124,862 research outputs found
Assignment on Carrier Communications Simulation
Simulation of AM, QAM, complex QAM, 4QAM and 16QAM carrier communication schemes in Matlab
Enhancing Physical Layer Security in AF Relay Assisted Multi-Carrier Wireless Transmission
In this paper, we study the physical layer security (PLS) problem in the dual
hop orthogonal frequency division multiplexing (OFDM) based wireless
communication system. First, we consider a single user single relay system and
study a joint power optimization problem at the source and relay subject to
individual power constraint at the two nodes. The aim is to maximize the end to
end secrecy rate with optimal power allocation over different sub-carriers.
Later, we consider a more general multi-user multi-relay scenario. Under high
SNR approximation for end to end secrecy rate, an optimization problem is
formulated to jointly optimize power allocation at the BS, the relay selection,
sub-carrier assignment to users and the power loading at each of the relaying
node. The target is to maximize the overall security of the system subject to
independent power budget limits at each transmitting node and the OFDMA based
exclusive sub-carrier allocation constraints. A joint optimization solution is
obtained through duality theory. Dual decomposition allows to exploit convex
optimization techniques to find the power loading at the source and relay
nodes. Further, an optimization for power loading at relaying nodes along with
relay selection and sub carrier assignment for the fixed power allocation at
the BS is also studied. Lastly, a sub-optimal scheme that explores joint power
allocation at all transmitting nodes for the fixed subcarrier allocation and
relay assignment is investigated. Finally, simulation results are presented to
validate the performance of the proposed schemes.Comment: 10 pages, 7 figures, accepted in Transactions on Emerging
Telecommunications Technologies (ETT), formerly known as European
Transactions on Telecommunications (ETT
Joint User-Association and Resource-Allocation in Virtualized Wireless Networks
In this paper, we consider a down-link transmission of multicell virtualized
wireless networks (VWNs) where users of different service providers (slices)
within a specific region are served by a set of base stations (BSs) through
orthogonal frequency division multiple access (OFDMA). In particular, we
develop a joint BS assignment, sub-carrier and power allocation algorithm to
maximize the network throughput, while satisfying the minimum required rate of
each slice. Under the assumption that each user at each transmission instance
can connect to no more than one BS, we introduce the user-association factor
(UAF) to represent the joint sub-carrier and BS assignment as the optimization
variable vector in the mathematical problem formulation. Sub-carrier reuse is
allowed in different cells, but not within one cell. As the proposed
optimization problem is inherently non-convex and NP-hard, by applying the
successive convex approximation (SCA) and complementary geometric programming
(CGP), we develop an efficient two-step iterative approach with low
computational complexity to solve the proposed problem. For a given
power-allocation, Step 1 derives the optimum userassociation and subsequently,
for an obtained user-association, Step 2 find the optimum power-allocation.
Simulation results demonstrate that the proposed iterative algorithm
outperforms the traditional approach in which each user is assigned to the BS
with the largest average value of signal strength, and then, joint sub-carrier
and power allocation is obtained for the assigned users of each cell.
Especially, for the cell-edge users, simulation results reveal a coverage
improvement up to 57% and 71% for uniform and non-uniform users distribution,
respectively leading to more reliable transmission and higher spectrum
efficiency for VWN
Carrier Aggregation in Multi-Beam High Throughput Satellite Systems
Carrier Aggregation (CA) is an integral part of current terrestrial networks.
Its ability to enhance the peak data rate, to efficiently utilize the limited
available spectrum resources and to satisfy the demand for data-hungry
applications has drawn large attention from different wireless network
communities. Given the benefits of CA in the terrestrial wireless environment,
it is of great interest to analyze and evaluate the potential impact of CA in
the satellite domain. In this paper, we study CA in multibeam high throughput
satellite systems. We consider both inter-transponder and intra-transponder CA
at the satellite payload level of the communication stack, and we address the
problem of carrier-user assignment assuming that multiple users can be
multiplexed in each carrier. The transmission parameters of different carriers
are generated considering the transmission characteristics of carriers in
different transponders. In particular, we propose a flexible carrier allocation
approach for a CA-enabled multibeam satellite system targeting a proportionally
fair user demand satisfaction. Simulation results and analysis shed some light
on this rather unexplored scenario and demonstrate the feasibility of the CA in
satellite communication systems
1H, 15N, 13C resonance assignment of the acyl carrier protein subunit of the Saccharomyces cerevisiae fatty acid synthase
Acyl carrier proteins participate in the synthesis of fatty acids. Here we report the NMR resonances assignment of the acyl carrier protein domain of the Saccharomyces cerevisiae fatty acid synthase which corresponds to the fragment 138A-302L in the primary structure. The assignment will allow performing NMR studies with the aim to investigate the intrinsic dynamics of this protein, and to study the structural changes upon apo-holo transformation in order to unveil the mechanism of binding of the growing acyl chai
Re Canada Post Corp and CUPW
Union grievance filed March 7, 2002 on behalf of all affected employees alleging breach of the Collective Agreement between the parties bearing the expiry date January 31, 2003, in that the Employer violated Articles 2, 11, 13, 15, 17 and all other related provisions of the Collective Agreement by placing full-time supervisor, David Waller, into a full-time letter carrier position/assignment at the Dartmouth Delivery Centre. The Union seeks an order that the Employer remove David Waller from the full-time letter carrier position/assignment and grant full redress to all affected employees under either Article 39.01 or Article 17.04
Optimization of orbital assignment and specification of service areas in satellite communications
The mathematical nature of the orbital and frequency assignment problem for communications satellites is explored, and it is shown that choosing the correct permutations of the orbit locations and frequency assignments is an important step in arriving at values which satisfy the signal-quality requirements. Two methods are proposed to achieve better spectrum/orbit utilization. The first, called the delta S concept, leads to orbital assignment solutions via either mixed-integer or restricted basis entry linear programming techniques; the method guarantees good single-entry carrier-to-interference ratio results. In the second, a basis for specifying service areas is proposed for the Fixed Satellite Service. It is suggested that service areas should be specified according to the communications-demand density in conjunction with the delta S concept in order to enable the system planner to specify more satellites and provide more communications supply
- …