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Abstract—Principle Component Analysis (PCA) is a direct, 

non-parametric method for extracting pertinent information 

from confusing data sets. It presents a roadmap for how to 

reduce a complex data set to a lower dimension to disclose the 

hidden, simplified structures that often underlie it. However, 

most PCA methods are not able to realize the desired benefits 

when they handle real world, and nonlinear data. In this work, a 

modified version of PCA with kinetic correlation matrix using 

kinetic energy is proposed. The features of this modified PCA 

have been assessed on different data sets of air passenger 

numbers. The results show that the modified version of PCA is 

more effective in data compression, classes reparability and 

classification accuracy than using traditional PCA. 
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I. INTRODUCTION

Principal Component Analysis (PCA) is a classical 
multivariate data analysis technique, which is popular within 
linear feature extraction as well as the data compression of 
numerous uses [1]. PCA has been applied in numerous areas of 
information processing to prepare data due to its distinctive 
result of error reducing and correlating properties. PCA 
compresses most of the information in the first data space into 
a fewer features. It attempts to look for a subspace in which the 
variance is maximized [2]. The PCA subspace is spanned 
through the eigenvectors corresponding to the top eigenvalues 
of the sample covariance matrix. PCA also can be applied in 
data preparation for both supervised and un-supervised 
learning and recognition processes [3]. 

However, most PCA strategies might not result in desirable 
classification benefits when they cope with real world, 
nonlinear data. As nonlinear PCA and its variants can 
effectively capture the nonlinear relations, they might provide 
more effective power to cope with the real world, nonlinear 
data [4]. It is recognized that PCA is designed to find the most 
indicative vectors, i.e., the eigenvectors corresponding to the 
best eigenvalues of the sample covariance matrix. 

As data with good spectral resolution results in unwanted 
data for classification, a proven way to conquer this issue is 
reducing the dimensionality of data space. Different feature 
extractions, as well as selection strategies, recommend using 

PCA, as it is highly effective and involves a mathematical 
process which transforms a selection of (possibly) correlated 
variables into a (smaller) selection of uncorrelated variables 
known as principal components [5]. 

The sheer size of data in the modern age is not only a 
challenge for computer hardware but also a bottleneck for the 
performance of many machine learning algorithms. Identifying 
patterns in data is one of the main goals of a PCA analysis, and 
it only works by reducing the data dimensionality only when 
there is strong correlation between the variables. In brief, PCA 
is a data analysis technique which finds directions of maximum 
variance in high-dimensional data and projects them onto a 
smaller dimensional subspace while retaining most of the 
information. 

In this work, a modified version of PCA with kinetic 
correlation matrix using kinetic energy is proposed, where the 
transformed matrix is computed from samples of selected 
features only. The efficiency of the modified and traditional 
versions of PCA is compared by applying them to an air 
passenger dataset. The results show that the modified version 
of PCA is more effective in data compression, class 
reparability and classification accuracy than using traditional 
PCA. 

II. MODIFICATION OF PCA

Since the original definition of PCA via approximating 
multivariate distributions by planes and lines [2], scientists 
have defined PCA from various elements [2], [3]. Among the 
definitions, utilizing the covariance matrix of the training sets 
to explain PCA is extremely well known in pattern recognition 
as well as the machine learning community. 

Current implementations of PCA use a correlation matrix, 
the matrix obtained by pairwise correlation using Pearson 
correlation coefficient. However, in some cases the Pearson 
correlation coefficient could be limited in the sense that it fails 
to capture other properties of the data outside of the linear 
relation. For example, the correlation of two random vectors: 
x={-4,-3,-2,-1,0}, y=x2 => Cor(x,y)=0, using Pearson 
coefficient. However, this result is not capturing the non-linear 
relation between the two random vectors given by the 

functional transformation (x)2 → (y) which means the 
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correlation is not zero (just non-linear). In order to improve 
this, the following two features have been introduced into 
traditional PCA in this work. 

 Information energy: first introduced in 1966, is an
analogy of the kinetic energy from physics to
probability, which can be defined as follows:

x1, x2, …, xn and corresponding probabilities:

P=(P1 ,P2 , ….. ,Pn)

 IE( p1 , p2 , ….. ,pn)= ∑

If the experiment has n outcomes, and every outcome has 
the same probability 1/n, then the information energy IE=1/n. 
If the experiment results in same outcome, then the probability 
for every outcome is 1 and the information energy has 
maximum value of IE=1. 

The information energy increases when the randomness 
decreases. It is like reverse of Shannon entropy, for measuring 
bits of information to determine uncertainty. It is also an 
entropy, but the correct way to think about it is as 1/2∗m∗v2 of 
a random vector. Simple, but very powerful, the kinetic energy 
method works very well to improve the accuracy or improve 
some machine learning methods on row data especially if there 
are groups of categorical data, even if they are continuous they 
could be discretized. 

 Informational Correlation Coefficient, also known as
Onicescu’s correlation coefficient, is a function of the
joint probability density distribution of the two vectors
x and y. Assume we have two random vectors x and y,
the information correlation coefficient can be described
as:

 (   )
∑  (  )∗ (  ) 

√ ( )∗  ( )
(1) 

This is only applicable for the discrete data that we have 
dealt with in this research. 

The Pearson correlation captures only linear properties of 
the manifold on which our raw data lives. For instance: if we 
take a random vector in R x=c(-4,-3,-2,-1,0,1,2,3,4) and y=x^2, 
Pearson or Spearman, will yield 0 correlation when in fact it is 
0.5 because of the functional transformation x->^2. In this 
work, a new correlation coefficient, as a performance metric, 
instead of cross entropy as in the case of neural networks, or, in 
the case of genetic algorithms, as fitness functions, has been 
applied in the modified PCA. 

Previously, PCA was utilized to decrease large data sets, 
correlated by a number of correlation metrics, or used in 
addition to deriving new features. Consequently, Pearson 
correlation or the covariance matrix is used to determine 
eigenvalues and eigenvectors. Having a completely different 
correlation metric that captures kinetic properties of two 
random vectors against one another has also been used in 
creating a modified version of original algorithm with this new 
correlation matrix. 

Hence, we implemented new correlation metrics, and the 
new idea was to modify the original PCA for obtaining 
eigenvectors and eigenvalues for dimensionality reduction 

using a correlation matrix with our kinetic correlation 
coefficient. 

III. IMPLEMENTING MODIFIED PCA

In this work, a new correlation coefficient method called 
Octave has been introduced. The correlation is used as a 
method for feature selection (calculated between two features) 
using Kinetic Energy. The new Octave correlation makes a 
useful contribution as it provides a new measure of dependence 
between random vectors that capture non-linear relationships 
as well. 

The modified version of PCA was assessed using a data set 
of air passenger numbers, from where the features of the 
modified PCA were derived, using kinetic correlation metrics 
instead of Pearson correlation coefficient based on kinetic 
correlation theory. 

A. Implementation Setup

This function returns information coefficient IC for two
random variables defined as the dot product of probabilities 
corresponding to each class: 

def  ic(vector1,vector2): 
    a=vector1 

    b=vector2    
prob1=np.unique(a,return_counts=True)[1]/a.shape[0] 
    prob2=np.unique(b,return_counts=True)[1]/b.shape[0] 
    p1=list(prob1) 
    p2=list(prob2) 
    diff=len(p1)-len(p2) 
    if diff>0: 
        for elem in range(diff): 

    p2.append(0) 
    if diff<0: 
        for  elem in range((diff*-1)): 

    p1.append(0) 
    ic=np.dot(np.array(p1),np.array(p2)) 
    return ic 

And, having functions for kinetic energy of a vector and for 
information correlation, we can define a new function that 
computes kinetic correlation. This function will return 
correlation based on kinetic energy as illustrated below: 

def  o(vector1,vector2): 
       i_c=ic(vector1,vector2) 
    o=i_c/np.sqrt(kin_energy(vector1)*kin_energy(vector2)) 
    return o 

The formula is updated such that the denominator contains 
sqrt in order to have probabilities bounded between 0 and 1. 

SHAPE will return the number of items in the numpy array 
in the form of a tuple, then creates a matrix with the number of 
rows initialized with zero values. 

rows=data.shape[1] 
rows 
matrix= np.zeros((rows,rows)) 

Then the correlation matrix is created with the function o() 
that was defined previously, as shown in Table 1. The 
correlation matrix obtained by the Pearson method is also listed 
in Table 2 for comparison. 
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TABLE I. CORRELATION MATRIX WITH THE FUNCTION O() 

0 1 2 3 4 5 

0 1.000 1.000 0.974 0.326 0.184 0.229 

1 1.000 1.000 0.974 0.326 0.184 0.229 

2 0.974 0.974 1.000 0.320 0.180 0.223 

3 0.326 0.326 0.320 1.000 0.071 0.131 

4 0.184 0.184 0.180 0.070 1.000 0.490 

5 0.229 0.229 0.223 0.131 0.490 1.000 

TABLE II. CORRELATION MATRIX ON BASIS OF ‘PEARSON R’ MODEL 

0 1 2 3 4 5 

0 1.000 0.751 0.770 -0.041 -0.027 0.000 

1 0.751 1.000 0.959 -0.013 -0.031 0.000 

2 0.770 0.959 1.000 -0.020 -0.023 0.000 

3 -0.041 -0.013 -0.020 1.000 0.216 0.000 

4 -0.027 -0.031 -0.023 0.216 1.000 0.000 

5 -0.000 -0.000 -0.000 0.000 0.000 1.000 

B. Comparison of modified PCA with Kinetic Correlation

Matrix from Kinetic Energy and PCA with Pearson R

correlation

Our contribution is based on changing the correlation
matrix that uses Pearson R correlation or, in some cases, the 
covariance, with a correlation matrix based on the Onicescu 
correlation coefficient. The results of testing the kinetic 
correlation of our data sets using the Pearson coefficient are 
shown in Fig. 1 and 2. 

Fig. 1. Air passenger numbers data with Pearson Correlation. 

Fig. 2. A train passenger numbers data with Kinetic Correlation. 

As expected the kinetic correlation has a much higher 
kinetic correlation matrix from kinetic energy than the Pearson 
one. Pearson’s R is able to detect only linear relations in data. 
The graphs have the same list of seven columns on both x and 
y axis. The colouring of each particular square shows the actual 
correlation between the columns on the scale of 0 to 1.0. So, if 
the color is dark, there is low correlation and vice-versa. 

C. Features Obtained from Kinetic Energy PCA Components

In this section, we implemented XGBoost [6]. This is an
algorithm that has recently been dominating applied machine 
learning for structured or tabular data and it is designed for 
speed and performance.  It has been applied here to a training 
data set of passenger numbers with a dataset of 51,983 
observations with 9 variables. In order to get a better estimate 
of model performance, we used a variant of the famous 1-fold 
cross validation. We split dataset into a training set (75% of the 
data) and a test set (25% of the data) randomly for 1 different 
time and measure accuracy, false positive rate and false 
negative rate. 

The XGBoost model was run within Python machine 
learning modules and the calculated mean values (Fig. 3) are 
very much nearer to the actual values of one.xgb.train, which is 
an advanced interface for training an XGBoost model. 

Fig. 3. The mean values of features obtained from Kinetic Energy PCA 

Components. 

Fig. 4. Principal component analysis features (KineticPCA1 and 

KineticPCA2). 
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TABLE III. PREDICTION MODEL USING KINETICPCA1 AND KINETIC PCA2 

passangersPred5 

0 515 

1 636 

2 621 

3 624 

4 607 

Fig. 4 shows the features for predicting the number of 
passengers from most important to least important. Here it 
shows that JetFuel, Month, and fare are the most predictive 
values. As is noted in the plot below the features obtained from 
the modified PCA, called kineticPCA1 and kineticPCA2, are 
captured with reasonable influence after running the 
XGBOOST model and inspecting feature importance. The 
number of passenger predictions using the Prediction model is 
given in Table 3. 

D. Features Obtained from Deep Learning Hidden Layers

In this step, we created a different engineered dataset in
order to have diversity in multiple datasets. We have chosen at 
this step to add non-linear features that were extracted from an 
R implementation of a Deep Learning model. 

We trained a deep learning neural network with 100 
neurons in first hidden layer, 63 neurons in second hidden layer 
and 30 neurons in the third hidden layer and 15 neurons in last 
hidden layer. The number of features extracted from the deep 
learning model was the same number of neurons in each 
hidden layer. For a better selection of only important non-linear 
features, we computed correlations of each feature that was 
corresponding to each neuron in the hidden layer with our 
target variable. During the computing the correlations, we kept 
only one feature from each neuron, where is the maximum 
correlation compared with other features in the same hidden 
layer, and obtained final four non-linear features. An 
XGBOOST model was then run to see the behavior of that 
particular model on the newly created data set. 

Fig. 5. The mean values of features obtained from deep learning hidden 

layers. 

Fig. 6. Prediction model using deep learning hidden layers. 

TABLE IV. PREDICTION MODEL USING DEEP LEARNING HIDDEN LAYERS 

passangersPred4 

0 582 

1 545 

2 546 

3 552 

4 627 

The plot in Fig. 5 shows that the mean values calculated are 
much nearer to one but differed more on the last set of inputs. 
Fig. 6 shows the features that are important for the number of 
passengers predicted from most important to least important. 
Here it shows JetFuel, Month, and fares have the highest 
predictive values. As observed from the plot the nonlinear 
features deepf1, deepf2, deep3, and deepf4 (obtained by the 
method described above) are very influential and are the ones 
with the highest influential impact captured by XGBOOST 
feature importance. The number of passengers predicted by 
using the Deep Learning Hidden Layers is given in Table 4. 

E. Features Obtained from Genetic Algorithm

This feature was extracted from a genetic algorithm called
symbolic transformer, which is an estimator that begins by 
building a population of naive random formulas to represent a 
relationship [7]. The formulas are represented as tree-like 
structures with mathematical functions being recursively 
applied to variables and constants. Each successive generation 
of programs is then evolved from the one that came before it 
by selecting the fittest individuals from the population to 
undergo genetic operations such as crossover, mutation or 
reproduction. The results are presented in Fig. 7. 
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Fig. 7. Tree-like structures of the Genetic Algorithm. 

Fig. 8. The mean values of features obtained from Genetic Algorithm. 

Fig. 9. Features importance obtained  from Genetic Algorithm. 

TABLE V. PREDICTION MODEL USING GENETIC ALGORITHM 

passangersPred2 

0 529 

1 611 

2 600 

3 609 

4 607 

In the genetic program, it is easy to observe different kinds 
of operations that the genetic algorithm produced. Two new 
features obtained from genetic transformer after running an 
XGBOOST model have been added into this algorithm. Fig. 8 
shows that the mean values calculated are very near one, but 
differed more on last set of inputs. Fig. 9 shows that the 
features that are important for the number of passengers 
predicted from most important to least important. Here it 
shows that JetFuel, Month, and fare are the most predictive 
values. From the plot below the genetic features called 
genetic_feat1 and genetic_feat2, where captured with very 
small influence in contrast with our expectation when 
conducting the experiment. The number of passengers 
predicted by using the Deep Learning Hidden Layers is given 
in Table 5. 

IV. CONCLUSION

In this work, a new modified version of PCA with kinetic 
correlation matrix using kinetic energy is presented. The 
features of this modified PCA have been assessed with 
different sets of air passenger data and compared to traditional 
PCA. The results of the modified version of PCA show that the 
kinetic correlation is much higher than that of the Pearson one, 
which makes lot of sense since Pearson’s R is able to detect 
only linear relations in data. It turned out that the modified 
version of PCA is more effective in data compression, classes 
reparability and classification accuracy than those form 
traditional PCA. 

Based on these results, the modified PCA can be applied to 
make clustering in hyper-dimensional space using kinetic 
correlation as a distance (increase performance) to make it run 
in real time in a future work. When coping with clustering, 
such as clustering algorithm, clustering K-means or in 
hierarchical clustering, it requires a for-loop at every point to 
get the nearest point from row vector. For n rows of data 
complexity will be of the order n^n, which is impossible to 
finish using this method. In two-dimensional space, there is a 
trick to fast implementation using divide and conquer, which 
has complexity n or log n.  However, these problems can be 
solved by using modified PCA with properly added features. 

In this work, only limited features of the modified PCA 
method were studied with one set of data. To fully understand 
and investigate the features of modified PCA, large subsets of 
data with more features should be considered. 
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