
EURASIP Journal on Applied Signal Processing 2005:6, 981–988
c© 2005 Hindawi Publishing Corporation

Iterative Code-AidedML Phase Estimation
and Phase Ambiguity Resolution

HenkWymeersch
Digital Communications Research Group, Department of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
Email: hwymeers@telin.ugent.be

Marc Moeneclaey
Digital Communications Research Group, Department of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
Email: mm@telin.ugent.be

Received 29 September 2003; Revised 25 May 2004

As many coded systems operate at very low signal-to-noise ratios, synchronization becomes a very difficult task. In many cases,
conventional algorithms will either require long training sequences or result in large BER degradations. By exploiting code prop-
erties, these problems can be avoided. In this contribution, we present several iterative maximum-likelihood (ML) algorithms for
joint carrier phase estimation and ambiguity resolution. These algorithms operate on coded signals by accepting soft information
from the MAP decoder. Issues of convergence and initialization are addressed in detail. Simulation results are presented for turbo
codes, and are compared to performance results of conventional algorithms. Performance comparisons are carried out in terms
of BER performance and mean square estimation error (MSEE). We show that the proposed algorithm reduces the MSEE and,
more importantly, the BER degradation. Additionally, phase ambiguity resolution can be performed without resorting to a pilot
sequence, thus improving the spectral efficiency.
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1. INTRODUCTION

In packet-based communications, frames arrive at the re-
ceiver with an unknown carrier phase. When phase estima-
tion (PE) is performed bymeans of a conventional non-data-
aided (NDA) algorithm [1], the resulting estimate exhibits a
phase ambiguity, due to the rotational symmetries of the sig-
nalling constellation. Phase ambiguity resolution (PAR) can
be accomplished by a data-aided (DA) algorithm that ex-
ploits the presence of a known pilot sequence in the trans-
mitted data stream [2]. The need for PAR can be removed by
using differential encoding, which however results in a BER
degradation, and requires significant changes to the decoder
in case of iterative demodulation/decoding [3]. Since a phase
ambiguity resolution failure gives rise to the loss of an entire
packet, its probability of occurrence should be made suffi-
ciently small. At the same time, the pilot sequence must not
be too long as it reduces the spectral efficiency of the system.

Although conventional estimation algorithms perform
well for uncoded systems, a different approach needs to be
taken when powerful error-correcting codes are used. These
codes operate typically at low SNR, making the estimation

process more difficult. By exploiting the knowledge of cer-
tain code properties, a more accurate estimate may be ob-
tained. In [4], by approximating the log-likelihood function,
iterative phase estimation and detection is performed, while
[5] uses the so-called extrinsic information after each de-
coding iteration to perform phase estimation. Similarly, [6]
exploits the observation that the magnitude of the extrin-
sic information depends on the phase error. By changing the
turbo decoder, certain types of phase estimation errors can
be resolved [7]. An EM-based algorithm was proposed in [8]
but required certain approximations to operate in coded sys-
tems. Apart from these ad hoc methods, a theoretical frame-
work for code-aided estimation was proposed in [9] and
applied to phase estimation. In [10], using a factor-graph
representation, various phase models were considered and
message-passing algorithms for joint decoding and phase es-
timation were derived. Most of the papers above made no
comparisons with conventional estimation algorithms. Fur-
thermore, the problem of PAR was not considered. On the
other hand, in [11, 12], a form of code-aided PAR was pro-
posed, but assuming perfect phase estimation and using the
code structure in an ad hoc fashion.
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This paper addresses the problem of joint phase estima-
tion and phase ambiguity resolution for a turbo-coded sys-
tem [13]. Based on [9], we make use of the EM algorithm
[14] to derive a maximum-likelihood (ML) method for PE
and PAR. We make comparisons in terms of mean square es-
timation error (MSEE) and BER with some known schemes
from literature. We go on to show how convergence issues
may be dealt with, without any increase in computational
complexity, MSEE, and BER. Finally, we demonstrate that al-
though the EM-based PE algorithm does not necessarily yield
a substantial gain in terms of BER as compared to a conven-
tional PE algorithm, the EM-based PAR algorithm is manda-
tory if we wish to avoid long pilot sequences.

2. SYSTEMDESCRIPTION

The transmitted sequence, denoted by the row vector s, con-
sists of a pilot sequence (p, length L) and an unknown data
sequence (a, length N), that is, s = [p a]. The data symbols
are obtained bymapping a sequence of interleaved coded bits
onto a signalling constellation. The received vector is given by

r = se jθ + n, (1)

where n is a row vector consisting of L + N complex AWGN
samples with real and imaginary components having vari-
ance σ2 = N0/(2Es), where Es is the energy per transmit-
ted symbol. The pilot and data symbols are taken from an
M-PSK constellation1 with |pm| = |an| = 1, for m =
0, 1, . . . ,L − 1 and n = 0, 1, . . . ,N − 1. The unknown carrier
phase θ is in the interval (−π,π). Detection of the data sym-

bols a is based upon the rotated vector re− jθ̂ , with θ̂ denoting
an estimate of the carrier phase θ.

We introduce the integer part, kθ , and the fractional part,
εθ , of the phase θ, defined by

θ = kθ
2π
M

+ εθ , (2)

where |εθ| < π/M and kθ ∈ {0, 1, . . . ,M − 1}. The PE algo-
rithm involves the estimation of the continuous parameter εθ
or θ, whereas PAR refers to the estimation of the discrete pa-
rameter kθ . Estimation of εθ and θ will be denoted by “frac-
tional phase estimation” (FPE) and “total phase estimation”
(TPE), respectively, wherever it is appropriate to make such
a distinction.

3. CONVENTIONAL PHASE ESTIMATION

3.1. DA total phase estimation

Considering only the observations [r0, . . . , rL−1] that corre-
spond to the pilot symbols, an ML estimate of θ may be ob-
tained as follows [15]. Defining

Cp =
L−1∑
i=0

ri p
∗
i , (3)

1Generalization to other constellations is straightforward.

the ML estimate becomes

θ̂ML,p = argmax
θ̃
�
{
Cpe

− jθ̃
}

= arg
(
Cp
)
.

(4)

As this phase estimate is in the interval (−π,π), no PAR is
required.

3.2. NDA fractional phase estimation
combinedwith DA PAR

Note that in (4), the observations [rL, . . . , rN+L−1] are not ex-
ploited. These observations can be used in a NDA estimator,
such as a Viterbi and Viterbi (VV) estimator [1]. However,
because of the rotational symmetry of the M-PSK constella-
tion, the NDA estimate suffers from an M-fold phase ambi-
guity, and is to be interpreted as an estimate of the fractional
part εθ rather than the “total” phase θ. Hence, the VV esti-
mator yields [1]

ε̂θ = 1
M

arg
N+L−1∑
k=0

rMk . (5)

The NDA FPE algorithm (5) must be combined with a PAR
algorithm that estimates the integer part kθ of the phase. A
conventional PAR algorithm based upon the pilot sequence
is [2]

k̂θ = arg max
k̃∈{0,...,M−1}

�
{
Cpe

− jε̂θ exp

(
− j2π

k̃

M

)}
, (6)

where ε̂θ is the NDA estimate resulting from (5).

4. CODE-AIDED PHASE ESTIMATION

4.1. ML estimation through the EM algorithm

Assume we want to estimate a (discrete or continuous) pa-
rameter b from an observation vector r in the presence of a
so-called nuisance vector a. The ML estimate of bmaximizes
the log-likelihood function

b̂ML = argmax
b̃

{
ln p

(
r|b̃)}, (7)

where

p
(
r|b̃) =

∫
a
p
(
r|a, b̃)p(a)da. (8)

Often p(r|b̃) is difficult to calculate. The EM algorithm
[14] is a method that iteratively solves (7). Defining the com-
plete data x = [r, a], the EM algorithm breaks up in two
parts: the expectation part (9) and the maximization part
(10):

Q
(
b̃, b̂(n)

) =
∫
x
p
(
x|r, b̂(n)) ln p

(
x|b̃)dx, (9)

b̂(n+1) = argmax
b̃

{
Q
(
b̃, b̂(n)

)}
. (10)
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Figure 1: Comparison of (a) p(r|θ) and (b) Q(θ, θ) (both up to a multiplicative constant) for a short random code with QPSK mapping.
The true value of the carrier phase is 0 radians.

It has been shown that b̂(n) converges to a stationary point
of the likelihood function under fairly general conditions
[14]. However, when the initial estimate (b̂(0)) is not suffi-
ciently close to the ML value, the EM algorithm may con-
verge to a local maximum or a saddle point instead of the
global maximum of the likelihood function. To avoid these
convergence problems, we propose the following solution

[16]. Assuming we haveK initial estimates {b̂(0)1 , . . . , b̂(0)K }, we
apply the EM algorithm ((9)-(10)) K times, each with a dif-
ferent initial estimate; after convergence, this will result in K

tentative estimates {b̂1, . . . , b̂K}. The final estimate of b is the
tentative estimate with the largest likelihood:

b̂ = argmax
b̂k

{
ln p

(
r|b̂k

)}
. (11)

As the computation of the likelihood function p(r|b) is gen-
erally intractable, we resort to the following approximation:

b̂ = argmax
b̂k

{
Q
(
b̂k, b̂k

)}
, (12)

where Q(b̂k, b̂k) is obtained by evaluating (9) for b̃ = b̂k and
b̂(n) = b̂k.

Although using (12) instead of (11) may seem somewhat
ad hoc, p(r|b̂k) and Q(b̂k, b̂k) turn out to have very simi-
lar shapes in our situation. For the sake of illustration, we
have computed these functions for b = θ through computer
simulations for some short random codes. A typical result is
shown in Figure 1.

The EM algorithm can easily be extended to acquire the
maximum a posteriori (MAP) estimate of b by taking the a
priori distribution p(b) into account in (9).

4.2. ML phase estimation

We now make use of the EM algorithm for estimating the
carrier phase θ. We define the complete data as x = [r, a].
Taking (1) into account, we obtain

ln p
(
r|θ̃, a)∝ − 1

2σ2
∣∣r− se jθ̃

∣∣2

∝�
{ N+L−1∑

i=0
ris
∗
i e
− jθ̃

}
.

(13)

In the appendix, we show that, since a and θ̃ are independent,
(9) becomes

Q
(
θ̃, θ̂
) = Ea

[
ln p

(
r
∣∣θ̃, a)∣∣θ̂, r]

= �
{(
Cp + Cd

(
θ̂
))
e− jθ̃

}
,

(14)

where Cp is given by (3) and

Cd
(
θ̂
) = N−1∑

i=0
ri+Lµ

∗
i

(
r, θ̂
)
, (15)

wherein

µi
(
r, θ̂
) = ∑

{αl}
P
[
ai = αl|r, θ̂

]
αl (16)
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Figure 2: Receiver operation block diagram.

denotes the a posteriori average of the data symbol ai. Here
{αl} is the set of constellation points. The quantity µi(r, θ̂)
can be interpreted as a soft symbol decision: it is a weighted
average of all possible constellation points. The a posteriori
probabilities in (16) can be provided by a MAP decoder. Ap-
plication of (10) yields the following iterative algorithm for
TPE:

θ̂(n+1) = arg
(
Cp + Cd

(
θ̂(n)

))
. (17)

The algorithm starts with n = 0 from some initial estimate
θ̂(0). Such an estimate can be obtained either according to
(4) or by taking θ̂(0) = 2π(k̂θ/M)+ ε̂θ with ε̂θ and k̂θ resulting
from (5) and (6). This initial estimate is used to phase-correct
the vector r, which is then fed to the detector which computes
the corresponding a posteriori probabilities. From that point
on, we can apply the EM algorithm (17).

Generally the true a posteriori symbol probabilities are
difficult to compute. For that reason, we resort to a sub-
optimal scheme whereby the detector consists of a soft-in
soft-out (SISO) demapper and a SISO decoder. The latter
operates on coded bits, rather than on coded symbols. The
decoder incorporates bit interleaving, BCJR decoding [17],
and bit deinterleaving. Such an implementation of the EM
estimator is shown in Figure 2. Depending on the system’s
set-up, the detector may iterate between demapping and de-
coding (as in a BICM-ID scheme [18]). The resulting a pos-
teriori probabilities of the coded bits are then recombined to
yield a posteriori probabilities of the coded symbols.

4.3. Convergence properties

In this section, we will illustrate some convergence proper-
ties of the EM total phase estimation algorithm (17). We first
introduce the notion of the normalized phase estimation er-
ror e(n) = (θ̂(n)− θ)/2π, where θ is the true (unknown) value
of the carrier phase and θ̂(n) the estimated value after n EM
iterations. The behavior of the EM TPE algorithm is ana-
lyzed based on the evolution of e(n) from one iteration (n)
to the next (n + 1). We have carried out computer simula-
tions for a turbo-coded system with QPSK mapping (to be
described in more detail in Section 5) to obtain E[e(n+1)] and
E[Q(θ̂(n), θ̂(n))], where E[·] denotes averaging with respect

to the pilot sequence, the coded data symbols, the Gaus-
sian noise, and the carrier phase. The results are shown in
Figure 3. Note that these results do not depend on the spe-
cific value of n and that we plot E[e(n+1)] − e(n), rather than
E[e(n+1)], as a function of e(n).

In Figure 3a, we plot the measured values of E[e(n+1)] −
e(n) as a function of e(n). The negative and positive zero-
crossings of E[e(n+1)]− e(n) correspond to the stable and un-
stable equilibrium points of the EM algorithm. The stable
equilibrium points are at e(n) = {−0.5,−0.25, 0, 0.25, 0.5}
whereas the unstable equilibrium points are at e(n) =
{−0.375,−0.125, 0.125, 0.375}. These equilibrium points are
independent of the SNR. Hence, the acquisition range of the
EM algorithm for QPSK is |e(0)| < 0.125, corresponding to
a maximum allowable initial phase error magnitude of π/4.
For larger phase errors, the EM algorithm will (on average)
converge to an incorrect stable point. We have verified (re-
sults not shown) that for turbo-coded BPSK, the acquisition
range is |e(0)| < 0.25, corresponding to amaximum allowable
initial phase error magnitude of π/2.

Figure 3b shows measurements of E[Q(θ̂(n), θ̂(n))] as a
function of e(n). We observe that the previously mentioned
stable and unstable equilibrium points correspond to local
maxima and minima, respectively. In particular, the stable
equilibrium point e(n) = 0 corresponds to the global max-
imum of E[Q(θ̂(n), θ̂(n))].

From these two figures, we draw the important conclu-
sion that proper operation of the EM algorithm (17) requires
an initial estimate θ̂(0) without phase ambiguity. The DA es-
timate (4) exhibits no phase ambiguity, but a long pilot se-
quence is needed to keep the variance of the estimate within
acceptable limits. Instead, we propose to apply the EM algo-
rithm with NDA initialization, but with KM rather than one
initial estimate:

θ̂(0)k = 2πk
KM

+ ε̂θ for k ∈ {0, 1, . . . ,KM − 1}, (18)

where ε̂θ is obtained from the NDA FPE algorithm (5),M de-
notes the constellation size, and the integer K ≥ 1 is a design
parameter. Applying the EM algorithmwill result inKM ten-
tative estimates. The final phase estimate is then obtained



Iterative Code-Aided Phase Estimation 985

0.06

0.04

0.02

0

−0.02

−0.04

−0.06−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

e(n)

E
[e

(n
+
1)
]
−
e(
n
)

Eb/N0 = −1dB
Eb/N0 = 0dB
Eb/N0 = 1dB

Eb/N0 = 2dB
E[e(n+1)] = 0

(a)

1

0.95

0.9

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

e(n)

E
[Q

(θ
+
2π

e(
n
) ,
θ
+
2π

e(
n
) )
]/
(N

+
L
)

Eb/N0 = −1dB
Eb/N0 = 0dB

Eb/N0 = 1dB
Eb/N0 = 2dB

(b)

Figure 3: Convergence behavior for EM phase estimation.

according to (12) with b = θ. This way, we can be sure that
K initial estimates yield a corresponding initial normalized
error e(0) within the acquisition range of the EM algorithm.
Strictly speaking, K = 1 is sufficient, but we will point out
in the next section the advantage of taking K > 1. In the re-
mainder of this paper, we will denote the EM algorithm with
KM initial values by “EM-K .”

In the case of perfect PAR (i.e., kθ is known), this EM al-
gorithm can easily be specialized into a purely FPE algorithm
by retaining from (18) only the K initial estimates closest to
2πkθ/M and applying algorithm (17). Similarly, the EM al-
gorithm can be modified to a PAR algorithm by fixing ε̂θ and
then applying (12) with b = kθ .

5. PERFORMANCE RESULTS

We evaluate the performance of the EM algorithm for PE and
PAR when applied to a turbo-coded system with QPSKmap-
ping. The constituent convolutional codes of the turbo code
are systematic and recursive with rate 1/2, generator polyno-
mials (21, 37)8, and constraint length 5. The turbo code con-
sists of the parallel concatenation of two unpunctured con-
stituent encoders, which yields an overall code rate of 1/3.
We perform 10 turbo-decoding iterations per EM iteration to
compute the a posteriori symbol probabilities P[ai = αl|r, θ̂].
Codewords consist of 1002 bits (not including pilot bits).
The EM algorithm was executed until convergence (i.e., until
|θ̂(n+1)− θ̂(n)| is sufficiently small) with a maximum of 10 EM
iterations. Through simulation, we have made a comparison
with conventional schemes from Section 3 and a code-aided
scheme from literature.

5.1. Computational complexity

The total computational complexity of the joint estimation
and decoding algorithm is proportional to KMDI , whereM
is the size of the constellation, KM is the number of exe-
cutions of the EM algorithm, D is the decoding time per
codeword, and I is the number of EM iterations. From the
shape of the curves in Figure 3, we may infer that conver-
gence will occur sooner (i.e., for less EM iterations) when the
initial estimate is nearer to the correct value. It may there-
fore be advantageous to execute the estimation algorithm
with more than M initial values but with fewer EM itera-
tions.

To illustrate this, Figure 4 shows, as a function of the
number of EM iterations (I), the BER performance of the
EM FPE algorithm for turbo-coded QPSK at an SNR of
1 dB. We compare K = 1, K = 2, and K = 4, and also
show the BER values corresponding to VV estimation (5)
with perfect PAR and to perfect TPE. For a given value of
I , the BER performance evidently improves with increas-
ing K . More importantly, for a given computational com-
plexity (i.e., fixed KI), EM-2 and EM-4 yield a comparable
BER, and considerably outperform EM-1. Finally, as com-
pared to the BER corresponding to perfect TPE, we observe
that for a large number of iterations, EM-1 still results in a
significant BER degradation, whereas EM-2 and EM-4 have
excellent performance, even for a limited number of iter-
ations. Hence, introducing more initial estimates not only
allows us to reduce the number of EM iterations and the
computational complexity, but also has the additional ad-
vantage that convergence to the correct phase value is highly
probable.
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5.2. Phase estimation

Figure 5a shows the mean square estimation error (MSEE)
performance of the VV estimator and the EM estimators, as-
suming perfect PAR (i.e., kθ is known at the receiver, so that
only εθ needs to be estimated). As a reference, we include
the modified Cramér-Rao bound (MCRB) for a known se-
quence of 1002 bits (=501 QPSK symbols). The MCRB is a
lower bound for the MSEE of any unbiased estimator [19].
Application of the EM-1 algorithm reduces the MSEE but
the MCRB is reached only for SNRs above 2 dB. The EM-
2 algorithm is able to further reduce the MSEE and reaches
the MCRB for Eb/N0 ≥ 1.5dB. The different MSEE perfor-
mances resulting from the EM algorithms indicate that the
EM-1 algorithm occasionally converges to an incorrect value
due to the (large) initial estimation error.

To see how this translates in BER performance, we refer
to Figure 5b. Clearly, the VV FPE algorithm results in a high
BER degradation. EM-1 is able to partly reduce this degra-
dation. However, the remaining degradation at BER=10−4 is
still around 0.5dB. By applying EM-2, we are able to essen-
tially remove any resulting degradation. Note that increas-
ing the number of initial estimates (i.e., increasing K to 3 or
more) will further reduce the MSEE but the corresponding
reduction of the BER will be barely noticeable.

5.3. Phase ambiguity resolution

Wefirst note that the combination of any PAR algorithmwith
any FPE algorithm will result in degradation at least as large
as the degradations of the separate algorithms. For that rea-
son, we will only consider the following schemes (we remind
that L is the length of the pilot sequence, expressed in sym-
bols):

(i) TPE: EM-2 + init(VV); L: the EM algorithms is exe-
cuted 2M times with initial estimates given by (18);

(ii) PAR: CORR + perfect FPE; L: the conventional PAR
algorithm (6) under the assumption of perfect knowl-
edge of εθ ;

(iii) PAR: REEN+ perfect FPE; L: this algorithm is formally
obtained by replacing the soft decisions µi in (15) by
the data symbols obtained by re-encoding the decoded
information sequence [12]. This approach has roughly
the same computational complexity as the EM-1 PAR
algorithm;

(iv) PAR: EM-hard + perfect FPE; L: this algorithm is for-
mally obtained by replacing the soft decisions µi from
(15) by the nearest (hard) constellation symbol. This
can be seen as a code-aided decision-directed PAR al-
gorithm.

In the latter two cases, εθ is assumed to be known at the re-
ceiver. The estimated phase shift (2πk/M) is the one resulting
in the largest correlation of the hard symbol decisions (resp.,
with and without re-encoding) with the rotated received vec-
tor (r exp(− j2πk/M)).

Figure 6 shows the BER performance for the various ap-
proaches. We see that “PAR: CORR + perfect FPE” requires
fairly long pilot sequences to reach acceptable BER perfor-
mance, thus reducing the spectral efficiency of the system.
The re-encoding rule leads to a BER degradation when Eb/N0

is below 2dB. We now consider the EM algorithm approach.
Using hard instead of soft data decisions leads to very high
BER for all considered SNR, even under perfect FPE. On the
other hand, application of “TPE: EM-2 + init(VV)” leads to
a very good performance, even when no pilot sequence is
present.

6. CONCLUSION AND REMARKS

This contribution has considered the problem of phase es-
timation (PE) and phase ambiguity resolution (PAR) in
(turbo-) coded systems. Starting from the ML criterion, we
have pointed out how code-aided PE and PAR may be per-
formed iteratively based on the EM algorithm, and how con-
vergence issues may be addressed. We have compared the re-
sulting algorithms with known algorithms (of which some
do and some do not take code properties into account) in
terms of the mean square estimation error (MSEE) and the
BER. Through simulation of a turbo-coded QPSK transmis-
sion system, we have shown that

(i) code-aided PAR can achieve a very small BER degra-
dation, even in the absence of pilot symbols;

(ii) conventional PAR can achieve a very small BER degra-
dation only at the expense of a sufficient number of
pilot symbols;

(iii) code-aided PE is required to achieve a very small BER
degradation.

We should mention that for turbo-coded BPSK transmis-
sion (results not reported in this paper), the conventional
VV phase estimator (assuming perfect PAR) results in neg-
ligible BER degradation, as compared to perfect PE and PAR.
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Figure 5: Phase estimation performance in terms of (a) MSEE and (b) BER assuming perfect PAR.
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Hence, in this case, it is not necessary to apply the EM
PE algorithm. Regarding PAR, the conclusions pertaining to
QPSK are also valid for BPSK.

While the ML phase estimation algorithm was developed
for an AWGN channel with M-PSK modulation, it can easily
be altered and applied to a variety of channel models (e.g.,
fading, multipath), codes (e.g., convolutional codes, LDPC
codes), and communication systems (e.g., CDMA, MIMO,
OFDM).

In this paper, we have assumed perfect symbol and frame
synchronization. In practice, symbol (resp., frame) synchro-
nization can be accomplished by means of non-data-aided
algorithms [20, 21] (resp., data-aided algorithms [20, 22]).
Recently, code-aided algorithms for symbol synchronization
[23] and for frame synchronization [16] have been proposed.
An algorithm for code-aided joint phase and delay estima-
tion remains a topic for future work.

APPENDIX

We start with (9):

Q
(
b̃, b̂(n)

) =
∫
x
p
(
x|r, b̂(n)) ln p

(
x|b̃)dx (A.1)

with x = [r, a]. When b and a are independent (as is the case
in our problem), we may write

p
(
x|b̃) = p

(
r|a, b̃)p(a) (A.2)

while

p
(
x|r, b̂(n)) = p

(
a|r, b̂(n)). (A.3)

Dropping terms that do not depend on b, and taking into
account the uniform a priori distribution of a, (A.1) becomes

Q
(
b̃, b̂(n)

) =
∫
a
p
(
a|r, b̂(n)) ln p

(
r|a, b̃)da

.= Ea
[
ln p

(
r|a, b̃)|r, b̂(n)]. (A.4)

In our case, with b = θ,

ln p
(
r|a, θ̃)∝�

{ N+L−1∑
i=0

ris
∗
i e
− jθ̃

}
. (A.5)
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Substituting (A.5) into (A.4) leads to

Q
(
θ̃, θ̂(n)

)=L−1∑
i=0
�
{
ri p

∗
i e
− jθ̃
}
+
N+L−1∑
i=L

�
{
ri Ea

[
a∗i |r, θ̂(n)

]
e− jθ̃

}

= �
{
Cpe

− jθ̃
}
+�

{
Cd
(
θ̂(n)

)
e− jθ̃

}
(A.6)

with Cp and Cd(θ̂) defined in (3) and (15), respectively.
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