2,147 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Multi-views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images

    Full text link
    Left ventricular (LV) volumes estimation is a critical procedure for cardiac disease diagnosis. The objective of this paper is to address direct LV volumes prediction task. Methods: In this paper, we propose a direct volumes prediction method based on the end-to-end deep convolutional neural networks (CNN). We study the end-to-end LV volumes prediction method in items of the data preprocessing, networks structure, and multi-views fusion strategy. The main contributions of this paper are the following aspects. First, we propose a new data preprocessing method on cardiac magnetic resonance (CMR). Second, we propose a new networks structure for end-to-end LV volumes estimation. Third, we explore the representational capacity of different slices, and propose a fusion strategy to improve the prediction accuracy. Results: The evaluation results show that the proposed method outperforms other state-of-the-art LV volumes estimation methods on the open accessible benchmark datasets. The clinical indexes derived from the predicted volumes agree well with the ground truth (EDV: R2=0.974, RMSE=9.6ml; ESV: R2=0.976, RMSE=7.1ml; EF: R2=0.828, RMSE =4.71%). Conclusion: Experimental results prove that the proposed method may be useful for LV volumes prediction task. Significance: The proposed method not only has application potential for cardiac diseases screening for large-scale CMR data, but also can be extended to other medical image research fieldsComment: to appear on Transactions on Biomedical Engineerin

    Deep learning tools for outcome prediction in a trial fibrilation from cardiac MRI

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), Universidade de Lisboa, Faculdade de Ciências, 2021Atrial fibrillation (AF), is the most frequent sustained cardiac arrhythmia, described by an irregular and rapid contraction of the two upper chambers of the heart (the atria). AF development is promoted and predisposed by atrial dilation, which is a consequence of atria adaptation to AF. However, it is not clear whether atrial dilation appears similarly over the cardiac cycle and how it affects ventricular volumes. Catheter ablation is arguably the AF gold standard treatment. In their current form, ablations are capable of directly terminating AF in selected patients but are only first-time effective in approximately 50% of the cases. In the first part of this work, volumetric functional markers of the left atrium (LA) and left ventricle (LV) of AF patients were studied. More precisely, a customised convolutional neural network (CNN) was proposed to segment, across the cardiac cycle, the LA from short axis CINE MRI images acquired with full cardiac coverage in AF patients. Using the proposed automatic LA segmentation, volumetric time curves were plotted and ejection fractions (EF) were automatically calculated for both chambers. The second part of the project was dedicated to developing classification models based on cardiac MR images. The EMIDEC STACOM 2020 challenge was used as an initial project and basis to create binary classifiers based on fully automatic classification neural networks (NNs), since it presented a relatively simple binary classification task (presence/absence of disease) and a large dataset. For the challenge, a deep learning NN was proposed to automatically classify myocardial disease from delayed enhancement cardiac MR (DE-CMR) and patient clinical information. The highest classification accuracy (100%) was achieved with Clinic-NET+, a NN that used information from images, segmentations and clinical annotations. For the final goal of this project, the previously referred NNs were re-trained to predict AF recurrence after catheter ablation (CA) in AF patients using pre-ablation LA short axis in CINE MRI images. In this task, the best overall performance was achieved by Clinic-NET+ with a test accuracy of 88%. This work shown the potential of NNs to interpret and extract clinical information from cardiac MRI. If more data is available, in the future, these methods can potentially be used to help and guide clinical AF prognosis and diagnosis

    Deep Learning from Dual-Energy Information for Whole-Heart Segmentation in Dual-Energy and Single-Energy Non-Contrast-Enhanced Cardiac CT

    Full text link
    Deep learning-based whole-heart segmentation in coronary CT angiography (CCTA) allows the extraction of quantitative imaging measures for cardiovascular risk prediction. Automatic extraction of these measures in patients undergoing only non-contrast-enhanced CT (NCCT) scanning would be valuable. In this work, we leverage information provided by a dual-layer detector CT scanner to obtain a reference standard in virtual non-contrast (VNC) CT images mimicking NCCT images, and train a 3D convolutional neural network (CNN) for the segmentation of VNC as well as NCCT images. Contrast-enhanced acquisitions on a dual-layer detector CT scanner were reconstructed into a CCTA and a perfectly aligned VNC image. In each CCTA image, manual reference segmentations of the left ventricular (LV) myocardium, LV cavity, right ventricle, left atrium, right atrium, ascending aorta, and pulmonary artery trunk were obtained and propagated to the corresponding VNC image. These VNC images and reference segmentations were used to train 3D CNNs for automatic segmentation in either VNC images or NCCT images. Automatic segmentations in VNC images showed good agreement with reference segmentations, with an average Dice similarity coefficient of 0.897 \pm 0.034 and an average symmetric surface distance of 1.42 \pm 0.45 mm. Volume differences [95% confidence interval] between automatic NCCT and reference CCTA segmentations were -19 [-67; 30] mL for LV myocardium, -25 [-78; 29] mL for LV cavity, -29 [-73; 14] mL for right ventricle, -20 [-62; 21] mL for left atrium, and -19 [-73; 34] mL for right atrium, respectively. In 214 (74%) NCCT images from an independent multi-vendor multi-center set, two observers agreed that the automatic segmentation was mostly accurate or better. This method might enable quantification of additional cardiac measures from NCCT images for improved cardiovascular risk prediction

    Applying Deep Learning To Identify Imaging Biomarkers To Predict Cardiac Outcomes In Cancer Patients

    Get PDF
    Cancer patients are a unique population with increased mortality from cardiovascular disease, however only half of high-risk patients are medically optimized. Physicians ascertain cardiovascular risk from several risk predictors using demographic information, family history, and imaging data. The Agatston score, a measure of total calcium burden in coronary arteries on CT scans, is the current best predictor for major adverse cardiac events (MACE). Yet, the score is limited as it does not provide information on atherosclerotic plaque characteristics or distribution. In this study, we use deep learning techniques to develop an imaging-based biomarker that can robustly predict MACE in lung cancer patients. We selected participants with screen-detected lung cancer from the National Lung Screening Trial (NLST) and used cardiovascular mortality as our primary outcome. We applied automated segmentation algorithms to low-dose chest CT scans from NLST participants to segment cardiac substructures. Following segmentation, we extracted radiomic features from selected cardiac structures. We then used this dataset to train a regression model to predict cardiovascular death. We used a pre-trained nnU-Net model to successfully segment large cardiac structures on CT scans. These automated large cardiac structures had features that were predictive of MACE. We then successfully extract radiomic features from our areas of interest and use this high-dimensional dataset to train a regression model to predict MACE. We demonstrated that automated segmentation algorithms can result in low-cost non-invasive predictive biomarkers for MACE. We were able to demonstrate that radiomic feature extraction from segmented substructures can be used to develop a high-dimensional biomarker. We hope that such a scoring system can help physicians adequately determine cardiovascular risk and intervene, resulting in better patient outcomes
    • …
    corecore