6 research outputs found

    New modification version of principal component analysis with kinetic correlation matrix using kinetic energy

    Get PDF
    Principle Component Analysis (PCA) is a direct, non-parametric method for extracting pertinent information from confusing data sets. It presents a roadmap for how to reduce a complex data set to a lower dimension to disclose the hidden, simplified structures that often underlie it. However, most PCA methods are not able to realize the desired benefits when they handle real world, and nonlinear data. In this work, a modified version of PCA with kinetic correlation matrix using kinetic energy is proposed. The features of this modified PCA have been assessed on different data sets of air passenger numbers. The results show that the modified version of PCA is more effective in data compression, classes reparability and classification accuracy than using traditional PCA

    Estimation of obesity levels based on computational intelligence

    Get PDF
    Obesity is a worldwide disease that affects people of all ages and gender; in consequence, researchers have made great efforts to identify factors that cause it early. In this study, an intelligent method is created, based on supervised and unsupervised techniques of data mining such as Simple K-Means, Decision Trees (DT), and Support Vector Machines (SVM) to detect obesity levels and help people and health professionals to have a healthier lifestyle against this global epidemic. In this research the primary source of collection was from students 18 and 25 years old at institutions in the countries of Colombia, Mexico, and Peru. The study takes a dataset relating to the main causes of obesity, based on the aim to reference high caloric intake, a decrease of energy expenditure due to the lack of physical activity, alimentary disorders, genetics, socioeconomic factors, and/or anxiety and depression. In the selected dataset, 178 students participated in the study, 81 male and 97 female. Using algorithms including Decision Tree, Support Vector Machine (SVM), and Simple K-Means, the results show a relevant tool to perform a comparative analysis among the mentioned algorithms

    RDF query and protocols language using for description and representation of web ontologies

    Get PDF
    The purpose of this article is to expose the metadata structure based on RDF (Resource Description Framework) and the way in which queries can be made using SPARQL (Protocol and RDF Query Language), as a principle for searching the Semantic Web. It also describes what must be considered to build a Web Ontology and the tools that can help the Software developer to make querys using SPARQL

    CBT system (Computer Based Training) of the Aircraft a-37b, used in the earth course of the combat air command No. 3 (CAMCOM-3) of the Colombian Air Force (FAC)

    Get PDF
    This article shows the implementation of an integrated and updated education system in the Combat Air Command No.3 as a school of the A-37B team, to give theoretical and virtual practice instruction optimizing strategic processes, increasing productivity, reducing operational and administrative costs in order to promote the commitment and development of human capital to crewmembers of the A-37B team; At the same time, promote technological development and innovation in the personnel that make up the Unit. In this work, the importance of the use of ICT in the educational field and the great contribution it presents in the Colombian Armed Forces is made known

    Sensor-based datasets for human activity recognition - a systematic review of literature

    Get PDF
    The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end users, it is necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks in experimental scenarios. For that reason, the scientific community has developed and provided a huge amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and is key to further progress in this area of research. This work presents a systematic review of the literature of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables taken from indexed publications related to this field was performed. The sources of information are journals, proceedings, and books located in specialized databases. The analyzed variables characterize publications by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed identification of the data set most used by researchers. On the other hand, the descriptive and functional variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation, representation, feature selection, balancing and addition of instances, and classifier used for recognition. This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most appropriate dataset to evaluate ARS and the classification techniques that generate better results

    Sensor-based datasets for human activity recognition - a systematic review of literature

    Get PDF
    The research area of ambient assisted living has led to the development of activity recognition systems (ARS) based on human activity recognition (HAR). These systems improve the quality of life and the health care of the elderly and dependent people. However, before making them available to end users, it is necessary to evaluate their performance in recognizing activities of daily living, using data set benchmarks in experimental scenarios. For that reason, the scientific community has developed and provided a huge amount of data sets for HAR. Therefore, identifying which ones to use in the evaluation process and which techniques are the most appropriate for prediction of HAR in a specific context is not a trivial task and is key to further progress in this area of research. This work presents a systematic review of the literature of the sensor-based data sets used to evaluate ARS. On the one hand, an analysis of different variables taken from indexed publications related to this field was performed. The sources of information are journals, proceedings, and books located in specialized databases. The analyzed variables characterize publications by year, database, type, quartile, country of origin, and destination, using scientometrics, which allowed identification of the data set most used by researchers. On the other hand, the descriptive and functional variables were analyzed for each of the identified data sets: occupation, annotation, approach, segmentation, representation, feature selection, balancing and addition of instances, and classifier used for recognition. This paper provides an analysis of the sensor-based data sets used in HAR to date, identifying the most appropriate dataset to evaluate ARS and the classification techniques that generate better results
    corecore