5 research outputs found

    The true Cramer-Rao bound for estimating the carrier phase of a convolutionally encoded PSK signal

    Get PDF
    This contribution considers the true Cramer-Rao bound (CRB) related to estimating the carrier phase of a noisy linearly modulated signal in the presence of encoded data symbols. Timing delay and frequency offset are assumed to be known. A generall expression and computational method is derived to evaluate the CRB in the presence of codes for which a trellis diagram can be drawn (block codes, trellis codes, convolutional codes,...). Results are obtained for several minimum free distance non-recursive convolutional (NRC) codes, and are compared with the CRB obtained with random (uncoded) data [1] and with the modified Cramer-Rao bound (MCRB) from [2]. We find that for small signal-to-noise ratio (SNR) the CRB is considerably smaller for coded transmission than for uncoded transmission. We show that the SNR at which the CRB is close to the MCRB decreases as the coding gain increases, and corresponds to a bit error rate (BER) of about 0.001. We also compare the new CRBs with the simulated performance of (i) the (code-independent) Viterbi & Viterbi phase estimator [3] and (ii) the recently developed turbo synchronizer [4,5]

    Carrier Phase Recovery for Turbo-Coded Linear Modulations

    No full text
    In this paper, we present a low-complexity carrier phase estimation algorithm suited for turbo-coded 16-QAM modems. The estimator is based on a maximum likelihood (ML) approach, and unlike previously published work, makes iterative use of soft decisions provided by the soft-in soft-out decoders within the overall iterative turbo decoding scheme, yielding negligible degradation with respect to ideal phase synchronization. Performance in terms of mean estimated value, mean-squared estimation error, and overall decoder bit error rate (BER) as derived by simulation are also reported

    Coherent receiver design and analysis for interleaved division multiple access (IDMA)

    Get PDF
    This thesis discusses a new multiuser detection technique for cellular wireless communications. Multiuser communications is critical in cellular systems as multiple terminals (users) transmit to base stations (or wireless infrastructure). Efficient receiver methods are needed to maximise the performance of these links and maximise overall throughput and coverage while minimising inter-cell interference. Recently a new technique, Interleave-Division Multiple Access (IDMA), was developed as a variant of direct-sequence code division multiple access (DS-CDMA). In this new scheme users are separated by user specific interleavers, and each user is allocated a low rate code. As a result, the bandwidth expansion is devoted to the low rate code and not weaker spreading codes. IDMA has shown to have significant performance gains over traditional DS-CDMA with a modest increase in complexity. The literature on IDMA primarily focuses on the design of low rate forward error correcting (FEC) codes, as well as channel estimation. However, the practical aspects of an IDMA receiver such as timing acquisition, tracking, block asynchronous detection, and cellular analysis are rarely studied. The objective of this thesis is to design and analyse practical synchronisation, detection and power optimisation techniques for IDMA systems. It also, for the first time, provides a novel analysis and design of a multi-cell system employing a general multiuser receiver. These tools can be used to optimise and evaluate the performance of an IDMA communication system. The techniques presented in this work can be easily employed for DS-CDMA or other multiuser receiver designs with slight modification. Acquisition and synchronisation are essential processes that a base-station is required to perform before user's data can be detected and decoded. For high capacity IDMA systems, which can be heavily loaded and operate close to the channel capacity, the performance of acquisition and tracking can be severely affected by multiple access interference as well as severe drift. This thesis develops acquisition and synchronisation algorithms which can cope with heavy multiple access interference as well as high levels of drift. Once the timing points have been estimated for an IDMA receiver the detection and decoding process can proceed. An important issue with uplink systems is the alignment of frame boundaries for efficient detection. This thesis demonstrates how a fully asynchronous system can be modelled for detection. This thesis presents a model for the frame asynchronous IDMA system, and then develops a maximum likelihood receiver for the proposed system. This thesis develops tools to analyse and optimise IDMA receivers. The tools developed are general enough to be applied to other multiuser receiver techniques. The conventional EXIT chart analysis of unequal power allocated multiuser systems use an averaged EXIT chart analysis for all users to reduce the complexity of the task. This thesis presents a multidimensional analysis for power allocated IDMA, and shows how it can be utilised in power optimisation. Finally, this work develops a novel power zoning technique for multicell multiuser receivers using the optimised power levels, and illustrates a particular example where there is a 50% capacity improvement using the proposed scheme. -- provided by Candidate
    corecore