1,200 research outputs found

    Global sensitivity analysis of a model for venous valve dynamics.

    Get PDF
    Chronic venous disease is defined as dysfunction of the venous system caused by incompetent venous valves with or without a proximal venous obstruction. Assessing the severity of the disease is challenging, since venous function is determined by various interacting hemodynamic factors. Mathematical models can relate these factors using physical laws and can thereby aid understanding of venous (patho-)physiology. To eventually use a mathematical model to support clinical decision making, first the model sensitivity needs to be determined. Therefore, the aim of this study is to assess the sensitivity of the venous valve model outputs to the relevant input parameters. Using a 1D pulse wave propagation model of the tibial vein including a venous valve, valve dynamics under head up tilt are simulated. A variance-based sensitivity analysis is performed based on generalized polynomial chaos expansion. Taking a global approach, individual parameter importance on the valve dynamics as well as importance of their interactions is determined. For the output related to opening state of the valve, the opening/closing pressure drop (dpvalve,0) is found to be the most important parameter. The venous radius (rvein,0) is related to venous filling volume and is consequently most important for the output describing venous filling time. Finally, it is concluded that improved assessment of rvein,0 and dpvalve,0 is most rewarding when simulating valve dynamics, as this results in the largest reduction in output uncertainty. In practice, this could be achieved using ultrasound imaging of the veins and fluid structure interaction simulations to characterize detailed valve dynamics, respectively

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 197, September 1979

    Get PDF
    This bibliography lists 193 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1979

    Effect of salt intake on beat‐to‐beat blood pressure nonlinear dynamics and entropy in salt‐sensitive versus salt‐protected rats

    Full text link
    Blood pressure exhibits substantial short‐ and long‐term variability (BPV). We assessed the hypothesis that the complexity of beat‐to‐beat BPV will be differentially altered in salt‐sensitive hypertensive Dahl rats (SS) versus rats protected from salt‐induced hypertension (SSBN13) maintained on high‐salt versus low‐salt diet. Beat‐to‐beat systolic and diastolic BP series from nine SS and six SSBN13 rats (http://www.physionet.org) were analyzed following 9 weeks on low salt and repeated after 2 weeks on high salt. BP complexity was quantified by detrended fluctuation analysis (DFA), short‐ and long‐range scaling exponents (αS and αL), sample entropy (SampEn), and traditional standard deviation (SD) and coefficient of variation (CV(%)). Mean systolic and diastolic BP increased on high‐salt diet (P < 0.01) particularly for SS rats. SD and CV(%) were similar across groups irrespective of diet. Salt‐sensitive and ‐protected rats exhibited similar complexity indices on low‐salt diet. On high salt, (1) SS rats showed increased scaling exponents or smoother, systolic (P = 0.007 [αL]) and diastolic (P = 0.008 [αL]) BP series; (2) salt‐protected rats showed lower SampEn (less complex) systolic and diastolic BP (P = 0.046); and (3) compared to protected SSBN13 rats, SS showed higher αL for systolic (P = 0.01) and diastolic (P = 0.005) BP. Hypertensive SS rats are more susceptible to high salt with a greater rise in mean BP and reduced complexity. Comparable mean pressures in sensitive and protective rats when on low‐salt diet coupled with similar BPV dynamics suggest a protective role of low‐salt intake in hypertensive rats. This effect likely reflects better coupling of biologic oscillators.We investigated the non‐linear dynamical properties of blood pressure variability, specifically complexity analysis and detrended fluctuation analysis (DFA), of the systolic and diastolic blood pressure time series in 9 salt sensitive and 6 protected rats. We showed that salt sensitive rats exhibit varying non linear BP dynamics compared to protected rats (smoother time series), irrespective of diet; we also showed the differential impat of salt intake on complexity and DFA metrics in both strains of rats.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122419/1/phy212823_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122419/2/phy212823.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122419/3/phy212823-sup-0001-SupInfo.pd

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 349)

    Get PDF
    This bibliography lists 149 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Influence of head-over-body and body-over-head posture on craniospinal, vascular, and abdominal pressures in an acute ovine in-vivo model

    Full text link
    INTRODUCTION Optimal shunt-based hydrocephalus treatments are heavily influenced by dynamic pressure behaviors between proximal and distal ends of shunt catheters. Posture-dependent craniospinal, arterial, venous, and abdominal dynamics thereby play an essential role. METHODS An in-vivo ovine trial (n = 6) was conducted to evaluate communication between craniospinal, arterial, venous, and abdominal dynamics. Tilt-testing was performed between -13° and + 13° at 10-min intervals starting and ending at 0° prone position. Mean pressure, pulse pressure, and Pearson correlation (r) to the respective angle were calculated. Correlations are defined as strong: |r|≥ 0.7, mild: 0.3 <|r|< 0.7, and weak: |r|≤ 0.3. Transfer functions (TFs) between the arterial and adjacent compartments were derived. RESULTS Strong correlations were observed between posture and: mean carotid/femoral arterial (r = - 0.97, r = - 0.87), intracranial, intrathecal (r = - 0.98, r = 0.94), jugular (r = - 0.95), abdominal cranial, dorsal, caudal, and intravesical pressure (r = - 0.83, r = 0.84, r = - 0.73, r = 0.99) while mildly positive correlation exists between tilt and central venous pressure (r = 0.65). Only dorsal abdominal pulse pressure yielded a significant correlation to tilt (r = 0.21). TFs followed general lowpass behaviors with resonant peaks at 4.2 ± 0.4 and 11.5 ± 1.5 Hz followed by a mean roll-off of - 15.9 ± 6.0 dB/decade. CONCLUSIONS Tilt-tests with multi-compartmental recordings help elucidate craniospinal, arterial, venous, and abdominal dynamics, which is essential to optimize shunt-based therapy. Results motivate hydrostatic influences on mean pressure, with all pressures correlating to posture, with little influence on pulse pressure. TF results quantify the craniospinal, arterial, venous, and abdominal compartments as compliant systems and help pave the road for better quantitative models of the interaction between the craniospinal and adjacent spaces

    Transient Cardiovascular Hemodynamics In A Patient-Specific Arterial System

    Get PDF
    The ultimate goal of the present study is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present study a full cardiovascular experimental phantom and digital phantom (CFD model) was fabricated to study: (1) the effects of local hemodynamics on global hemodynamics, (2) the effects of transition from bed-rest to upright position, and (3) transport of dye (drug delivery) in the arterial system. Computational three dimensional (3-D) models (designs A, B, and C) stents were also developed to study the effects of stent design on hemodynamic flow and the effects of drug deposition into the arterial wall. The experimental phantom used in the present study is the first system reported in literature to be used for hemodynamic assessment in static and orthostatic posture changes. Both the digital and experimental phantom proved to provide different magnitudes of wall shear and normal stresses in sections where previous studies have only analyzed single arteries. The dye mass concentration study for the digital and experimental cardiovascular phantom proved to be useful as a surrogate for medical drug dispersion. The dye mass concentration provided information such as transition time and drug trajectory paths. For the stent design CFD studies, hemodynamic results (wall shear stress (WSS), normal stress, and vorticity) were assessed to determine if simplified stented geometries can be used as a surrogate for patient-specific geometries and the role of stent design on flow. Substantial differences in hemodynamic parameters were found to exist which confirms the need for patient-specific modeling. For drug eluting stent studies, the total deposition time for the drug into the arterial wall was approximately 3.5 months

    Critical Investigation of the Pulse Contour Method for Obtaining Beat-By-Beat Cardiac Output

    Get PDF
    The purpose of this study was to explore the efficacy of two existing pulse contour analysis (PCA) models for estimating cardiac stroke volume from the arterial pressure waveform during kicking ergometer exercise and head-up tilt manoeuvres. Secondly, one of the existing models was modified in an attempt to enhance its performance. In part I, seven healthy young adults repeated two submaximal exercise sessions on a kicking ergometer, each with three different sets of steady-state cardiac output comparisons (pulsed Doppler vs. pulse contour). Across all exercise trials regression results were found to be PCA = 1. 23 x Doppler-1. 38 with an r2 = 0. 51. In part II, eight young and eight older male healthy subjects participated in a head-up tilt experiment. Cardiac output comparisons were again performed during the supine and tilt conditions using pulsed Doppler and pulse contour cardiac output. Regression results revealed that PCA performed best during supine conditions and preferentially on the older subjects. In all instances, impedance-calibrated pulse contour analysis will provide reasonable beat-by-beat cardiac output within very narrow confines and will result in a progressively more significant bias as cardiovascular dynamics change. In addition, it appears that heart rate variability negatively influences beat-by-beat pulse contour cardiac output results, further limiting application of existing models

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 288)

    Get PDF
    This bibliography lists 190 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1986
    corecore