necessary for many clinical applications. In addition, the sub-algorithms
used in this algorithm can be used to extract all the image information required for lung

biomechanical modeling, indicating that the first objective of this thesis is fully met in this

paper.

In Chapter 3, a biomechanical model was proposed specifically for lung tumor tracking
during EBRT. One unique feature of this model is using patient specific loading and
material properties data which were obtained from 4D CT imaging data processed within
an optimization framework. The lung biomechanical model serves as a core component of
the system which determines the tumor location and its geometry throughout respiration.
This data can be fed to a robotic system driving a linear accelerator which changes the
radiation beam orientation consistent with the tumor motion to achieve optimal EBRT
outcome. The proposed lung biomechanics model involves two types of loading. The
diaphragm motion related loading defined as prescribed displacement boundary conditions
and the trans-pulmonary pressure arising from chest muscle contraction and relaxation.
These loading components were determined before treatment using 4D CT image data
using optimization. The trans-pulmonary pressure curves obtained through optimization
agree well with pressure measurement data reported in the literature. Another important
feature of the proposed lung biomechanics model is its treatment of the incompressibility
of the lung tissue. The model considers variable tissue incompressibility characterized by
Poisson’s ratio through various respiration phases. This is essential for studying the lung
mechanics under breathing physiological conditions as the air content within the tissue
varies substantially from the end exhalation phase, where tissue incompressibility is
maximum, to the end inhalation phase, where tissue incompressibility is minimum.
Optimized Poisson’s ratio variations are consistent with expected trend. In this work, the
Poisson’s ratio was assumed to be uniformly distributed throughout the lung volume. While
this may be a good assumption in healthy lungs, a level of deviation from this uniformity
assumption is expected with lung cancer patients or patients who have other lung disease

such as Chronic Obstructive Pulmonary Disease (COPD). Especially in the latter, the
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Poisson’s ratio is expected to be significantly heterogeneous. In such cases, the Poison’s
ratio has to be treated as such, leading to a multi parameter optimization algorithm which
can be solved to provide diagnostic information in addition to data pertaining to the lung
tissue mechanical properties. Among other advantages of using the biomechanics approach
for tumor tracking is its ability to compute the variable lung tumor geometry throughout
respiration. This can be highly advantageous as the variable volume data can be used in
conjunction with an advanced radiation dose distribution algorithm which considers tumor
volume geometry variation during EBRT. As indicated earlier, one source of error in our
model is the tissue mechanical properties which is expected to be heterogeneous in patients
who suffer from lung disease. Despite assuming homogeneous tissue and assigning lung
tissue hyperelastic parameters which are not patient specific, the quantitative results
obtained in this study are quite favorable. The results published in this chapter satisfy our
second goal which was developing an accurate lung biomechanical model suitable for

radiotherapy applications.

In Chapter 4, a highly accurate model was proposed for diaphragm motion characterization
using principal component analysis. This model was developed to be used as a major
component of the biomechanics-based lung tumor tracking algorithm. In the proposed
model, we employed the TFI technique to select consistent diaphragm landmarks for all
subjects involved in the study. This is essential to ensure diaphragm local region
anatomical consistency among the subjects. Unlike existing methods, the proposed model
is 3D while motion data was obtained through deformable image registration. Both
qualitative and quantitative results indicate favorable agreement between “true” and

model-generated diaphragm displacement fields.

It is noteworthy that all subjects enrolled in this study were either lung cancer or COPD
patients. While it is known that Cancer and COPD affect functionality of the diaphragm
differently, the low number of subjects in each category in this study is not large enough
to capture various motion patterns anticipated in the mentioned groups of patients. As such,
better results are expected by incorporating more subjects in the process of developing the

PCA model. The results presented in this chapter meet our third goal of developing a
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compact form mathematical model of diaphragm motion. This paves the way towards using
expert system frameworks aimed at studying and modeling respiratory motion for various

biomedical applications including our proposed tumor tracking algorithm.

In Chapter 5, the proposed biomechanics-based lung tumor tracking algorithm is completed
by developing highly accurate NNs for diaphragm motion characterization and trans-
pulmonary pressure estimation from chest motion data. Quantitative validation was
performed in two steps. First, the performance of NN was tested on un-seen data where
qualitative results indicate favorable agreement between “true” and NN-estimated lung
boundary conditions. Quantitative results indicate that the proposed NN-based approach
can be effectively used to predict the lung BCs from chest motion data. In addition, the
results indicate that the trained NNs work well for prediction of both intra-fraction and
inter-fraction variations in trans-pulmonary pressure and diaphragm motion. To further
evaluate the NNs, our proposed lung FE model was used to calculate tumor motion in five
patients where the “true” BCs and the NN-based estimated BCs were used for driving the
lung biomechanical model. Comparison of results obtained from these two sets of boundary
conditions indicated that when the chest motion data is used to predict the lung BCs, the
accuracy of tumor motion tracking is reduced by less than 5%. This confirms that error
propagation from the NN-based boundary condition estimation into typical lung
biomechanical model had insignificant impact on the biomechanical model’s overall
accuracy. As such, these results indicate the feasibility of biomechanics-based real-time
tumor tracking during EBRT. To further evaluate the proposed algorithm towards
achieving a higher level of confidence necessary for clinical translation, more subjects
should be recruited.

6.2 Conclusions and Future Directions

Results presented in this thesis indicate the feasibility of real-time lung tumor tracking
using biomechanical modeling. While these results are encouraging, the number of patient
samples are small, and further clinical studies are required to perform a comprehensive

assessment of the algorithm performance and its sensitivity to anatomical changes during
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treatment, artifacts in 4D CT images, and types of contrast used for imaging (oral or
intervenors). While the number of patients used in this study is small, it is justified as the
main objective of this thesis was to address the modeling challenges associated with using
biomechanics-based tumor tracking algorithms.

As mentioned earlier, there are two challenges associated with biomechanics-based
procedures. First, updating the lung BCs in real-time. Second, reducing the FEA
computation cost. The main goal of this thesis, which was met in Chapters 2-5, was to
address the first challenge. To build upon this work, the first step is to use systematic
methods for optimizing the location/number of chest/abdominal markers. Next, one should
perform several clinical studies and recruit a sufficient number of patients with different
tumor locations and various ranges of tumor motion to assess the algorithms performance
for a larger population. Finally, GPU programming or model reduction methods should be
used to increase the FEA speed. For instance, statistical FEA developed by our group can
be used to speed up the FEAL

Like any other real-time tracking method, another step should be added to the algorithm
where the motion/deformation is predicted ahead of time to account for system latencies.
Aside from real-time tumor tracking purposes, the proposed framework can be used for
respiratory motion modeling required for many applications such as radiotherapy treatment
planning and lung image reconstruction. The last study, in which the diaphragm motion is
obtained from chest motion data, can be used for developing respiratory motion models for
other applications such as lung/liver interventions where real-time diaphragm boundary

conditions are required.

6.3 Closing Remarks

During the past decades, numerous studies have been conducted to address challenges
associated with respiratory motion, including difficulties in imaging and medical
interventions. Despite enormous efforts and investments, these challenges are not fully
addressed, indicating the complexity of the problem. As presented in this work, breaking
the lung tumor tracking problem to smaller problems of lung FE modeling and lung BC

prediction from chest motion data results in achieving higher accuracy in motion modeling,
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paving the way towards accurate and real-time tracking of lung tumors. While the main
objective of this thesis was to develop a real-time tumor tracking algorithm, another
important goal achieved in this study was to build a physics-based tool which can be used
for better understanding of the respiratory system function. As presented in Chapter 3, the
proposed framework for lung biomechanical modeling allows for calculating patient
specific trans-pulmonary pressure and incompressibility parameter data. The proposed
framework can also be used for calculating patient specific tissue mechanical properties
such as stiffness parameters. To address the tissue heterogeneity issue caused by disease,
the lung tissue abnormalities can be segmented using automatic segmentation algorithms
such as texture detection methods. Next, the segmented regions may be assigned different
mechanical properties followed by an optimization step to find the tissue mechanical
properties for each segment. As such, the proposed lung biomechanical model can be used
in conjunction with lung images and experimental data to increase our knowledge about
alterations caused by disease in tissue mechanical properties. To conclude, not only the
proposed tracking algorithm can potentially be used for real-time lung tumor tracking, it
can also be used effectively for developing better understanding of the respiratory system

in normal and pathological situations.
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