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Abstract

The marriage of cutting edge technologies for 3D visualisation (including 3D print-

ing and virtual reality) with volumetric medical imaging admits the construction

and representation of high-fidelity models of patient-specific anatomy. These cap-

ture the structural insights of 3D scan data - those critical to the care of patients

with congenital heart disease (CHD) - in a form that is accessible not only to the

imaging or radiological specialist, but also to the remainder of the multidisciplinary

team. In relatively small-numbered studies, this type of enhanced communication

has fostered improved consensus decision-making and personalised treatment plan-

ning, amongst a host of clinically related applications. Despite their promise, we

argue that the wider application of patient-specific models has been limited by

the technical burden of manual image segmentation, an unavoidable step in their

determination from medical images. In response, this thesis investigates methods

from the burgeoning field of deep learning, in pursuit of automated solutions to the

segmentation of CHD anatomy from 3D cardiac magnetic resonance (CMR) data.

More specifically, we make a clinically focused appraisal of state of the art convo-

lutional neural networks (CNNs), a family of non-linear models of high statistical

capacity.

Dependent on an underlying set of parameterised functions, CNNs can be tuned

to the task of discriminative classification through data-driven optimisation. Ob-

serving the paucity of training examples appropriate to our task, we curate the

Evelina London Children’s Hospital (ELCH) dataset, including: isotropic CMR

volumes and 4D contrast enhanced scans of 150 patients with CHD; each labelled

according to a clinically meaningful manual segmentation protocol expressing the

haemodynamic continuity of up to eighteen cardiovascular structures (including

the congenital defects therein) by pixel adjacency. In a comprehensive clinical
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characterisation and comparative analysis, we confirm the ELCH dataset as a

quantitatively and qualitatively unique resource for both CNN training, and, more

generally, for advancing our collective 3D understanding of the heart.

Leveraging this dataset within an assessment of CNN-based segmentation, we

investigate different modes for combining 3D and 4D scan data within the U-Net

architecture, observing inclusion of the latter to be associated with marginal gains

in spatial overlap performance. More significantly, we extend our analyses beyond

those encountered in the bulk of the technical literature. Presenting novel, clini-

cally focused metrics sensitive to the presence of defects, we highlight limitations

in conventional CNN optimisation: that the application of pixelwise loss functions,

ignorant of extended spatial context, can result in predictions that lack coherence,

and which fail to describe image data in a clinically meaningful fashion.

Interpreting these metrics through the lens of topology, we extend existing per-

sistent homology (PH)-based loss functions for binary segmentation to the multi-

class setting. Within a combinatorial framework sensitive to the topology of both

individual and combined multi-class labels, these expose the differences between a

predicted segmentation and a prior specification of topology according to abstract

Betti numbers. We demonstrate the capacity of such losses to reliably make sta-

tistically significant improvements in multi-class segmentation topology across a

range of 2D and (thanks to our highly efficient implementation based on cubical

complexes and parallel execution) 3D cardiac image segmentation tasks, for the

first time. Critically we show that our compact, multi-class description of topology

informs patient-specific CHD diagnosis. Accordingly, by optimising our PH-based

loss functions, CNNs learn a clinically meaningful representation of cardiac defects,

overcoming the shortcomings of conventional pixelwise losses.

Though we cannot claim our work heralds an automated solution to the seg-

mentation of patient-specific CHD anatomy from volumetric CMR, we believe that

we have made valuable contributions in pursuit of this goal. Whether through our

unique training dataset, keen clinical assessments or highly generalisable topolog-

ical loss functions, we anticipate many applications and extensions of our work. I

am incredibly grateful to have had the opportunity to make these contributions,

and hope that they drive innovation in the personalised care of all members of the

CHD population in the future.

ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Patient-specific anatomical models of congenital heart disease 7

2.1 Congenital heart disease . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Developments in congenital heart disease care . . . . . . . . 10

2.2 Patient-specific anatomical modelling . . . . . . . . . . . . . . . . . 12

2.2.1 Applications of patient-specific 3D printing in CHD . . . . . 12

2.2.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Practical challenges of image segmentation . . . . . . . . . . . . . . 36

3 Cardiac image segmentation 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Methods for patient-specific 3D printing . . . . . . . . . . . . . . . 40

3.2.1 Imaging modalities . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Image segmentation methods . . . . . . . . . . . . . . . . . 42

3.2.3 Operator burden of image segmentation . . . . . . . . . . . 47

3.3 Methods from the wider literature . . . . . . . . . . . . . . . . . . . 49

3.3.1 Image-driven approaches . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Model-driven approaches . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Challenges posed by 3D CHD modelling . . . . . . . . . . . . . . . 83

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

iii



4 Deep learning for image segmentation 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Training and optimisation . . . . . . . . . . . . . . . . . . . 94

4.2.3 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.4 Building blocks . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Network architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.2 2D segmentation . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3.3 3D segmentation . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.4 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4 Applications in cardiac image segmentation . . . . . . . . . . . . . 142

4.4.1 3D Whole heart and multi-class segmentation . . . . . . . . 143

4.4.2 Patient-specific modelling of CHD . . . . . . . . . . . . . . . 150

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5 The ELCH dataset 165

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.3.1 Information governance . . . . . . . . . . . . . . . . . . . . . 167

5.3.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.3.3 Guiding principle of manual image segmentation . . . . . . . 169

5.3.4 Manual image segmentation protocol . . . . . . . . . . . . . 171

5.3.5 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . 172

5.3.6 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 173

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4.1 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4.2 Congenital diagnoses, defects and interventions . . . . . . . 175

5.4.3 Imaging characteristics . . . . . . . . . . . . . . . . . . . . . 179

5.4.4 Burden of manual image segmentation . . . . . . . . . . . . 180

5.4.5 Anatomical characteristics and comparative analysis . . . . . 183

iv



5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.5.2 Limitations and future work . . . . . . . . . . . . . . . . . . 192

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6 CNN segmentation of congenital heart defects 195

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2 Learning from 4D data . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.2.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.2.2 Challenges of 4D deep learning . . . . . . . . . . . . . . . . 199

6.2.3 Previous work in spatio-temporal deep learning . . . . . . . 200

6.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4.1 Task formulation . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4.2 Representation of 4D data . . . . . . . . . . . . . . . . . . . 207

6.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.4.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.4.5 Clinically relevant covariables . . . . . . . . . . . . . . . . . 214

6.4.6 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 215

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.5.1 Technical performance . . . . . . . . . . . . . . . . . . . . . 216

6.5.2 Clinical performance . . . . . . . . . . . . . . . . . . . . . . 226

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.6.2 Successes and failures . . . . . . . . . . . . . . . . . . . . . . 236

6.6.3 Relevance to patient-specific anatomical modelling . . . . . . 239

6.6.4 Limitations and future work . . . . . . . . . . . . . . . . . . 241

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7 Topological loss functions 243

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.1.1 Limitations of pixel-wise optimisation . . . . . . . . . . . . . 244

7.1.2 Anatomical priors in cardiac segmentation . . . . . . . . . . 246

v



7.1.3 Topological priors in image segmentation . . . . . . . . . . . 248

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

7.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

7.3.1 Betti numbers, homology and cubical complexes . . . . . . . 251

7.3.2 Persistent homology . . . . . . . . . . . . . . . . . . . . . . 252

7.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

7.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

7.4.2 Multi-class topological priors . . . . . . . . . . . . . . . . . . 256

7.4.3 Topological loss function . . . . . . . . . . . . . . . . . . . . 259

7.4.4 CNN post-processing framework . . . . . . . . . . . . . . . . 261

7.4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 262

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

7.5.1 Experimental methods and baselines . . . . . . . . . . . . . 263

7.5.2 Metrics and statistical analysis . . . . . . . . . . . . . . . . 264

7.5.3 2D Short axis segmentation . . . . . . . . . . . . . . . . . . 265

7.5.4 3D Whole heart segmentation . . . . . . . . . . . . . . . . . 273

7.5.5 3D CHD segmentation . . . . . . . . . . . . . . . . . . . . . 283

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

7.6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

7.6.2 Computational performance . . . . . . . . . . . . . . . . . . 299

7.6.3 Limitations and future work . . . . . . . . . . . . . . . . . . 300

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8 Conclusions 305

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

8.2 Clinical impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

8.3 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . 308

8.4 Closing statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Bibliography 311

vi



List of figures

2.1 Congenital heart disease disrupts the characteristic anatomy of the

normal heart, affecting functional performance. . . . . . . . . . . . 8

2.2 Types of congenital heart defect. . . . . . . . . . . . . . . . . . . . 9

2.3 Example patient-specific 3D printed models. . . . . . . . . . . . . . 13

2.4 Incision and tactile manipulation of patient-specific 3D printed mod-

els have been found to enhance decisions made by multi-disciplinary

consensus and surgical planning. . . . . . . . . . . . . . . . . . . . . 17

2.5 In vitro simulation, including device deployment have enabled patient-

specific planning of catheter-based intervention. . . . . . . . . . . . 21

2.6 Patient-specific 3D printed models have been used to demonstrate

cardiac anatomy to augment conventional medical training and ed-

ucation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Patient-specific 3D printed models have been used to communicate

cardiac anatomy to patients and members of the public. . . . . . . . 24

2.8 Patient-specific 3D printed models have been used to undertake

scientific research concerning the anatomy and physiology of the

heart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 The patient-specific 3D printing workflow. . . . . . . . . . . . . . . 28

2.10 The formulation of a relevant segmentation task specification should

match the motivations for printing and the eventual model to be

fabricated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Surface rendering describes an anatomical segmentation by a 2D

manifold of tessellating polygons, often triangles. . . . . . . . . . . 32

vii



3.1 Printed, patient-specific models are most often derived from CT and

CMR data, the latter being particularly prevalent within clinical

reports concerning CHD. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Printed, patient-specific models are most often derived by manual

and semi-automated image segmentation methods, with very few

examples of automated processing. . . . . . . . . . . . . . . . . . . 44

3.3 The segmentation of 2D cine, short axis CMR data admits volume-

try of the LV and RV. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Statistical shape models deploy dimensionality reduction to estab-

lish the principle, global modes of anatomical variation. . . . . . . . 65

3.5 A prior model of 3D multi-class cardiac anatomy, encapsulated

within a triangulated, surface mesh. . . . . . . . . . . . . . . . . . . 68

3.6 Researchers have developed various schemes to fit a prior model

of cardiac anatomy to the unseen test image, including: automatic

region extraction; rigid, similarity transformation; parametric adap-

tion; and deformable adaptation. . . . . . . . . . . . . . . . . . . . 69

3.7 A comparison of single atlas and multi-atlas segmentation, as ap-

plied to 3D multi-class, cardiac image segmentation. . . . . . . . . . 72

3.8 A qualitative summary of modern MAS performance. . . . . . . . . 74

3.9 The ground truth labels provided by the HVSMR Challenge expose

a highly detailed and clinically relevant representation of 3D CHD

anatomy and disease morphology. . . . . . . . . . . . . . . . . . . . 77

3.10 Presently leading the ranking of published submissions to HVSMR,

the semi-automated procedure of Lösel and Heuveline (2017) de-
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Chapter 1

Introduction

1.1 Motivation

Congenital heart disease (CHD) describes the collection of structural heart defects

arising during gestation and which present from birth. The function of affected

anatomy (including any of the heart’s chambers, valves or associated vasculature)

can be severely compromised, necessitating expert clinical management throughout

life, including the possibility of surgical or cardiac catheter intervention (Moons

et al., 2009).

This already complex clinical challenge is exacerbated by the highly variable

presentation of defects. These might: characterise the incomplete growth or devel-

opment of anatomy, compromising cardiac output; give rise to anomalous connec-

tions between normally isolated components of the heart and the mixing of blood;

pathologically interrupt the circulation; or in the most complex cases, result in

anatomy of indeterminate morphology or which diverges from the normal asym-

metry of the thoracic structures. Though bearing on the circulation variably, all

diagnoses affect the passage of blood to, through or from the heart.

Coupled with this broad range, select malformations can reasonably affect dif-

ferent parts of the heart. For example (and as explained in Section 2.1), septal

defects may permit the communication of the left and right atria, ventricles, or

all four cardiac chambers. Moreover, in addition to their localisation to different

anatomical sub-structures, defects take a wide variety of shapes, sizes and posi-

1
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tions. In total, these modes of variation combine to realise a patient population

that demonstrates significant structural heterogeneity. Hence, in delivering the

specialised and personalised care on which these patients rely, a faithful appreci-

ation of patient-specific anatomy and disease morphology is critical (Kim et al.,

2008a).

Diagnostic and pre-procedural 3D medical imaging is increasingly used to gain

these insights. Assimilating a 3D understanding of anatomy from a 2D, tomo-

graphic reconstruction of cardiac magnetic resonance (CMR) or X-ray computed

tomography (CT), however, demands significant interpretive expertise. Whilst the

make up of multi-disciplinary teams accounts for this challenge through the inclu-

sion of imaging and radiology experts (who develop such skills through specialist

experience and training), the geometric complexity of both the healthy and de-

fective heart challenge this paradigm. Even where the specialist might be able to

appreciate the 3D anatomy captured by volumetric acquisition, the organic forms

characterising cardiac morphology often elude verbal description. In these cases, it

is difficult for the expert to convey their understanding to the remaining members

of the team, possibly including the surgeons or interventional cardiologists relied

upon to deliver treatments.

In response, 3D models of patient-specific anatomy have been proposed as a

solution, seeking to capture the imaging expert’s understanding of a CMR, CT or

other 3D scan in a form that is accessible to all (Byrne et al., 2016). Though a

model might ultimately be realised in virtual reality or physically fabricated using a

3D printer, irrespective of its mode of downstream presentation, all such examples

are derived from medical image data by image segmentation. Typically involving a

laborious and time-consuming computer-based exercise, such pixel-wise labelling

demands specialist software and training. Neither the expertise, nor the time

required by the segmentation of volumetric data are consistent with the working

practices of busy clinical staff. As we shall argue, this gap has limited the growth of

patient-specific 3D modelling outside of the largest teaching hospitals and medical

research centres. Were its associated burden reduced, expedited segmentation

would not only extend the use of 3D models to the care of more patients, but also

generate research findings associated with their clinical effectiveness, and further

our academic understanding of cardiac anatomy.
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The last decade has seen deep learning technologies garner great acclaim. In

particular, convolutional neural networks (CNNs), a class of high capacity, non-

linear statistical model, have received an enormous amount of research attention.

In the medical image processing field, their successes have led some to consider

such networks as the state of the art solution to many analysis tasks, including

segmentation (Litjens et al., 2017). Their efficacy owes a huge amount to their de-

pendence on data-driven training: rather than on a set of rules or heuristics based

on domain knowledge, CNNs are optimised against a set of inputs and outputs

which exemplify the task at hand. Once trained, the parameterised operations

on which they are based allow for predicted outputs to be determined for unseen

cases, including those that are yet to be encountered in the clinic.

However, whilst reports of their strong technical performance are ubiquitous,

their clinical adoption, though growing, remains relatively limited. In this work,

we firstly seek to understand whether CNN-based segmentation is a credible so-

lution to extract patient-specific CHD anatomy from 3D medical imaging data.

Secondly, by paying close attention to the requirements of this task, we present

novel methodologies to promote clinically meaningful CNN-based segmentation.

1.2 Contributions

In so doing, we make the following contributions:

The ELCH Dataset

As per any CNN-based image processing solution, supervised optimisation de-

mands learning examples. Having identified a paucity of training data describing

the segmentation of congenital cardiac anatomy from isotropically high spatial

resolution 3D CMR, we curate the Evelina London Children’s Hospital (ELCH)

dataset. Searching the picture archive and communications system (PACS) at our

local institution, we make a judicious selection of 150 clinically representative pa-

tients, straddling five broad diagnostic categories. For each CMR volume, we man-

ually segment a rich, multi-class description of sub-structural, cardiac anatomy,

including up to eighteen different semantic labels. Every case is additionally ac-
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companied by 4D time-resolved magnetic resonance angiography (TR-MRA). In

all of these respects, the ELCH dataset is both qualitatively and quantitatively

unique, containing an order of magnitude more patients than its closest CMR

counterpart, and being larger than a related CHD dataset concerned with 3D CT.

Clinically sensitive assessments

In the largest study of its kind, we leverage the ELCH dataset to assess the appli-

cation of CNN-based methodologies, to the segmentation of patient-specific and

highly detailed representations of CHD anatomy, from 3D CMR data. Moreover,

we investigate novel strategies for learning from combined structural (isotropic 3D

CMR) and dynamic (4D TR-MRA) medical images, performing controlled exper-

iments to compare different approaches. In all cases, we assess performance via

a range of novel, clinically focused metrics, sensitive to the presence and faithful

representation of congenital defects. These reveal the limitations of state of the

art methods for CNN-based segmentation, including its propensity to make predic-

tions which lack spatial coherence and fail to represent the most clinically salient

features of anatomy, including congenital heart defects. In so doing, we expose

topology as a lens through which multi-class labelling (and the patient-specific

CHD anatomy described) can be considered, graded and optimised.

Topological loss functions

Carrying forth this observation, we extend existing, persistent homology-based,

topological loss functions to the task of multi-class image segmentation. These

admit CNN optimisation against an abstract, prior specification of multi-class

topology, granting sensitivity to higher-order topological relationships, including

class adjacency, hierarchy and containment. We present and leverage an efficient

and highly generalisable implementation based on cubical complexes and parallel

execution across a range of 2D and, for the first time, 3D segmentation tasks.

Critically, this includes assessment against cases drawn from the ELCH dataset,

for which we construct a patient-specific topological prior, descriptive of congenital

diagnosis and interventional history. In all cases, our topological loss functions

make statistically significant improvements in multi-class topology.
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1.3 Outline

This work is presented in the following chapters:

Chapter 2 Patient-specific anatomical models of congenital heart disease

We expand on the clinical and technical background presented in Section 1.1, as

required to appreciate how patient-specific models support the personalised care of

patients with CHD. We review the literature concerning clinical and research appli-

cations, and present the workflow for reverse engineering patient-specific anatomy

from image data, discussing the practical challenges posed by its implementation,

and segmentation in particular.

Chapter 3 Cardiac image segmentation

We conduct a staged literature review of conventional cardiac image segmentation

methodologies (those developed prior to the advent of deep learning). In the first

stage, we focus on methods adopted by clinical exponents of patient-specific heart

models, and review their associated operator burden. Secondly, we broaden our

scope to the wider literature on technical image processing, including a discussion

of methodological limitations when applied to patient-specific modelling of CHD.

Chapter 4 Deep learning for image segmentation

Promising to overcome these limitations, we present a theoretical foundation to

CNN-based segmentation. We review CNN architectures and their application to

the segmentation of 3D cardiac anatomy, observing: (1) a paucity of training data

concerning CHD; and (2) deficiencies in CNN optimisation and performance as-

sessment, associated schemes being largely ignorant of the clinically salient features

of segmented anatomy. We set out our experimental ambitions in response.

Chapter 5 The ELCH dataset

Addressing the first of these, we describe our curation of the ELCH dataset (as

outlined in Section 1.2). Reported characteristics include: its associated manual

segmentation protocol; and its clinically relevant demographic, diagnostic, patient
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history, and imaging characteristics. In each of these respects, we perform a com-

parative analysis to establish the unique quantities and qualities that distinguish

our data from existing resources.

Chapter 6 CNN segmentation of congenital heart defects

We leverage the ELCH dataset to assess the application of state of the art CNN-

based methods to the segmentation of CHD anatomy from CMR images. As pre-

viewed in Section 1.2, we ensure the clinical relevance of our findings by: developing

bespoke metrics sensitive to the representation of CHD; and explore strategies for

incorporating routinely acquired 3D and 4D data. We find that predicted segmen-

tations often lack spatial coherence, hindering clinically meaningful modelling.

Chapter 7 Topological loss functions

In response, we motivate the development of clinically meaningful models by con-

sideration of anatomical topology. This chapter presents our formulation of multi-

class, topological loss functions (trailed in Section 1.2), and reports our exper-

iments on 2D and 3D CMR segmentation. Critically, we show that multi-class

topology provides a description of cardiac structure that, for cases from the ELCH

dataset, we can optimise against our prior knowledge of patient-specific CHD.

Chapter 8 Conclusions

We summarise the work completed and its impact, and identify directions for

future investigation. Finally we draw conclusions.



Chapter 2

Patient-specific anatomical

models of congenital heart disease

2.1 Congenital heart disease

Estimates suggest that approximately one percent (Triedman and Newburger,

2016) of infants are born with a cardiac abnormality that will have a moderate to

severe effect on their health and require expert care (Hoffman and Kaplan, 2002).

This group of defects is collectively known as congenital heart disease (CHD). Ac-

counting for nearly one third of all major abnormalities (Van Der Linde et al.,

2011), they are the most common type of congenital disorder in new-borns (Van

Der Bom et al., 2011). Though many have been proposed, a highly cited definition

of this condition is given by: “a gross abnormality of the heart or intra-thoracic

great vessels that is actually or potentially of functional significance” (Mitchell

et al., 1971). Whilst surgical and medical management of CHD has improved over

time, mortality remains high (Oster et al., 2013).

Cardiogenesis describes the normal prenatal development of the heart and

culminates in the arrangement of chambers, valves and associated vasculature

schematically shown in Figure 2.1a. The healthy heart is consistent with two net-

works of haemodynamic circulation: (i) deoxygenated blood drains to the right

atrium via the systemic veins, crosses the tricuspid valve, and is pumped by the

right ventricle, to the lungs, via the main pulmonary artery; (ii) oxygenated blood

7



(a) Normal heart (b) Tetralogy of Fallot

Figure 2.1: (a) The normal heart includes many anatomical structures which
compose the small (blue) and great (red) circulations. The small circulation:
the right-sided systemic, caval veins (right superior vena cava (RSVC), and infe-
rior vena cava (IVC)) drain to the right atrium (RA). Guarded by the tricuspid
valve (TV), the right-sided atrioventricular junction permits diastolic filling of
the right ventricle (RV). During systole, contraction of the myocardium (MY)
ejects deoxygenated blood through the pulmonary valve (PV) and, via the main
pulmonary artery (MPA) and subsequently branched pulmonary arteries (left pul-
monary artery (LPA) and right pulmonary artery (RPA)), to the pulmonary vas-
culature. The great circulation: the left and right-sided pulmonary veins (left
pulmonary veins (LPVs) and right pulmonary veins (RPVs), respectively) collect
oxygen rich blood from the pulmonary bed, draining to the left atrium (LA).
Guarded by the mitral valve (MV), the left-sided atrioventricular junction allows
the passage of blood to the left ventricle (LV). Subsequently, systolic contraction
of the myocardium forces the ejection of blood through the systemic ventricu-
loarterial junction (guarded by the aortic valve (AV)), the ascending, arched and
descending portions of the aorta (Ao) delivering oxygenated blood to the systemic
organs. (b) The cardiac anatomy of a patient with tetralogy of Fallot exhibits a
number of defects, disrupting these circulations. Here, the right ventricular outflow
tract is obstructed, possibly by (i) infundibular or (ii) pulmonary valve stenosis.
Moreover, (iii) the aorta overrides a (iv) ventricular septal defect, allowing blood
to mix between circulations and reducing the oxygen saturation of systemic flow
(purple). To overcome these defects the wall of the right ventricle thickens. Il-
lustrations taken from http://www.chd-diagrams.com (New Media Centre
- University of Basel, 2021).

http://www.chd-diagrams.com


Anomalous
connections

Drainage, confluence or connection between the ex-
tracardiac vasculature or great vessels and the heart,
impinging upon the small and great circulations.

Discordant
connections

Paired, anomalous association of small and great cir-
culations at either atrioventricular or ventriculoarte-
rial junctions.

Double
connections

Double connections at the ventriculoarterial (atri-
oventricular) junctions allow blood to pass from a
single (both) cardiac chamber(s) to the segments of
both (either) small and (or) great circulations.

Hypoplasia A description of any anatomical segment that has not
grown to attain normal size or morphology, remain-
ing small or diminutive (frequently used to describe
incomplete ventricular development).

Isomerism Isomerism of the atrial appendages describes the de-
viation from the normal arrangement of thoracic and
abdominal organs in which both atria share a com-
mon left or right morphology.

Obstructive
defects

Any defect which obstructs the flow of blood by the
narrowing or stenosis of intracardiac tracts, valvular
orifices or extracardiac blood vessels.

Septal defects Holes within the intracardiac septa that normally iso-
late the small and great circulations, allowing the
shunting (and therefore mixing) of blood between the
left and right heart.

Situs inversus Also known as mirror image defects, situs inversus
describes the inverse lateralisation of the morphologi-
cally left and right atria to opposing sides of the body.

Valvular atresia An atretic valve causes the absence or closure of a
natural atrioventricular or ventriculoarterial junction,
interrupting circulation.

Figure 2.2: Types of congenital heart defect.
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returns to the left atrium via the pulmonary veins, crosses the mitral valve, and

is pumped by the left ventricle, to the systemic organs, through the aorta. The

respective small and great circulations act in sequence, without communication or

mixing of blood (Thiene and Frescura, 2010).

The presence of a congenital heart defect disrupts these circulations in some

way, affecting the haemodynamic continuity of circulation. Though of great struc-

tural variety, the types of defect listed in Figure 2.2 frequently present in associated

combinations to allow widely recognised diagnoses to be made. Tetralogy of Fallot

(TOF), for example, combines: obstruction of the right ventricular outflow tract

(RVOT); the aorta over-riding a ventricular septal defect (VSD); and right ventric-

ular hypertrophy (see Figure 2.1b). Consequently, pulmonary blood flow is often

reduced and, depending on the degree to which the RVOT is narrowed, blood is

shunted from the right to the left ventricle (Apitz et al., 2009). Oxygenated and

deoxygenated blood mix at the site of the VSD, resulting in cyanotic symptoms: a

bluish discolouration of the skin and mucous membranes, caused by elevated levels

of deoxyhaemoglobin in the blood.

Grouping congenital heart defects by these features (whether cyanotic or acyan-

otic) gives rise to the pathophysiological classification of disease shown in Table 2.1.

This demonstrates a significant range of defects and diagnoses that is further com-

plicated by the substantial anatomical variation presented by almost every case

of CHD (Moore et al., 2018). This results in a structurally heterogeneous patient

population, in which no two patients and no two defects are alike. Contending

with such anatomical diversity, clinicians have sought increasingly personalised

management of the spectrum of disease encountered in the clinic.

2.1.1 Developments in congenital heart disease care

Modern cardiothoracic surgery and the development of minimally invasive car-

diac catheter intervention are the products of fifty years’ progress in the fields

of descriptive anatomy, physiology, surgical technique (Schaffer, 2013), medical

imaging and device innovation. Moreover, the development of cardiac surgery was

predicated on the emergence of cardiopulmonary bypass (Lillehei, 1957). These

advances have fostered the rapid evolution of care for those with CHD, including



2.1. Congenital heart disease 11

Classification Examples Abbreviation

A
cy

a
n
o
ti
c

Left-to-right shunts

Atrial septal defect ASD

Ventricular septal defect VSD

Atrioventricular septal defect AVSD

Aortopulmonary window —

Patent ductus arteriosus PDA

Left-sided obstructive
lesions

Coarctation of the aorta CoA

Congenital aortic stenosis AS

Interrupted aortic arch —

Mitral (valve) stenosis MS

C
y
a
n
o
ti
c

Decreased pulmonary
blood flow
(right-to-left shunts)

Tetralogy of Fallot TOF

Pulmonary (valve) stenosis PS

Pulmonary (valve) atresia PA

Tricuspid (valve) atresia TA

Ebstein’s anomaly —

Increased pulmonary
blood flow
(complete mixing)

Transposition of the great arteries TGA

Double outlet right ventricle DORV

Total anomalous pulmonary venous drainage TAPVD

Truncus arteriosus —

Single-ventricle
physiology

Hypoplastic left heart syndrome HLHS

Double inlet left ventricle DILV

Table 2.1: Functional classification of congenital heart lesions (St. Louis, 2008).
Note that the acronym PA is often overloaded to stand for both pulmonary atresia
(as in this table) and pulmonary artery, its meaning needing to be inferred from
context.

the increasing use of novel therapeutic options (Moons et al., 2009). Owing to

these advances, the population of adults with CHD is growing, forming more than

60% of the total CHD population (Marelli et al., 2014; Hunter and Swan, 2016).

The startling improvement in outcomes for babies born with CHD is one of the

success stories of modern medicine (Apitz et al., 2009).

To contend with the spectrum of structural CHD, these innovations have re-

lied on a detailed knowledge of patient-specific disease morphology. The ability

of non-invasive imaging modalities to define structural abnormalities has become

paramount (Kim et al., 2008a). For this purpose, advances in 3D image acquisition

and reconstruction have made tools such as 3D cardiac magnetic resonance (CMR)

(Razavi et al., 2003), routinely available. In fact, surgeons in many centres now
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prefer CMR or X-ray computed tomography (CT) to a conventional angiographic

approach, when planning the most complex operations (Heathfield et al., 2013).

Despite this progress, garnering a 3D, structural appreciation of the congeni-

tally malformed heart in vivo, remains hampered by its tomographic representation

in imaging data. Visualising volumetric data as a series of effectively 2D slices de-

mands a high level of interpretive expertise if the 3D nature of the anatomy is to

be understood (Kim et al., 2008b). Furthermore, even for those imaging (or radi-

ology) specialists able to inspect a tomographic presentation of data, the organic

forms and surfaces which define cardiovascular anatomy and CHD morphology

frequently elude verbal description. This hampers any attempt to convey expert

understanding to the remainder of the multi-disciplinary team. Although these

data can be represented in 3D using tools such as volume rendering (Sorensen

et al., 2003; Ehret et al., 2018; Schneider et al., 2019), such methods are limited

by their dependence on computing resources, their lack of haptic feedback, their

incompatibility with surgical or catheter-based simulation (Schmauss et al., 2015)

and their unrefined representation of image data of limited quality.

These observations prompt the investigation of advanced forms of 3D represen-

tation including: 3D printing (Valverde et al., 2017a), virtual reality (Ong et al.,

2018; Deng et al., 2021) and holography (Brun et al., 2019). Given our previous

work (Byrne et al., 2016; Valverde et al., 2017a), we primarily rely on 3D printing

to motivate this thesis, but our principles are equally applicable to any form of

patient-specific anatomical modelling for which 3D representation is derived from

medical images by surface rendering. Whilst our focus is on applications within

CHD, in the following section we review other use cases from the wider field of

cardiology.

2.2 Patient-specific anatomical modelling

2.2.1 Applications of patient-specific 3D printing in CHD

The marriage of 3D printing with computer-aided design (CAD) and medical imag-

ing allows for complex anatomical structures to be reproduced (Mankovich et al.,

1990) with an array of mechanical and visual properties (see Figure 2.3). We refer
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Figure 2.3: Example patient-specific 3D printed models. Each was derived from
medical images and printed to aid clinical decision-making and interventional or
surgical planning. All models were printed by Nicholas Byrne or Israel Valverde
at St Thomas’ Hospital.

to patient-specific 3D printing, an application that seeks to demonstrate anatomy

with a structural fidelity consistent with the patient’s actual disease processes

(Garcia et al., 2018), at least as far as they are represented in image data or can

be reasonably inferred by the radiological expert.

Since the first translation of this technology to clinical cardiovascular disease in

2006 (Ngan et al., 2006; Noecker et al., 2006), patient-specific 3D printed models

have been employed in a multitude of applications. Published research spans the

hierarchy of evidence, from individual case reports to controlled trials. For a

complete account, we refer the reader to any of the reviews listed in Table 2.2.

However, for the self-contained consistency of this thesis, we present our own

review of the literature in the following areas:

Surgical planning

Some of the earliest reports of patient-specific 3D printing being used in cardiol-

ogy concerned surgical applications. These primarily focused on individual case

reports, or small numbered studies, making initial assessments of feasibility, ac-

curacy and the qualitative benefits of this technique. One of the first surgical re-

ports was presented by Ngan et al. (2006), detailing the use of patient-specific 3D

printed models of pulmonary atresia with VSD and major aortopulmonary collat-

eral arteries (MAPCAs). Based on their findings from six patients, post-operative

questionnaires suggested that models could accurately represent the vast majority

of MAPCAs, easing the identification of vascular anatomy. Another early work

completed by Vranicar et al. (2008) also examined a case series, printing models



Table 2.2: Reviews of patient-specific 3D printing for clinical cardiovascular care.

Year Authors Title

2016 Giannopoulos et al. Applications of 3D printing in cardiovascular diseases

2017 Foley et al. 3D-printing: applications in cardiovascular imaging

Grant and Olivieri The role of 3-D heart models in planning and executing interventional procedures

Kuk et al. 3D printing from cardiac computed tomography for procedural planning

Meier et al. Structural and congenital heart disease interventions: the role of three-dimensional printing

Otton et al. 3D printing from cardiovascular CT: a practical guide and review

Valverde
Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular
surgery, and structural heart interventions

Vukicevic et al. Cardiac 3D printing and its future directions

2018 Anwar et al.
3D printing provides a precise approach in the treatment of tetralogy of Fallot, pulmonary atresia with major
aortopulmonary collateral arteries

El Sabbagh et al. The various applications of 3D printing in cardiovascular diseases

Farooqi and
Mahmood

Innovations in preoperative planning: insights into another dimension using 3D printing for cardiac disease

Hangge et al. Three-dimensional (3D) printing and its applications for aortic diseases

Kiraly Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery

Moore et al. Three-dimensional printing and virtual surgery for congenital heart procedural planning

Anwar et al. 3D printing is a transformative technology in congenital heart disease

Shin and Truong Manufacturing better outcomes in cardiovascular intervention: 3D printing in clinical practice today

Uccheddu et al. 3D printing of cardiac structures from medical images: an overview of methods and interactive tools

Wang et al. Innovations in cardiac surgery: techniques and applications of 3D printing

Yoo and
Van Arsdell

3D printing in surgical management of double outlet right ventricle

2019 Batteux et al. 3D-printed models for surgical planning in complex congenital heart diseases: a systematic review

Fan et al. Three-dimensional printing in structural heart disease and intervention

Forte et al. Living the heart in three dimensions: applications of 3D printing in CHD

Harb et al. Three-dimensional printing applications in percutaneous structural heart interventions

Sun et al. Personalized three-dimensional printed models in congenital heart disease

Tuncay and van
Ooijen

3D printing for heart valve disease: a systematic review

2020 Bateman et al. Cardiac patient–specific three-dimensional models as surgical planning tools

Byl et al.
Moving beyond two-dimensional screens to interactive three-dimensional visualization in congenital heart
disease

Ferrari et al.
Three-dimensional printing in adult cardiovascular medicine for surgical and transcatheter procedural
planning, teaching and technological innovation

Gardin et al. Recent applications of three dimensional printing in cardiovascular medicine

Garg and Zahn
Utility of three-dimensional (3D) modeling for planning structural heart interventions (with an emphasis on
valvular heart disease)

Hermsen et al. Three-dimensional printing in congenital heart disease

Levin et al. 3D printing applications for transcatheter aortic valve replacement

Sun
Clinical applications of patient-specific 3D printed models in cardiovascular disease: current status and future
directions

Wang et al. 3D printing in adult cardiovascular surgery and interventions: a systematic review

Wang et al. Three-dimensional printing for cardiovascular diseases: From anatomical modeling to dynamic functionality

2021 Gharleghi et al. 3D printing for cardiovascular applications: from end-to-end processes to emerging developments

Ma et al. Three-dimensional printing for heart diseases: clinical application review

Wang et al. 3D printing, computational modeling, and artificial intelligence for structural heart disease

http://doi.org/10.1038/nrcardio.2016.170
http://doi.org/10.1007/s40134-017-0239-3
http://doi.org/10.1016/j.cjca.2017.02.009
http://doi.org/10.1007/s12410-017-9420-6
http://doi.org/10.1007/s12471-016-0942-3
http://doi.org/10.21037/cdt.2017.01.12
http://doi.org/10.1016/j.rec.2017.01.012
http://doi.org/10.1016/j.rec.2017.01.012
http://doi.org/10.1016/j.jcmg.2016.12.001
http://doi.org/10.1007/s11936-018-0594-2
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for twelve patients exhibiting anomalies of the aortic arch (including coarctation of

the aorta (CoA) and vascular ring), their inspection enhancing surgical planning.

In more limited reports, Sodian et al. (2007), Jacobs et al. (2008), Sodian et al.

(2008a) and Sodian et al. (2008b), all derived 3D representations from the CT data

of at most two patients, printing models to aid in the planning of surgery to correct

right aortic arch with abnormal left subclavian artery, resection of left ventricular

aneurysm, aortic valve replacement and heart transplantation after failed Fontan

palliation, respectively.

In the final of these, the anatomical model for one of two examined cases was

derived from CMR data. Soon after, the same modality provided the basis of two

larger case series interrogating the use of 3D models to plan surgical intervention

addressing complex CHD. Whilst Sørensen et al. (2008) relied on virtual models

of 42 patients, Riesenkampff et al. (2009) printed heart models for eleven patients,

achieving biventricular repair in five cases for whom consensus decision remained

unequivocal after conventional radiological review.

Since this time and to this day, case reports on the surgical application of

patient-specific 3D printing continue to be published. For example, Valverde et al.

(2015b) found this approach to be extremely helpful when planning a Nikaidoh

repair for a patient with transposition of the great arteries (TGA) and VSD. Sim-

ilar findings were reported in the context of: cardiac tumour resection (Al Jabbari

et al., 2016), VSD closure (Bhatla et al., 2017a), transplant (Smith et al., 2017; Yoo

et al., 2020), septal myectomy (Hermsen et al., 2017; Andrushchuk et al., 2018),

TOF (Olejnik et al., 2018) with pulmonary atresia (Averkin et al., 2022), arteriove-

nous malformation (Carberry et al., 2019), pulmonary venous baffle obstruction

post atrial switch (Schneider et al., 2019), coronary artery fistula (Zhang et al.,

2019a; Aroney et al., 2019), double-chambered right ventricle (Mokkarala et al.,

2020), and left ventricular outflow tract obstruction post mitral valve replacement

(Sodian et al., 2021).

Thankfully, however, larger case series have also become more prevalent, now

making up the bulk of high impact, published work. For example, Ma et al. (2015)

demonstrated the utility of patient-specific printed models derived from CT data,

successfully planning surgical repair for 35 patients with TOF, and establishing

dimensional agreement with intra-operative measurement. In respective studies of
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five patients with double outlet right ventricle (DORV), Dydynski et al. (2016) and

Garekar et al. (2016) found that 3D models revealed the relationship and separa-

tion of VSD from the ventricular outflows. In the same sized cohort, Kappanayil

et al. (2017) made similar findings across a range of complex CHD, including

DORV, criss cross heart and congenitally corrected TGA. Others have focused on

particular methodological improvements, such as the use of super-flexible printed

models for twenty patients with CHD (Hoashi et al., 2018), or device sizing for

twenty cases requiring surgical aortic valve replacement (Faletti et al., 2018).

The final group of publications detail concerted efforts to assess the impact

of patient-specific 3D printing on the outcomes of cardiovascular surgery. For

example, reflecting their three-year experience, Ryan et al. (2018) performed a

retrospective comparative analysis, contrasting the care of 33 CHD patients, each

of which benefited from the preparation of a printed anatomical model, with 113

contemporaneous cases which did not. Whilst their results suggested an asso-

ciation between the use of 3D printing and reduced surgical time, this was not

statistically significant. Perhaps surprisingly, in a similar study design, Zhao et al.

(2018) found patient-specific 3D printing to be associated with a statistically sig-

nificant reduction in mechanical ventilation time and duration of stay in the in-

tensive care unit. Despite the promise of these findings, they are compromised by

a lack of prospective or randomised sampling and substantial differences between

the surgically relevant covariables expressed by the experimental and controlling

arms of the study. Being eight and seventeen, respectively, the considered sample

sizes appear inadequate to represent the underlying population of eligible patients

with DORV. Alternate study designs have also been considered: Han et al. (2019)

sought age and diagnostically matched controls for eighteen consecutive patients

with CHD. Deriving printed anatomical models from each of echocardiography,

CT and CMR, they observed a trend toward shorter surgical times, but without

statistical significance.

To this point, the preceding citations have sought to expose differences in quan-

titative metrics of surgical execution (operating or cardiac bypass time, for exam-

ple). Whilst attractive for their evidence-based association with patient outcome

(Al-Sarraf et al., 2011), each is compromised by the statistics of their underlying

distribution within normal care. Due to the substantial heterogeneity of the CHD
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Figure 2.4: Incision and
tactile manipulation of
patient-specific 3D printed
models have been found to
enhance decisions made by
multi-disciplinary consen-
sus and surgical planning.
See Valverde et al. (2017a)
(from where this figure is
reproduced) for full details
of the steps (A to F) of the
anatomical dissection.

population, such metrics frequently demonstrate high standard deviation (or other

measures of spread), so as to limit the applicability of conventional quantitative

study designs to prohibitively large samples. In response, several authors have

instead opted to assess the impact of patient-specific 3D printing on pre-surgical

planning, measuring the rate at which anatomical models prompt a change in

operational approach.

From a group of six cases, Bhatla et al. (2017b) found that patient-specific 3D

printing altered clinical management of complex DORV. Inspired by Riesenkampff

et al. (2009), Valverde et al. (2017a) found that in an international, multi-centre

sample of forty patients with complex CHD, inspection of a 3D printed model

modified the surgical decision in nineteen cases. Critically, in four patients where

conventional radiological review had indicated univentricular palliation, enhanced

3D planning allowed successful biventricular repair, a decision with far reaching

consequences for the individuals concerned (see Figure 2.4). Similar findings have

been made recently: Kiraly et al. (2021) found that 3D printing improved the sur-
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gical approach or made modification to the planned biventricular repair in thirteen

of fifteen paediatric CHD cases; Tiwari et al. (2021) observed a change in planned

surgical management in eight out of ten patients; in a group of eighteen patients

with complex CHD, Yıldız et al. (2021) found 3D models altered the planned

approach in one third of cases; and finally, albeit in a cohort of fourteen adults

with structural heart disease, Borracci et al. (2021) found that 3D printing refined

surgical planning in six, and verified device delivery in three patients.

Planning of cardiac catheter intervention

The incorporation of patient-specific 3D printing within the planning of catheter-

based intervention approximately coincided with the surgical application of this

technique. However, unlike surgical investigation - where a sense of clinical impact

has been investigated relatively recently - early reports from the interventional

cardiology arena sought this understanding from the outset. Publications from

around 2007 considered the highly variable morphology of the RVOT, as relevant

to percutaneous pulmonary valve implantation (PPVI). Schievano et al. (2007)

described the impact of 3D printed models on clinical-decision making. In a retro-

spective evaluation of twelve cases, they found that compared with a conventional

presentation of magnetic resonance imaging (MRI) data, patient-specific models

improved the ability of two observers to assess PPVI suitability. Critically, with

the benefit of a printed model, both were able to predict the failure of PPVI in

two patients in which this procedure was attempted.

Even if their innovative study design would not be replicated until years later,

their approach to in vitro testing (Armillotta et al., 2007) proved a highly attrac-

tive means of enhancing interventional planning. Such procedures depend on the

judicious selection and sizing of balloon catheters, stents, occlusion, valvular or

other devices. Accordingly, 3D printed models afford an opportunity to practi-

cally deploy and test such devices, ascertaining their suitability to patient-specific

anatomy prior to intervention. Sulaiman et al. (2008) deployed and tested an

endovascular prosthesis within a patient-specific model of aortic aneurysm, their

simulation benefiting from perfusion using an extracorporeal pump, and fluoro-

scopic guidance. To this day, further case reports of pre-operative simulation
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include consideration of mitral valve annuloplasty (Dankowski et al., 2014); stent-

ing to relieve hypoplasia (Valverde et al., 2015a), CoA (Ghisiawan et al., 2016) or

aneurysm (Meyer-Szary et al., 2019) of the aortic arch; atrial septal defect (ASD)

closure (Chaowu et al., 2016) in the setting of complex CHD (Imai et al., 2018);

transcatheter aortic valve implantation (TAVI) (Fujita et al., 2017); planning to

confirm (Little et al., 2016; Bagur et al., 2018) or reject percutaneous mitral valve

implantation (Lavie-Badie et al., 2021); percutaneous aneurysmal closure and valve

implantation within the RVOT (Jivanji et al., 2019); and closure of left ventricular

pseudoaneurysm (Quimby Jr et al., 2022). Cases presented by So et al. (2017) and

Oliveira-Santos et al. (2018) are notable for their derivation of anatomical models

from lesser used (transoesophageal) echocardiography and rotational angiography.

The former leveraged improved visualisation of the atrial septum to plan ASD

closure; the latter used a model of the coronary arteries to guide complex inter-

vention. Lastly, Pracon et al. (2018) published an incredible case report detailing

the selection of an Amplatzer septal occluder to close a VSD sustained after a stab

wound.

Thankfully, and as per advances in the surgical field, reports of larger case

series have also emerged. Forte et al. (2017) presented four patients (both adult

and paediatric) with coronary artery fistula. Multi-disciplinary discussion was

enhanced by inspection of flexible, patient-specific printed models, revealing the

tortuous course of dilated fistulous anatomy. In vitro simulation identified optimal

points for occluder deployment, allowing percutaneous solutions to be planned in

three patients and discouraged in favour of surgery in the fourth. In a study

of the same size, Aroney et al. (2019) made identical findings. Vukicevic et al.

(2017b) demonstrated the use of both CT and echocardiography to model the

mitral valve, using benchtop simulation to plan mitral valve catheter intervention

in three patients. In a retrospective study of eighteen patients, Qian et al. (2017)

used printed models to simulate TAVI, conceiving a novel annular bulge index

for the prediction of paravalvular leak with statistical significance. Similar work

comparing in vitro and in vivo measurement was undertaken by Sommer et al.

(2020): using 3D models of 52 patients, they established the consistency of CT

and bench top assessments of coronary fractional flow reserve. Li et al. (2020) used

patient-specific 3D printing to investigate and then plan the closure of multiple
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ASDs using a single device, relying on transthoracic echocardiography rather than

fluoroscopic guidance at the point of intervention. Comparing thirty procedures

planned in this way with 32 undergoing normal care, they found that 3D planning

yielded statistically significant reductions in the presence of residual shunts and

the rate of re-occlusion.

To close our review of catheter-based intervention, we wish to highlight two

clinical applications, each demonstrating different benefits conferred by the appli-

cation of patient-specific 3D printing. Whilst in the context of acquired rather

than CHD, the first uses 3D models to plan occlusion of the left atrial appendage,

an established strategy to manage complications of atrial fibrillation (Iriart et al.,

2018). Case reports nicely summarise the advantages of patient-specific printing,

including the selection and sizing of devices in the context of anatomy with highly

variable structural presentation (Fan et al., 2016; Khalili et al., 2017). In eight

patients, Liu et al. (2016) established the feasibility of replicating the left atrial

appendage from transoesophageal echocardiography. Several larger studies have

also been able to demonstrate the clinical impact of this approach observing sta-

tistically significant reductions in radiation exposure (Li et al., 2017a), procedure

time and anaesthetic time, and residual peri-device leak (Obasare et al., 2018);

and improved device sizing (Hachulla et al., 2019). However, these conclusions

have not always been reproduced so emphatically. Conti et al. (2019) and Hudec

et al. (2021) found that devices selected after in vitro simulation matched those

clinically deployed in only 35% and 37% of cases, respectively.

Finally, we review the literature relevant to partial anomalous pulmonary ve-

nous drainage and sinus venosus ASD. In this setting, Velasco Forte et al. (2018)

demonstrated the ability of 3D models to not only enhance interventional planning,

but also to conceptualise and validate a novel catheter-based solution to a lesion

typically treated surgically (see Figure 2.5). Case reports published by Thakkar

et al. (2018) and Huang et al. (2019) also endorse this application of in vitro sim-

ulation. This innovative body of work has culminated in a credible alternative to

surgery, successfully implemented in 25 patients (Riahi et al., 2018; Hansen et al.,

2020); patient-specific 3D printing playing a critical role in its development.
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Figure 2.5: Patient-specific 3D printed models permit in vitro simulation, including
device deployment and planning of catheter-based intervention. They have also
fostered and justified bespoke interventions such as in work by Velasco Forte et al.
(2018) (from where this figure is reproduced), who developed a novel catheter-
based solution to partial anomalous pulmonary venous drainage and sinus venosus
atrial septal defect.

Medical education and training

Given the capacity of printed models to demonstrate the detailed and patient-

specific anatomy of the structurally variable CHD population, they naturally find

application in medical education and training. Classically, our understanding of

CHD anatomy is developed and taught by cardiac morphologists, who in turn

develop their knowledge through inspection of cadaveric cardiac specimens. How-

ever, requiring constant maintenance, such specimens represent an an ultimately

perishable resource. Consequently, researchers have examined the feasibility and

accuracy of using CT (Greil et al., 2007) and MRI (Kiraly et al., 2019) to “digitally

preserve” the ex vivo heart, optionally providing a basis for 3D printing. Deakyne

et al. (2019) recently presented their experiences of using high resolution MRI to

prepare a library of over a hundred virtual heart models, also reflecting on the

possibility of device implantation in silico.

Avoiding the technical challenges of developing a virtual simulation environ-

ment, others have investigated the use of patient-specific models in simulation-

based training (distinct from the pre-procedural simulation for pre-operative plan-

ning reviewed previously). Early work demonstrated the feasibility of this ap-
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proach to simulate catheter-based intervention (Abdel-Sayed et al., 2009) and sur-

gical simulation, including the use of printed materials that allow for incision and

suture (Shiraishi et al., 2010). More recently, researchers have sought to assess the

impact that such models can have on training. In surgical applications: Costello

et al. (2014, 2015) quantified the incremental value of simulating closure of five

common VSD sub-types after conventional teaching; Yoo et al. (2017) developed

“Hands On Surgical Training” for a range of operations relevant to CHD, receiving

positive feedback from fifty surgeons; and Chen et al. (2018b) and Hussein et al.

(2021) both simulated reconstruction of the aortic arch as relevant to the Norwood

procedure, concluding that such an approach was feasible, and could improve surgi-

cal skill through practice. From these studies, important feedback highlighted the

limited capacity of 3D printing materials to replicate the mechanical properties

of cardiac tissue, and the sub-optimal representation of valvular anatomy. Per-

haps for these reasons, in catheter-based applications, Jang et al. (2020) recently

reported a mixed reality procedural simulator, combining virtual and printed mod-

els. For more comprehensive overviews of the use of patient-specific 3D printing

in simulation-based, CHD training, we refer the reader to Subat et al. (2018) and

Hussein et al. (2020).

Finally, a slew of recent publications have used patient-specific printed models

for anatomical demonstration, considering their incorporation within classrooms,

workshops, lectures, seminars or similar teaching environments (see Figure 2.6).

Biglino et al. (2017b) enhanced nurse education through nine 3D printed examples,

administering a survey to elicit participant feedback. Simpler studies of impact

have relied on a before and after, or crossover design: both Smerling et al. (2019)

and Lee and Lee (2020) captured a range of CHD with several printed models,

finding statistically significant improvement in the students’ self-graded, subjec-

tive knowledge and understanding of anatomy; Valverde et al. (2022) focused on

the particularly complex criss cross heart, also recording a statistically significant

improvement in learners’ objective test scores after inspection of 3D models. More

complex designs have employed randomisation, comparing conventional classroom

teaching (control group) with that enhanced by 3D printed hearts. Some have re-

ported that patient-specific models significantly improve self-reported knowledge

and skill acquisition, and student satisfaction. These include educational courses
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Figure 2.6: Patient-specific 3D printed models have been used to demonstrate
cardiac anatomy, augmenting conventional medical training and education. In
this example (reproduced from the work of Ochoa et al. (2019)), models were used
to contextualise echocardiographic examination.

on VSD (Su et al., 2018), ASD, CoA and TOF (Karsenty et al., 2021). In other

studies, however, the efficacy of this approach was found to be mixed (Loke et al.,

2017); or make no difference to student learning (Wang et al., 2017b; Ochoa et al.,

2019). As observed by Smerling et al. (2019), it is possible that the benefit con-

ferred is related to the complexity of disease.

Patient communication

Clinicians and clinical trainees are not the only ones who stand to benefit from

a detailed and 3D knowledge of patient-specific anatomy. Though drawn from a

smaller section of the research literature, Biglino et al. (2015) were the first to

publish their experience of using printed heart models to aid consultant-patient

communication. Randomising 103 parents of children with CHD to either conven-

tional clinical consultation or that enhanced by a model specific to their child, they

made objective assessments of parental knowledge and sought subjective feedback
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Figure 2.7: Patient-specific 3D printed models have been used to communicate car-
diac anatomy to patients and members of the public. In this example (reproduced
from the work of Biglino et al. (2019)), models were presented as the centrepiece
of an artistic installation concerning CHD.

prior to and following attendance in clinic. Whilst they found no statistically

significant difference in knowledge acquisition between groups, questionnaire feed-

back prompted the conclusion that patient-specific models can enhance parental

engagement and communication with cardiologists. Biglino et al. (2017c) extended

this approach to a pilot study of adolescent patients with CHD. On the other hand,

Zablah et al. (2021) observed statistically significant improvements in parental un-

derstanding of proposed cardiac catheter intervention, associated with inspection

of a heart model specific to their child. However, these findings are limited by the

use of non-randomised design, subjects serving as their own control via an entirely

subjective questionnaire completed before and after 3D model review.

Finally, Biglino et al. (2019) examined the wider capacity of printed mod-

els to communicate and convey the experiences of patients and families affected
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by CHD. Collaborating with an artist, they canvassed the response of viewers at-

tending an exhibition which included patient-specific hearts, observing empathetic

engagement with the topic (see Figure 2.7).

Research applications

The capacity of 3D models (printed or otherwise) to capture and demonstrate

patient-specific anatomy extends their application beyond purely clinical use, also

enabling scientific research. Whilst not our main motivation, these models have

found utility within both in silico and in vitro modelling of either cardiac physi-

ology and its disease processes, or device development and procedural simulation.

Bodies of work in their own right, for comprehensive reviews of these topics, we

direct the reader to Niederer et al. (2019) (concerning applications in cardiology

more generally) and to Biglino et al. (2017a) (concerning CHD in particular). Here

we provide only a brief and incomplete review of citations thought most relevant

to CHD, cardiac care or their association with 3D printing.

Most immediately, printed anatomical models provide a basis for in vitro sim-

ulation and haemodynamic measurement. For example, in the context of different

strategies for single ventricle palliation (including Norwood (Biglino et al., 2012b)

and Sano (Biglino et al., 2013) procedures), researchers have measured pressure

within printed models of the aorta, also considering the impact of coincident CoA.

Rather than by direct, instrumented measurement, others have assessed in vitro

haemodynamics through advanced MRI acquisition. Using 4D flow MRI (Medero

et al., 2017), Ha et al. (2016) examined the association between aortic valve angle

and haemodynamic performance. Meanwhile, Falk et al. (2018) sought to un-

derstand flow patterns within printed models of prenatal cardiac abnormalities.

Given the visual quality of the models relied upon, incredibly, each was derived

from prenatal echocardiography (see Figure 2.8). Also using 4D flow, Markl et al.

(2012) quantified velocity, flow distribution, vorticity and kinetic energy within to-

tal cavopulmonary connection, their primary motivation being to establish meth-

ods for validating in silico models of fluid dynamics. This ambition was tackled

more directly in works investigating aortic flow (Canstein et al., 2008; Wen et al.,

2010), including in the presence of CoA (Biglino et al., 2014).
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Figure 2.8: Patient-specific
3D printed models have
been used to undertake sci-
entific research concerning
the anatomy and physiol-
ogy of the developing heart.
In this example (repro-
duced from the work of
Falk et al. (2018)), printed
models derived from foetal
echocardiography were in-
corporated within a circu-
latory simulation. 4D flow
MRI subsequently revealed
the distorted haemodynam-
ics associated with CHD.

Finally, patient-specific models provide suitable geometries for testing and de-

veloping medical devices that must conform to or modify anatomy: Saeed et al.

(2008) virtually implanted a developmental left ventricular assist device, assessing

the degree of tissue interference associated with different placement positions; So-

dian et al. (2009) used a printed model to understand aneurysmal disease of the

aorta, manufacturing a custom-made occluder in response to their findings; and

Capelli et al. (2012) used finite element analysis to understand the mechanical

stresses associated with TAVI, demonstrating wider feasibility in borderline cases.

A number of works have relied on patient-specific representation of the RVOT to

analyse and develop novel devices for PPVI. These include in silico (Capelli et al.,

2010) or in vitro modelling (Schievano et al., 2010) or both (Biglino et al., 2012a).

Summary

The common threads amongst the preceding body of work establish the mecha-

nisms by which patient-specific 3D printing and anatomical modelling might en-

hance the care of patients with CHD. In clinical applications (our focus), patient-
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specific 3D printed models afford a tactile interaction with image data. Through

haptic feedback, direct manipulation and simulation, these models foster an en-

hanced structural understanding of cardiovascular anatomy and disease morphol-

ogy. Unlike a tomographic presentation of data, this understanding is achieved

rapidly by inspection, independently of the viewer’s (be they medical, techni-

cal, patient or lay observer) expertise in medical image interpretation. This

level of accessibility admits a common understanding of disease morphology, one

that is shared amongst the entire multi-disciplinary team. We suggest that such

enhanced communication provides the conditions necessary to facilitate optimal

multi-disciplinary consensus and subsequent treatment planning, providing oppor-

tunities for highly personalised care.

In view of these qualities, it is tempting to promote patient-specific anatomical

modelling as a “democratisation” of medical imaging: one which makes the expert

interpretation of data available to all (Hermsen et al., 2020). However, and as

we explore in the following sections, this is to overlook the technical and clinical

demands of the patient-specific modelling workflow, and the associated expertise

it currently relies upon.

2.2.2 Workflow

The ambition of the patient-specific 3D printing workflow is to extract a 3D rep-

resentation of the heart from an image volume, in a form that is suitable for

downstream fabrication as a 3D printed model. Hence it can be described as

anatomical reverse engineering. Clinical applications of this technique can largely

be summarised by the five major steps shown in Figure 2.9:

Image acquisition

Any 3D printed model is fundamentally limited by the appearance of anatomy

within the imaging volume on which it is based. At minimum this must expose

the cardiac and vascular blood pool separately from the myocardium and remain-

ing anatomy (Yoo et al., 2016). Minimally acceptable image quality must be

considered in the context of the clinical indications that motivated printing. Con-

sequently, trends relating imaging modalities to anatomical targets have emerged.
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CT (Kuk et al., 2017; Otton et al., 2017) and CMR lend themselves to the repre-

sentation of the intracardiac blood pool and the myocardium. Extracardiac vas-

culature is well-represented in contrast-enhanced CT and time-resolved magnetic

resonance angiography (Giannopoulos et al., 2016). Finally, whilst echocardiog-

raphy has more often been used to replicate valvular anatomy (Witschey et al.,

2014; Vukicevic et al., 2017a; Muraru et al., 2017; Daemen et al., 2019), its range

of applications continues to expand (Birbara et al., 2019; Mowers et al., 2021).

Detailed acquisition desiderata can be found in Giannopoulos et al. (2016); Yoo

et al. (2016). However, from our experiences within paediatric CHD, we find that

independent of imaging modality, an isotropic pixel spacing of at most 1 mm is re-

quired. Combined with both electrocardiogram gating and respiratory navigation,

this constraint admits sufficient spatial resolution for the representation of the

majority of fine structure (such as the atrial septum). Beyond this requirement,

we advocate the use of routinely acquired image data as far as its quality remains

consistent with the motivations for 3D modelling. To account for the presence of

artefacts, we find that suitability is best assessed on a case by case basis.

Finally, we stress the importance of using multi-modal imaging to inform 3D

representation. Adjuvant to a tomographic volume to be segmented, complemen-

tary imaging sources can enhance 3D models. Without requiring 3D acquisition or

spatial registration, these might only implicitly inform downstream segmentation

of CAD adaptation. For example, of those modalities presented, conventional 2D

echocardiography best visualises the thin tissue interface comprising the atrial sep-

tum, and reveals defects therein. Therefore, where tomographic acquisition might

be compromised, insights gained from the inspection of echo data can shape the

segmentation of CHD anatomy. This approach draws on the conventional role of

the radiologist or cardiac imaging specialist, leveraging their capacity to mentally

assimilate anatomical structure from a diverse set of imaging data.

The natural extension of this principle, so-called “hybrid models”, rely on spa-

tial registration to combine the findings of disparate image data explicitly (Kurup

et al., 2015). Most often, these have leveraged the high fidelity visualisation of

valvular anatomy (including the sub-valvular apparatus and chordae tendinae) by

3D echocardiography (Gosnell et al., 2016; Gomez et al., 2020), making up for their

sub-optimal appearance within both CT and CMR data (Anwar et al., 2018b).
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Image segmentation

For the purpose of patient-specific 3D printing, image segmentation describes the

task of partitioning the volume into a set of clinically meaningful foreground ob-

jects against a background, assigning class labels at the level of the individual voxel.

This description is consistent with a semantic classification task, each element of

the image necessarily belonging to a single class. Depending on their motivations

for printing, exponents of patient-specific anatomical models have taken different

approaches to the formulation of this task. These might differ in the foreground

segments targeted; or the granularity with which hierarchically or laterally organ-

ised anatomical features are discriminated.

Guided by those reports concerning printed anatomy, for the most part users

have shown interest in two varieties of model. The first bounds the anatomical

surfaces of the blood pool using a uniform wall thickness; the second also demon-

strates the mural thickness of the myocardium (see Figure 2.10). Though the

“RepliCast” and “RepliCardio” terms respectively coined to describe these vari-

eties of model (Mottl-Link et al., 2008) have not survived, interest in both, and

their comparison, remains (Farooqi et al., 2016; Liang et al., 2021). Each variant

relies on a different formulation of the segmentation task. Models of the blood

pool require only a binary specification that separates the blood pool from the

background (see Figure 2.10b). Whereas, myocardial models additionally demand

delineation of the epicardial surface, most often achieved via segmentation of the

myocardium (see Figure 2.10c).

These formulations provide a basis for the majority of models of or derived

from whole heart anatomy: including the chambers, intracardiac tissues, muscle

and associated vasculature. However, clinical applications frequently only demon-

strate a subset of these structures (for example, consider models of the RVOT,

as relevant to the planning of PPVI (Schievano et al., 2007)). In these cases

an anatomically-limited task specification might be applicable, focusing on indi-

vidual sub-components of the cardiovascular blood pool. Taken together, these

foreground objects describe the multi-class blood pool (see Figure 2.10a). Distinct

from the whole heart blood pool, a multi-class specification differentiates each

chamber or vessel as a separate class of the segmentation. In addition to providing



Figure 2.10: The formulation of a relevant segmentation task specification should
match the motivations for printing and the eventual model to be fabricated. (a)
Foundationally, a range of task specifications can be established by the selection
and union of multi-class, granular cardiovascular anatomy, including but not lim-
ited to: the myocardium (MY); aorta (Ao); left atrium (LA), left pulmonary artery
(LPA), left pulmonary veins (LPVs), and left ventricle (LV); and right pulmonary
veins (RPVs) and right ventricle (RV). (b) One formulation reflects printing of
the endocardial and internal surfaces of the cardiovascular blood pool (BP). (c)
Another formulation allows for models to be printed which also demonstrate the
mural thickness of the MY. Photos of printed models reproduced from (Liang
et al., 2021).
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Figure 2.11: Surface rendering describes an anatomical segmentation by a 2D
manifold of tessellating polygons, often triangles. This case demonstrates a patient
with dextrocardia, with the cardiac apex pointing to the patient’s right hand side.

a basis for specific anatomical targets, multi-class anatomy presents a greater de-

gree of flexibility to any post-processing or design adaptation, in aid of a broader

array of downstream applications.

Irrespective of task formulation, volumetric segmentations are used to render

anatomical surfaces, providing the basis of downstream application. Per class, al-

gorithms for extracting the isosurface of a binary segmentation include classical

marching cubes (Lorensen and Cline, 1987) and its extensions, and those based on

dual contouring methods (Ju et al., 2002). Each represents segmented anatomi-

cal surfaces by a 2D manifold of tesselating polygons (most frequently triangles)

embedded within 3D space (see Figure 2.11).
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Computer-aided design

A surface-rendered representation of the segmented image might be appropriate

for 3D printing. More frequently, however, some adaptation by CAD is required

(Giannopoulos et al., 2016). This might be motivated by technical considerations:

to comply with the requirements of downstream printer hardware or overcome

mesh errors, for example. Alternatively, CAD affords the opportunity to add

designed features to the segmented surface, enhancing the functionality of the

eventual patient-specific model. The operator may wish to introduce a wall thick-

ness to surround a hollow void; proximally terminate extracardiac vessels which

might otherwise obscure anatomy (Pace et al., 2015) or introduce sections to ease

visualisation of intracardiac defects (see Figure 2.10c).

These are relatively simple options amongst the array of operations familiar

to exponents of CAD. Moreover, the reliance of the manufacturing industry on

software-based design processes has ensured the availability, continuous develop-

ment and support of cutting edge CAD packages. Commercially available options

include SOLIDWORKS (Dassault Systèmes) and various software sold under the

Autodesk family (Autodesk, inc.).

It must be remembered, however, that these resources have developed along-

side associated manufacturing technologies. Most often, reductive manufacturing

processes have been limited to the realisation of parts of relatively simple mor-

phology, their complexity being built by the combination of primitive geometrical

polyhedra. Whereas, the advent of additive manufacturing processes (including

3D printing) affords the capability to fabricate parts comprising organic, freeform

surfaces. This has prompted the development of tools allowing the application of

CAD operations to such models, both within the aforementioned software, and

within dedicated packages including Geomagic Freeform (3D Systems).

These requirements are shared by the inherently complex organic surfaces

which define patient-specific, CHD anatomy. Aside from the generic CAD re-

sources described, there also exist solutions dedicated to medical applications.

The Mimics Innovation Suite (Materialise NV) provides tools for the reverse engi-

neering of anatomy from image data and subsequent CAD adaptation.
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Clinical validation

A crucial step in the patient-specific 3D printing workflow, clinical validation seeks

to ensure that the salient features of image data are faithfully represented by their

associated model. Typically, this assessment is made by an expert in CHD imag-

ing. Depending on local arrangements, this might be a consultant cardiologist

or radiologist. Whilst equipped with unrivalled expertise in clinical imaging, it

is important to recognise that comprehensive experience of 3D printing remains

rare amongst these staff. Therefore, it is not reasonable to expect that their un-

derstanding of image data naturally extends to a practical appreciation of model

validity. Familiarity with software interfaces must be developed through practice,

strengthening an association between overlaid model contours and the specialist’s

inherent understanding of image data. Where these are aligned, a model is clini-

cally valid.

As illustrated by Figure 2.9 (note the inner and outer walls of the model are

superimposed), and as performed at our own centre, we suggest that models are

validated against the surfaces of the final model (that intended for printing), not

the voxelised segmentation. Ultimately, the latter remains an intermediate re-

sult of the workflow. Whilst surface rendering and CAD manipulation provide

an opportunity to enhance 3D representation, they also risk the incorporation of

anomalous features that might misrepresent the underlying image data. This is

not to say that clinical input should be delayed until the end of the reverse engi-

neering workflow. On the contrary, we advocate close working between all involved

in the derivation of patient-specific 3D printed models and their application. De-

velopment of a strong, multi-disciplinary team is critical (Farooqi and Mahmood,

2018) if clinically useful models are to be reliably achieved.

3D Printing

3D printing is a variety of additive manufacture, an umbrella term for a group

of fabrication methods that construct objects through a layer-by-layer deposition

technique (Negi et al., 2014). This approach avoids the technical challenges asso-

ciated with the geometrical complexity of 3D parts, simplifying structures through

an incremental treatment of effectively 2D slices. Its primary advantage over re-
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ductive fabrication, 3D printers are able to fabricate almost any complex shape or

geometric feature (Rengier et al., 2010). These include the organic forms which

make up the anatomical constituents of the body such as the heart.

As per CAD, the field of 3D printing (and additive manufacturing more gen-

erally) increasingly represents an area of applied specialism in and of itself. There

now exists a wide variety of commercially available 3D printing technologies. The

choice of an appropriate printer depends on the clinical motivations of the model

or modelling service. In our experience, we find that the mechanical properties

of those materials compatible with a particular printer strongly influence selec-

tion. For example, in aid of surgical simulation, the availability of soft, rubber-like

materials which allow for direct incision, is desirable. On the other hand, patient-

specific models used in education might need to be more durable, in which case a

rigid and more robust polymer would be preferable.

In this sense, the variety of applications reviewed in Section 2.2.1 presents a

challenge for adopters of this technology: how to acquire a printer with the versa-

tility to match their range of ambitions. Given the substantial investment required

by high end technology, centres with limited resource have effectively investigated

the possibility of lower cost options, most often demonstrating the success of such

approaches (Abdelkarim et al., 2018; Perens et al., 2020). Alternatively and to

a varying extent, others have outsourced aspects of the 3D printing workflow to

external providers. Whilst some rely on resources outside of their academic or

clinical centre to deliver the entire workflow, we endorse the use of external 3D

printing (as opposed to modelling) companies. Where possible, developing and

maintaining the multi-disciplinary expertise necessary to perform image segmen-

tation, CAD and validation within the hospital enhances and makes best use of

available clinical skills. Ultimately, this commitment is most likely to deliver clin-

ically useful models, those with the best chance of improving care.

Where financial resource is available, and depending on their needs, operators

can now choose from the following classes of additive manufacture: vat polymeri-

sation, material jetting (or polyjet printing), binder jetting, material extrusion,

powder bed fusion and the exciting new technology of digital light processing. In

the context of patient-specific cardiac modelling, a review of these printing tech-

nologies (including excellent graphics) is provided by Otton et al. (2017).
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2.3 Practical challenges of image segmentation

The previous sections have presented an account of why and how patient-specific

3D printing should be incorporated within the care of those with CHD. Sec-

tion 2.2.1 presented a wealth of applications supported by significant research

publication and associated activity. Building on these successes, the field shares

collective ambitions for the future. Chief amongst these is an aspiration to expand

the application of 3D printing outside of the largest centres (those fortunate to

benefit from more significant investment or specialist expertise captured within

attached research facilities), to become part of routine, albeit specialised, care.

Widely considered the most significant obstacle to this objective, many authors

have highlighted the need to establish rigorous evidence of clinical effectiveness

(Giannopoulos et al., 2016; Foley et al., 2017; Biglino and Milano, 2018; Fan et al.,

2019; Levin et al., 2020; Ma et al., 2021). Without these findings, gaining finan-

cial and ethical support from the commissioners of healthcare services has been,

and will continue to be, challenging. Related hurdles include significant start up

and ongoing costs (Bramlet et al., 2017); and a lack of procedural standardisa-

tion that might establish a route to regulatory compliance or accreditation (Shin

and Truong, 2018). Whilst overcoming these challenges may unlock the desired

expansion of patient-specific 3D printing, each is simultaneously best solved by

an increase in the number of active centres and the number of models printed.

Every patient considered boosts the statistical power of quantitative findings; the

experiences of each new centre enriches procedural standardisation. We sense that

this bind has limited progress.

We assert that conceivably, the literature reflects this stagnation. Though the

review contained in Section 2.2.1 suggests a vibrant and active group of researchers,

we suggest that there is significant redundancy within this body of work. This is

perhaps best illustrated by the quantity of review articles published since 2017 and

listed in Table 2.2. Whilst for the most part each of these present a sound anal-

ysis, we are not convinced that all make an incremental and unique contribution.

Many are enhanced by their focus on particular applications of patient-specific 3D

printing, such as surgical (Bateman et al., 2020) or catheter-based intervention

(Harb et al., 2019); their consideration of particular imaging modalities (Otton
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et al., 2017); or their attention to relevant topics advising on the development

of hospital-based 3D printing services (Kiraly, 2018) or even bioprinting (Gardin

et al., 2020). However, others present a formulaic recipe that includes: a repro-

duction of the patient-specific 3D printing workflow; a narrative (and incomplete)

review of the state of the art; a limited number of case studies; and an outlook for

the future1. We suspect that progress in the field does not warrant the number

of such reviews that have been published since the end of 2016 (being at least 38)

and anticipate a significant overlap in the references collectively cited.

We stress that we are not questioning the veracity or value of these reports

in isolation, and recognise the insightful comment presented by each. As ably

identified by many, we highlight the technical and clinical demands of the patient-

specific 3D printing workflow (Batteux et al., 2019). Going a step further, we

assert that these challenges not only restrict the growth of this technology, but are

the main obstacle to its expansion. As illustrated by Figure 2.9, there are several

technical steps to this pipeline, each of which might be optimised in pursuit of

greater efficiency. Amongst these, and in response to the calls from Valverde

(2017) and Forte et al. (2019), we choose to focus on limitations in current image

segmentation methodologies. Our rationale reflects the observation that this step

is strongly influential in determining the quality (and therefore clinical utility) of

resulting models (Anwar et al., 2018a; Yoo and Van Arsdell, 2018). After all, it is

through segmentation that we expose the clinically salient features of image data.

It is in this step that clinical insight can be incorporated, realising models that not

only reflect anatomy, but which capture the understanding of the imaging expert

in a communicable and accessible form. Whilst it is true that similar gains can

be made through judicious CAD adaptation, for the most part these can only be

performed blindly, without direct reference to the source image data.

Authors’ complaints centre around the significant operator burden of exist-

ing approaches (Harb et al., 2019). In addition to an expert knowledge of CHD

anatomy (Grant and Olivieri, 2017), these tend to rely on significant expertise in

3D image interpretation and segmentation methodologies (Farooqi and Mahmood,

2018; Wang et al., 2020a). Lastly, due to a lack of automation, each of these must

1We are aware of the irony of this critique in the context of this chapter! However, we consider
our content necessary to ensure the self-contained consistency of this thesis.
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be expressed through the operation of software, demanding familiarity with highly

specialised tools and interfaces. Problematically, these skills and experience are

hard earned (Bramlet et al., 2017) and are rarely possessed by an individual: the

clinician being best placed to interpret the presentation of CHD anatomy within

image data; the medical physicist, clinical engineer or imaging scientist being more

acquainted with image processing methodologies and their application. Without

automated solutions (Bhatla et al., 2017b), the result is a lengthy and laborious

task (El Sabbagh et al., 2018; Ferrari et al., 2020), one prone to significant subjec-

tivity and variability (Meier et al., 2017), and that comes at significant expense.

These requirements are not consistent with the working practices, clinical commit-

ments or training of staff in the hospital (Byrne et al., 2016) and limit the use of

an already strained human resource to only the most complex patients.

In response, some have called for the development and application of machine

learning or artificial intelligence to this task (Byl et al., 2020; Gharleghi et al.,

2021; Sun et al., 2019; Wang et al., 2021a). In the remainder of this thesis we

take up this challenge, seeking to understand whether such methods might reduce

the operator burden of image segmentation and deliver the desired expansion in

patient-specific 3D printing.



Chapter 3

Cardiac image segmentation

3.1 Introduction

Across a range of reviewed applications, Chapter 2 presented 3D printing as an in-

novative, accessible and exciting means of understanding cardiac imaging. Central

to our clinical motivation, this approach reveals the patient-specific anatomy and

disease morphology of patients with congenital heart disease (CHD), informing

multi-disciplinary decision-making and enhancing treatment planning. However,

our review also highlighted the limitations and technical challenges associated with

the patient-specific 3D printing workflow. We argued that in particular, image seg-

mentation presents an obstacle to the continued uptake of this technology, and its

consolidation within routine care.

In this chapter, we explore such image processing methods in detail, under-

scoring some of the assertions made previously. Firstly, we attempt to understand

techniques that have been applied to the task at hand (segmentation of cardiac

anatomy from volumetric image data for the downstream purpose of anatomical

modelling and visualisation), and review their performance in respect of operator

burden and duration. Thereafter, we broaden our investigation, taking in method-

ologies from the wider literature on 3D cardiac image segmentation and consider

their suitability and possible limitations for patient-specific 3D printing.

39



3.2. Methods for patient-specific 3D printing 40

3.2 Methods for patient-specific 3D printing

Between 2015 and 2016, we conducted a systematic review of the image segmenta-

tion methodologies applied to this task (see Byrne et al. (2016) for a full account

of the search criteria). Rather than examining the latest developments from the

image processing literature, this explored the methods deployed in practice. Con-

sidering clinical and technical reports of patient-specific 3D printing, we extracted

data relevant to: the modalities considered for1; the methodologies (and their

implementation in software) applied to; and the operator burden of, image seg-

mentation. We summarise our historical findings relevant to each of these aspects

in the following sections.

To update this account we gather the same information from modern publi-

cations: those published during and after 2016. To draw attention to the clinical

application of this technology, we limit our survey to those reports referenced

within the “Surgical planning” and “Planning of cardiac catheter intervention”

sections of Section 2.2.1. Whilst we cannot claim that these have been sought

systematically (as might be required to comply with the PRISMA 2020 reporting

standard (Page et al., 2021)), they have been compiled methodically. Between the

start of 2016 and December 2021, relevant reports returned by a Google Scholar

alert for any work satisfying the following search were included.

(“additive manufacturing” OR “rapid prototyping” OR “rapid prototype” OR

“3d printing” OR “3d printer” OR “3d printed” OR “stereolithography” OR

“fdm”)

AND

(heart OR cardiac OR cardiovascular OR cardiothoracic OR surgery OR

radiology OR medicine)

1Due to inconsistent reporting, we make no attempt to understand the number of cases
segmented from each modality per publication. Rather, a publication can rely on computed
tomography (CT), cardiac magnetic resonance (CMR), echocardiography, or a combination of
all three, in a mutually binary fashion.
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Figure 3.1: The imaging modalities used to derive patient-specific heart models
within the published literature: computed tomography (CT), computed tomogra-
phy angiography (CTA); magnetic resonance imaging (MRI), magnetic resonance
angiography (MRA), phase contrast MRI (PC-MRI) and steady state free pre-
cession (SSFP). Compared with previous systematic review (a, reproduced from
Byrne et al. (2016)), our survey of recent reports (b) suggests a clinical preference
for CT segmentation. However, after excluding case reports of single patients (c),
and in particular after focusing on congenital heart disease (CHD) (d), the share
of publications which leverage MRI data increases.

3.2.1 Imaging modalities

Spanning journal articles, case and technical reports prior to 2016, over 90% of the

works gathered by Byrne et al. (2016), derived patient-specific anatomy from either

CT or CMR. Figure 3.1a suggests a historical preference for the former, CT data

being segmented in 52% of publications. Only 38% relied on magnetic resonance

imaging (MRI). Of those models segmented from CMR data, electrocardiogram-

gated balanced steady state free precession (SSFP) was employed three times more

frequently than non-gated time-resolved magnetic resonance angiography (TR-

MRA). The remaining 10% of studies segmented anatomical geometries from 3D

echocardiography, most often in the preparation of valvular models.

Since 2015, our review of clinical applications requires careful consideration.

Across all clinically centred citations (including individual case reports), CT ap-

pears the predominant subject of 3D cardiac segmentation, being leveraged in

over 70% of publications. In contrast, CMR data are segmented in just one fifth

of studies (see Figure 3.1b). A more fine-grained analysis, however, suggests an

association between the choice of imaging modality and the relevant patient co-
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hort. Within journal articles concerning larger studies (more than a single case

report, see Figure 3.1c), and in particular within those also concerning CHD, the

imbalance between CT and CMR is reduced. In this group of publications, patient-

specific models of CHD are retrieved from CMR data in almost one third of articles

(see Figure 3.1d). Compared with the literature concerning acquired heart disease

(in which only 6% of reports segment CMR data), exact binomial test suggests

this difference in proportion is statistically significant (p < 10−8).

A comparison of the two imaging modalities helps explain this result. Whilst

both CT and CMR provide a 3D representation of anatomy, the richer physiological

insights returned by CMR greatly inform the management of patients with CHD

(Ntsinjana et al., 2011). Moreover, and despite its evolving demographics, the

CHD population maintains a largely paediatric membership. Given their youth

and increased radiosensitivity, avoiding the radiation dose associated with repeated

CT scanning further enhances the use of CMR within this cohort.

3.2.2 Image segmentation methods

Given the formatting limitations imposed by publishers of conference proceedings,

or case reports, it is perhaps unrealistic to expect reports from the grey literature

to provide a comprehensive account of image segmentation methodology. Hence,

in this section we limit our review to full journal articles concerning patient-specific

3D printing.

Our previous systematic review found a reliance on manual and semi-automated

methods, with only few accounts involving fully automated techniques (see Ta-

ble 3.1 and Figure 3.2a). Even where methods such as edge or centreline detection

have been employed, they have most often been hindered by compromised image

quality. Limited contrast resolution, contrast- and signal-to-noise ratios, and the

presence of artefacts inevitably ensure that the intensity distribution of the fore-

ground and background classes overlap (Byrne et al., 2016). This means that fre-

quently, automated approaches have had to be combined with subsequent manual

editing before an acceptable segmentation of patient-specific anatomy is achieved

(for example in Jacobs et al. (2008)). They also struggle to contend with the va-

riety of CHD anatomy encountered in the clinic. Lastly and whilst infrequently



Table 3.1: Legend for Figure 3.2, a glossary of image segmentation methods in-
cluding manual, semi-automated and automated tools.

Methods Description Citation

Manual

Segmentation Contours are drawn round structures to be segmented on
each slice of the 3D volume. Pixels within each contour are
included within the segmentation.

Editing Pixels are manually added or removed from the segmenta-
tion in order to correct for any errors introduced by use of
more involved methods.

Cropping A partially complete segmentation is spatially cropped,
usually by reducing the size of a cuboidal region of inter-
est. Only segmented regions that are contained within the
envelope of the region of interest are maintained.

Semi-automated

Thresholding Pixels are selected according to their brightness compared
to a user-defined window. Pixels that have a brightness
which falls inside of the window are segmented.

Sezgin and Sankur
(2004)

Region selection The connected components comprising an intermediate seg-
mentation are determined by pixel adjacency. A seed point
is manually placed within the desired component; only re-
gions connected to the seed point are maintained.

He et al. (2017b)

Region growing A segmentation is iteratively grown from a manually placed
seed point. Growth is controlled by manually tuned con-
straints that are imposed upon the statistical distribution
of pixel intensities within the expanding region.

Adams and Bischof
(1994)

Active contour Often initialised with a manually defined segmentation, the
bounding contour of this estimate is iteratively updated
within an energy minimisation scheme. Evolution is sensi-
tive to local changes in pixel intensity.

Kass et al. (1988),
Caselles et al. (1997),
Chan and Vese (2001)

CT heart A proprietary algorithm developed by Materialise NV. Pro-
vided a set of user-defined seeds and thresholds, multi-class
anatomical segments of the normal heart are automatically
segmented from contrast-enhanced CT data.

Farotto and Maes
(2019)

Automated

Edge detection Regions of the image are segmented according to their sepa-
ration either side of significant gradients in intensity. Com-
mon implementations rely on convolutional filters, so-called
edge detectors.

Canny (1986)

Centreline detection Primarily for the extraction of vascular structures, soft-
ware can be used to automatically extract a trajectory that
tracks along and through the centre of blood vessels.

Aylward and Bullitt
(2002)
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Figure 3.2: The image segmentation methods (see Table 3.1) used to derive patient-
specific heart models within the published literature. Compared with previous
systematic review (a, reproduced from Byrne et al. (2016)), our survey of recent
reports (b), including those focused on congenital heart disease (CHD) (c), suggests
that methodological reporting remains poor, with many publications lacking any
description whatsoever. Those which do report their approach rely primarily on
a combination of manual and semi-automated methods with very few examples of
fully automated techniques. *CT heart is a proprietary segmentation tool provided
by Materialise (Materialise NV, Leuven, Belgium).

observed, authors have combined conventional image processing operations within

automated pipelines. Riesenkampff et al. (2009) adopted a strategy combining

thresholding with simplex meshes.

Perhaps a more significant finding of our systematic review concerns the stan-

dard of methodological reporting in the surveyed body of work. Figure 3.2 indi-

cates that over one quarter of publications fail to describe their means of image

segmentation. This observation prompted us to suggest reporting guidelines rel-

evant to patient-specific 3D printing. At minimum, these required a description

of: the imaging modality segmented; any software used; the segmentation tools

and methods deployed; a brief description of how these were executed; and an

indication of how long segmentation took to complete (Byrne et al., 2016).

Despite our suggestion, and notwithstanding others’ calls for improved image

processing methods (Valverde, 2017; Forte et al., 2019), reporting quality does not

appear to have improved since 2016. At least within clinical reports of patient-

specific 3D printing, more than half of publications fail to describe their segmen-

tation methods (see Figure 3.2b); including eleven of the eighteen clinical articles
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concerning CHD (see Figure 3.2c). Amongst these, three describe their approach

as semi-automatic, without further elaboration (Dydynski et al., 2016; Qian et al.,

2017; Hachulla et al., 2019). Whilst it is likely that the difference in reporting

quality is explained by the mix of publications sampled (those surveyed in 2016

including reports focused on technical developments as well as the clinical appli-

cations reviewed since this time), such superficial reporting of image segmentation

methodologies, hampers the algorithmic optimisation and development sought by

others (Valverde, 2017; Forte et al., 2019; Batteux et al., 2019), see Section 2.3.

Of those reports providing a faithful description, and as per our previous find-

ings, segmentation has relied on manual and semi-automated methods. In partic-

ular, intensity thresholding, manual editing and region selection predominate. An

excellent account of their judicious combination is provided by Schievano et al.

(2007). Briefly, pixels are differentiated firstly by their intensity, returning a crude

representation of target anatomy; spurious, false positive results are subsequently

isolated from the true anatomical object; and can then be rejected by analysis of

component connectivity, selecting only those pixels connected to a user-provided

seed. Given its popularity, it is unsurprising that these tools constitute the seg-

mentation protocol advocated and implemented by the developers of the Mimics

software (Materialise NV, Leuven, Belgium). Whilst our survey of clinical reports

encountered other platforms (including open source, freeware and proprietary op-

tions), various versions of the Materialise software were used in thirteen out of

eighteen CHD reports (see Table 3.2).

Amongst the methods used, we draw attention to the “CT heart” tool, provided

as a paid-for extension to the Mimics software. This functions in two modes of

operation: (1) fully automatic segmentation of contrast-enhanced CT data into the

blood pool chambers of the normal heart and its associated vasculature; (2) semi-

automatic segmentation of the same targets, as constrained by a series of user-

defined anatomical seeds and thresholds in voxel intensity. Being a proprietary

algorithm, additional details of its technical formulation are not made public by

its associated white paper (Farotto and Maes, 2019).

Whilst its impartiality is difficult to ascertain, this report does make a quan-

titative assessment of performance, considering seventy adult cardiac CT scans.

This suggests strong performance, successfully segmenting anatomy in 65 cases in
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Table 3.2: List of image segmentation software used within clinical reports of
patient-specific 3D printing. Software details are extracted from the publications
referenced in Section 2.2.1 and which concern planning of surgical or catheter
intervention.

Software Developer Frequency

Mimics Innovation Suite Materialise NV 30

ITK-SNAP Yushkevich et al. (2006) 4

3D Slicer Kikinis et al. (2014) 3

AYRA Fernandez-Alvarez et al. (2014)

Osirix Rosset et al. (2004)

Amira Thermo Fisher Scientific 2

CT Auto Valve Siemens AG 1

MARACAS Hernández-Hoyos et al. (2002)

MeVisLab MeVis Medical Solutions AG; Fraunhofer MEVIS

MITK Wolf et al. (2005)

Extended Brilliance Workstation Philips NV

TeraRecon TeraRecon, Inc.

Vitrea Vital Images, Inc.

Ziostation Ziosoft, Inc.

a median time of 113 s. Within these cases, however, the authors observe reduced

accuracy in the segmentation of the right heart structures when compared with

their counterparts of the great circulation. In part, Farotto and Maes (2019) at-

tribute this degradation, to anatomical variation. This may be problematic in the

context of CHD, in which we observe substantial heterogeneity in cardiac structure

and morphology. Moreover, the test patients considered did not include congenital

anomalies, the authors only citing occasional anatomical variation associated with

aneurysm, tumour, or calcification: hallmarks of acquired cardiac disease. Despite

this challenge, the CT heart tool was employed by Kappanayil et al. (2017) (see

Figure 3.2), in their application of patient-specific 3D printing to five patients

with complex CHD. Outside of its intended domain of operation (considering both

CHD and CMR data), it is perhaps unsurprising that the results of automated

segmentation required further manual refinement.
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3.2.3 Operator burden of image segmentation

Many authors have highlighted the limitations of the patient-specific 3D printing

workflow, including the time consumed in its completion (Dydynski et al., 2016;

Farooqi and Mahmood, 2018; Yıldız et al., 2021). Within the steps of this pipeline,

our experience matches the assertion of Bateman et al. (2020): that segmentation

is the most protracted. Moreover, within this image processing task itself, man-

ual editing has been suggested as the most time consuming component (Yoo and

Van Arsdell, 2018). This is perhaps unsurprising since it is within this step that

errors within semi-automated segmentation are refined, and expert interpretation

brought to bear, realising a clinically veracious representation of image data.

The vast majority agree that segmentation is a labourious, time-consuming

and tedious activity (Bhatla et al., 2017b; Yoo et al., 2017; Bertolini et al., 2021).

The operator time spent editing a patient-specific segmentation of data, however,

is unclear. Reflective of a more general lack of any standardised approach to

modelling, attempts to establish this burden from the literature must contend

with a highly heterogeneous collection of reports. These vary in their clinical

application; the type of model printed and the anatomy targeted; the experience

and subjective performance of the operator; and the standard of data collection

(being mostly anecdotal) and reporting. Even where operator times are reported,

these most often reflect the duration of the entire patient-specific 3D printing

workflow, without reflecting the intermediate steps comprised, including image

segmentation (Tuncay and van Ooijen, 2019).

As demonstrated by Table 3.3, this heterogeneity generates estimates of op-

erator burden that are measured in both minutes and days. Whilst quantitative

estimates are scant, our interpretation is that for the most part, segmentation of

the anatomical components needed to construct a model of the whole heart (all

chambers and associated vasculature) requires at least an hour of expert time and

often as many as three. Where more granular anatomy provides the sole focus,

segmentation of individual structures such as the aortic root can be much faster.

Whilst there are outliers at both ends of this distribution, further details (includ-

ing for the incredibly rapid, whole heart segmentation performed by Thakkar et al.

(2018)), are often not provided.



Table 3.3: Estimates of the operator burden of 3D image segmentation. Each is
sourced from a search of the citations concerning clinical applications of patient-
specific 3D printing (planning of surgical and cardiac catheter interventions) and
the contents of Table 2.2. Reporting formats: x = anecdotal point estimate;
≤ x = upper bound; (x1, x2) = (lower bound, upper bound); x(x1, x2) =
mean(lower bound, upper bound); x ± σ = mean ± standard deviation. Abbre-
viations: aortic valve (AV), right ventricular outflow tract (RVOT), left atrial
appendage (LAA).

Target Citation Estimate Unit

Whole heart Kim et al. (2008b) (2, 5) days

Yıldız et al. (2021) 0.5

Vukicevic et al. (2017a) ≤ 12 hours

Grant and Olivieri (2017) ≤ 10

Jacobs et al. (2008) (3, 8)

Kiraly et al. (2021) (2, 4)

Valverde et al. (2015a) 3

Forte et al. (2017) 3

Velasco Forte et al. (2018) (2, 3)

Valverde et al. (2015b) 2

Riesenkampff et al. (2009) (0.6, 3)

Valverde et al. (2017a) 75± 32 minutes

Sørensen et al. (2008) 59(42, 85)

Meyer-Szary et al. (2019) 45

Thakkar et al. (2018) ≤ 5

Myocardium Andrushchuk et al. (2018) 2 hours

Aorta Sulaiman et al. (2008) 40 minutes

RVOT Schievano et al. (2007) (2, 3) hours

LAA Song et al. (2017) (15, 25) minutes

Hachulla et al. (2019) ≤ 15

AV annulus Qian et al. (2017) (5, 10) minutes

Faletti et al. (2018) ≤ 5
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It should be noted that in some cases where authors report a segmentation

time short of sixty minutes, this has been followed by lengthy computer-aided

design (CAD). For example, although Meyer-Szary et al. (2019) required only 45

minutes for image processing, this was followed by almost three hours, using CAD

to correct “mesh errors”. Perhaps the only rigorous estimate, made by Valverde

et al. (2017a), also allows for a further ninety minutes of CAD adaptation. In our

local practice, we suspect that the majority of these adaptations would have been

made with respect to the image data, via prolonged segmentation. The variable

division of labour between steps of the patient-specific 3D printing workflow further

demonstrates the lack of standardisation, in both practice and reporting.

Rather than detailing segmentation time, authors appear to favour reporting

the time consumed during model printing. This duration, however, is associated

with the operation of an autonomous manufacturing technology. Apart from for

those interested in non-elective or emergency care, we suggest that this is less rel-

evant to the development of a hospital-based, patient-specific 3D printing service.

Whereas, an understanding of operator time can inform plans for staffing. In addi-

tion to the temporal burden of image segmentation, many have flagged the reliance

of image segmentation on specialist experience, and the challenge of gaining and

developing associated expertise (Bramlet et al., 2017; Forte et al., 2019; Sun et al.,

2019). This supports our belief that it is the clinical understanding of data, and

its expression within segmented images, that is key to the value of patient-specific

modelling; not the performance of a particular printing technology.

3.3 Methods from the wider literature

The previous section found a clinical reliance on relatively basic, manual and semi-

automated segmentation methods. In this section we expand our scope, reviewing

the cardiac image segmentation literature to understand the advanced methods

that have been developed in the context of, or that have been applied to, 3D

cardiac anatomy. Moreover, we hope to glean why, for the most part, these have

not found use within clinical applications of patient-specific 3D printing, modelling,

or associated software packages. We also highlight the imprecision of referring to

cardiac image segmentation generically, realising that this field of research covers a
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Table 3.4: Reviews of conventional cardiac image segmentation methodologies.

Year Authors Title

2011
Petitjean and
Dacher

A review of segmentation methods in short axis cardiac MR images

2012 Kang et al. Heart chambers and whole heart segmentation techniques

2013 Tavakoli and Amini
A survey of shaped-based registration and segmentation techniques for cardiac
images

2013 Zhuang
Challenges and methodologies of fully automatic whole heart segmentation: a
review

2016 Peng et al.
A review of heart chamber segmentation for structural and functional analysis
using cardiac magnetic resonance imaging

2020 Habijan et al. Overview of the whole heart and heart chamber segmentation methods

wide variety of tasks and imaging modalities or acquisition protocols. Whilst some

of these applications share characteristics with the segmentation of patient-specific

CHD anatomy, others are no more relevant than those concerning any other organ

of the body. Consequently, in summarising the scientific literature, the following

review seeks to reveal the interaction between different methodologies, and the

image data and segmentation tasks to which they have been applied. We begin by

describing the technical basis of such approaches in Section 3.3.1 and Section 3.3.2.

Section 3.3.3 reviews the applications in which these methods have been employed.

Prior to the advent of deep learning methodologies (to be discussed in Chap-

ter 4), a variety of approaches have been applied to cardiac image segmentation.

Though focusing on different applications, the review articles listed in Table 3.4

recount developmental progress, each attempting to divide methods into families

sharing common characteristics. As acknowledged by Tavakoli and Amini (2013),

such categories are not well defined. Despite this challenge, and though authors

may have adopted different terminology, techniques have most often been sepa-

rated by their inclusion and treatment of prior information. In the following, and

as per Peng et al. (2016), we consider methods to be largely: image-driven, pri-

marily leveraging low level features of data and exploiting limited priors that can

be straightforwardly derived from pixel intensity, or that reference basic geomet-

rical structure; or model-driven, relying on the spatial adaption, deformation or

registration of a prior model of cardiac anatomy to the image at hand.

http://doi.org/10.1016/j.media.2010.12.004
http://doi.org/10.1117/1.JEI.21.1.010901
http://doi.org/10.1016/j.cviu.2012.11.017
http://doi.org/10.1016/j.cviu.2012.11.017
http://doi.org/10.1260/2040-2295.4.3.371
http://doi.org/10.1260/2040-2295.4.3.371
http://doi.org/10.1007/s10334-015-0521-4
http://doi.org/10.1007/s10334-015-0521-4
http://doi.org/10.1007/s13239-020-00494-8
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Within this scheme, it is also useful to compare techniques that are unsupervised

with those that are supervised. Unsupervised methods rely solely on abstract prior

knowledge or statistical arguments to discriminate between segmentation classes,

most often through clustering algorithms such as K-means, fuzzy C-means and

other expectation-maximisation (E-M) classifiers. Whereas, supervised methods

rely on training data. In the context of image segmentation, training data serve

two main functions: (1) to optimise the parameters of an image-driven, parametric

classifier such as K-nearest neighbours, random forests (RFs) and support vector

machines (SVMs) (see Section 3.3.1); or (2) to form a prior representation of

anatomy, perhaps captured within a statisical shape model or cardiac atlas (see

Section 3.3.2). At test time, the performance of either approach depends strongly

on the quality and quantity of the training data.

3.3.1 Image-driven approaches

Image-driven methods rely on relatively low level features to discriminate between

segmentation classes. Most fundamentally, raw pixel (or voxel) intensity itself often

reveals image content, particularly in cases where the acquisition protocol is tuned

to deliver strong contrast between the anatomical objects of interest. This might be

through the selection of imaging modality (consider the contrast developed by the

differential X-ray attenuation properties of bone and soft tissues, for example) or

through the administration of an exogenous contrast agent (consider gadolinium-

enhanced TR-MRA). Limitations in image quality, and in scanner performance

more generally, however, often preclude intensity thresholding as a ubiquitous

segmentation solution.

To counter such cases, researchers have handcrafted bespoke features, engi-

neered to expose higher level semantic information. Often exposed through the

application of digital filters, the spatial extent of associated convolutional kernels

confers a pixel-wise sensitivity to extended image gradients, including geometric

structures such as edges (Canny, 1986) or ridges (Frangi et al., 1999). Alterna-

tively, examples such as the median or Gaussian filters serve to reduce noise, and

reveal semantically homogeneous portions of the image. Lastly, to expose image

textures (or alternatively, the presence of spatial frequencies), bespoke convolu-
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tional operators such as Haar-like (Viola and Jones, 2001) or Gabor (Jain and

Farrokhnia, 1991) filters, or transforms such as by wavelets, have been designed.

Each of these can be tailored to a range of orientations, frequencies and spatial

scales. Choosing a suitable feature extractor and tuning its parameters according

to the anticipated properties of the image and segmentation task, is sometimes

described as feature engineering.

Rarely, however, is a single feature sufficient to discriminate between the anatom-

ical targets of a complex segmentation task. Instead, pixels (or perhaps their

collection within amorphous superpixels or rectangular regions) are more often

characterised by a feature vector. For example, a pixel might be described by: its

intensity, its value after wavelet transformation and its Gabor filter response. This

combination provides an example of a multi-dimensional feature space, to which

downstream classifiers are subsequently applied. Whilst this vector space need

not be constructed explicitly, image-driven methods typically depend on a range

of features similar to those described.

In general, and being free from prior constraint, image-driven techniques ex-

hibit the flexibility to adapt to heterogeneous anatomy. Simultaneously however,

and without the influence of a strong prior model, they are susceptible to limi-

tations in image quality, including the presence of artefacts. This weakness can

yield segmentations of limited spatial and anatomical coherence. For this reason,

image-driven methods have more frequently been combined as components of a

broader image segmentation pipeline (perhaps for region of interest localisation,

initialisation or refinement), rather than providing a comprehensive end-to-end

solution in and of themselves.

The following sections describe the various image-driven methods encountered

in the cardiac image segmentation literature. For those described previously (in

Table 3.1), we provide further details necessary to appreciate their application in

Section 3.3.3.
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Elementary operations

Thresholding (Sezgin and Sankur, 2004)

As per Table 3.1, thresholding describes the selection of pixels that fall within an

intensity interval defined with reference to the statistics of the image histogram.

In the image processing literature, this principle has been extended to consider:

procedures for automatically defining the window width and position (or adaptive

thresholding); both local and global image statistics; the sequential application of

multiple thresholding to separate or accumulate candidate regions; and the distri-

bution of pixels in a derived feature (rather than intensity) space. Thresholding

has found particular success in CT imaging where pixel intensity quantitatively

reflects the physical properties of tissue.

Edge detection (Canny, 1986)

Edge detection describes the delineation of boundaries within the image, accord-

ing to local intensity gradients. It is critical to the localisation of the statistical

shape models developed within the cardiac image processing literature (and as

described in Section 3.3.2). Within this family of methods, boundaries are most

often localised according to a spatially varying (over the model surface) and multi-

dimensional (sensitive to a feature vector of directed 1D gradients) parametric

model, learned from example data. Forces associated with edge detection are also

frequently included within active contour segmentation schemes.

Region growing and diffusion models

Region growing (Adams and Bischof, 1994)

As per Table 3.1, region growing describes a dynamic, iterative process in which a

segmentation expands from an initial seed point or region. At each iteration, ex-

pansion is constrained by a parameterised comparison between the distribution of

pixel intensities contained by the growing foreground and its neighbours. Within

the technical literature, this generic scheme has been enhanced by its formulation

as a variational problem, the incorporation of shape priors and the development

of adaptive parameter thresholds.
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Random walkers (Grady, 2006)

Random walker segmentation models the diffusion of a particle, biased to avoid

crossing sharp intensity gradients. Class probability can subsequently be inferred

from the frequency with which random walkers, starting (or terminating) at a

manually labelled pixel or seed point, visit an unlabelled location. These diffu-

sion methods have been enhanced through the incorporation of shape constraints,

and have been employed within segmentation post-processing to smooth predicted

regions.

Active contours

Snakes (Kass et al., 1988)

As per Table 3.1, the term active contours describes an iterative process of seg-

mentation by dynamic curve evolution. Various energy minimisation schemes have

been designed to attract the snake (represented by a spline-interpolated series of

spatial coordinates) towards object boundaries within the image. External forces

sensitise evolution to local changes (respecting both boundaries and regions) in

pixel intensity; internal forces regularise updates by governing smoothness and

topological consistency. Pivotal to snake evolution, researchers have focused on

the development of novel force terms, seeking to impose geometrical constraints,

and incorporating modes of statistical shape variation.

Level set (Caselles et al., 1997; Chan and Vese, 2001)

The level set formulation of active contour segmentation implicitly captures the

evolving curve within the zero level set of a scalar function, most frequently a

signed distance map. More robust to larger deformations in shape than snakes,

the level set framework can also cope with changes in topology and competition

between co-evolving contours. Both snake and level set formulations rely on an

initialisation that approximates the target anatomy. Hence, they have often been

employed as a means of refinement, adapting a prior segmentation to local changes

in image intensity.
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Graphical methods

Graph cut (Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006)

Graphical methods consider the pixels of an image as nodes of a graph, locally

connected to their immediate neighbours. The weight of each connection is de-

termined by the similarity or affinity of associated nodes according to relevant

features such as pixel intensity or location. In this setting, segmentation amounts

to cutting edges of the graph to achieve disjoint subsets, the nodes of which con-

stitute the resulting image segments. Accordingly, graph cut segmentation seeks

to find the cut for which the sum of removed edge weights is minimised.

Markov random field (MRF) (Li, 1994; Krähenbühl and Koltun, 2011)

Representation of the image as a graph of locally connected pixels induces the

Markov criterion: informally, that the probability of a pixel belonging to a par-

ticular class of the segmentation depends only on its neighbours. The resulting

MRF describes the factorisation of the joint probability distribution of both seg-

mentation and image, p(Y,X), into the individual and pair-wise potentials of the

random variables at each pixel location. Judicious design (such as the Potts model)

sensitises these potentials to spatial variation in image features. Provided these

ingredients, optimal segmentation is achieved through dedicated algorithms for

probabilistic optimisation. A popular variant of the MRF model, the conditional

random field (CRF) is more naturally suited to semantic labelling tasks such as

image segmentation. The CRF models the conditional probability of the under-

lying segmentation given the input data, p(Y | X), directly, making no attempt

to understand the probability of the observed image. It does, however, demand

paired image-label examples for supervised parameter optimisation prior to infer-

ence. CRF models are often used to refine the estimates made by a probabilistic

classifier, enforcing spatial coherence through post-processing.

Unsupervised clustering

K-means (Hartigan and Wong, 1979)

K-means clustering partitions the members of a dataset into K exclusive groups

according to their separation from the mean or centroid of each group, in feature
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space. Each item is associated with the cluster in closest proximity. In this con-

text, K-means seeks to find a set of K cluster means which minimise this distance

when summed across the entire dataset (or equivalently the intra-class variances).

Within image segmentation, the dataset is composed of single pixels, each taking a

location in a feature space, handcrafted to expose differences between the semantic

classes of the image. Combined with an informed setting of K, optimisation pro-

ceeds through alternating, iterative refinement: (1) pixels are assigned according

to the present locations of the respective centroids; (2) the centroid of each cluster

is updated to reflect the most recent assignment.

Fuzzy C-means (Dunn, 1973; Bezdek et al., 1984)

Fuzzy C-means extends the K-means clustering algorithm by considering partial

or probabilistic class membership. Rather than require each data point belong to

a single segmentation class, this approach weighs the degree of association with all

possible labels. Per pixel, membership is determined by comparing the distances to

each centroid in feature space. This is clearly advantageous in multi-label segmen-

tation, but may also be preferable where clusters demonstrate substantial feature

overlap. In such cases, fuzzy membership permits the rich representation of transi-

tion zones between classes. As per the K-means algorithm, optimisation proceeds

by iterative refinement and does not depend on training data.

Expectation-maximisation (E-M) (Dempster et al., 1977)

Both K-means and fuzzy C-means clustering are special cases of the more gen-

eral E-M framework. In our context, E-M provides a means of estimating the

parameters of a statistical model that explains the distribution of observed pixels

(frequently described by a feature vector) by their association to different seg-

mentation classes via hidden variables. Using this terminology, E-M optimisation

proceeds iteratively, alternating between: Expectation, estimating the hidden vari-

ables given the current model; and Maximisation, updating the model to optimise

the likelihood of current parameter estimates. A popular approach models the

conditional probability of observed feature vectors, given their association to a

particular segmentation class, using a mixture of multivariate Gaussian distribu-

tions. In the so-called Gaussian mixture model (GMM) which results, clusters
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are parameterised by a mean vector and covariance matrix, with the contribution

to each balanced by a vector of mixing factors. In these terms, both K-means

and fuzzy C-means correspond to E-M optimisation of a GMM for which all co-

variances are identically zero, a constraint that assumes feature clusters to be

spherical. In contrast, the more expressive, multivariate models of a GMM better

describe clusters of anisotropic geometry.

Supervised classifiers

K-nearest neighbours (KNN) (Cover and Hart, 1967; Fix, 1985)

In contrast with previous methods, and in common with the remaining techniques

detailed in this section, KNN classification depends on the availability of a training

dataset of image-label pairs. Collectively, the exemplar images contained define a

feature space of pixels, superpixels or patches, each of which is associated with a

known ground truth class or segmentation. At test time, provided an image re-

gion to segment, searching the feature space for the KNN returns a collection of K

image-label pairs from the training set. Strategies for fusing the K exemplar labels

involve pixel-wise majority voting or, more commonly, schemes for weighting their

relative contribution according to the proximity of their associated image region,

to the test region, in feature space.

Random forest (RF) (Ho, 1998; Breiman, 2001)

Conventional decision trees describe a cascade of binary queries, interrogating the

features of data to map an observation to a class. In the context of image seg-

mentation, tracking the passage of a pixel through the nodes of the tree predicts

its label. Determining the cascade of queries, including the features against which

each splits the tree, is achieved through training and relies upon paired image-label

examples. At each node, the feature that best divides the data is determined by

metrics such as the Geni impurity or information gain. Though attractive for their

interpretability and straightforward training procedure, decision trees have a ten-

dency to overfit the training data, predicting class labels with high variance. RF

classifiers extend the notion of decision trees, improving their generalisation to un-

seen data. This is achieved, by training a “forest” of individual trees, introducing
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stochasticity through bagging (the combination of bootstrapping and aggregation)

and random feature selection. Bootstrapping synthesises numerous copies of the

original training dataset, by repeated random sampling with replacement. Each

bootstrapped sample is used to train a distinct decision tree, their predictions be-

ing aggregated to return a final result. The training procedure is also modified by

limiting the features considered at each node to a random subset: typically
√
D

features, where D is the dimensionality of the space.

Support vector machine (SVM) (Cortes and Vapnik, 1995)

The SVM is a supervised model for binary classification, with both linear and non-

linear modes of operation. In the linear case, solving the SVM objective function

amounts to finding the hyperplane that divides feature space into regions of posi-

tive and negative class prediction, with the greatest possible margin between the

binary classes expressed by the training set. Relying on the dot product as a mea-

sure of feature similarity, and being a maximal margin classifier, the hyperplane

is defined entirely by the feature vectors (of both positive and negative training

examples) in closest proximity: the so-called support vectors. However, in the

event that the features expressed by positive and negative training examples are

not linearly separable, the SVM objective is instead solved in a higher dimensional

feature space, achieved by non-linear transformation of the original features. Ju-

dicious selection of the transformation admits the application of the kernel trick,

allowing for dot product similarity within the transformed space to be computed

efficiently from the original features. In the context of image segmentation, SVM

training relies upon a set of image-label pairs, and considers each labelled pixel

as a point within feature space. Limited to binary classification, SVM predictors

must be applied in combination to perform multi-class segmentation.

3.3.2 Model-driven approaches

As presented by Zhuang (2013), model-driven segmentation methods rely on two

main components, each of which has been the subject of research: (1) construction

of a prior model of cardiac anatomy or physiology; and (2) a fitting procedure

to align the model with the test case at hand. Whilst different types of prior
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model have been considered, each is motivated by a desire to enforce the spatial

coherence of segmentation, most often by constraining predictions to anatomically

or pathologically plausible label configurations. Strong priors make segmentation

methods robust against artefacts and limitations in image quality, normally at the

expense of flexibility: performance may suffer when confronted with a test case

that is poorly represented by the prior model (and the underlying training data

used in its construction).

The two most popular approaches rely on atlas-based segmentation and sta-

tistical shape models. Variants of each approach are described in the following

sections.

Atlas-based segmentation

Single atlas segmentation (Collins and Evans, 1997; Fischl et al., 2002)

In its most basic description, an atlas couples an intensity image with a set of

segmentation labels, delineating the targets relevant to a downstream task specifi-

cation. More advanced models provide a probabilistic atlas (in which class mem-

bership is continuously valued), constructed from a training set of spatially aligned

labels maps, and accompanied by a mean intensity image. Irrespective of its form,

atlas construction is motivated by a desire to provide a faithful and generalisable

representation of anatomy; one that captures the characteristics (spatial configura-

tion, complex morphology or topology) of plausible segmentation, and that can be

transmitted to the unseen test case by spatial transformation. Label propagation,

therefore, depends on the availability of image registration algorithms (including

the selection of appropriate similarity metrics) to align the test image with its

atlas counterpart. By virtue of their dependence on a constrained transformation

of the atlas labels, predictions are robust to limitations in image quality (which

might otherwise hinder image-driven methods) and faithfully reproduce anatomi-

cally plausible characteristics. Both the atlas model and the registration algorithm

have been widely researched throughout the image processing literature.
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Multi-atlas segmentation (MAS) (Rohlfing et al., 2004; Heckemann et al., 2006)

For all the advantages of atlas-based segmentation, performance declines in the

presence of anatomical targets that exhibit substantial structural differences com-

pared with the atlas model. To at least partially overcome this challenge, re-

searchers have developed the MAS framework. Rather than rely on label propa-

gation from a single atlas, MAS increases the diversity of compatible anatomical

appearances by registering a collection of image-label pairs to every test case.

Once co-registered to a common space, the MAS framework adopts a strategy for

pixel-wise label fusion, resolving conflicts between the segmentations propagated

from each atlas. This might be as straightforward as majority voting. However,

schemes for ranking and then weighting the contribution of each atlas, perhaps

according to the pixel-wise similarity metric, have demonstrated significant per-

formance gains. Such strategies allow for predicted segmentations to be biased

on the most similar members of the atlas set (for which anatomical configuration,

morphology and hence alignment, are presumed most informative), reducing the

influence of irrelevant examples of divergent anatomy.

Statistical shape modelling

Active shape model (ASM) (Cootes et al., 1995)

Active shape modelling seeks a generative model of anatomical geometry, one that

reflects both the mean shape expressed by a labelled training set of images, and

its distribution according to the most common modes of variation. These are

established by training the so-called point distribution model (PDM) on paired

image-label examples, a procedure that involves: (1) affine transformation, aligning

manual training labels to a common coordinate space; (2) determining correspon-

dences between each training example by establishing a common set of meaningful

landmarks; (3) constructing the mean shape and covariance matrix of landmark

coordinates; and (4) deploying dimensionality reduction to reveal the dominant

modes of shape variation. By a linear, weighted combination of the principle

eigen vectors, the PDM generates new anatomies from the modelled distribution

of training shapes. In this context, image segmentation amounts to finding the

parameters that best fit the PDM to an unseen test image. The associated transfor-
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mation can be broken down into two parts: the first affecting the affine pose of the

model, the second reflecting non-rigid deformation of the mean anatomical shape.

Unlike naive deformable models, the latter is parameterised according to the prin-

ciple modes of variation expressed by the PDM, with deformations restricted by

constraining the associated weights. Hence, predicted segmentations are globally

sensitive to the statistical distribution of anatomically plausible shapes. Active

shape model (ASM) fitting proceeds iteratively. Evolution is typically governed

by the presence of edge-like features (or other textures that can also be learned

from the training set), searching the collection of 1D profiles, normal to the PDM

surface and local to each landmark.

Active appearance model (AAM) (Cootes et al., 2001; Mitchell et al., 2002)

Active appearance modelling extends the generative capacity of ASMs to also in-

clude the distribution of image textures. Whilst local appearance knowledge can

be included within an ASM, typically this is of restricted spatial extent, limited

to the vicinity of each shape landmark. In contrast, an AAM is trained to synthe-

sise both label shape and a complete image, according to their distribution within

training data. A mean appearance model and its principle modes of variation is

established analagously to the ASM, considering the synthesis of image vectors

formed from the eigen decomposition of the training set. For segmentation pur-

poses, this approach differs from ASM in that parameter fitting is informed by the

difference between the entire synthetic and test images, rather than just a subset

of image features associated with the landmarks of current shape estimate. Where

edge-like textures are reliably and locally associated with object boundaries, ASM

alone may provide an accurate anatomical delineation. However, where the ap-

pearance of edge profiles is degraded by compromised image quality or the presence

of noise, model fitting may benefit from the global constraint enforced by AAM,

even if a decline in local boundary accuracy is incurred.

3.3.3 Applications

The image segmentation methodologies described have been deployed in a range

of clinical applications. Given our focus, this section primarily reviews their de-
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velopment and suitability within 3D image segmentation tasks, those extracting a

high fidelity representation of cardiac anatomy. As per their use within patient-

specific 3D printing, the resulting geometries have found qualitative application

within clinical decision-making and operative planning.

However, whilst technically far removed from our 3D image processing task

of interest, we first touch briefly on the segmentation of short axis cine CMR

data. We consider a basic appreciation of this application important for its clinical

ubiquity, but also to understand its influence on the development of related cardiac

image processing tasks, including our own. By comparing the motivations and

imaging characteristics of each, we hope to understand the performance of differing

segmentation methods.

Ventricular volumetry

Composed of a series of (around ten) 2D slices arranged at regular intervals along

the long axis of the heart, short axis CMR cine data are frequently segmented

to label the left ventricular blood pool and myocardium. Given the 2D pixel di-

mension and spacing between slices (typically around 10 mm), delineation of the

endocardial surface reveals the left ventricular volume. Coupled with a tempo-

rally resolved image series, this approach returns a host of quantitative indices,

serving as biomarkers of cardiac health (Peng et al., 2016). Adding the epicar-

dial surface admits assessment of the left ventricular myocardium, including its

mass. Less frequently, the same approach has been applied to the right ventric-

ular cavity. Conventionally, manual segmentation has provided the basis of these

clinical indices (see Figure 3.3), including within the investigation of CHD: Lorenz

et al. (1995) studied the late adaptation of the left and right ventricles to repair of

transposition of the great arteries by atrial switch. Thanks to its position as the

gold standard technique for ventricular volumetry, however, short axis segmenta-

tion has been the subject of significant research investment. More than any other

cardiac segmentation task, and motivated by a desire to reduce both operator bur-

den and inter-observer variability, innovators have sought to leverage a variety of

automated techniques. Prior to the advent of deep learning, a mixture of image-

and model-driven methods have been investigated.
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Figure 3.3: The segmen-
tation of 2D cine, short
axis CMR data admits vol-
umetry of the left (pink)
and right (cyan) ventricles.
Note that the in plane spa-
tial resolution far exceeds
the spacing between slices.
Reproduced from Cocosco
et al. (2008).

Image-driven methods

Most often, image-driven methods have been combined within multi-faceted, se-

quential processing pipelines. For example, Cocosco et al. (2008) described an

entirely unsupervised, hand-engineered procedure to isolate the left and right ven-

tricular blood pools within a 2D short axis slice. This involved: temporal smooth-

ing, maximum intensity projection, Gaussian blurring, Otsu thresholding (Otsu,

1979), morphological operation, region growing and connected component analy-

sis. Grosgeorge et al. (2011) deployed 2D active contours without edges, allowing

a single initial contour to undergo topological division into left and right ventricu-

lar components, prior to morphological smoothing. In their clinical validation on

59 patients, spatial overlap performance degraded towards the apex of the heart

and at end systole. Addressing this challenge, Ringenberg et al. (2014) introduced

spatial and temporal consistency constraints on right ventricular appearance in

neighbouring short axis images. These were expressed in a pipeline that combined

advanced thresholding techniques with difference of Gaussians feature extraction

and morphological operations.

Perhaps revealed by the complexity of purely image-driven pipelines, their un-

derlying methodologies are susceptible to the variation in patient presentation and

image quality encountered in the clinic. Motivated by this challenge, researchers

have sought to augment these techniques by injecting prior information concern-

ing anticipated anatomical shape and arrangement. For example, Wu et al. (2013)
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imposed a circulatory constraint on the evolution of an active contour model. Ma-

hapatra (2014) used RFs to establish a feature selection and weighting strategy,

designing a graph cut cost function that was sensitive to both right ventricular

texture and shape. Finally, Queirós et al. (2014) employed 2D elliptical template

matching and circular cues to identify the concentric epicardial and endocardial

boundaries.

Model-driven methods

Whilst these steps boost the capacity of image-driven pipelines to resist variable

anatomical appearances and image artefacts, further improvement demands the

incorporation of model-driven methods. Mitchell et al. (2001) were the first to

deploy a slice-wise, 2D biventricular statistical shape model, combining both ASM

and AAM within a hybrid approach. Subsequently, they extended their work to

3D, developing an AAM to segment left ventricular structures from short axis

CMR and echocardiographic data (Mitchell et al., 2002). Critical to the expan-

sion of such techniques, Frangi et al. (2002) alleviated the challenge of manually

assigning PDM landmarks, demonstrating that meaningful correspondences could

be automatically retrieved by non-rigid deformation of a short axis atlas mesh.

This development fostered the growth of statistical shape models of the heart, in-

cluding: AAM segmentation of isotropic cardiac CT (Lapp et al., 2004); the use

of AAM to model the medial skeleton of the left and right ventricles (Sun et al.,

2010); and the combination of an ASM of label distance maps with graph cut

segmentation (Grosgeorge et al., 2013).

The utility of segmentations achieved by statistical shape model extends be-

yond volumetry, several authors demonstrating the sensitivity of PDMs to patho-

logical diagnoses. For example, Suinesiaputra et al. (2009) identified wall motion

abnormalities in 2D cine MRI as outliers from their modelled distribution of left

ventricular shape. Related work has applied similar principles to CHD (see Fig-

ure 3.4). Zhang et al. (2009) used AAM for comprehensive 4D segmentation and

volumetry of fused short and long axis cine, further leveraging novel shape fea-

tures to identify patients with repaired tetralogy of Fallot. Within the same disease

population, Mansi et al. (2011) developed a generative statistical model of right

ventricular shape to describe cardiac remodelling.
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Figure 3.4: Statistical shape models deploy dimensionality reduction to establish
the global modes of anatomical variation. These surface-rendered representations
of the left and right ventricles are generated by taking samples along the principle
axis of variation. Both the mean shape (centred at the axis origin, 0) and the
modes of variation are established from a set of co-registered image-label training
examples. In this graphic (adapted from Zhang et al. (2009)), increases in the first
modal index describe ventricular remodelling after surgical repair of tetralogy of
Fallot. Right ventricular dilation is particularly apparent.

Atlas-based methods have also proved successful routes to automate aspects of

short axis segmentation. Impressive early work presented by Lorenzo-Valdés et al.

(2004) used the predictions of a transformed 4D probabilistic atlas (constructed

from the CMR data of fourteen healthy volunteers and varying in both space

and time) to initialise the parameters of a GMM. Predicted segmentations were

subsequently refined by E-M, updating parameters of both GMM and 4D MRF

models to determine spatially and temporally consistent class membership. The

importance of a 4D spatio-temporal approach to cardiac registration was reinforced

by Peyrat et al. (2010). Decoupling their task into respective 4D mappings of

physiological states and physical point trajectories, they presented a multi-channel

formulation of the Diffeomorphic Demons algorithm (Vercauteren et al., 2009) to

propagate epicardial and endocardial contours to all phases of 4D CT acquisition.

MAS formulations to this task followed. Addressing the 2012 Right Ventricle

Segmentation Challenge (Petitjean et al., 2015): Bai et al. (2012) and Zuluaga

et al. (2013) both presented MAS solutions, constructing respective multi-atlases
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from the training set of sixteen labelled short axis stacks. Later, Bai et al. (2015b)

demonstrated improved left ventricular segmentation, using leave-one-out cross-

validation to realise a multi-atlas of 82 subjects. They proposed an augmented

label fusion scheme that used a SVM to interrogate a rich feature vector of con-

textual image cues. Lastly, and although eventually combined into a single proba-

bilistic atlas of biventricular short axis anatomy, Bai et al. (2015a) leveraged high

resolution, 3D cine data of over a thousand healthy cases, demonstrating the value

conferred by atlas quantity and quality. The extensive atlas permitted statistical

parametric mapping to study the distribution of cardiac shape and physiology in

the spatio-temporal domain.

Whole heart and multi-class segmentation

As outlined in Chapter 2, in the setting of structural and CHD, a holistic apprecia-

tion of cardiac anatomy and disease morphology is critical to patient management.

So whilst left ventricular volume, dynamic function and geometry remain impor-

tant considerations, the structure of atrial and vascular components can play an

equally sized role in shaping care (Zhuang, 2013). Hence, in this section we re-

view the methods applied to the comprehensive 3D segmentation of multi-class

and whole heart anatomy.

Though applied inconsistently, the “multi-class” and “whole heart” descriptors

imply a set of anatomical targets that extend beyond the left and right ventricles

and ventricular myocardium. At minimum, both will further delineate the left and

right atria, and might also include the great arteries, and systemic and pulmonary

venous drainage. Variably, these components are either isolated as distinct labels

of what we describe as multi-class segmentation, or are collected within a single,

whole heart blood pool (see Figure 2.10). In either case (and where of interest),

the myocardium is typically labelled as a distinct object, variably capturing the

muscular component of the left or right ventricles, or the unified ventricular mass.

Unlike ventricular volumetry, for which short axis cine CMR provides an estab-

lished reference standard, 3D multi-class and whole heart segmentation tasks have

no commonly accepted, optimal imaging modality. Instead, segmentations have

most often been made of spatially isotropic structural CMR or CT acquisition.



3.3. Methods from the wider literature 67

Image-driven methods

Amongst the earliest reports, Makowski et al. (2002) adopted both balloon and

snake variants of 2D active contours, synthesising 3D, multi-class anatomy from

the concatenation of axial planes. Despite strong qualitative performance, the

authors acknowledge that their approach required manual supervision, including

parameter tuning per case.

Graph cuts have also been presented as a means of isolating the 3D whole heart

blood pool from isotropic CT data: Lombaert et al. (2005) adopted an interactive,

multi-scale approach, making dramatic efficiency gains and realising qualitatively

impressive results; Funka-Lea et al. (2006) presented region growing as a means of

initialisation, assessing their approach within seventy patients. Larrey-Ruiz et al.

(2014) also depended on a highly engineered workflow, segmenting the whole and

left heart blood pools from 3D CT through the manipulation of various binary

thresholds. Lastly, Bui et al. (2018) developed a probabilistic segmentation from

the diffusion of weighted random walkers originating from a small number of manu-

ally labelled slices. Combining this approach with thresholding and morphological

operations to automate seed initialisation, they demonstrated segmentation of the

left and right heart from 58 CT studies.

Model-driven methods

In spite of the methodological contributions made by the cited body of work, the

performance of purely image-driven methods remains susceptible to limitations

in image quality, overlapping intensity distributions of different anatomical struc-

tures, and the presence of artefacts. Inevitably, these confounding features prompt

predicted segmentations that comprise clinically implausible cardiac anatomy. For

example, results might present cardiac sub-structures with spurious geometry or

morphology, or might fail to capture the structurally complex connectivity of the

isolated great and small circulations. In response to these challenges, model-driven

techniques have garnered greater success and popularity than their image-driven

counterparts.

Authors have previously attempted to construct models of anatomical shape,

seeking to leverage their results within whole heart and multi-class cardiac seg-

mentation. Captured within a surface mesh of tessellating triangles, these have
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Figure 3.5: A prior model of 3D
multi-class cardiac anatomy, en-
capsulated within a triangulated,
surface mesh. Reproduced from
Ecabert et al. (2011).

typically been deployed within a, deformable model framework (see Figure 3.5).

At test time, the nodes of the mesh are attracted to target points (via an external

energy term), identified by searching the image feature profiles normal to the as-

sociated triangles, for suitable boundary candidates. Rather than rely on a single

edge detector, however, the identification of target points is greatly enhanced by

simulated search (Peters et al., 2010), a procedure which selects a locally opti-

mal detection function from a parameterised family. This means that per node

of the base model, the identification of target points can be sensitised to the an-

ticipated edge direction (light-to-dark, or dark-to-light) or absolute intensities.

Finally, deformation of the initial shape model is constrained by prior knowledge,

encapsulated within the internal energy of the evolving geometry. A variety of

associated formulations have been explored.

Although inspired by the work of Weese et al. (2001) (who demonstrated a

means of incorporating prior knowledge of statistical shape variation), early work

presented by Ecabert et al. (2005) relied on a hand engineered heuristic to constrain

the deformation of anatomical geometry during model fitting. As per Lorenz and

von Berg (2006), their model of multi-class geometry was derived from cardiac CT

data, and separately described the four chambers, the left ventricular myocardium,

the great arterial trunks and the confluence of pulmonary and systemic veins with

the left and right atria, respectively. Ignorant of the distribution of anatomical

shape, they instead relied on a purely geometrical constraint, assuming that plau-

sible variations in anatomy could be modelled by a per sub-component, affine

transformation. In their active surface segmentation procedure, (and after initial-
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Figure 3.6: Researchers have developed various schemes to fit a prior model of
cardiac anatomy to the unseen test image, including: automatic region extraction;
rigid, similarity transformation; parametric adaption; and deformable adaptation.
In this example, constructed from the work of Ecabert et al. (2008), the authors
deploy a triangulated surface model of the four cardiac chambers, the left ventric-
ular myocardium and the ventricular outflows. Note that both the prior model
and final segmentation approximate the envelope of each anatomical component
only, and are devoid of any high-resolution structural features.

isation by Hough (Duda and Hart, 1972) and global similarity transforms) they

constructed an associated internal energy term to penalise deformations that could

not be closely described by this model.

Soon after, they extended their approach to also consider the statistical dis-

tribution of anatomical training shapes. Incorporating the PDM within a coarse-

to-fine cascade, Ecabert et al. (2008) presented a model-driven procedure that

sequentially included: global similarity transform; parametric adaptation of shape

models expressed by anatomically piece-wise affine transform, a linear combination

of principal components of shape variation or both; and final deformable adapta-

tion of mesh vertices according to associated external and internal energies (see

Figure 3.6). They observed, however, that the introduction of statistical shape

priors failed to improve segmentation accuracy, either when serving as a param-



3.3. Methods from the wider literature 70

eterised model of shape variation, or as a reference for establishing an internal

energy penalty. The authors speculated that the additional degrees of freedom

associated with the piece-wise affine model allowed for more flexible adaptation to

the test image at hand; and that perhaps owing to its basis on limited training

data (27 CT scans) the statistical model lacked the expressive power to conform

to unseen cases. In a leave-one-out experiment, their deformable, piece-wise affine

model of anatomy achieved sub-millimetric surface-to-surface error within a test

set of 28 images.

Applying the same approach to volumetric CMR, and in a four-fold cross-

validation on 42 cases, Peters et al. (2007) demonstrated an equivalent level of

performance. Also within this scheme, and considering the same CT and CMR

databases, Peters et al. (2010) presented a thorough analysis of the value con-

ferred by simulated search, observing its ability to increase the capture range and

ultimate accuracy of multi-class segmentation by model deformation. Lastly, the

model fitting and deformable segmentation pipeline was extended by Ecabert et al.

(2011), providing for the sequential adaptation of the great arteries.They also in-

troduced low resolution mesh operation and sub-mesh freezing to realise gains in

the computational efficiency of their so-called “adaptation engine”.

Work published by either Ecabert et al. or Peters et al. was collectively un-

dertaken by various research teams associated with the industrial conglomerate

Philips NV. At around the same time, a closely related approach to multi-class

segmentation was developed and presented by a group within a research group

from Siemens AG. Also within cardiac CT, Zheng et al. (2007, 2008) made sev-

eral novel contributions, including: a four-chambered, multi-class model of the

heart, enhanced by the inclusion of meaningful landmarks defining, for example,

the atrioventricular valve annuli; an alternative, geometric scheme for establishing

correspondence between the nodes of the PDM, one that avoided the inter-subject

registration demanded by the approach of Frangi et al. (2002); marginal space

learning; and steerable features. Whilst the overall procedure shared the princi-

ples underlying the deformable segmentation approach presented by Weese et al.

(2001), the final two of these developments altered the process by which the prior

cardiac model was fit to test data.
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Zheng et al. (2008) formulated spatial transformation as a classification prob-

lem, asking whether there was an appropriately rotated and scaled anatomical ob-

ject centred at each voxel. Rather than search the 9D parameter space of possible

similarity transforms, they used marginal space learning to take a sequential ap-

proach: successively determining optimal translation (3D), translation-orientation

(6D) and finally translation-orientation-scaling (9D) parameters. At each step,

only a subset of candidates from the previous sub-transformation are considered,

reducing the size of the overall search space by orders of magnitude. Moreover,

within this scheme they introduce steerable features. Essentially determined on a

sparse 3D lattice, rotated and scaled with respect to the voxel under considera-

tion as an anatomical reference point, this approach avoids computationally costly

image rotation and resampling.

Under marginal space learning, steerable features were input to a probabilistic

boosting tree classifier (Tu, 2005) to guide all stages of model fitting, including:

cardiac localisation, boundary detection and subsequent non-rigid deformation.

The final of these was regularised by projecting the deformed model onto the

shape manifold determined by the principle modes of shape variation expressed

by a PDM. In a four-fold cross-validation of 323 CT volumes drawn from 137

patients (of unknown health), their approach performed well, only trailing the

work of Ecabert et al. (2005) by a small margin2.

Unlike the conclusion of Ecabert et al. (2008), Zheng et al. (2008) fully incorpo-

rated an ASM to constrain deformable model fitting. Similarly, Haak et al. (2013)

developed an ASM of the four chambers and aorta, learning two PDMs from the

labelled CT data of 151 patients. The first captured 90% of the shape variation

of the collective anatomy; the second set of models respectively captured 98% of

the shape variation of each sub-structure. This sequential approach was required

to contend with the complex geometry of the heart, its segments, and their vari-

ation. In the context of 3D transoesophageal echocardiography, and after initial,

landmark-based transformation, they fit their deformable models to a probabilistic

map of label membership, determined by a gamma mixture model.

2Differences in image data and performance assessment (including the suggestion that Ecabert
et al. (2005) rejected gross segmentation failures from their analysis) preclude direct comparison.
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(a) (b)

Figure 3.7: A comparison of single atlas and multi-atlas segmentation (MAS),
as applied to 3D multi-class, cardiac image segmentation. (a) In the single case,
an atlas comprising an intensity image is spatially registered to the unseen test
data. The predicted segmentation is subsequently established by propagating the
associated atlas labels under the resulting spatial transformation. (b) In MAS,
each member of a multi-atlas of N independent, intensity images is registered
to the test case. Propagating each associated atlas label set in turn establishes
multiple segmentation predictions. These are subsequently resolved to a single
estimate via the process of label fusion. Reproduced from Zhuang et al. (2015).

Whilst shape modelling has provided a basis for rich investigation, the geo-

metrical complexity of the whole heart (at least compared with the left ventricle)

presents a challenge to those seeking an ASM of anatomy. Free from strong shape

constraint, atlas-based methods (see Figure 3.7a) provide greater flexibility in the

face of unseen cardiac anatomy. This assertion is borne out by the work of Ecabert

et al. (2011), whose deformable approach, in the absence of statistical shape pri-

ors, bears striking similarity with the atlas-based formulation. Where deformable

models most often describe mean geometry by a triangulated mesh, atlas-based

methods capture anticipated anatomical shape within ground truth label maps.

Making novel contributions to the formulation of both the rigid and non-

rigid components of the typical framework for atlas transformation, Zhuang et al.

(2010b) applied atlas-based segmentation to multi-class labelling of 3D CMR. They

relied on a simple atlas coupling a mean intensity image (derived from the spatially

aligned CMR data of ten healthy volunteers) and discrete multi-class label map.

Whilst their methodological contributions reduced segmentation error, it is note-

worthy that the worst-case performance observed was associated with a patient
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with tetralogy of Fallot. Soon after, the same group applied this approach to 3D

echocardiography, investigating a novel similarity metric sensitive to local phase

and geometric features (Zhuang et al., 2010c).

Segmentation by single, simple atlas registration and label propagation has en-

dured since this time, including its application to multi-class delineation of 3D CT.

Cai et al. (2017a) presented a scheme to dynamically update their atlas (implied

to be a single, manually selected and segmented example) to reflect the tempo-

ral phases of the cardiac cycle. Subsequently using the same atlas and test set

of fourteen volunteers, they investigated the effect of image pre-processing oper-

ations, including dynamic range windowing and Gaussian filtering, observing re-

lated improvements in the delineation of the epicardial contour (Cai et al., 2017b).

Most recently, Galisot et al. (2018) considered a variant of the single atlas-based

approach, developing per class, locally bounded mean intensity and probabilistic

label templates from twenty 3D CMR and CT scans. Embedding the class-specific

atlases within a relational graph capturing relative anatomical position, their pro-

cedure is sensitised to global cardiac structure.

The popularity, and differential superiority of multi -atlas strategies (see Fig-

ure 3.7b) has grown since its early application to 3D cardiac CT. Isgum et al.

(2009) developed an atlas from fifteen manually segmented, low dose, high 3D

resolution CT scans. At test time, they fused atlas predictions via a spatially

varying, weighted decision scheme, informed by the local image similarity achieved

after registration. Segmenting the union of whole heart blood pool and myocar-

dial anatomy, and the aorta, they observed statistically significant performance

gains compared with a range of single atlas formulations. Performance, however,

declined in the presence of abnormalities including aortic calcification and metallic

surgical devices. Extending this task specification to a four-chambered, multi-class

segmentation, Kirişli et al. (2010) performed an extensive multi-vendor and multi-

centre assessment of over 1420 contrast-enhanced CT scans, drawn from almost

900 patients. They registered an atlas comprised of eight manually labelled CT

volumes to each test case, resolving predicted segmentation by majority voting.

Despite the size of their experiment, their performance assessment was limited

by the unavailability of ground truth labels, precluding quantitative analysis for

all but a minority subset of test patients. Nonetheless, in conjunction with their
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Figure 3.8: An adapted summary of the results achieved by Bui et al. (2020b), us-
ing their multi-atlas of 36 CT images, each manually segmented into twelve distinct
cardiac classes. Note that whilst predicted segmentations are visually plausible,
their quality (as inherited from the associated multi-atlas) fails to describe the
fine, structural details that might characterise CHD anatomy and disease mor-
phology. This quality manifests in: the smooth appearance of the endocardium,
free from trabeculation (red arrow); and apparent communication of left and right
heart structures normally separated by thin interfaces, giving the false impression
of congenital defects such as right-sided atrioventricular discordance (black arrow)
and atrial septal defect (blue arrow).

qualitative assessment, they demonstrated impressive performance that they de-

termined to be consistent with inter-observer variability.

In closely related task specifications and 3D CT acquisitions, extensions to

the MAS approach include: investigation of conditional entropy for atlas ranking

and selection (Zhuang et al., 2015); application in radiation oncology planning,

including the delineation of the coronary arteries and isolation of the great vessels
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within a multi-atlas of twelve cases (Zhou et al., 2017); multi-class segmentation

of non-contrast-enhanced CT via an atlas of eight manually segmented contrast-

enhanced scans (Shahzad et al., 2017a); region of interest detection prior to MAS

(Bui et al., 2020a); a comprehensive atlas of 36 cases, each segmented into twelve

and four cardiac and non-cardiac structures, respectively (Bui et al. (2020b), see

Figure 3.8); and integration within the Bayesian framework (Ghosh et al., 2021).

MAS also has a long track record of development within its application to

3D CMR data. Observing that individual members of a clinically derived multi-

atlas may be corrupted by image artefacts (and that this in turn may compromise

atlas registration), Zhuang et al. (2010a) devised the multiple path propagation

and segmentation (MUPPS) strategy. This sought to leverage the complementary

strengths of single atlas (improved registration with a synthetic mean image, for

which noise is reduced) and multi-atlas (statistical gains in accuracy achieved

through multiple predictors) segmentation. At test time, MUPPS seeks to register

the mean CMR image to the unseen test case, via each of the spatial transforms

established during atlas construction by co-registration (and which collectively

express the manifold of training shapes). Whilst the authors observed that MUPPS

was associated with statistically significant improvements over the conventional

multi-atlas approach, these were largely reduced by the inclusion of advanced label

fusion strategies.

Perhaps for this reason, later applications have favoured conventional MAS.

Within a multi-class task specification, Zuluaga et al. (2013) presented a rank-

ing strategy based on the local normalised correlation coefficient, selecting opti-

mal examples from separate 3D CMR and CT multi-atlases. In a leave one out

design, they investigated the influence of training set size, attributing superior

performance on the CMR data to its larger associated atlas (n = 22), when com-

pared with the equivalent CT examples (n = 8). Others have also investigated

novel strategies for multi-atlas label fusion, including: by consideration of local

patch similarity at multiple spatial scales (Zhuang and Shen, 2016); and alterna-

tively, by non-local patch similarity (Heinrich and Oster, 2018). Whilst the latter

successfully corrected minor registration errors, it also necessitated segmentation

post-processing by smoothing random walk.
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Patient-specific models of 3D CHD anatomy

Given the plethora of image-, and in particular, model-driven methods for seg-

menting multi-class and whole heart anatomy from 3D image data, it is natural to

ask how these have been applied to CHD. In so doing, we refer to the Whole-Heart

and Great Vessel Segmentation from 3D Cardiovascular MRI in Congenital Heart

Disease (Pace et al., 2015) (HVSMR) Challenge. As per other segmentation chal-

lenges, this initiative sought to evaluate the performance of different methods on

a particular task, and stimulate associated research activity. The primary clinical

motivation of this challenge was patient-specific 3D printing of CHD anatomy and

disease morphology, for pre-operative planning and consensus decision-making. To

this end, the organisers of HVSMR provided a dataset of balanced SSFP, CMR

volumes of high isotropic resolution. The twenty patients included reflected a range

of CHD diagnoses and associated structural interventions. For ten of these cases,

manually segmented, ground truth labels were provided for algorithmic training,

tuning or development. These described the whole heart anatomy of the cardiac

blood pool within a single class (including the left and right atria, left and right

ventricles, aorta, pulmonary veins, pulmonary arteries, and the superior and infe-

rior vena cavae) and the muscular ventricular myocardium (surrounding both left

and right cavities). Pulmonary vascular components were terminated proximally,

the organisers reasonably arguing that their dense branching structure can ob-

scure other anatomy and in any case, are not often represented in printed models.

Likewise, and since the coronary arteries are less often salient to the direction of

care than they might be in adult or acquired cardiac disease, their intra-muscular

course was included within the myocardial label. In order to expose the clinically

salient features of anatomy, including the presence of defects or interventional

modification (see Figure 3.9), ground truth labels were provided at the limit of

spatial resolution, realising a highly detailed result.

Scientists and researchers were subsequently invited to submit their solutions

to this task, segmenting the remaining ten test cases, for which the ground truth

labels were withheld. Owning the manual segmentations of the test data, the

organisers are able to grade the results attained by each submission, assessing per-

formance using a number of metrics including the Dice similarity coefficient (Dice,
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Figure 3.9: The ground truth labels provided by the Whole-Heart and Great
Vessel Segmentation from 3D Cardiovascular MRI in Congenital Heart Disease
(Pace et al., 2015) (HVSMR) Challenge expose a highly detailed and clinically
relevant representation of 3D CHD anatomy and disease morphology. In this
example whole heart blood pool drawn from the challenge training set, such salient
features include: proximal extension of the superior and inferior venous drainage;
trabeculation of the right ventricular (RV) endocardium; the presence of a surgical
band constricting the main pulmonary artery (MPA); irregularities in the aortic
(Ao) arch; and a ventricular septal defect (VSD).

1945) (DSC) (which scores the spatial overlap between predicted and ground truth

segmentations in the range [0, 1], reflecting zero and perfect agreement, respec-

tively). Table 3.5 collects and ranks the results of different segmentation method-

ologies assessed against the HVSMR task, including those submitted to the original

challenge (prior to October 2016) and those published in the time since.

Image-driven methods

As reflected in Section 3.2, a variety of image-driven methods have been applied

to the segmentation of 3D patient-specific CHD morphology. However, in the

majority of clinical reports, these have largely been deployed to achieve a crude

representation of anatomy, one that subsequently requires significant manual edit-

ing. In technical reports drawn from the image processing literature, researchers



Table 3.5: In order of descending spatial overlap, a performance ranking of pub-
lished segmentation methodologies when applied to the HVSMR test set and its
task of isolating CHD anatomy and disease morphology from 3D CMR data.
DSCBP and DSCMY record the Dice similarity coefficient (Dice, 1945) (DSC) for
the whole heart blood pool and ventricular myocardium, respectively. Note that
whilst other reports have been published since the HVSMR Challenge, to ensure
fair comparison, we restrict our summary to those that report results on the full
test set, rather than, for example, a cross-validation on the training data. *semi-
automated methodology; CNN stands for convolutional neural network.

Citation Method DSCBP DSCMY

Lösel and Heuveline (2017) Random walkers* 0.957 0.832

Zheng et al. (2019a) CNN 0.942 0.837

Zhang et al. (2019b) CNN 0.941 0.839

Rezaei et al. (2020) CNN 0.940 0.860

Zheng et al. (2020) CNN 0.937 0.830

Liang et al. (2019) CNN 0.936 0.828

Zheng et al. (2019b) CNN 0.936 0.823

Yu et al. (2017a) CNN 0.931 0.786

Yu et al. (2017b) CNN 0.921 0.821

Ran et al. (2018) CNN 0.929 0.813

Dou et al. (2017) CNN 0.928 0.739

Yang et al. (2018a) CNN 0.928 0.739

Min et al. (2020) CNN 0.926 0.821

Wolterink et al. (2017) CNN 0.926 0.802

Zuluaga et al. (2017) Atlas-based 0.900 0.730

Shahzad et al. (2017a) Atlas-based 0.885 0.747

Li et al. (2017b) CNN 0.873 0.517

Tziritas (2017) Markov random field 0.876 0.612

Wang et al. (2017a) Random forest, active contour 0.856 0.664

Mukhopadhyay (2017) Random forest 0.794 0.495
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have sought to expand the scope and reliability of image-driven techniques through

their combination, often within complex processing pipelines.

For example, in their submission to HVSMR, Tziritas (2017) make an initial

segmentation prediction by MRF parameter optimisation. This was subsequently

refined by probabilistic intensity modelling and anatomical feature tracking to

achieve a blood pool overlap score of 0.876. Whilst far from a clinically acceptable

approach, their pipeline did out perform two challenge submissions, each of which

relied upon supervised classifiers and are described immediately below.

Wang et al. (2017a) employed RFs at different stages of a multi-faceted pipeline.

At the outset, a classifier was used to detect anatomical landmarks and inform the

alignment of a prior model of whole heart anatomy (whilst the authors describe this

as being a statistical shape model, it is unclear whether the variation in anatomi-

cal geometry is incorporated within their approach, see discussion in the following

section on model-driven methods). The registered mean model was used to ini-

tialise active contour refinement which, rather than evolve according to external

forces based on pixel intensity, was sensitised to the class membership probabilities

inferred by a multi-class RF classifier, trained on second order Haar-like features.

Observing that the clinically acquired HVSMR training data were degraded by the

presence of noise, Mukhopadhyay (2017) first minimised an energy criterion based

on total variation, before RF prediction.

Unfortunately, works based on RFs placed last in our ranking of HVSMR

submissions. In the worst case Mukhopadhyay (2017) achieved a score of just

0.794 for the spatial overlap between predicted and ground truth blood pools.

Whilst some have previously suggested a Dice score of 0.7 as indicative of strong

segmentation agreement (Collins et al., 1998), in the HVSMR (and related 3D

CMR whole heart segmentation tasks) we assert that scores closer to, or in excess

of, 0.95 are required to approach clinically acceptable levels of performance. Such

a high bar is necessitated by the increased volume-to-surface area ratio of the

whole heart blood pool, a property which biases the DSC toward the large number

of interior voxels, those remote from the endocardial boundaries that ultimately

define anatomical geometry.

Spatial overlap performance in this range is achieved by the image-driven ap-

proach published by Lösel and Heuveline (2017). They develop a probabilistic
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Figure 3.10: Presently leading the ranking of published submissions to HVSMR,
the semi-automated procedure of Lösel and Heuveline (2017) develops a probabilis-
tic segmentation according to the diffusion of random walkers, emanating from a
subset of manually labelled slices.

segmentation from the diffusion of weighted random walkers originating from a

small number of manually labelled slices (see Figure 3.10). Albeit on only a sub-

set of four cases from the HVSMR test set (and for this reason their work is not

included in Table 3.5), Pace et al. (2015) achieve similarly strong performance, de-

ploying KNN classification within an interactive segmentation framework. Relying

of a subset of manually labelled slices (requiring approximately an hour of operator

time), they trained an individualised, patch classifier per patient, achieving state

of the art results. Whilst limited by the size of their respective test sets (it seems

unlikely that ten or fewer cases could faithfully represent the range of anatomy

and CHD morphology encountered in the clinic), both of these image-driven ap-

proaches achieve mean overlap scores in excess of 0.95, topping the ranking of

published HVSMR analyses. In common, however, they each rely on a subset of

manually delineated slices to inform downstream algorithmic execution. Apart

from the operator burden associated with labelling, segmentation of a 2D slice in

isolation can be perceptually challenging, especially when drawn from a 3D volume

containing complex cardiac anatomy.

Model-driven methods

Outside of deep learning solutions, improvements in fully automated segmentation

of the HVSMR test set have been achieved by atlas-based, and in particular MAS,
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methods. Two submissions to the challenge adopted this framework. Though each

of the training volumes was made available with a corresponding manual segmen-

tation of the whole heart blood pool and ventricular myocardium, Shahzad et al.

(2017b) elected to construct their atlas from a separate, external source. They

employed the eight manually labelled CT volumes provided by the work of Kirişli

et al. (2010). Given the mismatch in acquisition (CMR versus CT), task specifi-

cation (whole heart and ventricular myocardium, versus multi-class including the

left ventricular myocardium), and level of anatomical detail, this appears a strange

choice. Not only did this necessitate inter-modality registration, but also required

bespoke post-processing (including by Hough transform (Duda and Hart, 1972)

and active contour) to provide for the aortic and right ventricular components:

both of which were demanded by the HVSMR Challenge specification, but absent

from their chosen atlas. Perhaps surprisingly, however, and despite these obsta-

cles, their pipeline out-performed those submissions relying on fully automated

image-driven methods.

In a like-for-like comparison, however, their results were not as strong as those

of Zuluaga et al. (2017), who achieved a Dice score of 0.9. Constructing their

atlases from the provided training data, they used the HVSMR Challenge as the

basis for a comprehensive investigation of different design choices within the MAS

framework, comparing: different atlas constructions (multi-atlas versus single at-

las and associated discrete, majority voted label map); label specification (whole

heart blood pool and ventricular myocardium versus their union); multi-atlas fu-

sion schemes (majority voting versus similarity and truth estimation for propa-

gated segmentations (STEPS) (Cardoso et al., 2013) versus simultaneous truth

and performance level estimation (STAPLE) (Warfield et al., 2004)) and post-

processing (none versus E-M of a GMM). They found MAS to be far superior to

the single atlas equivalent. Although less substantial, further gains were associ-

ated with the use of E-M post-processing. Lastly, the benefit conferred by a given

label specification or fusion strategy was unclear, with no significant differences

observed between the design choices considered.

More generally, Zuluaga et al. (2017) make keen observations surrounding the

applicability of MAS to congenitally malformed anatomy. In common with previ-

ous reports, they note a drop in segmentation accuracy associated with significant
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anatomical variations. In the context of MAS, they attribute this observation to

two sources: (1) the challenge of amassing a multi-atlas that is representative of

the highly heterogeneous CHD population; and (2) the limitations imposed by ex-

isting image registration methods on the space of possible atlas transformations.

Particularly relevant to the presence of congenital defects, they cite the inability

of current registration strategies to cope with changes in anatomical topology. For

example, the presence of a ventricular septal defect constitutes a discrete change

in the topology of the blood pool, one that cannot be expressed by continuously

varying spatial transformation. Combined, these factors limit the suitability of

atlas-based segmentation as a means of addressing CHD anatomy.

This is not to say that atlas-based analyses are without application in other,

closely related, CHD image processing tasks. Zuluaga et al. (2015) consider the

application of this approach to disease classification, inferring CHD diagnosis by

the relative similarity between a test image and a set of spatially registered atlases,

each representative of a different defect or condition. In a class-balanced sample

of sixty 3D CMR acquisitions, they sought to separate patients into three groups,

those: with normal anatomy; that had undergone arterial switch; and that had un-

dergone atrial switch to correct transposition of the great arteries. This insightful

approach achieved an impressive diagnostic classification accuracy of 97.3%.

Lastly, we address the dearth of publications developing statistical shape mod-

els of 3D CHD anatomy. We have found only a single, vague description of their

application to the anatomy of the whole heart or its multi-class description. Wang

et al. (2017a) claim to have developed and deployed a statistical shape model of

the whole, congenitally malformed heart. Unfortunately, however, their account

does not make clear how this was constructed from the ten training cases made

available by HVSMR. In the absence of further detail, we can only speculate that

they established a low-resolution, mean whole heart shape, and that this was

used to initialise the active contour refinement described in the preceding section.

Hence it is difficult to ascertain where and how the distribution of training shapes

is considered, if at all. Perhaps more problematically, we also fundamentally dis-

agree with their method’s underpinning assertion that “... the overall shape of [the

congenitally malformed heart ] appears relatively similar from patient to patient”3.

3Later, please see Figure 5.4 for a visual refutation.
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3.4 Challenges posed by 3D CHD modelling

Despite the wealth of cited research, Section 3.2 found that for the most part,

clinical exponents of the patient-specific 3D printing workflow have largely relied

on manual methods for image segmentation and editing. It is natural, therefore,

to ask why the wealth of methodologies cited in this review of the technical, image

processing literature, have not found application in clinical practice. This dispar-

ity is perhaps most simply explained by the publication bias that favours reports

of novel segmentation methodologies that demonstrate positive results. However,

this section also seeks to explain this gap by examining the methodological chal-

lenges posed by 3D CHD modelling and whole heart and multi-class segmentation.

Importantly, we also differentiate between the hurdles shared by related cardiac

image segmentation tasks, in which the majority of developmental work has been

conducted, and those unique to patient-specific modelling of CHD. Addressing each

in turn, we examine challenges associated with: motivation and corresponding task

specification; image acquisition and data quality; and anatomical heterogeneity.

Motivation and task specification

The preceding review traced the development of cardiac image segmentation meth-

ods, from their roots in assessing ventricular volume using 2D short axis images,

to the geometrical representation of patient-specific 3D anatomy described by vol-

umetric CMR or CT data. Between these extremes, clinical motivations vary

significantly. In the former, we seek to effectively regress an imaging dataset to a

single scalar index of cardiac health. Therefore, so long as spatial overlap between

predicted and ground truth segmentations is sufficient, their detailed geometry is

largely unimportant. In the latter, we seek insights as to the size, morphology

and configuration of the heart, in order to enhance the selection and planning of

structural intervention.

These different motivations are borne out in the divergent specifications of each

application’s associated segmentation task. In its simplest formulation, volumetry

might require delineation of the left ventricular cavity alone. Focusing on a sin-

gle anatomical target, model-driven methodologies have flourished (Tavakoli and

Amini, 2013). Whereas, patient-specific modelling demands the isolation of whole
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Figure 3.11: The underlying motivations of ventricular volumetry have shaped the
development of conventional, model-driven methods for 3D cardiac image segmen-
tation. With respect to anatomical coverage, detail and heterogeneity, these are
in conflict with the requirements of those seeking patient-specific models of CHD
morphology.

heart cardiac anatomy, a freeform, organic surface composed by sub-structural

segements, and whose morphological complexity outstrips the conical appearance

of the left ventricle.

Differences in task specification, however, are not limited to the semantic classes

composing segmented data, but extend to the level of anatomical detail represented

(see Figure 3.11). Given that the presence or absence of congenital defects can be

defined by thin tissue interfaces (often at the limit of spatial resolution; consider

holes in the atrial septum, for example), accurate and detailed representation of

cardiac anatomy is key to patient-specific 3D modelling. Accordingly, where short

axis segmentations of the left ventricle need not describe the complex trabeculation

of the endocardial surface, patient-specific models of CHD must provide structural

representations at the limit of spatial resolution (Kim et al., 2008a).

Many of the cited technical works examining 3D whole heart or multi-class seg-

mentation suggest treatment planning as one of their motivators. However, outside

of those addressing the HVSMR Challenge, rarely has such detailed anatomy been

examined. Some of the most successful reports (Ecabert et al., 2011; Zheng et al.,

2008; Zhuang and Shen, 2016) have instead sought largely featureless representa-

tions of the heart, describing the anatomical envelope of each chamber and associ-

ated vasculature. Undoubtedly, these models remain highly relevant to the plan-
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ning and guidance of catheter ablation, where the spatial uncertainty in tracked

position might preclude more detailed representation (Tobon-Gomez et al., 2015).

Nevertheless, we speculate that the research community’s focus on low resolution

anatomical approximation, also stems from its roots in short axis segmentation.

Owing to its ubiquitous position as the clinical gold standard for ventricular vol-

umetry, labelling of 2D short axis cine CMR has received the vast majority of

research attention and methodological development (Habijan et al., 2020). Hence,

when authors came to consider the segmentation of whole heart anatomy from

isotropic 3D data, they naturally sought the same level of detail. In some cases,

this approach limits the generalisation of their findings to clinical challenges such

as CHD, where the fullest possible appreciation of patient-specific anatomy and

disease morphology is paramount. As identified by Gao et al. (2011), the visual

difference between the two approaches, and as demonstrated by Figure 3.11, is

stark.

For our interests, it is unfortunate that so much of the associated method-

ological development has taken place within a low resolution, coarsely detailed

context. Whilst model-driven approaches such as statistical shape modelling and

atlas-based segmentation have advanced the state of the art, their application to

highly detailed anatomical targets may be hampered by associated technical chal-

lenges. In particular, the success of the deformable models developed by Ecabert

et al. (2011) and Zheng et al. (2008) may be difficult to replicate at higher spa-

tial resolution. Firstly, this shift would increase the number of model landmarks

required to capture detailed anatomy. Secondly, some of these would need to de-

scribe the subtle differences and inconsistent appearances of thin tissue interfaces,

including the trabeculated endocardium. In combination, the challenge of drawing

correspondences between such a dense set of anatomical features likely precludes

meaningful shape modelling. These obstacles perhaps also inform the commu-

nity’s focus on low resolution models and might explain the lack of any concerted

attempt to address the HVSMR Challenge using either statistical or deformable

priors.
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Image acquisition and data quality

Irrespective of modality, many of the challenges associated with limitations in

image quality are shared between different cardiac image segmentation tasks and

patient groups. Cardiac CT data rely primarily on the administration of exogenous

agents to generate contrast between the cardiac blood pool and soft tissues. As

a result, the timing of acquisition relative to the the passage of contrast strongly

influences the derived image quality. Where this is synchronised correctly, the

high spatial resolution (potentially sub-millimeter) of CT acquisition faithfully

exposes the tissue interfaces that divide the heart and in which defects might occur.

However, where this is sub-optimal, the lack of endogenous contrast between the

blood pool and myocardium can obfuscate visualisation of intracardiac structures.

Compared with cardiac CT, CMR carries no associated ionising radiation bur-

den, a particularly important consideration within the paediatric CHD population

(Ntsinjana et al., 2011). These patients are not only more likely to require repeated

diagnostic imaging during infancy, but also, due to their rate of growth and de-

velopment, are more sensitive to the radio-biological effects of X-ray exposure.

Owing to their age, they also have more time to express associated morbidities.

CMR benefits from exceptional soft tissue contrast, exposing the blood pool of the

cardiovascular system separately from the containing myocardial and vascular tis-

sues. However, since its spatial resolution typically trails CT (typically being only

isotropically millimetric), the interfaces between neighbouring anatomical struc-

tures can appear indistinct, posing a challenge for those pursuing their automated

delineation (Zhuang, 2013).

Both imaging modalities suffer from the presence of image artefacts associated

with implanted metallic devices (resulting in X-ray scatter within CT; and signal

dephasing within CMR) and patient motion (including that associated with the

cardiac and respiratory cycles). In the case of CMR, the passage of blood can also

lead to signal dephasing: associated hypo-intense artefacts often arising at the

confluence of the pulmonary veins and left atrium or through stenotic vessels, out-

flows and valves. Coupled with the presence of noise and other limitations in image

quality, these artefacts motivate the development of model-driven techniques. Pre-

dictions made by this family of methods are bolstered by their dependence on prior
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models, reducing the likelihood of spurious, anatomically implausible prediction

in the vicinity of confounding deficiencies in image quality.

In common, and as most often examined in the whole heart and multi-class 3D

image segmentation literature, typical CT and CMR acquisitions share isotropi-

cally high spatial resolution. This marks a shift from the dependence of ventricular

volumetry on short axis CMR images, conventionally acquired as a series of 2D

slices distributed at intervals along the long axis of the heart. Given that the in

plane resolution of cine data far exceeds the slice offset, associated methodolo-

gies have been developed and applied in 2D (Mitchell et al., 2001). Thankfully,

the majority of reviewed citations from the reviewed literature on whole heart la-

belling reflect the dimensionality of the target images and anatomy, investigating

3D methodologies (including 3D shape models and atlases).

Independently of the dimensionality or basis of the approach, however, it is dif-

ficult to ascertain whether potential differences in image acquisition or quality can

explain the lack of methodological integration within clinical reports of patient-

specific 3D printing. It is possible that eligibility criteria or screening processes

deployed within the technical literature might preferentially select test cases more

amenable to automated or semi-automated segmentation; and that perhaps by

excluding clinically acquired examples of compromised image quality, algorithmic

effectiveness has been inflated. These assertions, however, remain highly specu-

lative. Just as problematically as their quality, the quantity of test cases used

in the assessment of novel methods has often been lacking. This is particularly

problematic in the setting of the structurally heterogeneous CHD population, to

which we now turn.

Anatomical heterogeneity

The CHD population presents a structurally heterogeneous group in which no two

patients share the same anatomy and disease morphology. Fundamentally, such

diversity results from the presence of heart defects, and the variation in their size,

morphology and location. Defects take a number of different forms (see Figure 2.2),

but in addition to describing continuously varying changes in anatomical size and

morphology (such as stenosis and hypoplasia), also characterise discrete topological
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changes in cardiac structure. Septal defects, for example, associate the normally

isolated great and small circulations; discordant or doubled connections alter the

expected haemodynamic continuity of the two. This variety of lesions can occur

within the heart or affect the extracardiac vasculature. Adding to this complex

picture, structural interventions (either surgical or catheter-based) also introduce

discrete changes in anatomy, such as through the creation of shunts between the

left and right heart or perhaps most significantly, through palliative conversion to

a univentricular circulation. This diversity poses a challenge to the model-driven,

state of the art methods for whole heart and multi-class segmentation.

Deformable models of statistical shape and atlas-based segmentation both build

prior representations of the heart from training data, their underlying ambition

being to capture the distribution of anatomy encountered within the clinic. Some

have suggested that in the setting of acquired disease, this aim is extremely chal-

lenging (Koikkalainen et al., 2008; Tavakoli and Amini, 2013), and likely impossible

in the presence of congenital abnormality (Zuluaga et al., 2017). Where this ambi-

tion fails, several authors (Isgum et al., 2009) note the susceptibility of such priors

to out of sample test cases, those that present anatomy far removed from, or outside

of the training distribution. In such cases, dependence on strong priors limits the

extent to which the atlas or statistical model can adapt to new anatomy - including

the presence of congenital defects (Zhuang et al., 2010b; Shahzad et al., 2017b;

Zuluaga et al., 2017) - compromising performance. Even in their investigation

of patients with acquired heart disease, Ecabert et al. (2011) found constraining

model deformation to the principle modes of shape variation to be too restrictive,

eventually favouring a piece-wise affine model of anatomical deviation.

Attempts have been made to address this challenge, but have been limited to

shape models of short axis data. For example, Albà et al. (2015) sought to extend

the applicability of a generic 3D statistical shape model to the cardiac anatomy of

patients with acquired hypertrophic cardiomyopathy and pulmonary hypertension.

To do so, they employed a landmark-based, non-rigid transformation of short axis

data to the canonical and pathology-free space of the prior model. Though free

from statistical shape constraint, atlas-based segmentation also depends on this

family of transformations to adapt a prior model to patient-specific anatomy.
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As such, neither statistical shape modelling nor atlas-based segmentation pro-

vide a means of handling the discrete structural changes associated with CHD.

Problematically, these changes in anatomical topology are not incidental to the

representation of anatomy, but are associated with the pathological defects whose

presence provide the primary clinical motivation for patient-specific modelling and

segmentation. For this reason, we argue that neither of the conventional model-

driven methodologies that might previously have been considered state of the art,

are suited to 3D CHD image segmentation. Moreover, they have most often been

tested against the normal anatomy of homogeneous cohorts of healthy volunteers

(Zhuang, 2013), or patients for which structural changes are limited to continuous

variations in morphology. We assert that this disparity best explains the mismatch

between the methods developed within the technical image processing literature,

and those deployed in the clinical practice of patient-specific anatomical modelling

of CHD.

3.5 Conclusion

Our review of conventional cardiac image segmentation methodologies has revealed

a disparity between the techniques employed in the clinically focused literature

concerning patient-specific modelling of CHD, and those advanced by the techni-

cal image processing community. Where clinical applications have almost entirely

relied on interactive segmentation workflows, including a time-intensive manual

editing component, scientific researchers have presented automated, model-driven

approaches, claiming to provide robust and reliable solutions. Examining the

applications in which these methods have been developed and applied, we have

argued that their basis in ventricular volumetry limit their ability to segment 3D

CHD morphology in a clinically useful fashion. As summarised by Figure 3.11,

fundamental differences between the two tasks include the anticipated level of

anatomical coverage and detail, and the structural heterogeneity of the associ-

ated patient population. A historical focus on the coarse, relatively homogeneous

ventricular anatomy of those with acquired disease is at odds with our clinical

ambition. These differences render the model-driven approaches founded on sta-

tistical shape modelling and atlas-based segmentation inadequate for our purpose.
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Our conclusion is not based on conjecture alone, but is supported by the find-

ings of the HVSMR Challenge, in which model-driven methods (whilst out per-

forming their conventional image-driven counterparts) rank towards the bottom

of considered techniques. Hamstrung by prior models of at best limited repre-

sentational capacity, and dependent on fitting procedures incapable of describing

the discrete changes in anatomy associated with congenital defects, these methods

have been surpassed by the introduction of convolutional neural networks (CNNs).

The obvious omission from this chapter, and the interloper in Table 3.5, CNNs

are a family of primarily image-driven, non-linear classifiers with extreme repre-

sentational capacity. Drawn from the field of deep learning methodologies, CNN

solutions presently lead the HVSMR ranking of automated segmentation methods,

and will be our focus in the next chapter and remainder of this work.



Chapter 4

Deep learning for

image segmentation

4.1 Introduction

In reviewing conventional cardiac segmentation methodologies, the previous chap-

ter made two primary observations: (1) that clinical exponents of patient-specific

3D printing rely on a largely manual image segmentation protocol that can take

hours per case; and (2) that model-driven methods developed by image processing

scientists cannot provide the detailed representation necessary to visualise heart

defects in a clinically meaningful fashion, nor are they adaptable to the structurally

heterogeneous population with congenital heart disease (CHD).

Here, we look to the burgeoning field of deep learning for solutions, and in

particular to convolutional neural networks (CNNs). This shift marks a return

to primarily image-driven segmentation. Critically, however, rather than on those

that are handcrafted, this family of methods rely on a data-driven set of discrim-

inative image features, learned during network training. To understand why this

might be sensible and how such learning might proceed, we firstly present a limited

theoretical foundation, as necessary to comprehend our own clinical and method-

ological contributions in the remainder of this thesis. Subsequently, we review the

literature reporting the results of CNN-based segmentation of whole heart and

multi-class anatomy from 3D medical images.
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4.2 Convolutional neural networks

4.2.1 Overview

In the context of medical image segmentation, we seek to model the transformation

of data from a set of patient images to an anatomical or pathological label map.

Whilst different mathematical formulations of this task have been presented, for

illustrative purposes we consider the classification (abstractly described by the

function f ∗) of the N -dimensional, K-channeled input image, X : RN → RK , into

one of the C mutually exclusive class labels of the one-hot encoded ground truth

segmentation, Y : RN → {0, 1}C :

Y = f ∗(X) (4.2.1)

A CNN approximates this transformation by a series of operators based on con-

volution. These are applied sequentially such that the network can be abstractly

described as a directed, acyclic graph of operations arranged in layers, one that

predicts the probabilistic segmentation, Ỹ : RN → [0, 1]C . Three properties of this

approach are critical to CNNs’ recent success:

Data-driven transformation

The weights of the convolutional kernel associated with each operator (f (d)) are

not determined or conceived by the image processing scientist, but form a set of

free parameters (θ(d)) to be optimised via data-driven training.

Non-linear modelling

The inclusion of suitable activation functions between convolutional layers admits

non-linear modelling.

Deep networks

The expressive capacity of the resulting CNN is dramatically increased by

repeated convolution within D sequential layers, otherwise referred to as network

depth.



4.2. Convolutional neural networks 93

Figure 4.1: Summary mathematical operation of a feed-forward CNN. The network
approximates the transformation between input image data, (X) and its reference
segmentation via a series of sequentially applied operators (f (d)). Relying on the
discrete, digital convolution for its expressive capacity, the respective weights of
each operator are optimised via a data-driven training procedure, seeking an ac-
curate and precise predicted segmentation (Ỹ).

Taken together, these attributes are characteristic of the broader family of

deep learning methodologies; those which involve deep networks of many layers,

the transformation at each of which is mediated by a parameterised function that is

learned from exemplar data. Equipped with the CNN framework, and as depicted

in Figure 4.1, the feed-forward transformation between source image and predicted

segmentation can be written:

Ỹ = f (D)(f (D−1)(...(f (2)
(
f (1)(X;θ(1));θ(2))...);θ(D−1));θ(D)) (4.2.2)

Together, Figure 4.1 and Equation 4.2.2 describe the so-called forward pass, the

flow of information from the input (X), which, via the hidden layers of the net-

work (H(d) = f (d)(H(d−1);θ(d))), culminates in the predicted segmentation (Ỹ).

By collecting the respective convolutional operations and kernels into a summary

operator f , with associated parameter set θ, we can outline CNN approximation:

Ỹ = f(X;θ) ≈ Y (4.2.3)

This compact description, however, neglects the constituent components on which

modern, state of the art, non-linear, discriminative CNN architectures currently

depend. Before presenting these building blocks, we firstly introduce the algo-

rithms, training procedures and experimental designs that underpin CNN param-

eter optimisation and performance assessment.
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4.2.2 Training and optimisation

Equation 4.2.3 presents the basis of an idealised and, owing to its parameter set,

θ, highly flexible model. It does not specify, however, how these parameters can

be chosen to optimally satisfy the approximation Ỹ ≈ Y, minimising the error

between prediction and ground truth. We have already made passing reference to

the idea that their determination is data-driven. In this section we expand on this

high level description, presenting the machinery underlying the supervised training

of deep CNNs.

Ambition of data-driven optimisation

Before introducing the components on which CNN training depends, we highlight

the wider objective of CNN optimisation and machine learning more generally.

That is: not to minimise the approximation error over the training dataset, but

over unseen cases drawn from the underlying distribution that generates the real

world population. Contextualising this statement for our application, we seek a

CNN parameter set that can accurately predict the segmentation of 3D image

data for those patients prospectively encountered in the clinic, not necessarily

those historic cases that we can learn from. Due to the quantity (and prospect)

of such patients and scans, neither of these sets can be explicitly gathered. Hence

we rely on limited training and test sets: the former used directly within CNN

parameter optimisation; the latter being held out from network training, and only

used to assess performance on unseen cases. Critically, the quantity and quality of

both must be carefully curated to promote the generalisability of CNN prediction

and associated findings to the underlying patient population, our central aim.

Where this ambition is not met, learned parameters, whilst optimal for the

training set, can be associated with inferior performance on test data. Such net-

works are said to overfit their associated training examples. Even in the context of

seemingly challenging segmentation tasks, the possibility of overfitting is increased

by the sheer capacity of state of the art CNNs. Potentially comprising millions

of learnable parameters, each can be tweaked to optimise performance, prompting

some to draw qualitative comparisons between overfitting and a network’s capacity

to “memorise” a small training dataset. In response, CNN training is most often
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subject to regularisation, a topic whose techniques we will return to at the end of

this Section 4.2.2. Judicious regularisation is balanced against network capacity

to improve test set performance. However, where such efforts are over zealous,

excessive regularisation and insufficient network capacity result in underfitting: a

lack of expressive power that limits both training and test set performance.

Lastly, common practice relies upon a third, validation set, deployed to de-

termine the optimal hyperparameters governing CNN configuration (rather than

the model parameters, θ), including architecture, regularisation and optimisation

itself. Such hyperparameters will be introduced throughout this chapter. Albeit

indirectly, the features of validation cases influence network optimisation, and

hence are excluded from test time performance assessment.

Supervised training

The distinction between unsupervised, weakly, semi-, and fully supervised modes of

CNN optimisation is perhaps best informed by the comprehensiveness of available

training data. Amongst these, and in the context of medical image segmentation,

fully supervised (referred to as supervised from here on) training alone benefits

from the availability of paired image-label examples (most often manually delin-

eated by clinical experts) that fully demonstrate the task to be modelled. In

contrast, the training data deployed in semi-supervised, weakly or unsupervised

schemes are in some sense incomplete. Semi-supervised training typically inves-

tigates methods for learning from partially complete training data, composed by

labelled and unlabelled examples; weakly supervised training more often relies on

partial labels (such as scribbles (Lin et al., 2016)) or sources of prior knowledge;

and unsupervised methods rely only on the features of observed image data.

These differences promote the association of each approach with different tasks.

Critically, supervised training permits the formulation of CNN-based segmenta-

tion as inferring the conditional probability of a label map, given an input image:

p(Y|X). Whereas, unsupervised training lends itself more naturally to feature

learning and clustering, seeking to understand the underlying distribution of pa-

tient scans: p(X). The former being better suited to predictive segmentation,

supervised learning will be our primary focus for the rest of this thesis.
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Gradient-based learning

Supervised training presents the distinct advantage that the approximation error

between predicted and ground truth training examples can be directly computed.

Most often referred to as the loss, this scalar is quantified by an associated loss

function that is indicative of segmentation performance. Coupled with this su-

pervisory signal, the parameters of a CNN define a so-called “loss landscape”,

associating every possible setting of θ, with an expected loss over the training set.

In all practical cases, however, the high-dimensional, non-linear loss landscape is

intractable, such that the space cannot be analytically sought for the globally op-

timal solution. Rather, our view of the loss landscape is restricted to the locality

of empirically sampled parameter settings, including their initialisation.

Consequently, CNN training relies upon gradient descent, making an itera-

tive series of incremental parameter updates, each determined to reduce the loss

according to the local gradient, as sampled by feed-forward prediction. In differen-

tiating the complex, multi-variable function described by the CNN, the gradient of

the loss is proliferated throughout the network by the backpropagation algorithm

(LeCun et al., 1989). This so-called backward pass returns the gradient of the loss

with respect to the parameters of the model.

In this context, supervised training relies upon the following ingredients: (1)

a loss function to establish the current prediction error or loss; (2) backpropaga-

tion to determine the gradient of the loss with respect to the parameters of the

model; and (3) an optimiser to update the parameter values according to these

gradients. We introduce these components in the following sub-sections. In the

next Section 4.2.3 we introduce (4) various regularisation methods to enhance

generalisation.

Loss functions

Within CNN-based medical image segmentation, a generic loss function, L(Ỹ,Y),

quantifies the error between a predicted labelling of input image data (determined

by forward passing a training image through the network), and a ground truth

reference standard. Irrespective of the formulation of a particular loss function,

all such examples must be consistent with gradient-based optimisation. In other
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words, they must return a scalar indicative of task performance, whose value is

differentiable with respect to the parameters of the network. Informally, this re-

quires that: (1) a small change in the model parameters and CNN output results

in a small, continuous change in the loss, and (2) that contributions to the loss

value itself can be determined from, and directly associated with particular voxels

in the network output.

Whilst a wide variety of specialised loss functions have been designed to sen-

sitise performance to the segmentation properties that are most salient to down-

stream application (El Jurdi et al., 2021), here we introduce two of the most

popular choices. Both are deployed in the experimental work presented in later

chapters.

Cross-entropy

If we flatten the spatial dimensions of the predicted and ground truth segmenta-

tions, and allow the index m to reference the M resulting pixels or voxels, the

multi-class cross-entropy (CE) loss between the predicted and ground truth seg-

mentations is:

LCE(Ỹ,Y) = − 1

M

∑
m

∑
c

Yc,m log Ỹc,m (4.2.4)

Where Yc,m constitute the elements of Y, and provides an effective per voxel in-

dicator of ground truth class membership of class label, c; and Ỹc,m constitute the

elements of Ỹ, the probabilistic segmentation inferred by CNN. As presented in

Goodfellow et al. (2016), the form of the CE loss can be naturally derived from the

application of the maximum likelihood principle to the multi-classification task for-

mulation. Optimising LCE effectively minimises the distance between the one-hot

encoded and continuous probability distributions defined by the ground truth and

predicted segmentations, respectively. In addition to being a suitable and popular

choice for multi-class segmentation, it admits straightforward schemes for weight-

ing the contribution of different classes (perhaps to balance their frequency) and

pixels (or voxels, where particular segmentation features such as geometric inter-

faces might confer task-specific meaning) (Ronneberger et al., 2015), and presents

favourable numerical properties for gradient-based learning.
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Generalised Dice loss

A popular metric of algorithmic performance, the Dice similarity coefficient (Dice,

1945) (DSC) measures the degree of overlap between predicted and ground truth

segmentations. Adapting the DSC for CNN optimisation results in the generalised

Dice loss:

LDSC(Ỹ,Y) = 1− 2
∑

c

∑
m Yc,mỸc,m∑

c

∑
m Yc,m + Ỹc,m

(4.2.5)

As is frequently the case, where test set performance is assessed using the DSC,

directly minimising the associated loss is an attractive prospect. Moreover, others

find that LDSC (and other losses based on spatial overlap), can make optimisation

more robust to class imbalance, even when compared against the weighted CE

strategies aforementioned (Sudre et al., 2017). However, in state of the art frame-

works for automated CNN optimisation, a combination of CE and generalised Dice

losses is ultimately favoured (Isensee et al., 2021).

Back propagation

Whilst the value of the resulting loss evaluates the performance of the network,

it does not indicate how the model parameters should be updated to reduce the

prediction error. To do so, we rely on the backpropagation algorithm, a numerical

framework for computing the gradient of arbitrarily complex functions, by breaking

them down into simpler components (LeCun et al., 1989). This approach presents a

clear symmetry with the motivations underlying CNN computation: that through

the combination of simpler components, we can build up functions of arbitrary

complexity. In the setting of CNN optimisation this association extends further,

the two sharing computational graphs with identical topology (not computation),

but proceeding in opposite direction.

At each iteration of gradient-based training, the forward pass describes the

flow of information from the input (X), via the D − 1 hidden layers (H(d), see

Figure 4.1), to the output (Ỹ) of the network, culminating in the loss. Following,

the backpropagation algorithm initiates a backwards pass, starting from the loss,

and, via the recursive application of the chain rule of differentiation, determines

its partial derivatives with respect to the hidden layer activations (H(d)) and the

parameters (θ(d)) associated with their locally determining functions (f (d)). Col-



Figure 4.2: Schematic operation of the backpropagation algorithm, and its role in determining the
gradient required for supervised CNN training. In the forward pass (left to right, bottom to top,
grey arrows), information flows from the input (X) to the output (Ỹ), through the parameterised
transforms (f (d)(H(d−1);θ(d))) associated with the hidden layers (H(d)) and, via the loss function
(L), culminates in the loss (l). Backpropagation proceeds in the reverse direction, completing a
backward pass (right to left, top to bottom, blue arrows) through a computational graph with the
same connectivity. Recursively applying the chain rule of differentiation, the partial derivative with
respect to each variable in the graph has two contributions: (1) the local gradient of the function
transforming the variable in the forward graph (green arrows); and (2) an accumulated gradient,
flowing from the upstream portions of the graph (red arrows). Even in this simple, relatively shallow
neural network, by breaking a complex function down into simpler components, backpropagation
simplifies the process of differentiation. The resulting partial derivatives comprise the gradient vector,
∇θ = [∂l/∂θ(1), ∂l/∂θ(2), ∂l/∂θ(3)], and therefore determine the local direction in parameter space that must
be followed to reduce the loss and optimise the network.

Caveats:
Both the transformations (f (d)) and the associated partial derivatives (∂l/∂θ(d)) are more complicated
than might be implied by the notation above (the latter in fact being gradient vectors themselves).
Practically, both must judiciously handle >3D inputs, hidden layers and outputs, according to the
convolutional and other operations applied. Whilst this perhaps could be better described using the
notation of tensor calculus, our intention is to provide only an impression of the backpropagation
algorithm, not its formal mathematics.
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lecting the partial derivatives of the loss with respect to the parameters of the

CNN constructs an associated training gradient. In the conceptual (if not math-

ematically rigorous) example shown in Figure 4.2, for the associated three-layer

CNN, this is given by:

∇θl =

[
∂l

∂θ(1)
,

∂l

∂θ(2)
,

∂l

∂θ(3)

]
(4.2.6)

Via backpropagation, this vector reveals the direction through parameter space,

that at least locally, most rapidly reduces the loss. We consider the formal math-

ematics of the algorithm to be beyond the necessary scope of this thesis, but refer

the reader to Rumelhart et al. (1986, 1995) for a full account.

Optimisers

Whilst the gradient suggests the direction that should be followed to reduce the

loss, it says nothing as to the magnitude of the step to be taken. Perhaps the

most important hyperparameter - not just to optimisation dynamics but, once a

CNN architecture has been defined (see Section 4.3) to overall performance - the

learning rate (η) defines the size of each iterative update:

θ ← θ − η∇θl (4.2.7)

Careful tuning of η is required just to facilitate, let alone accelerate learning. When

set too high, the assumption of locality - that the gradient provides a sufficient de-

scription of the loss landscape - breaks down. In other words, for an excessive step

size, the local gradient no longer suggests a trajectory to reduce the loss. The term

“exploding gradients” is often used to describe the rapidly fluctuating dynamics

which result and ultimately, without meaningful supervision, the explosion of the

loss to infinity. On the other hand, setting η too low can preclude substantive

progress.

Ultimately we seek convergence to a local minimum in the loss, or perhaps more

realistically, to a location where the magnitude of the gradient is small enough to

limit further gains. In the latter scenario, rather than by meeting a convergence

criterion, optimisation is frequently terminated after a fixed iteration budget. This

might be determined: by the quantity and structure of the training data, allow-
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ing for an integer number of passes through the entire set; with reference to the

expected loss over the validation set; or simply by a pragmatic assessment of the

available computational resource and the time invested.

More generally than in the basic formulation presented by Equation 4.2.7, it

is the job of the optimiser to shape the dynamics of loss landscape traversal.

A range of optimisers and associated hyperparameters have been proposed for

CNN training. Whilst all are founded on gradient descent, specialised schemes

present varying levels of sophistication to adapt their operation to different training

scenarios and models. In this respect, the recent popularity of CNNs has prompted

the development of optimisers suited to the particular demands of deep network

training, including their extremely high-dimensional feature space. These can

be divided according to: (1) their stochasticity (and associated batch sampling

schemes); (2) their acceleration of parameter space traversal by the accumulation

of historic gradients within a velocity vector; and (3) their consideration of per

parameter, adaptable learning rates. We present an example from each of these

groups, choosing those which appear the most popular amongst exponents of CNN-

based image segmentation, and which are deployed within the experimental work

described in later chapters.

Stochastic gradient descent

In isolation, Equation 4.2.7 obscures the fact that the gradient of the loss (∇θl)

is determined empirically by training examples. Recalling that the loss landscape

describes the error expected over the training distribution, the natural approach

might be to compute the gradient over all T training examples, at every iterative

update. The resulting formulation describes deterministic batch optimisation:

Deterministic gradient descent

i) Compute gradient g ← 1
T

∑T
t=1∇θL(f(X

(t);θ),Y(t))
ii) Parameter update θ ← θ − ηg

Where t indexes over the cases of the training set. This approach, however, presents

challenges to the computational resources available for training, a particularly

pressing obstacle for CNN-based 3D image segmentation: volumetric data being

associated with a cubic increase in the memory consumed.
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More often, a minibatch of B < T training examples are used to estimate the

gradient at each iteration. Outside of curriculum learning (Bengio et al., 2009),

hard example mining (Shrivastava et al., 2016) or related schemes, typical sampling

strategies seek to ensure that on average, training cases are equally represented

throughout training. This can be achieved by, for example, shuffling the training

set before its division into mutually independent minibatches by successive sam-

pling without replacement. To differentiate from the deterministic case, we assume

the prior use of a judicious sampling strategy, such that b indexes over each mini-

batch independently, and use g̃ to indicate the resulting gradient estimate:

Stochastic gradient descent

i) Estimate gradient g̃ ← 1
B

∑B
b=1∇θL(f(X

(b);θ),Y(b))
ii) Parameter update θ ← θ − ηg̃

Considering only a minibatch of the training set, stochastic gradient descent (SGD)

accepts that parameter updates are based only on an estimate of the gradient.

Goodfellow et al. (2016), however, suggest that this limitation is nullified by the

following statistical arguments and outweighed by SGD’s gains in computational

efficiency: (1) since the standard error in this estimate scales as 1/
√
B, improve-

ment associated with increasing batch size is subject to diminishing returns; (2) for

homogeneous training sets, minibatches avoid gradient estimation by redundant

features; (3) small minibatches inject noise into learning, yielding a regularising

effect that can improve generalisation.

Accordingly, different flavours of SGD and minibatch optimisation have become

ubiquitous to CNN training, being preferred to their deterministic and batch coun-

terparts. To avoid the confusing terminology used to differentiate between the two,

in the remainder of this thesis we refer only to SGD, and its determination of the

supervisory gradient according to batches (rather than minibatches) of training

data. As per the wider literature, we call B the batch size.

(Nesterov) Momentum

Lower learning rates are sometimes required to accommodate the noisy optimi-

sation dynamics associated with low batch sizes. Naive SGD can also limit the

pace of learning in the context of small but consistent gradients. The method of
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momentum (Qian, 1999) is designed to accelerate optimisation in each of these

scenarios. By accumulating an exponentially decaying moving average of past up-

dates, momentum accelerates descent in the directional components of the gradient

that remain consistent across recent iterations:

SGD + Momentum

i) Estimate gradient g̃ ← 1
B

∑B
b=1∇θL(f(X

(b);θ),Y(b))
ii) Velocity update v ← µv − ηg̃
iii) Parameter update θ ← θ + v

Where the hyperaparameter, µ, controls the influence of the historic updates ac-

cumulated within the momentum velocity, v (so named for its analogy with New-

tonian dynamics). More recently, Sutskever et al. (2013) adapted the momentum

update to incorporate the acceleration proposed by Nesterov (2003). Their ap-

proach applies the velocity displacement to achieve an intermediate parameter

set, θ′, prior to gradient estimation:

SGD + Nesterov momentum

i) Intermediate update θ′ ← θ + µv

ii) Estimate gradient g̃ ← 1
B

∑B
b=1∇θ′L(f(X(b);θ′),Y(b))

iii) Velocity update v ← µv − ηg̃
iv) Parameter update θ ← θ + v

The incremental gains made by the Nesterov formulation have led to its adoption

within state of the art frameworks for CNN-based segmentation (Isensee et al.,

2021).

Adam

Finally we turn our attention to optimisation strategies which deploy adaptive

learning rates. Inherent within the motivations underlying momentum is the ob-

servation that traversal of particular directions within parameter space more effec-

tively reduces the loss than others. Assuming that these directions are (or, through

optimisation, can be) associated with particular elements of θ, adaptive optimis-

ers exploit this property by assigning a learning rate to each parameter, making

independent adjustments to suit their contribution to the observed optimisation

dynamics.
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Amongst a variety of optimisation methods that include per parameter, adap-

tive learning rates, for its apparent popularity we present Adam (Kingma and

Ba, 2014). Through gradient reweighting, this optimiser sets out to suppress up-

dates to those parameters presenting the largest partial derivatives of the loss.

Simultaneously, its formulation allows for updates to those parameters recently

associated with smaller partial derivatives to be maintained. As a result, Adam

selectively descends the loss landscape, preferring directions in which the loss is

reduced smoothly and predictably. Combined with Nesterov momentum, this be-

haviour is achieved by update rescaling, according to an accumulated history (h)

of squared gradient estimates (g̃ � g̃):

Adam

i) Intermediate update θ′ ← θ + µv

ii) Estimate gradient g̃ ← 1
B

∑B
b=1∇θ′L(f(X(b);θ′),Y(b))

iii) Accumulate gradient h ← ρh+(1−ρ)g̃� g̃

iv) Velocity update v ← µv − ηg � h◦ 1
2

v) Parameter update θ ← θ + v

Where �, � and ◦1
2
denote the element-wise product, division and square root,

respectively. Note the inclusion of a further hyperparameter, ρ, controlling the

exponentially decaying contributions of previous gradients to the accumulated his-

tory, and biasing rescaling to the dynamics of the most recent parameter updates.

Despite its hyperparameterisation (η, µ and ρ), Kingma and Ba (2014) promote

Adam as being robust to a variety of CNN optimisation tasks, attractively advising

against associated hyperparameter tuning in favour of default values.

4.2.3 Regularisation

In this section we present various techniques to regularise CNN training. Whilst all

are motivated by a desire to improve the generalisability of CNN prediction to un-

seen cases, each is expressed through the different aspects of network optimisation

previously introduced. These include methods implemented by adapting loss func-

tions, optimisation strategies and training data, and by enhancing experimental

design and task specification more generally.
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At the start of Section 4.2.2, we highlighted the balance that must be struck be-

tween expressive model capacity and regularisation, if overfitting is to be avoided.

Accordingly, in their investigation of the relative strengths of different approaches,

Hernández-Garćıa and König (2018) further separate regularisation techniques into

those placing an explicit constraint on expressive capacity versus those having only

an implicit effect on the possible parameter search space. Whilst in preferring the

latter approach, our experience supports their findings, for completeness we firstly

present the most popular methods of explicit regularisation, followed by their im-

plicit counterparts.

Explicit regularisation

Parameter norm penalties

Historically, constraining expressive capacity through parameter norm penalties,

was a popular means of regularising machine learning. In the context of deep

learning and CNNs, weight decay has been widely incorporated within associated

loss functions:

LWD(Ỹ,Y,θ) = L(Ỹ,Y) +
λ

2
∥θ∥22 (4.2.8)

Where the hyperparameter λ controls the influence of the weight decay penalty

compared with the task loss L(Ỹ,Y). By effectively shrinking the weights at each

gradient update (Goodfellow et al., 2016), weight decay introduces a preference

for small valued parameters, constraining the expressive capacity of the CNN to

regions of parameter space in the vicinity of the origin.

Dropout

Developed specifically for the training of artificial neural networks, dropout (Sri-

vastava et al., 2014) provides an alternative form of explicit regularisation. Rather

than via the loss function, dropout reduces the expressive capacity of a CNN

directly, stochastically dropping channels1 from hidden feature maps (see Sec-

tion 4.2.4) such that they make no contribution to the forward or backward pass.

The rate at which each is dropped is controlled by a predetermined hyperpa-

1Coupled with the weight sharing inherent to CNNs, the correlation of adjacent pixels of hid-
den feature maps renders conventional dropout (Srivastava et al., 2014), ineffective. Accordingly,
spatial dropout is applied to entire channels of a hidden feature map (Tompson et al., 2015).
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rameter. At each iteration of gradient-based training, dropout trains a distinct,

sub-network of reduced expressive capacity. Consequently, an entire training bud-

get can be viewed as sampling from the collection of possible sub-networks, the

resulting parameter set often being presented as an approximation to the associ-

ated model ensemble. Accordingly, this interpretation of dropout’s effects claims

the statistical gains made through bootstrapped sampling (via minibatch methods)

and aggregated prediction. An alternative rationale highlights that in the presence

of a constantly shifting computational graph, dropout prevents the co-adaptation

of dependent parameters, and encourages learning of independent and individually

discriminative features, a property claimed as beneficial to generalisation (Hinton

et al., 2012).

Implicit regularisation

Ensemble prediction

Indirectly, our explanation of dropout hinted at an implicit approach to regular-

isation and improved generalisability. Ensemble methods leverage the statistical

gains that are achieved by aggregating the predictions made by multiple models,

through various schemes such as majority voting or averaging. Key to their ca-

pacity to improve generalisation is the assumption that the errors made by each

member of an ensemble are uncorrelated with each other. Where this is fulfilled,

those errors made by an individual model (possibly due to it overfitting a specific

feature of the training data) are not shared by the remainder (being possibly over-

fit to different features of the training data), such that aggregation can effectively

improve the generalisation accuracy of the ensemble.

By varying the experimental setting in which each CNN is trained, the corre-

lation between individual predictions is reduced. In some cases, the stochasticity

inherent to practical CNN training (randomised minibatch sampling or parameter

initialisation, for example) may be sufficient for multiple trained models to con-

verge to different regions of parameter space. More determined schemes seek the

same by optimising each network against a different subset of the training data,

possibly through bagging (see random forest in Section 3.3.1) or cross-validation.

In a k-fold configuration, the latter divides the training data into k evenly sized
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Figure 4.3: By monitoring the loss over the validation set (data which do not
contribute to gradient-based parameter updates), training can be implicitly regu-
larised through early stopping. In this example of typical loss evolution, overfitting
is characterised by improvement (reduction) in the training loss that is coincident
with increasing validation loss. Early stopping halts training at the point that
worsening validation set performance (determined by an associated heuristic) is
observed, and commonly chooses the CNN parameter set that minimises the em-
pirical validation loss series. Adapted from Goodfellow et al. (2016).

groups (without replacement), each being respectively held out from the train-

ing of an ensemble of k networks. A final alternative is for each model to adopt

a different CNN architecture (see Section 4.3). A combination of approaches is

leveraged by the current state of the art for automated CNN-based segmentation:

Isensee et al. (2021) amass a doubly divergent ensemble, including a range of 2D

and 3D architectures, each trained using five-fold cross-validation.

Early stopping

Provided an applicable architecture, a model of sufficient expressive capacity and

an appropriate hyperparameterisation, gradient-based learning reliably reduces the

loss expected over the training set (the training loss). Empirical observation, how-

ever, suggests a different trajectory for the loss expected over the validation data

(the validation loss). Recalling that validation examples make no direct contri-

bution to parameter optimisation, they instead provide a means of monitoring
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performance on unseen data (and where representative, generalisation to the un-

derlying population, including the test set). Hence, as depicted in Figure 4.3, and

as typically observed, after initial improvement, sustained increases in the valida-

tion loss are indicative of overfitting. They suggest that progressively, the network

learns features of the training data that successfully reduce the training loss, but

which do not generalise to the unseen validation examples.

In response, a straightforward solution is to terminate training prior to the

observed increase in the validation loss. Practically, early stopping amounts to

making periodic evaluations against the validation set, maintaining a copy of the

parameters associated with the best performing model. This comprises a set of fea-

tures which balance optimal performance on both training and validation data. In

this idealised presentation, early stopping provides a simple and effective approach

to regularisation, indirectly defining an iteration budget to preclude overfitting.

In the context of limited data, however, where the validation set itself might

lack the diversity to represent the underlying patient distribution, early stopping

presents a risk that the model is indirectly overfit to the validation cases. An

alternative approach, which we favour within the experimental work presented in

later chapters, is to use cross-validation. Rather than maintain the best performing

parameter set, we use validation performance as a means of identifying an iteration

budget (most often an integer number of passes through the training data) that

acceptably averts overfitting across all folds of the data. In this sense, we treat

the training duration as any other hyperparameter to be optimised, applying the

underlying principles of early stopping to its determination.

Data augmentation

If overfitting results when learned features, rather than generalising to the unseen

test set, are particular to the available training data, the most natural remedy

is to curate a training set that is more representative of the underlying patient

population. This is achieved by increasing the quality, diversity and quantity of

training data. In many medical applications of CNN-based image segmentation
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(including our own, see the results of Chapter 5), however, obtaining accompanying

ground truth annotations is an expensive and time-consuming undertaking2.

Accordingly, an attractive alternative is to increase the diversity of training

data by constructing synthetic examples. Observing that ground truth segmenta-

tion is desirably equivariant to a range of transformations of the input image, data

augmentation generates new cases from the manually labelled training set. For

example, we anticipate that orthogonal rotation of the input should result in an

equivalent transformation of its ground truth labelling. Such equivariance can be

learned by simultaneous transformation of image-label pairs to form an augmented

dataset.

This approach is most effective, however, when the selection of transforms

is informed by domain knowledge, such that augmented representations express

modes of variation exhibited by the underlying population. Modifying our prior

example, since patients undergoing computed tomography (CT) or cardiac mag-

netic resonance (CMR) are typically scanned in a predictable position (for exam-

ple, head-first-supine), rotation through small angles better captures the clinically

encountered distribution of patient orientation. Other transforms that might gen-

eralise to the underlying CHD population include: translation, spatial scaling,

lateral inversion (where the normal assymetry of the thoracic organs is affected by

isomerism or dextrocardia) and non-rigid deformation. Augmentation need not be

limited to modes of geometric variation, however, and can also be used to represent

the underlying distribution of clinical image quality: such as by the introduction

of random noise or by the synthesis of artefacts (Pérez-Garćıa et al., 2021).

Being only perturbed representations of the training data, it might be argued

that augmentation primarily increases the diversity, rather than the quantity of

training examples. In response, some have looked to generative models, sampling

augmented representations from a learned distribution of clinical data (Chaitanya

et al., 2019). Notwithstanding these considerations, and even in its most basic

formulation, data augmentation has become a popular and successful means of

regularising CNN-based segmentation.

2The extent of this challenge is such that some have leveraged additional unlabelled data
through semi- (Bai et al., 2017) or self-supervised learning (Bai et al., 2019) (the latter also
benefiting from the regularising effect of multi-task learning).
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Comparison of approaches

Our experimental work relies primarily on implicit sources of regularisation, and

data augmentation in particular. As per the arguments presented by Hernández-

Garćıa and König (2018), we assert that it is the incorporation of domain knowl-

edge that makes this approach an effective means of promoting the learning of

generalisable features. Informally, we draw a distinction between data augmenta-

tion and the explicit methods presented: the latter limits expressive capacity by

constraining parameter space; whereas, the former maintains expressive capacity,

biasing convergence to a generalisable parameter set that might otherwise be pre-

cluded by explicit regularisation. This is achieved by leveraging domain knowledge

to introduce features that whilst relevant to the underlying task, might be absent

or poorly captured by the finite training data.

Theoretical work supports such claims. In certain experimental settings, both

weight decay (Bishop, 1995) and dropout (Bouthillier et al., 2015), have been

shown to be in some sense equivalent to training with examples augmented by the

inclusion of random noise. It seems natural therefore, that a more sophisticated

augmentation scheme, including transformations or perturbations that, with re-

spect to the underlying patient distribution, plausibly enrich the features expressed

by training data, would lead to improved generalisation. Irrespective of the per-

haps disputed theoretical arguments, our experience suggests data augmentation

as the most effective means of regularising training for CNN-based segmentation

of medical images, particularly in the context of few training examples.

4.2.4 Building blocks

Equipped with an abstract understanding of deep networks and their training,

we now make concrete the mathematical building blocks composing state of the

art CNN architectures for image segmentation. Developed within a considerable

body of scientific research, the following variably constitute the transformations

f (d) learnt at each layer of the network, and as depicted in Figure 4.1.
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Figure 4.4: The horizontal (a) and vertical (b) Sobel operators have been hand-
crafted to approximate the image gradient via convolution and expose directed
edges within image data. Comparatively, the kernels deployed within CNN archi-
tectures (c) present a flexible basis for optimal and task-specific feature extraction
and consolidation, achieved through data-driven parameter tuning.

Convolutional filters

In Chapter 3, the use of digital convolutional filters to expose discriminative image

features was qualitatively introduced. More quantitatively, the value of each pixel

in a derived output feature map is determined by the dot product of its correspond-

ing, local image patch with the so-called kernel, a spatially varying but restricted

set of weights. Provided a 2D input image, X, whose elements are spatially in-

dexed by i and j; and a 2D kernel, Ψ, whose elements (or weights) are spatially

indexed by u and v, the pixel-wise output of 2D convolution3 can be written as:

Gi,j = conv2D (Ψ,X)i,j =
∑
u,v

Xi+u−1,j+v−1Ψu,v (4.2.9)

Since this sum is indexed over u and v, the resulting map is sensitive to features

contained by the spatial extent of the convolutional kernel, which we refer to as

the receptive field of each element of the output feature map, Gi,j. Conventionally,

kernels have been hand engineered to promote the extraction of a theoretically

founded feature set. Consider the role played by the Sobel operators within edge

detection (Kanopoulos et al., 1988), for example. In the 2D case, these kernels are

demonstrated in Figure 4.4a and Figure 4.4b. The resulting map of edge responses

are subsequently used to inform downstream processing, including segmentation.

3Strictly, without kernel flipping, Equation 4.2.9 describes the cross-correlation operation.
However, for the majority of CNN purposes this distinction is unimportant, cross-correlation
even being favoured within many machine learning libraries (Goodfellow et al., 2016).
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Primarily, the convolutional operations employed within CNN-based image seg-

mentation serve the same purpose: to extract the salient features of image data

that might allow the various semantic classes contained to be discriminated. Unlike

conventional convolutional filters, however, those deployed within CNNs provide

a flexible, parametric basis for feature extraction, see Figure 4.4c. Secondarily,

and in the context of image segmentation, convolution provides a means of syn-

thesising learned features in aid of eventual probabilistic classification. It is then

the ambition of CNN training to find the optimal set of kernel weights that col-

lectively expose the task-specific, discriminative features required to minimise the

error between the predicted and ground truth segmentations: Ỹ and Y, respec-

tively. Critical to this aim is an appropriate initialisation of convolutional weights.

Modern approaches favour the scheme proposed by He et al. (2015).

Alone, an individual convolutional filter lacks the expressive capacity to model

the complex pattern of visual features relevant to the identification of anatomy.

Instead, the representational power of CNNs is dramatically increased by a number

of modifications. As mentioned previously, perhaps the most significant of these

is achieved by the successive operation of convolutional filters within the layers of

a deep network. However, two further extensions require explanation. The first

considers the extraction and interaction of multi-channel image features. Rather

than a single map, it is common practice for each layer to expose a multiplicity of

features. Frequently thought of as defining the width of the network, multi-channel

features expand the capacity of the CNN to model the particular appearances that

are most relevant to the data and task at hand. Extending our definition of the

2D convolutional operator to also consider the number of input and output feature

channels (indexed by a and b, respectively), we write:

Gb,i,j = conv2D (Ψ,X)b,i,j =
∑
a,u,v

Xa,i+u−1,j+v−1Ψa,b,u,v (4.2.10)

Notice that the 2D convolutional kernel presented in Equation 4.2.9 has expanded

to 4D in Equation 4.2.10, the additional dimensions describing the interaction of

input and output channels. Despite the increased dimensionality ofΨ, we maintain

the 2D descriptor (and subscript) in order to make clear the spatial dimensionality

shared by the layer, its mediating kernel and associated feature maps.
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Activation functions

In the form of activation functions, the second means by which statistical capac-

ity is extended is also the source of non-linearity within CNN-based segmentation.

Thus far, our only network building block is multi-channel convolution. As defined

(at least in 2D) by Equation 4.2.10, any network constructed from the sequential

application of this operator alone would be limited to linear transformation, a se-

vere constraint on model expression. Instead, non-linearity is granted by applying

an activation function to the output of multi-channel convolution. Analogously to

the neuronal firing that mediates the human visual system (the structure of which

is often cited as inspiring the design of CNNs (LeCun et al., 2015)) this function

establishes a threshold which, once surpassed, determines the activation state of

learned features.

As established by Nair and Hinton (2010), the rectified linear unit (ReLU) has

become the standardised approach within modern CNNs: ReLU(x) = max(0, x).

Prior to non-linear activation, a learned bias shifts the ReLU activation point.

These parameters are typically learned per output channel of the convolutional

transformation and notationally are collected into a vector, δ.

Hidden layers

The combination of the convolutional kernel (Ψ), bias vector (δ) and ReLU acti-

vation provide the basis of non-linear feature extraction and transformation. Their

application generates an intermediate feature map between the input image (X)

and the output predicted segmentation (Ỹ). With reference to Figure 4.1, and in

a 2D task, the pixels of the first hidden layer are generated as:

H
(1)
b,i,j = ReLU(conv2D

(
Ψ(1),X

)
b,i,j

+ δ
(1)
b ) (4.2.11)

Since the hidden layers are determined in a cascade of operations within the net-

work, their more general form is given by:

H
(d)
b,i,j = fd(H

(d−1);θ(d))b,i,j

= ReLU(conv2D
(
Ψ(d),H(d−1)

)
b,i,j

+ δ
(d)
b ) (4.2.12)
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Where d is a descriptive index of the depth at which the hidden layer is determined,

with H(0) = X and H(D) = Ỹ representing the special cases of the input and

output4, respectively (refer back to Figure 4.1); and the set of learnable parameters

associated with the hidden transformation f (d), is θ(d) = {Ψ(d), δ(d)}. Notationally,
and unless illustrative of a wider point of theory, for clarity we omit the index d

when referring to a hidden layer at arbitrary depth.

Hidden transformations of this form make up the bulk of a CNN’s capacity

to extract and synthesise discriminative features. However, to increase their ef-

ficiency and performance, dedicated network architectures have been developed

for image segmentation, including a range of extended feature operations. Hence,

whilst the form implied by Equation 4.2.12 is useful to demonstrate the theoretical

mechanisms underlying CNN performance, it does not provide a generalised and

exhaustive description of feed-forward models, as they are practically deployed.

Real world architectures include other operations that might comprise the inter-

mediate feature transformations, f (d). We now introduce those that are most

relevant to modern CNN-based image segmentation.

Pooling layers

Provided suitable padding (the options being thoroughly discussed by Dumoulin

and Visin (2016)), the hidden layers of the CNN maintain the spatial extent of

the input image and its intermediate feature maps. In contrast, by summarising

hidden features within spatially limited local regions, pooling layers serve to reduce

their size (see Figure 4.5). Most commonly based on mean or maximal statistics,

their design ensures that irrespective of the local feature configuration, each region

is represented by the most discriminative feature contained.

Window regions with sides of an integral number of pixels (w) are commonly

used to provide a sliding window view (as per the convolution operator) over the

input, intermediate feature map. To reduce the spatial size of the feature map,

H, however, windows must be sampled without maximal (and normally without

any) spatial overlap. The spacing between sampled regions is referred to as the

stride (s) of the pooling layer. When the stride is equal to the window side, there

4Note that in the majority of CNN architectures, a specialised output activation is applied in
the place of the ReLU (see later in this section).
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Figure 4.5: By spatial summary, max pooling is used to spatially abstract the
features of an input feature map, H. In this example, elements of the pooled
feature map, P, are determined within square regions of width and stride of two,
w = s = 2 (shaded in contrasting colours). Note the resulting reduction in the
spatial extent of learned features.

is no overlap between sampled regions, and the size of the output feature map is

reduced by a factor of s. In the case of so-called max pooling, elements of the

pooled feature map, P, are given by:

Pb,i,j = maxpool2D (H, w, s)b,i,j = max
u,v∈{1,...,w}

Hb,s(i−1)+u,s(j−1)+v (4.2.13)

This formulation implies: that the channels (indexed by b) of the feature map

to be summarised are pooled independently; that each pooling region is square;

and that the stride is isotropic in the spatial dimensions indexed by i and j.

Whilst these reflect the most common design choices for the inclusion of a max

pooling layer, each can be adapted to the problem at hand. Lastly, note that by

selecting an alternative summary operation (say the mean rather than the max)

Equation 4.2.13 can be modified to achieve different flavours of feature pooling.

This approach grants a network response that is invariant to small transla-

tions of the input image. Given that state of the art architectures for CNN-based

segmentation have their roots within image-level classification (predicting a single

label per image rather than per pixel), such invariance to small translations of the

input was an attractive property. Being concerned with the semantic content of

the data in totality, these and related tasks are less troubled by the localisation of

relevant features and structures to a particular portion of the image. Whether the

same motives justify the use of pooling layers within CNN-based segmentation is

questionable, their primary motivation appearing at odds with our task objectives.
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Nevertheless, and as demonstrated by their incorporation within ubiquitous,

state of the art architectures, pooling layers present other advantages. By reduc-

ing the spatial extent of hidden feature maps, the network is made more compu-

tationally efficient. These gains can be leveraged to increase the representational

capacity of the CNN, rapidly expanding its width and depth, albeit at low spatial

resolution. In Section 4.3, we shall see that the competition for computational

resource has driven the development of specialised segmentation CNNs and how

their use of pooled features can be reconciled with the requirements of pixel-wise

labelling.

Strided convolution

Strided convolution provides an alternative means of reducing the spatial extent

of learned features. This approach leverages the expressive capacity of the convo-

lutional operator to learn a spatial synthesis of the most discriminative features,

whilst simultaneously downsampling the input feature map (Springenberg et al.,

2014). This is in contrast with more restrictive pooling operations based on the

statistical properties of the local feature distribution (such as the maximum or

mean). As per these operations, when the size of the kernel equals the stride, the

spatial extent of the input feature map is reduced by a factor of s:

Gb,i,j = conv2D (Ψ,H, s)b,i,j =
∑
a,u,v

Ha,s(i−1)+u,s(j−1)+vΨa,b,u,v (4.2.14)

Transposed convolution

Having introduced transformations capable of reducing the spatial extent of learned

feature maps, in the context of image segmentation, it is natural to anticipate

the need for operations that can reverse this downsampling, and “upsample” the

hidden activations to their original resolution. This could be straightforwardly

achieved by conventional image resampling, including nearest neighbour or linear

interpolation. Historically, others have stored the spatial locations associated with

max pooled features in an attempt to approximate a reverse “unpooling” opera-

tion (Zeiler et al., 2011). A modern approach, however, is achieved by transposed

convolution.
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To better understand transposed convolution, and its role in restoring the spa-

tial extent of learned feature maps to the resolution of their associated source

images, it is informative to express convolutional transformation using matrix mul-

tiplication. Consider the 2D convolution of a particular input image or learned

feature map, represented by the matrix H′ ∈ R4×4, with a particular convolutional

kernel, Ψ′ ∈ R3×3 (whose elements are Ψ′
ij, see Figure 4.4):

G′ = conv2D (Ψ′,H′) (4.2.15)

In the absence of any padding of the input image, H′, there are four valid place-

ments of Ψ′, two per spatial dimension. The result, G′ is therefore a 2× 2 matrix.

In other words, convolution has reduced the spatial extent of H′.

Rather than by Equation 4.2.9, we can formulate this convolutional transfor-

mation using matrix multiplication. By spatially unrolling (left to right along rows

and then top to bottom down columns) H′ and G′ into the column vectors h ∈ R16

and g ∈ R4, we can rewrite Equation 4.2.15 as a matrix-vector multiplication:

g = Ξh (4.2.16)

Where the sparse matrix Ξ is:[
Ψ′

1,1 Ψ′
1,2 Ψ′

1,3 0 Ψ′
2,1 Ψ′

2,2 Ψ′
2,3 0 Ψ′

3,1 Ψ′
3,2 Ψ′

3,3 0 0 0 0 0

0 Ψ′
1,1 Ψ′

1,2 Ψ′
1,3 0 Ψ′

2,1 Ψ′
2,2 Ψ′

2,3 0 Ψ′
3,1 Ψ′

3,2 Ψ′
3,3 0 0 0 0

0 0 0 0 Ψ′
1,1 Ψ′

1,2 Ψ′
1,3 0 Ψ′

2,1 Ψ′
2,2 Ψ′

2,3 0 Ψ′
3,1 Ψ′

3,2 Ψ′
3,3 0

0 0 0 0 0 Ψ′
1,1 Ψ′

1,2 Ψ′
1,3 0 Ψ′

2,1 Ψ′
2,2 Ψ′

2,3 0 Ψ′
3,1 Ψ′

3,2 Ψ′
3,3

]
,

and represents the convolutional transformation, each row accounting for a valid

location of the convolutional kernel.

This formulation prompts the realisation that we can recover a vector of equal

length to that of the input, h, from the output, g, by multiplication with the

transpose of the matrix representing the initial convolution:

ΞTg = r (4.2.17)

Note that since we consider the transpose ΞT , and not the inverse Ξ−1 (where

that might exist), in all practical cases the recovered vector, r ̸= h. Rather, it
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is only relevant the two have the same dimensionality. Furthermore, in addition

to sharing the same length, the relationship between forward and reverse convo-

lutional matrices, one being the transpose of the other (Ξ and ΞT , respectively),

guarantees that the “elemental connectivity” of these operations is mirrored. By

this we mean that the elements of h which determine a particular element gi,

share indices with those elements of r which are derived from gi. In either case

the vectors g and r must be reshaped to assume the shapes of their 2D spatially

structured counterparts, G′ ∈ R2×2 and R′ ∈ R4×4.

Hence, the transposed convolutional operator can be said to reverse the change

in feature space dimensionality, prescribed by an associated convolutional trans-

formation. In our example, and only for illustrative purposes, the two share the

same set of kernel parameters, Ψ′
ij. In practice, both convolution and transpose

convolution are deployed to downsample and upsample feature maps, indepen-

dently and as required: there is no sense in which the counterparts need be paired.

Critically, each new convolutional layer, irrespective of whether it might involve

transposed operation, presents its own set of learnable parameters. As a result,

transposed convolution presents a more expressive means of upsampling hidden

features, than those based on conventional image resampling or unpooling.

Whilst we have developed this theoretical basis in the context of convolution

with unit stride, the same approach can be applied to strided outputs, accelerating

the rate of spatial upsampling. Finally, we acknowledge that there are different

approaches to thinking about transposed convolution, including through intricate

input padding schemes (Zeiler et al., 2011), or esoteric arithmetic. Rather than

within an explicit and complex closed-form expression, however, we favour the im-

plicit presentation through matrix multiplication: at the very least it best explains

why we refer to this operation as transposed convolution.

Dilated convolution

As will be explained in Section 4.3, pooling, and strided and transposed convolu-

tional layers have all been incorporated within CNN architectures as a means of

rapidly increasing and controlling the receptive field of learned features. An alter-

native approach is provided by dilated convolution (Yu and Koltun, 2015). Rather
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(a) conv2D (Ψ,H, r = 1) (b) conv2D (Ψ,H, r = 2) (c) conv2D (Ψ,H, r = 4)

Figure 4.6: By spatially distributing the associated kernel (shown by red markers
composing the elements of Ψ) using a rate, r, dilated convolution increases the
receptive field. When applied sequentially (as in this example: (a)→ (b)→ (c)),
the resultant receptive field of the network (shown shaded in green for the central
pixel of each feature map, H) can be grown exponentially. Note that since the
dilated elements of each kernel realise a sparse sampling on the input, pixels within
the resultant receptive field are not equally represented: those more frequently
sampled are indicated by increasing the saturation of their shading. Adapted from
Yu and Koltun (2015).

than via a dense rectangular kernel, this operation relies on a spatially distributed

sampling of input pixels (see Figure 4.6), per output element of the derived feature

map. The dilation rate, r, controls the expansion of sampled locations according

to:

Gb,i,j = conv2D (Ψ,H, r)b,i,j =
∑
a,u,v

Ha,i+r(u−1),j+r(v−1)Ψa,b,u,v (4.2.18)

This sampling of input or hidden layers expands the receptive field of the associated

convolution, allowing spatially extended features to be learnt. Whilst the same

can be nominally achieved by the action of convolutional layers after pooling, it

should be noted that features extracted by dilated convolution are determined at

the full resolution of its input. The sparse sampling of the receptive field (and

the more complex network connectivity patterns established by repeated dilated

convolution, see Figure 4.6b and Figure 4.6c), however, means that not all spatial

locations make equal contribution to learned features.
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Generalised convolution

Motivated by a desire to handle and manipulate the spatial extent of learned

features, thus far we have presented two modifications of the basic, 2D multi-

channel convolutional operator, including strided and dilated variants. We can

write a function defining a generalised convolutional operator that, by considering

different values of the stride (s) and dilation rate (r), can express each of these

modes:

Gb,i,j = conv2D (Ψ,H, s, r)b,i,j

=
∑
a,u,v

Ha,s(i−1)+r(u−1)+1,s(j−1)+r(v−1)+1Ψa,b,u,v (4.2.19)

Note that when s = r = 1 we recover the basic multi-channel convolution defined

by Equation 4.2.10. To avoid excessively cluttered index notation this formalism

has been developed in the context of 2D medical image segmentation. However,

and as relevant to our work on 3D image segmentation, the same approach can be

applied to 3D inputs, the equivalent generalised result being given by:

Gb,i,j,k = conv3D (Ψ,H, s, r)b,i,j,k

=
∑

a,u,v,w

Ha,s(i−1)+r(u−1)+1,s(j−1)+r(v−1)+1,s(k−1)+r(w−1)+1Ψa,b,u,v,w (4.2.20)

Output layers

After feature extraction and transformation via the application of successive con-

volutional and pooling operators, the forward pass results in an array of unnor-

malised scores or logits that in some way, characterise CNN prediction. In the

context of classification, a meaningful output is achieved by the selection of an

appropriate normalisation scheme, converting the raw outputs into an indication

of probabilistic class membership. So-called output layers include specialised acti-

vation functions to squash the dynamically ranged CNN output into the interval

[0, 1]. They are applied to the logits returned by the final convolutional (or classi-

fication) layer, in a spatially pixel-wise fashion. Selection of an appropriate output
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activation depends on the formulation of the classification task at hand, and in

particular, the number of segmentation labels considered.

Those using a CNN to model a binary segmentation task frequently use the

logistic sigmoid to indicate the predicted probability that a voxel is associated with

the positive class:

σ (x) =
exp(x)

exp(x) + 1
(4.2.21)

Where x is a scalar input. Note that in such tasks, the number of channels in the

CNN output is normally set as one, indicating the score or, once normalised, the

probability of membership within the positive class. In this scheme, the probability

of the negative class is left implicit, only being inferred as 1− σ(x).

In multi-class segmentation, and where x is a per pixel vector of raw network

scores over the C class labels, the softmax output provides a differentiable analogue

to the max operator:

softmax (x)b =
exp(xb)∑C
c=1 exp(xc)

(4.2.22)

The softmax generalises the sigmoid function, allowing the CNN output to ap-

proximate a valid probability distribution over C segmentation classes. Its form

enforces competition between the semantic classes of the considered segmentation

task, via the relative magnitude of the raw scores contained in x. Where any ele-

ment (xb) of the raw output increases, the probability of the union of the remaining

classes (
∑

c̸=b softmax(x)c) must fall. This property aligns with the ambition of

a multi-class (rather than a multi-label) task specification, in which each voxel

is associated with a single label, without partial or hierarchical membership of

multiple classes.

4.3 Network architectures

Section 4.2.4 introduced the various building blocks from which CNNs are con-

structed. A network’s architecture describes the selection, combination and con-

nectivity of these components to suit the motivations and technical requirements

of the task at hand. Amongst the multitude of design choices governing CNN con-

struction and parameter optimisation, network architecture is possibly the most
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Table 4.1: A history of the developmental contributions (as most relevant to the
design of modern segmentation CNN architectures) made by key network archi-
tectures for image classification. Illustrative of the rapid progress that has been
made in this field in just the last decade, according to Google Scholar these works
have been collectively referenced over 350,000 times.

Year Architecture Authors Contribution

2012 AlexNet Krizhevsky et al.
Deeper networks can be trained and exceed the state of
the art by a large margin.

2014 VGG
Simonyan and
Zisserman

Deeper networks comprising convolution with small
kernels is superior to shallower networks of large kernels.

2015 GoogLeNet Szegedy et al.
Spatially multi-scale processing improves the accuracy
of performance.

2016 ResNet He et al.
Deeper networks can be trained more easily by learning
residual functions.

2017 DenseNet Huang et al.
Dense connectivity between layers promotes efficient
feature learning.

critical. At minimum, it must accommodate the respective structures of the in-

put data and anticipated outputs or predictions. However, and as alluded to

previously, judicious architectural design also admits a means of manipulating

the spatial dimensionality of learned features, expanding the receptive field and

boosting computational efficiency: desirable attributes in the context of 3D image

segmentation.

Today’s state of the art architectures for CNN-based segmentation are the

culmination of the rapid scientific progress that has been observed over the last

decade. To understand the key features of modern segmentation CNNs, we firstly

present a historical review of the most pivotal contributions made in the published

literature. These, and their associated architectures, are summarised in Table 4.1.

4.3.1 Classification

Modern CNN-based segmentation architectures owe their foundation to method-

ological developments motivated by the task of image classification. Rather than

a dense array of labels per pixel or voxel, such applications seek to assign a single

class that summarises the content of an entire image. In this context, Krizhevsky

et al. (2017) presented AlexNet, a seminal piece of work in the image processing
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Figure 4.7: The AlexNet architecture: implemented via two identical processing
streams (upper and lower), each assigned to a separate graphics processing unit
(GPU), this CNN learns a spatially abstracted representation of image content in
aid of global classification.

field. Their architecture included the basic building blocks of today’s state of the

art segmentation CNNs, including five convolutional, and three pooling layers.

Through the successive application of these operations, AlexNet (in common

with other architectures for CNN-based classification) bridges the gap between the

spatially structured input, and the non-spatial, semantic class prediction. This is

demonstrated in Figure 4.7, in which each multi-channel feature map is described

by a cuboidal box. Through the forward pass, the growth in the number of feature

channels, and the increasingly rich description of semantic content, is represented

by the broadening horizontal width of each hidden layer. Semantic enrichment

is accompanied by occasional max pooling, each application halving the spatial

extent of the hidden layers. By extracting the most discriminative features from

each portion of the image, the semantic content of the image is abstracted from

its spatial configuration. In Figure 4.7, spatial abstraction is indicated by the

narrowing of each feature map cross-section (projected into the plane of the page).

Finally, after the third max pooling operation, the image dimensions of the

resulting hidden layer (just 6 × 6) are flattened to realise a vector, devoid of

any spatial structure, but containing the semantic features from which the global

content of the input can be determined. After, the final predicted probability

distribution over the 1000 labels of the ImageNet database (the task to which

AlexNet was first applied), is returned by three learned “classification” layers.

Otherwise known as fully connected layers, these are achieved by the multiplication
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of a parameterised weight matrix with the input feature vector and subsequent

non-linear activation. Accordingly, and in the associated computational graph,

every element of the intermediate 2048-dimensional feature vectors, and the final

class distribution, is densely connected with their respective inputs.

Practically, Krizhevsky et al. (2017) showed that by leveraging graphics pro-

cessing units (GPUs), such deep networks, though theoretically developed decades

before (Fukushima and Miyake, 1982; LeCun et al., 1989), could now be practicably

optimised. These computational and operational gains admitted the application

of CNNs to tasks comprising high-dimensional, complex and heterogeneous image

data, the like of which had only been idealised to that point. Whilst Krizhevsky

et al. (2017) may not have been the first to present such an approach, perhaps due

to the superiority of their results (exceeding pre-existing state of the art methods

by a large margin) their paper has been highly influential. In large part, the success

of AlexNet stimulated the research effort that has culminated in the popularity

and variety of today’s CNN-based, image processing methods.

Their advances also allowed for architectural investigation. Critically, they ob-

served that performance was degraded by the removal of even a single convolutional

layer, prompting their conclusion that network depth was key to improving per-

formance, a foundational tenet of today’s deep CNNs. Network depth admits the

capacity to learn a hierarchy of features at increasing levels of abstraction from the

raw content of pixel data (Litjens et al., 2017). By combining the low level image

cues extracted within shallower portions of the architecture, deeper layers learn

a high-level, abstract representation of the anticipated classification outputs (see

Figure 4.8). Where these are anatomical targets, the synthesis of low-level features

builds a high-level representation of shape, relative size and spatial arrangement.

The result is that increasing network depth delivers a highly expressive model of

the task at hand, one in which a wide variety of outputs can be represented by a

CNN with high statistical capacity and efficiency5.

Figure 4.8 also reflects the growth of the receptive field through the successive

layers of the deep, AlexNet architecture. We highlight that where Section 4.2.4

5For further discussion of the advantages presented by deep CNN architectures, including
their extraction of distributed, sparse and hierarchical representations of data, we direct the
reader to Bengio et al. (2013).



Figure 4.8: Developing an approach based on regularised image space optimisation, Yosinski et al.
(2015) (from where this example is taken) sought to visualise the features learned at each layer of an
AlexNet-like CNN architecture. Their results demonstrate that successively deeper layers of a CNN
learn a higher-level and increasingly abstract representation of image content. Where the first layer is
sensitive to only low-level image features such as edges and basic texture, the eighth combines these,
resolving the high-level semantic structure of associated objects. Note that the relative size of each
feature map reflects the layer-wise growth of the receptive field, and that the colours indicate the true
red-green-blue (RGB) space of natural images.
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introduced the receptive field of a single convolutional operation, we now extend

this notion. Rather than against its immediate hidden input, here we characterise

the receptive field of a given convolutional layer with respect to the input image

(X). Via the relatively shallow (d < d′) portion of the computational graph

established by the forward pass, the receptive field is governed by the set of pixels

in X which determine each hidden element in H(d′). Accordingly, the receptive

field of AlexNet, is most rapidly increased by max pooling after the second and

third convolutional layers.

To a lesser extent, the receptive field is also expanded by successive convolution

with unit stride and dilation rate. In such cases, its growth is largely governed by

the spatial extent of associated convolutional kernels. Where the AlexNet archi-

tecture (Krizhevsky et al., 2017) employed convolutional kernels of varying spatial

extent (as large as 11× 11), within their Visual Geometry Group (VGG) network,

Simonyan and Zisserman (2014) preferred successive feature extraction and trans-

formation via smaller, 3×3 filters. Their experiments found that replacing a 5×5

with two 3 × 3 kernels, not only achieved an identical receptive field, but also,

by increasing the network depth (from one to two non-linear layers), classification

accuracy was improved. This result was observed despite the associated reduction

in the number of convolutional parameters: 2× 32 < 52. For its efficiency and ul-

timately superior performance, VGG’s use of multiple small convolutional kernels

has been adopted by modern CNN architectures for image segmentation.

The association between increasing CNN capacity (either through depth or

width) and improved performance, however, increases computational demand, and

presents challenges to gradient-based optimisation. Addressing the first of these,

Szegedy et al. (2015) observed that for a linear increase in the number of input

(a ≤ A) and output (b ≤ B) features, the overall operational burden of the asso-

ciated convolutional layer increases quadratically (A×B). Such growth consumes

substantial computational resource, expending GPU memory in the storage of hid-

den feature maps and multiplicative operations required by convolution. In pursuit

of computational and statistical efficiency, they sought to approximate an idealised

architecture which, rather than via the application of dense convolutional filters,

made use of only sparse, optimal feature connectivity between hidden layers. Their

resulting Inception module is shown in Figure 4.9a. Key to its operation is the



(a) Inception block, adapted from Szegedy et al. (2015).

(b) Residual block, adapted from He et al. (2016).

(c) Dense block, adapted from Huang et al. (2017).

Figure 4.9: Advanced computational blocks developed within image classification,
and deployed within CNN-based segmentation architectures. The || and + symbols
imply channel-wise concatenation and element-wise summation respectively. Note
that for clarity, we omit explicit indication of where non-linear activation and
batch normalisation (Ioffe and Szegedy, 2015) are included, their presence only
implied by the notation representing layer-wise operation by f (d). In any case,
the inclusion and order of such operations, as well as the number of convolutional
operations applied per block, are free design choices. Moreover, arguments as to
whether each block increments the network depth by one, or by the number of
convolutional layers contained are largely inconsequential and, so long as they are
applied consistently, only a matter of nomenclature.
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use of 1 × 1 convolutional layers to project hidden activations to a lower dimen-

sional feature space (B < A), saving computational resources. They also employ

convolutional kernels of varying size, extracting and then concatenating features

learned at different spatial scales. Incorporating the Inception module within their

GoogLeNet architecture, they outperformed existing CNN architectures that were

both shallower and less wide, with only a modest increase in parameter and com-

putational resources. Whilst the Inception module has not proved as popular

in novel architectures for image segmentation, its underlying intentions have in-

formed related developments: (1) the drive to achieve deep networks that are both

parameter- and computationally efficient; (2) the use of 1×1 convolution to control

feature dimensionality; and (3) the interest in feature extraction and combination

at multiple spatial scales.

Addressing the second challenge posed by the pursuit of ever deeper networks,

He et al. (2016) observed that such architectures were more difficult to train.

Moreover, previous experiments suggested that the associated degradation in per-

formance (even compared with their shallower counterparts) was not a product

of gradient-vanishing (an obstacle largely solved by the inclusion of intermediate

batch normalisation layers (Ioffe and Szegedy, 2015)) nor over-fitting. Instead,

their assessment pointed to limitations in gradient-based optimisation schemes,

and their inability to find locally optimal locations in the very high-dimensional

parameter space of deeper networks. In contrast, they demonstrated that such

solutions (which at least maintain, rather than degrade, the level of performance

achieved by shallower networks) can be analytically constructed at arbitrary net-

work depth by successive identity mapping of shallow outputs.

Equipped with this insight, they formulated deep residual learning. By recast-

ing the underlying mapping sought by the layers of a conventional CNN, f(H; θ),

they hypothesised that the resulting residual functions, f(H; θ) + H, would be

easier to train. As shown by Figure 4.9b, these residual units were achieved by the

inclusion of skip connections within the CNN architecture. At the time, this ap-

proach allowed some of the deepest networks presented to be successfully trained.

ResNet models with hundreds of sequential convolutional layers demonstrated per-

formance gains over shallower architectures. As a means of training deeper net-
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works, residual connectivity can and has been incorporated within architectures

for CNN-based segmentation.

Amongst other works, ResNets tackled the challenge of deep network optimi-

sation by introducing short cut connections, effectively bypassing layers of the

network to reduce the path length between shallower and deeper feature maps.

Taking this principle to its ultimate extreme, Huang et al. (2017) presented densely

connected CNNs, in which every hidden layer receives as input, the output of all

preceding feature maps (see Figure 4.9c). They argue that such dense, direct

connectivity improves the flow of gradient information from the scalar loss to all

network layers. Furthermore, by virtue of the fact that shallow, low-level features

are concatenated and reused as input at all depths, DenseNets can be made param-

eter efficient by reducing the number of output channels realised by each hidden

layer. These advantages were borne out in their experimental results, achieving

state of the art classification performance with relatively few parameters. As per

its residual counterpart, dense connectivity has also been tested within modern

architectures for CNN-based segmentation.

4.3.2 2D segmentation

Unsurprisingly, initial attempts at CNN-based image segmentation started in 2D

and built on the principles developed for classification (those listed in Table 4.1).

Differences between the two tasks, however, preclude the immediate application of

associated architectures, at least without suitable adaptation to rationalise their

operation with the segmentation objective: the global summary of image content

sought by CNN-based classification is achieved by spatial abstraction; whereas,

segmentation seeks to localise the constitutive structures through a pixel-wise la-

belling.

Such a high level analysis might reject those sources of spatial abstraction,

which though critical to classification architectures, may compromise the localisa-

tion necessary to segmentation. In particular max pooling appears at odds with

the latter’s objectives. However, in the context of segmentation - where we recog-

nise that in common with classification, a pixel-wise labelling depends not only

on local cues, but also on spatially extended and even global features of the im-
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Table 4.2: A history of the developmental contributions made by key network
architectures for image segmentation.

Year Architecture Authors Contribution

2012 CNN Ciresan et al.
Applied in a sliding window across the input, CNN-based
pixel classifiers can build up a dense segmentation.

2015 FCN Long et al.
Features can be spatially reconstructed from classification
nets by 1×1 and transposed convolution; skip connection.

2015
Deconvolutional
network

Noh et al.
Mirroring the contracting path used in classification with an
expanding, deconvolutional path improves reconstruction.

2015 U-Net
Ronneberger
et al.

Combining skip connections with incremental expansion
balances reconstruction and semantic feature extraction.

age6 - pooling layers provide a means of rapidly expanding the network’s receptive

field. Hence, rather than solely as a means of spatial abstraction, pooling allows

for multi-scale features to be learned efficiently. By attempting to balance the

two, CNN-based segmentation faces an inherent tension between the semantics

of image features, and their spatial localisation to particular regions of the data

(Long et al., 2015). The succession of segmentation architectures presented in this

section (and listed in Table 4.2) are specially adapted to meet this expectation.

Historically, attempts to extend classification architectures had first to contend

with the disparity between the non-spatial class vector returned by prior CNNs and

the highly structured output anticipated by segmentation. Rather than architec-

turally, this gap was initially bridged operationally. Instead of predicting a dense

probabilistic labelling per forward pass, Ciresan et al. (2012) inferred the class

membership of a single pixel centred at the network input. An associated pixel-

wise labelling was then built up by multiple passes through the network within a

sliding window framework. Whilst this approach was perhaps reasonable in the

domain of low resolution, natural images, its inefficiency rendered it impractical in

most real world use cases. In this scheme, 3D medical imaging comprising millions

of voxels would demand the same number of forward computations.

More efficient solutions rely on architectural modification to rationalise CNN

output with the dense, structured labelling demanded by segmentation. In their

6In the segmentation of cardiac anatomy from medical images, this reflects the fact that
individual sub-structures can be more easily identified with reference to their gross position,
relative to the predictable arrangement of the remaining components of the thorax.



Figure 4.10: Fully convolu-
tional networks (FCNs) re-
place fully connected lay-
ers with 1 × 1 convolutions
and use upsampling to re-
cover pixel-wise labels from
the spatially abstract fea-
ture map learned by a VGG
network. Reproduced from
Long et al. (2015).

Figure 4.11: Fully convolutional network (FCN) architectures improve the accu-
racy with which the fine details of segmentation targets are predicted, by intro-
ducing skip connections to fuse multi-scale and multi-resolution features. In this
example, the resolution of each feature map is indicated by interposed gridlines.
On the left hand side, the features extracted at each pooled stage of a VGG net-
work are indicated. Depth increasing from left to right, these are labelled “image”,
“pool1”, “pool2” and so on. On the right hand side, arrows indicate the skip con-
nections defining the fusion of various feature maps, prior to multi-scale prediction.
Reproduced from Long et al. (2015).
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Figure 4.12: Compared with a conventional VGG network for classification, the
deconvolutional network presents a symmetric expanding path in which the dense
labelling demanding by segmentation is recovered by incremental unpooling and
transposed convolution. Reproduced from Noh et al. (2015).

seminal work on fully convolutional networks (FCNs), Long et al. (2015) made four

adaptations to the VGG network (Simonyan and Zisserman, 2014). Firstly, rather

than collapse the pooled features obtained by the final convolutional layer into a

vector, their FCNs maintain spatial structure throughout (albeit at a coarse reso-

lution, see the heatmap in Figure 4.10). Secondly, rather than by fully connected

transformation, their classification layers are implemented as 1×1 convolutions, al-
lowing the FCNs to accommodate inputs of variable size. Thirdly, they recover the

full spatial resolution of the input by learned upsampling, implemented as trans-

posed convolution. Fourthly (and given the current state of the art in CNN-based

segmentation, perhaps most importantly), they improve the granular accuracy of

predicted segmentation by the summation of feature maps learned at different

spatial scales and resolutions. As shown in Figure 4.11, via skip connections and

learned upsampling, shallow but high resolution features are combined with those

which though semantically rich, are extracted by deeper layers of the network, at

coarse resolution. The resulting FCN-16s and FCN-8s architectures made signif-

icant improvements compared with their FCN-32s counterpart; the latter being

based on direct upsampling of the single, most spatially abstracted, but lowest

resolution VGG feature map.

The idea of incremental upsampling was taken to its extreme by Noh et al.

(2015). In their account of deconvolutional networks (see Figure 4.12), they inves-

tigate a symmetric architecture in which the spatial abstraction associated with the

convolutional and pooling layers of a conventional VGG network, is mirrored by un-
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Figure 4.13: Based on symmetric contracting and expanding pathways, linked by
skip connections between shared resolution levels, the U-Net architecture has come
to dominate the state of the art for CNN-based segmentation. Reproduced from
Ronneberger et al. (2015).

pooling (Zeiler et al., 2011) and deconvolution (or transposed convolution) within

an opposing path for spatial reconstruction. In the contracting path, this architec-

ture efficiently expands the receptive field and learns a rich semantic description of

image content at low spatial resolution. In the expanding path, compact features

are incrementally unpacked in a coarse-to-fine framework and localised to specific

pixels of the image. Their approach does not, however, include skip connections

for the synthesis of multi-scale features.

Combining the architectural modifications described previously, Ronneberger

et al. (2015) established the U-Net architecture shown in Figure 4.13. Critical

to its success, to the the symmetric form described by Noh et al. (2015), they

added the skip connections introduced by Long et al. (2015). At each pooling

level, these allowed for the high resolution features learned in the contracting

path to be directly incorporated within spatial reconstruction. Rather than by
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summation, features forwarded from the contracting path are concatenated as

additional channels of the symmetric expansion. In aid of spatial reconstruction,

this allows for the synthesis of the two to be learned by convolution.

As well as their architectural developments, Ronneberger et al. (2015) made use

of intensive data augmentation based on non-rigid deformation (a mode of trans-

formation that has since been incorporated within dedicated open source libraries

(Pérez-Garćıa et al., 2021). Furthermore, they employed a geometric weighting

schemes to bias the CE loss in the vicinity of the background interfaces dividing

foreground targets and balance class frequencies. Collectively, their contributions

achieved a level of performance that, though dependent on only a small number of

training examples, exceeded the state of the art in the binary segmentation of cel-

lular microscopy images by a large margin. Its superiority was measured not only

by metrics of spatial overlap, but also by the warping error (Jain and Farrokhnia,

1991), indicating that U-Net’s incremental, reconstruction of fine details realised

a topologically meaningful delineation of cellular interfaces.

Since this time, U-Net has solidified its position as the state of the art architec-

tural solution to CNN-based 2D segmentation across a number of domains (Isensee

et al., 2021). Success has bred popularity, its original paper having received over

40,000 citations. Arguably, this status is a product of the balance struck be-

tween the extraction of semantic features in the contracting path (leveraging the

efficiency of max pooling to expedite multi-scale learning), and incremental spa-

tial reconstruction (incorporating transposed convolution and skip connections at

multiple scales) in the following expansion. In so doing (and until a more opti-

mal balance is found), U-Net represents our best attempt to overcome the tension

between the spatial abstraction of semantic features and their localisation to the

dense structure of the image (Long et al., 2015).

4.3.3 3D segmentation

Despite the success of the 2D U-Net architecture, its natural extension to 3D seg-

mentation by the inclusion of volumetric convolutional kernels (first demonstrated

by Çiçek et al. (2016)), was not established as an equivalent gold standard until

recently. Before ultimately returning to the state of the art nnU-Net framework
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(Isensee et al., 2021) in Section 4.3.4, here we describe the historical development

of competing approaches and architectures, those motivated by the particular chal-

lenges of 3D segmentation. Due to the cubic increase in the number of voxels, in

addition to carrying a higher computational burden, volumetric segmentation de-

pends on a more complex set of visual patterns than might be found in 2D (Li

et al., 2017c). Coupled with the equivalently scaled increase in the number of

network parameters, the typical paucity of medical image training data raises the

possibility of overfitting in 3D tasks. These observations have led some to sug-

gest that training a 3D CNN from scratch is infeasible where training data are

insufficient and computer memory limited (Mortazi et al., 2018).

Accordingly, the following architectures and associated formalisms have sought

to address ways to: efficiently balance the intensive demands of 3D representation

with the computing resources available; facilitate learning of complex 3D appear-

ances; or both. These gains have been achieved either through: (1) adapting exist-

ing methods to 3D segmentation (such as via novel task formulations, or schemes

for training established 2D, 2.5D or 3D architectures based on U-Net or FCNs);

or (2) through the conception of novel architectures, tailored to the demands of

3D CNN-based segmentation.

Adapting training schemes to 3D segmentation

A first, and perhaps most obvious approach to overcoming the computational

challenge of 3D CNNs, is to abandon any attempt to learn the 3D geometry of

anatomy, instead focusing on its appearance in 2D cross-section. At test time, 3D

structure is recovered by the slice-wise combination of 2D predictions (and possible

domain- and task-specific refinement). This approach admits the use of the 2D

U-Net, or other architectures explored in the previous Section 4.3.2. In the context

of data acquired on a spatially anisotropic grid, where the spacing between slices

might far exceed the in plane resolution, this approach may even be preferable.

For example, within conventional 2D short axis cine images, 3D appearances are

compromised. Accordingly, 2D architectures remain the gold standard approach,

having achieved a level performance consistent with the inter-observer variation

between clinical experts (Bai et al., 2018).
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Where acquired with isotropic 3D spatial resolution, however, lone 2D CNNs

do not leverage volumetric features. A compromise between the two, the so-called

2.5D approach seeks to incorporate this context without incurring the computa-

tional costs of an equivalent 3D model. Typically it involves training three inde-

pendent 2D CNNs, one per orthogonal plane of the 3D volume, and fusing their

predictions at test time (Hesamian et al., 2019). The 2.5D moniker, however, has

also been applied to a range of different configurations, each setting out to aug-

ment 2D CNNs (or their inputs) to leverage volumetric spatial context without

applying 3D kernels. These were recently compared by Minnema et al. (2021) and

include: triplanar majority voting; concatenation of slices from the third spatial

dimension as additional channels of the input (or which consider adjacent slices

more generally); and training on randomly oriented 2D cross-sections. Finally, a

more advanced triplanar CNN is presented by Prasoon et al. (2013) who, through

a shared softmax output layer realise the dependent training of three 2D networks,

respectively focused on axial, sagittal and coronal planes.

Ultimately however, 2D and 2.5D approaches lack the expressive capacity of 3D

CNNs. Accepting the increased parameterisation associated with 3D convolution,

a popular approach to reduce computational demand is to separate task complexity

into a cascade of operations, typically: (1) 3D region of interest (ROI) localisation

at low resolution; followed by (2) high spatial resolution segmentation. In the

first step, spatially downsampled input allows for the incorporation of 3D context,

without dramatically increasing the memory required to store hidden activations.

This infers a focal ROI that is cropped from the high resolution data, and fed

to the second step, reducing the size of downstream feature maps. Moreover, by

isolating the two components of the overall task, each is simplified, and demands

a lower capacity network (with curtailed depth or width) than might be required

were they addressed simultaneously. To segment white matter lesions from mag-

netic resonance imaging (MRI), Valverde et al. (2017b) implement a cascade of

independently trained 3D CNNs. Alternatively, to label multiple organs within

abdominal CT, Roth et al. (2018) train a cascade of 3D U-Nets in an end-to-end

fashion (extending the 2D approach of Christ et al. (2016)). Zhou et al. (2017)

combine multi-planar 2.5D U-Nets with spatially cascaded processing, achieving

an iterative approach to segment the pancreas from CT data.



4.3. Network architectures 137

Table 4.3: The range of CNN architectures that have been specially developed to
address the demands of 3D image segmentation.

Year Architecture Authors Contribution

2016 3D U-Net Çiçek et al.
The 2D U-Net can be extended to 3D segmentation via the
incorporation of 3D convolutional kernels.

2016 V-Net Milletari et al.
Dense inference via an end-to-end trained 3D U-Net
incorporating residual learning may improve performance.

2017 DeepMedic Kamnitsas et al.
Comparatively, by restricting the number of spatial scales,
parallel stream architectures are more parameter-efficient.

2017 HighResNet Li et al.
Similar gains in efficiency are made by using dilated
convolutions to increase the receptive field at high resolution.

2018 Dense 3D CNN Chen et al.
Densely connected convolutional blocks may also facilitate
learning of the complex features of 3D anatomy.

2019 TeTrIS Lee et al.
Alternatively, these features can be instilled indirectly, via
the learned transformation of an anatomical prior.

2021 nnU-Net Isensee et al.
Despite this wealth of architectural contributions, few make
reliable improvements compared with the 3D U-Net.

CNN architectures dedicated to end-to-end 3D segmentation

Works cited in the previous section met the computational and representational

challenges of 3D CNN-based segmentation by making adaptations to simplify train-

ing. Rather than match the full 3D structure of volumetric data and their seg-

mentation with an architecture composing 3D convolutional layers, they instead

developed schemes for reconstructing labels from predictions made by 2D or 2.5D

networks. Where 3D kernels were introduced, others broke down the complex seg-

mentation task into simpler facets. Here we address the natural alternative, provid-

ing an account of architectures exclusively including 3D convolution: those which

have been specially developed to tackle volumetric segmentation, and trained in

an end-to-end fashion. These are summarised in Table 4.3.

After Çiçek et al. (2016) first demonstrated the 3D equivalent of U-Net, Mil-

letari et al. (2016) presented the modified V-Net architecture. This work remains

notable, being an early example of an end-to-end CNN-based solution to volumet-

ric segmentation, one that also applied the Dice loss later generalised by Sudre

et al. (2017). Additionally, and as shown in Figure 4.14, V-Net learns residual fea-

tures (He et al., 2015) at each level of the multi-scale expanding and contracting
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Figure 4.14: The V-Net architecture for dense volumetric segmentation includes
two types of skip connection: the first (in yellow) incorporates high resolution
features within the expanding path for spatial reconstruction; the second (in grey)
admit residual feature learning at each spatial scale. This figure has been extracted
from the schematic found in Milletari et al. (2016), and reflects a single spatial
scale of the entire V-Net architecture.

paths. The authors suggested this modification was beneficial to both performance

(perhaps addressing the complex appearances of 3D anatomy) and the speed of

convergence during training. A final architectural subtlety, rather than by channel-

wise concatenation, high resolution features forwarded from the expanding path

were incorporated within spatial reconstruction via element-wise summation: a

design choice perhaps seeking to reduce the memory demands of storing large, 3D

multi-channel features maps. Despite a limited training set of only fifty examples,

Milletari et al. (2016) achieved impressive spatial overlap and surface localisation

performance when segmentating the prostate gland from volumetric MRI.

The success of U-Net-based, 3D architectures (including V-Net), comes with

the computational and statistical cost associated with the millions of parameters

contained. In response, Kamnitsas et al. (2017) presented the DeepMedic archi-

tecture, boasting increased efficiency by limiting the number of spatial scales inter-

rogated (at least compared with the majority of U-Net-based networks). Perhaps

inspired by cascaded CNN processing, including prior ROI localisation, DeepMedic

accommodates two, mutually centred inputs. The first accepts a large 3D patch

resampled at low resolution, allowing the extended spatial context of segmenta-

tion targets to be learnt. The second, a smaller 3D patch maintaining high spatial
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Figure 4.15: The DeepMedic architecture for dense volumetric segmentation, in-
cluding dual streams for feature extraction at varying spatial scales. These are
learnt in parallel, prior to their eventual fusion via convolutional classification lay-
ers. Reproduced from the work of Kamnitsas et al. (2017).

resolution, admits the extraction of features describing the fine details of these

structures. Unlike cascaded networks, and as shown in Figure 4.15, each of these

streams are learned in parallel, such that their associated features are latterly

fused prior to prediction. This is achieved by their synthesis within classification

layers implemented as 1 × 1 × 1 convolutions for dense prediction. In addition

to their architectural contribution, Kamnitsas et al. (2017) also explored different

sampling strategies to counter the class imbalance within their challenging task of

segmenting brain lesions from neuroradiological MRI.

Bearing similarity with the structure of the DeepMedic architecture, Chen et al.

(2018a) also presented a dual stream 3D CNN. However, rather than combine fea-

tures learned at multiple scales, their network isolated the semantics captured by

different neuroradiological MRI acquisitions (including fluid attenuated inversion

recovery and T2-weighted imaging in one stream; and T1-weighted and contrast-

enhanced image series in another). After fusion with the first stream, the second

is trained to classify the lesion sub-structures relevant to diagnosis. Specific to

their particular clinical setting, we are less interested in the semantic formulation

of their dual stream architecture. Perhaps of more general interest, Chen et al.

(2018a) employ densely connected convolutional blocks (Huang et al., 2017) to

tackle the challenge of learning complex 3D appearances.

As per Kamnitsas et al. (2017), Li et al. (2017c) also sought an efficient so-

lution to CNN-based volumetric segmentation. They presented their HighResNet
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Figure 4.16: The HighResNet architecture combines 3×3×3 dilated convolutions
and residual connectivity to achieve efficient CNN-based, volumetric segmentation,
learning features across a distribution of spatial scales.

architecture for the parcellation of brain anatomy from MRI (see Figure 4.16).

Rather than through pooling, this learns features at multiple spatial scales by suc-

cessive dilated convolution (Yu and Koltun, 2015), rapidly expanding the receptive

field whist maintaining high spatial resolution. Moreover, as per its modern coun-

terparts (and unlike the preceding V-Net (Milletari et al., 2016) and DeepMedic

(Kamnitsas et al., 2017) networks), it employed small 3× 3× 3 kernels. Together,

these design choices reduced the number of network parameters by an order of mag-

nitude when compared with U-Net-like architectures. Additionally, since HighRes-

Net extracts semantic features within residual blocks, Li et al. (2017c) argue that

their network considers a multitude of computational paths between input and

prediction, and learns a feature set across a distribution of receptive fields.

Finally, we present the work of Lee et al. (2019), who met the challenge of

learning complex 3D geometry by leveraging prior information. Relying on spatial

transformer networks (Jaderberg et al., 2015), their template transformer networks

for image segmentation (TeTrIS) established a new approach, one incorporating

the principles of atlas-based segmentation. Rather than through a CNN’s forward

computation, TeTrIS make predictions by learning an optimal spatial transforma-

tion of a task-specific geometric prior (see Figure 4.17). Critically (and though the

output of their CNN is limited by the parameters of its mediating spatial trans-

form), their entire framework is trained end-to-end, supervised by a conventional
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Figure 4.17: Leaning on the principles of atlas-based segmentation, template trans-
former networks for image segmentation (TeTrIS) present a novel approach to
CNN-based segmentation of 3D medical image data. Rather than a direct map-
ping between image (I) and predicted segmentation (V ), their CNN learns the
parameters (θ) of a free form transformation (Tθ). Predictions are made according
to the learned transformation of a prior description of expected anatomy (U).

segmentation loss between ground truth and predicted label maps. Constraining

the free form deformation between prior and prediction, TeTrIS benefit from the

advantages of their atlas-based methodological forerunners: that inferred label

maps conform to the morphological and topological properties described by the

prior. In so doing, Lee et al. (2019) mitigate the challenge of learning the complex

3D features of anatomy from training data. Of peripheral interest to our focus

on CHD, they demonstrate their approach to segment the coronary arteries from

contrast-enhanced CT.

4.3.4 State of the art

The previous Section 4.3.3 presented a wealth of research seeking to improve the

efficiency or performance of what were at the time, state of the art architectures

for the CNN-based segmentation of 3D medical images. Provided this array of

contributions (spanning network dimensionality; task formulation; approaches to

promote efficient feature learning at multiple scales; dilated convolution; advanced

network connectivity patterns to leverage residual and dense learning; and the

incorporation of priors), determining which combination might optimally address

a given task is far from trivial.
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This observation underlies the work of Isensee et al. (2021) who, in presenting

their nnU-Net (“no new net”), establish that a plain U-Net, incorporating only

a select few of these modifications, is at least competitive with the majority of

more involved configurations. Moreover, they find those design choices that might

otherwise be relegated to minor concerns of low level implementation (for example,

resampling and normalisation of training data, and ensemble prediction) can be

more influential than higher level, architectural considerations. This allows their

nnU-Net to outperform a wide array of competing architectures across an equally

broad array of 23 segmentation tasks, spread between 2D and 3D applications.

Accordingly, and in the experimental work contained in the rest of this thesis, we

rely exclusively on 2D and 3D U-Net architectures; both as a baseline, and as the

architectural foundation to our novel contributions.

4.4 Applications in cardiac image segmentation

To this point, our review of CNN-based segmentation methodologies has been

largely application-agnostic. We now turn our attention to their use within car-

diac imaging, considering practical applications across CT and MRI primarily,

and echocardiography where informative. Despite the main finding of the previ-

ous Section 4.3 - that though performance may be enhanced by bells and whistles,

the U-Net architecture is representative of the current state of the art in CNN-

based segmentation - a review of the literature focused on cardiac applications

provides critical context to our experimental contributions. This topic is served

by an incredible amount of research literature. Amongst the various clinical mo-

tivations and associated acquisitions (and in common with the body of research

concerning conventional segmentation methodologies, see Chapter 3), no clinical

segmentation task has received as much attention as ventricular volumetry from

2D short axis cine MRI. In contrast, our focus is on 3D applications, and in par-

ticular those for which segmentation returns a representation of multi-class (to at

least include the four cardiac chambers) or whole heart anatomy (see Figure 2.10

and Figure 3.11). Accordingly, in Section 4.4.1, we primarily limit our review to

studies concerned by the segmentation of these targets (and their constituents) in

aid of a downstream application reliant on a 3D model of anatomy. Most often,
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therefore, we are concerned with works seeking to label 3D images of isotropically

high spatial resolution, largely dispensing with those dealing with short or long

axis data acquired at significant inter-slice spacing. Given that our own motives

surround the translation of such segmented data into patient-specific models of

CHD, in Section 4.4.2 we refine our search further, reviewing only those studies

investigating the application of CNN methodologies to delineate the structures of

the congenitally malformed heart. For a review of the CNN-based segmentation

of all other cardiac applications, we refer the reader to the article written by Chen

et al. (2020)7.

In each of these sections, and in light of the findings of Section 4.3.3 we group

citations according to their methodological approach. We compare those that:

(1) seek to simplify their implementation by 2D or 2.5D networks, or by task

reformulation; with (2) those that employ a fully 3D CNN. In each, we make special

mention of reports which include or introduce novel aspects to their network, or

that have a strong focus on downstream clinical application.

4.4.1 3D Whole heart and multi-class segmentation

Adapting training schemes to 3D segmentation

Several published reports have presented solutions to 3D cardiovascular segmen-

tation based on 2D CNNs. Primarily, these differ in their approach to fusing the

slice-wise predictions returned. Mortazi et al. (2017) and Mortazi et al. (2018)

present an approach based on connected component analysis, weighting each iso-

lated component according to its contribution to the total ground truth volume.

Respectively, they applied this scheme to the 2013 Left Atrium Segmentation Chal-

lenge (Tobon-Gomez et al., 2015) (LASC) and to the multi-class cardiac anatomy

demanded by the 2017 Multi-Modality Whole Heart Segmentation (Zhuang et al.,

2019) (MM-WHS) Challenge label specification. Addressing the latter task, Wang

and Smedby (2018) developed a more involved scheme incorporating statistical

shape modelling (see Figure 4.18). To do so, they divided the training data pro-

7Where our later experimental work requires, we provide a review of short axis segmentation
for ventricular volumetry, focused on the incorporation of shape priors within the introductory
sections of Chapter 7.
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Figure 4.18: An overview of the joint CNN-active shape model framework pre-
sented by Wang and Smedby (2018).

vided by the MM-WHS Challenge into two sets: from the twenty CT cases they

constructed an active shape model; leaving the twenty isotropic CMR volumes for

experimentation. Their pipeline proceeds in a two-step cascade. Firstly, an initial

segmentation of CMR data was made by triplanar U-Net architectures. To this,

they fit their active shape model, appending the result as additional channels of the

input to a second, identical set of U-Nets. Both intermediate and final predictions

are determined by averaging the probabilistic outputs for each view.

A more conventional CNN-based segmentation cascade appeals to a coarse-

to-fine strategy, training dedicated networks for localisation (at low spatial res-

olution) prior to labelling (at high resolution). Such a cascade was applied to

the CT component of the MM-WHS dataset by Sundgaard et al. (2020). Their

implementation proceeded via two sets of 2D U-Nets (each 2.5D set being com-

posed of three networks trained by exclusive orthogonal views), the first acting

on a spatially downsampled input to isolate the cardiac ROI. After cropping the

data accordingly, the second performed segmentation at high resolution. In both

cases, a straightforward fusion scheme was achieved by pixel-wise non-maximal

suppression across all classes and imaging planes.

Though applying the same coarse-to-fine strategy, Sharobeem et al. (2022)

adopt an alternative formulation of the preceding localisation task, using a 2D

VGG network to regress a dense distance map predicting pixel-wise separation

from the aortic valve. After extracting a centred ROI, they segment a rich de-

scription of 3D cardiac anatomy including ten multi-class labels. Their work is
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Figure 4.19: An overview of the coarse-to-fine 3D U-Net cascade of localisation
and then segmentation, presented by Payer et al. (2018).

particularly impressive for its dependence on an in house curated dataset of CT

scans of 71 patients with acquired heart disease; each of which was scanned prior

to transcatheter aortic valve implantation. Amongst their technical findings, it is

noteworthy that spatial overlap performance was markedly reduced for the pre-

dicted segmentation of small or variable structures including: the coronary sinus,

pulmonary veins and pulmonary arteries (including pathology-induced changes in

morphology).

The attraction of the localisation-segmentation cascade extends to workflows

entirely dependent on 3D CNNs. Moreover, its application allowed the approach

presented by Payer et al. (2018) to (at least with respect to the segmentation of

multi-class anatomy from 3D CT) lead the original submissions made to the MM-

WHS Challenge (see Figure 4.19). It is noteworthy, however, that even to their

high resolution 3D U-Net (the second in the cascade and that needed to predict the

labels of the cropped ROI), input data remained relatively coarse, having a pixel

spacing of 4 mm3. Though consistent with the relatively featureless ground truth

segmentations provided by the MM-WHS Challenge, it is questionable whether

such data could resolve the septal defects characteristic of CHD, being often defined

at the limit of acquired spatial resolution. In the same year, Xia et al. (2019)

applied a closely related coarse-to-fine cascade to the gadolinium-enhanced MRI
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data provided by the 2018 Atrial Segmentation Challenge (Xiong et al., 2021)

(ASC). Applying the V-Net architecture at each stage, by reducing the batch

size to one and given their restricted focus on only the left atrium, they achieved

predictions at full spatial resolution.

Lastly within the collection of works seeking to simplify 3D CNN-based cardiac

segmentation through its decomposition into a localisation-segmentation cascade,

we review those formulations depending on region-based convolutional neural net-

works (R-CNNs). The R-CNN framework promotes the application of specialised

CNNs to (or via) proposed regions rather than the entire image. Whilst in its

earlier presentations (Girshick et al., 2014), R-CNN relied on region proposals

returned by a prior Selective Search (Uijlings et al., 2013) of the input, its mod-

ern descendent, Faster R-CNN (Ren et al., 2015), integrates ROI extraction and

subsequent analysis within a single CNN.

The Faster R-CNN framework lends itself naturally to the cascade discussed.

For example, Xu et al. (2018) use a region proposal network to predict the box

bounding the cardiac ROI within the MM-WHS CT data, prior to segmentation

by 3D U-Net. In addition, they describe an auxiliary edge extraction network, its

output used to construct a boundary sensitive loss that improves spatial overlap

with the ground truth. Later, Liu et al. (2019) used a similar R-CNN approach

to extract the region bounding the left atrium. In their consideration of the data

provided by the LASC, rather than by subsequent CNN, predictions were refined

by Otsu thresholding and evolution of a 3D active contour. Finally, Harms et al.

(2021) investigated a reversed scheme in which the image features extracted by 3D

U-Net were subsequently interrogated by an R-CNN, including semantic segmenta-

tion. They curated their own dataset of 55 CT scans (all patients being treated for

lung cancer), including an impressively rich multi-class task specification according

to fifteen labels.

CNN architectures dedicated to end-to-end 3D segmentation

Compared with those presented previously, the following works all rely on a single

3D CNN as an end-to-end segmentation solution. Perhaps the most straightfor-

ward approach involves the use of a single 3D U-Net. Borra et al. (2019) trained
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such a model in their submission to the ASC. As has become commonplace within

modern CNN-based segmentation, they used connected component analysis to

eliminate small, spurious components from their predicted labelling of the left

atrium. Following this work, and within their respective segmentation tasks, oth-

ers have made incremental adaptions, including: an advanced scheme for data

augmentation based on the principal components of variation expressed by the

MM-WHS training set of CT images (Habijan et al., 2019); dense connections be-

tween the hidden feature maps learned from the same dataset (Kanakatte et al.,

2021); and the application of residual learning to the LASC data (Kausar et al.,

2021). Though all made valuable contributions, the performance of each was

largely consistent with the state of the art.

More significant modifications were made by Yang et al. (2018b). In their

consideration of both MRI and CT portions of the MM-WHS data, they presented

a hybrid loss function combining both frequency balanced CE, and generalised

Dice score, within a deep supervision framework (Lee et al., 2015). However,

perhaps more interestingly, they leveraged transfer learning (Weiss et al., 2016),

initialising their network with a parameter set pre-trained on a video recognition

task. Transfer learning from the 2D domain of natural images to 3D medical

imaging is normally precluded by the inherent mismatch in dimensionality between

the two. Overcoming this barrier by depending on the features associated with

video recognition (with its two spatial (2D) and single temporal (T) dimensions)

makes for a simultaneously sensible but intriguing choice. Unfortunately, however,

they fail to perform the ablation experiments that might expose the performance

gains associated with their approach. Instead, they demonstrate the improvement

conferred by their hybrid loss (its formulation shared by the state of the art nnU-

Net framework (Isensee et al., 2021)), comparing against the Dice loss alone. In

closely related work (albeit limited to the CT partition of the MM-WHS data),

similar findings were made by Ye et al. (2019) who, in extending the focal loss

(Lin et al., 2017) to the multi-class setting, demonstrated its marginal superiority

over the hybrid loss presented by Yang et al. (2018b). This conclusion, however, is

obfuscated by their coincident modification of the 3D U-Net architecture, including

dense connectivity (similar to the fractal expansion described by Larsson et al.

(2016)) at each level of the expanding and contracting paths.
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Figure 4.20: An overview of the segmentation and incremental enrichment of the
associated multi-class description of the Scottish Computed Tomography of the
Heart (The SCOT-Heart Investigators, 2015) (SCOT-HEART) dataset, achieved
by Xu et al. (2021).

Illustrated in Figure 4.20, Xu et al. (2021) present an interesting application

in which a series of 3D U-Nets are used to initially label, and then enrich the

multi-class segmentation of the 1770 cases comprising the Scottish Computed To-

mography of the Heart (The SCOT-Heart Investigators, 2015) (SCOT-HEART)

CT database. Starting without any labels at all, they first apply the method de-

veloped by Zheng et al. (2008), based on marginal space learning and steerable

features (see Section 3.3.3), to segment six structures (four cardiac chambers, the

left ventricular myocardium and ascending aorta) from every volume. After re-

finement, including manual identification of the pulmonary valve to terminate the

right ventricular outflow, these were used to train an image-to-label (conventional)

3D U-Net. In smaller subsets of the SCOT-HEART data, manual segmentations

were then made to enrich the description of anatomy returned by Zheng et al.

(2008) so as to: (1) include the main pulmonary artery (distal to the valve); and

(2) isolate the pulmonary veins from the body of the left atrium. Each new label

set was used to train a label-to-label 3D U-Net, the resulting models being applied

to the remaining cases of the database. Finally, the results from a manually veri-

fied subset of 260 of these predictions were used to train a 3D image-to-label U-Net
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capable of delineating not only the classes catered for by Zheng et al. (2008), but

also the enriched description incrementally achieved through their careful manual

curation. This work is a great example of human-in-the-loop machine learning, as

reviewed by (Budd et al., 2021).

Next we review a pair of publications, sharing a distinctive interest in the seg-

mentation of multi-class anatomy from dual energy CT scanning. Conventional

cardiac CT is typically reliant on exogenous, iodinated agents to generate con-

trast between the cardiovascular blood pool and associated tissues. In the absence

of pharmacological contrast, non-contrast-enhanced studies remain a highly chal-

lenging target for segmentation. However, through its sensitivity to photon energy

and from a single, contrast-enhanced scan, dual energy CT admits the synthesis

of virtual non-contrast images.

Bruns et al. (2020) leveraged this quality in pursuit of a solution to the seg-

mentation of conventional non-contrast-enhanced data. They curated a manually

labelled training set of eighteen dual energy, contrast-enhanced CT datasets. For

each, the resulting segmentation could be propagated to its associated virtual, and

conventional non-contrast-enhanced counterparts by identity mapping, establish-

ing a dataset for supervised training. They assessed performance using a six-fold

cross-validation, quantitatively determining that a 3D U-Net could be optimised to

successfully segment both virtual and conventional non-contrast-enhanced scans.

In a qualitative analysis of a further 290 conventional non-contrast-enhanced scans,

subjective assessment found predicted segmentations to be mostly accurate. Lar-

taud et al. (2021) leveraged the same principle within a controlled experiment

comparing different augmentation schemes.

Finally, we review a series of works that, inspired by conventional atlas-based

segmentation, rely on prior representations of anticipated cardiac anatomy to con-

strain prediction. Work presented by Dong et al. (2020) is closely related to TeTrIS

(Lee et al., 2019). However, where TeTrIS train a CNN to learn the parameters

of a single freeform deformation, Dong et al. (2020) decouple atlas transformation

into affine and non-rigid components. They combine their approach with a sin-

gle atlas to segment the left ventricle from 3D echocardiography. Comparatively,

Ding et al. (2020) integrate CNN operation within a 3D patch-based multi-atlas

framework (see Figure 4.21), training networks to learn: (1) the non-rigid trans-
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Figure 4.21: An overview of the CNN-based multi-atlas segmentation framework
(including patch-based label fusion), presented by Ding et al. (2020).

formation between input and atlas patches; and (2) patch similarity according

to separation within a compact latent space. Using a cross-over design in which

the twenty CT (CMR) images of the MM-WHS data serve as multi-atlas for the

remaining twenty CMR (CT) volumes, they assess their methods on myocardial

segmentation. Whilst far superior to conventional multi-atlas segmentation, their

approach remained consistent with the CNN-based state of the art; although its

dependence on an atlas prior reduced the number of anatomically spurious pre-

dicted features. Lastly, Sinclair et al. (2022) present an involved framework for

joint atlas construction, registration and segmentation. They rely on 3D U-Nets

for semantic segmentation and to regress the parameters of atlas transformation,

leveraging a large but commercially protected dataset.

4.4.2 Patient-specific modelling of CHD

Adapting training schemes to 3D segmentation

Owing to its dependence on the availability of training examples, accounts of the

CNN-based segmentation of 3D CHD anatomy have been dominated by works con-

sidering the Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular

MRI in Congenital Heart Disease (Pace et al., 2015) (HVSMR) dataset (Pace et al.,

2015). Its total of just twenty cases (ten for which the labels are made public and

ten for which the ground truth is concealed), labelled with only two classes (the

whole heart blood pool and biventricular myocardium), might appear to preclude
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Figure 4.22: The ten layer, dilated CNN presented as a solution to the HVSMR
Challenge by Wolterink et al. (2017). Red shading indicates the growing receptive
field.

substantive methodological investigation. Despite these limitations, a wealth of

research has been conducted. We have already met such examples: with reference

to Table 3.5, the following citations can be compared.

Of those approaches rejecting a single 3D CNN solution in favour of an adapted

or simplified training scheme (at least compared with studies of normal anatomy or

that affected by acquired disease) we find a reduced dependence on the decoupled

learning of localisation and then segmentation in a coarse-to-fine cascade8. This

is likely a consequence of the way data are provided by the HVSMR Challenge

organisers. In addition to full volumetric data, they provide cropped images,

determining a ROI tightly bounding the heart and great vessels. Hence, a prior

localisation step is redundant.

Instead, exponents of adapted learning schemes have focused on the application

of 2D CNNs or their combination with 3D networks. In their submission to the

original HVSMR Challenge, Wolterink et al. (2017) train a ten layer CNN relying

on 2D dilated convolutional operators for feature extraction (see Figure 4.22). As

argued, these realise an exponential growth in the network’s receptive field (ul-

timately covering a square region of 131 × 131 voxels), for only a linear growth

in the number of parameters. They train their network for each of axial, sagittal

and coronal planes, making a triplanar prediction by averaging pixel-wise proba-

bilistic predictions. Compared with their contemporary competitors, they achieve

8Deploying a coarse-to-fine cascade the approach described Han et al. (2020) presents a no-
table, but flawed counter example. Unfortunately the authors misconceive the HVSMR segmen-
tation task, training a CNN-based solution to label the whole heart blood pool and myocardium
as a single, binary foreground. We are not inclined to discuss this work further.
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excellent quantitative performance, leading the standings when ranked by spatial

overlap for the whole heart blood pool and myocardium classes. They are only

beaten into second place due to the perceived superiority of the winner’s fully 3D

convolutional implementation, a relative novelty at the time. Amongst their qual-

itative findings, they observe the network’s capacity to learn extended features

capturing long range spatial coherences, presumably by virtue of its expansive re-

ceptive field. Perhaps with the benefit of hindsight, unlike the HVSMR Challenge

organisers, we consider the relative simplicity of their approach a strength of this

work.

In contrast, Du et al. (2020) present a far more complicated 2D architecture

with a focus on multi-scale feature learning and integration. It successfully in-

cludes: an inception module; a dilated residual network including a spatially un-

rolled convolutional long short-term memory (LSTM) (Shi et al., 2015) module9;

and a hybrid pyramid pooling network. In a series of sound arguments, they mo-

tivate and justify this level of complexity in response to the challenges of CHD

segmentation: including the delineation of complex and variable anatomy, possibly

defined in relation to blurred tissue interfaces. However, it is unclear to us how

each of their network components contribute to this aim. In particular, whilst

the principle of leveraging a spatially unrolled recurrent neural network (RNN)

to learn global features is sound, we are left uncertain as to whether this can

be adequately achieved within a 2D network. We feel that such global features of

anatomy are meaningfully defined in 3D, rather than their appearance in 2D cross-

section. Though we raise this concern, their approach achieves strong empirical

performance, albeit limited to a leave-one-out cross-validation (train on nine, test

on one) on the HVSMR training set. Comparison of their spatial overlap results

with those of Wolterink et al. (2017) are made challenging by divergent experimen-

tal designs, the latter performing a five-fold cross-validation to train on eight and

test on two. Allowing for this difference, the two achieve similar spatial overlap

performance as measured by the DSC, (Wolterink et al. (2017), Du et al. (2020)):

(0.92,0.946) and (0.80,0.824), for the blood pool and myocardium, respectively.

9The LSTM cell constitutes the basis of a recurrent neural network (RNN), a variety of
neural network designed to model sequential data. Due to its infrequent application within
image segmentation and for brevity, we have not dwelt on in this thesis. For an indicative work,
we direct the reader to Chen et al. (2016).
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Given the small dataset, Wolterink et al. (2017) trained with an eighth fewer ex-

amples than Du et al. (2020). Hence, the complexity of the approach presented

by the latter, though undoubtedly making a novel contribution, may not be as

significant as might first appear.

More generally, both these works highlight a weakness shared by the major-

ity of works presented in this application-focused section of our review. That is,

technical metrics of CNN-based segmentation performance (for example, the DSC

and Hausdorff distance (Huttenlocher et al., 1993)) are rarely sensitive to the fea-

tures most pertinent to the clinical applications of 3D models of patient-specific

anatomy. In part, this constraint is imposed by the HVSMR Challenge submis-

sion system, in which the ground truth labellings of the test set are kept private,

preventing researchers from considering their own, perhaps more clinically focused

metrics of performance (unless they are willing to experiment with only the ten

public cases made available for training).

A clear solution to this challenge is to leverage alternate data for training

and testing. In commendable work, Nurmaini et al. (2020) curate a collection of

exemplar 2D foetal ultrasound images. Though they fail to detail the number of

patients represented, by considering the temporal frames of the resulting videos

separately, they achieve a total of 764 raw images, evenly distributed between foetal

patients exhibiting a range of septal defects (atrial septal defect, ventricular septal

defect, atrioventricular septal defect and normal septal isolation). Leveraging these

data, they train a 2D mask R-CNN, (He et al., 2017a) for simultaneous cardiac

ROI detection and multi-class instance segmentation of the four cardiac chambers,

aorta and any septal defects. Critically, their evaluation metrics consider the

spatial overlap performance for predicted segmentations of each variety of septal

defect. Their results are encouraging, supporting the extension of their methods

to incorporate a range of standard views.

Similarly clinically focused work presented by Nova et al. (2021) is also highly

promising. Albeit within a binary segmentation of the four cardiac chambers from

2D echocardiography, they infer the presence of septal defects through the pixel

adjacency relationships of the predicted labels. Despite the attractive principles

of their approach, their experiment is let down by its small dataset (including two

patients with each of atrial septal defect, ventricular septal defect, atrioventricular
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Figure 4.23: Example segmentations from the ImageCHD dataset. Reproduced
from Xu et al. (2019b).

septal defect and normal septal isolation; for a total of just eight cases) and the

fact that they make no attempt to understand how or whether their pixel-wise

metrics translate into the clinically relevant detection of defects.

Another alternative dataset supporting a string of publications is provided by

the CT volumes collected within ImageCHD (see Figure 4.23). Highly relevant

to our interests, patient-specific 3D printing motivated the publication of its first

68 cases and associated experimental work (Xu et al., 2019b). Distinct from the

HVSMR task, ImageCHD includes a multi-class ground truth, separating a wide

range of CHD anatomy into seven different labels. Since this time, this highly

impressive publicly available dataset has grown to include 110 scans (Xu et al.,

2019a). These examples have been leveraged in a series of related works, all propos-

ing adapted training strategies based on 2D CNNs and variably their combination

with 3D architectures. This group of publications shares a common interest in the

incorporation of spatially extended or global features via graph reasoning.

Adopting a purely 2D solution, Liu et al. (2020b) deploy a U-Net with asym-

metric convolution (Ding et al., 2019). At the low-resolution bottleneck, they

introduce a graphical CNN to learn features relevant to the global spatial coher-

ence of anatomy. Though intrigued by their base architecture, we feel that the

incremental value conferred by their graphical CNN might be limited by attempt-

ing to learn the global features of 3D anatomy by their representation in 2D slices.

Finally, though Liu et al. (2020b) claim to leverage prior information concern-

ing anatomical shape, this knowledge is explicitly captured within a ground truth

segmentation of the data and hence unavailable at test time. Hence we feel a

better description might characterise their, no less valuable contribution as a spe-
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Figure 4.24: Overview of the segmentation framework first presented by Xu et al.
(2019b).

cialised loss function. More problematically, their experiments are made difficult

to understand, the authors neglecting to describe their test set.

This uncertainty is reduced in the work of Xu et al. (2019a) and Xu et al.

(2020). In each publication, the curators of the ImageCHD dataset rely on the

same methodology, combining both 2D and 3D CNNs within a highly engineered

workflow, incorporating heuristics based on domain knowledge and graph reason-

ing (see Figure 4.24). Their approach isolates multi-class and blood pool segmen-

tations to low resolution 3D and high resolution 2D U-Nets, respectively. Sub-

sequently, the interfaces of the whole heart blood pool class, learned at high 2D

resolution, are used to refine the coarse 3D segmentation of multi-class anatomy.

This “connection analysis” step takes place according to relatively rudimentary

heuristics based on morphology operations and pixel adjacency. Their separate

“shape analysis” receives inputs from the respective U-Nets, applying Boolean op-

erations to extract, and then skeletonisation (Lobregt et al., 1980) to graphically

represent, the great vessels. Following, they compare the resulting vessel graph

with a template library (determined from the training data). Though a little un-

clear, our assumption is that subsequently, pertinent features of the template are

propagated to the predicted segmentation.

In their former work Xu et al. (2019a) apply this pipeline in aid of segmenta-

tion, achieving qualitatively impressive results. Quantitatively, their assessment is

limited to spatial overlap. Though this makes it difficult to understand the extent

to which clinically meaningful features are represented (for example the delineation

of congenital defects), they make the highly relevant observation that performance

degraded in the presence of severe structural malformation. In their later work
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Xu et al. (2020) deploy their pipeline in aid of diagnostic classification, inferring

the presence of defects according to the adjacency of predicted multi-class labels

(for example, a ventricular septal defect is characterised by neighbouring voxels

being classified as each of left and right ventricles). We feel that coupled with the

engineered heuristics inherent within their approach (for example, they require

great vessels be disconnected, presumably even in the context of aortopulmonary

window), their diagnoses are susceptible to segmentation error, even at the level of

an individual pixel. Moreover, we are not convinced by the principle that segmen-

tation should precede and inform diagnostic classification. At least in our local

practice, by echocardiogram and related clinical examination, congenital diagnoses

are determined far in advance of tomographic CT or CMR acquisition. Hence, we

suggest that a more appropriate semantic hierarchy understands segmentation as

a means of describing and localising the structural characteristics of a more fun-

damental diagnosis. The latter might even serve as prior information to inform

anatomical labelling (see Chapter 7).

CNN architectures dedicated to end-to-end 3D segmentation

Before a more detailed discussion of end-to-end, 3D CNN-based solutions to the

segmentation of CHD anatomy, we first list a group of publications which, though

performing experiments using the HVSMR dataset, are not motivated by its clini-

cal context. Rather, these reports seek generalised improvements in CNN method-

ology without specific focus on CHD or even medical imaging. In such cases, the

publicly available HVSMR data merely provide a convenient basis for assessing the

performance of: dense networks incorporating spatial and channel attention mod-

ules for semi-supervised learning (Min et al., 2019, 2020); a universal decoder for

CNN-based segmentation (Liang et al., 2019); novel ensembling strategies (Zheng

et al., 2019b; Ma et al., 2021); sparse image annotation and associated learning

(Zheng et al., 2020); and contrastive learning for semi-supervised training and

transfer learning (Zeng et al., 2021). Whilst some of these achieve strong spatial

overlap performance, none stand out from Table 3.5 to exceed the state of the art.

Nor do they contain discussion dedicated to the segmentation of CHD anatomy.
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Figure 4.25: The U-Net-like architecture including fractal connectivity submitted
to the HVSMR Challenge by Yu et al. (2017b).

Two submissions to the HVSMR Challenge made use of 3D CNNs trained end-

to-end. Chief amongst these, Yu et al. (2017b) deployed a U-Net-like architecture,

including fractal connectivity (Larsson et al., 2016) (see Figure 4.25). Ultimate

winners of the Challenge, they achieved Dice scores of 0.931 and 0.786 for the seg-

mentation of the whole heart blood pool and myocardium, respectively. Preferring

an FCN architecture, Li et al. (2017b) presented a more complex network that also

included 3D dilated convolution. Their approach, however was outperformed by

the remaining CNN-based solutions, and two submissions that deployed conven-

tional atlas-based segmentation. Lastly, though not a submission to the original

Challenge, Dou et al. (2017) offered an alternative 3D FCN, achieving results to

rival Yu et al. (2017b). All three leveraged deep supervision, directly injecting

gradient information at the various spatial scales probed by their networks.

The record HVSMR performance (at least for a 3D CNN) achieved by Yu et al.

(2017b) did not stand long. In the same year, the same authors employed a densely

connected 3D architecture that they called DenseVoxNet, including max pooling

for feature learning at multiple spatial scales (Yu et al., 2017a). They attribute

their superior performance to the advantages of dense connectivity, including im-

proved gradient flow and parameter-efficient feature reuse.
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Densely connected 3D architectures also proved attractive to: Ran et al. (2018),

within their dense U-Net; and to Zhang et al. (2019b), who trained two Den-

seVoxNets for each HVSMR class, before a third was used to combine label-wise

predictions. Perhaps notably, and at least when ranked by spatial overlap, the cur-

rently best-performing 3D CNN solution also includes dense connectivity. After

parallel asymmetric convolution, Zheng et al. (2019a) aggregated triplanar fea-

tures using a dense module. Our final exponent of densely connected CNNs, we

cite work recently published by Nainamalai et al. (2022). At least outwardly, this

article appears particularly pertinent to our clinically focused interests, promising

an account of the clinical integration of CNN-based segmentation for 3D visualisa-

tion of CHD anatomy. Disappointingly, in assessing their dense V-Net architecture,

their test set is limited to just six local cases. Though they provide a diagnostic and

demographic description of each, it seems unlikely that such a limited sample could

be representative of the structurally heterogeneous CHD population. Allowing for

the fact that their manuscript remains a pre-print, we also find it problematic that

they do not attribute the publicly available training dataset relied upon (including

66 cardiac CT scans) to a specific source. Though tempting to speculate that these

cases might be related to the 68 labelled volumes provided in the first tranche of

the ImageCHD dataset (Xu et al., 2019b), we cannot be certain.

Another work depending on alternative training data to those provided by the

HVSMR Challenge, Giannakidis et al. (2016) curated a labelled set of isotropic

CMR volumes, segmenting the right ventricle in each. Given the patient popula-

tion (all patients exhibiting tetralogy of Fallot), their focus represents a clinically

motivated choice, changes in the volume and structure of the right ventricle being

critical to ongoing management. Moreover, substantial variation in morphology,

including that associated with pathological remodelling or previous interventional

modification, makes for a particularly challenging task. They train a DeepMedic

architecture in a two-fold cross-validation, achieving a sizeable average absolute

volume difference of 12%. In a faithful analysis, they stress their ambitions to

improve their quantity of training data.

To conclude our review, we present three papers, each made distinctive by their

unconventional, but clinically focused approach. In the first of these, Gilliland et al.

(2022) address the segmentation of the congenitally malformed foetal circulation
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Figure 4.26: The combined framework for CMR registration, segmentation and
label enrichment of a multi-class representation of the foetal great vessels. Repro-
duced from Gilliland et al. (2022).

from 3D T2-weighted CMR data. Its staggering application aside, this work ele-

gantly combines atlas-based segmentation and label propagation to maximise the

information returned by clinically routine image post-processing (see Figure 4.26).

In a first step, they train the U-Net-like 3D VoxelMorph architecture (Balakrish-

nan et al., 2019) to infer the displacement field necessary to warp a multi-class

foetal atlas of the great vessels and associated head and neck vasculature to a tar-

get CMR volume. Leveraging the paired CMR-multi-class labels that result, they

subsequently train a 3D residual U-Net to learn the associated mapping, optimis-

ing against two CE losses between: (1) multi-class, U-Net prediction and warped

atlas; and (2) the union of predicted multi-class labels, and a binary ground truth,

delineated within the clinical routine. In so doing, they propagate the informa-

tion contained within a single multi-class atlas, enriching the features learned by

3D CNN; at the same time they ensure that predictions are optimised against a

patient-specific representation of geometry, captured within the data to which they

have access, the clinically prepared, binary ground truth.

In our own work (Byrne et al., 2019), we associate congenital defects with

changes in the topology of the cardiac blood pool. Conventional schemes for data

augmentation rely on spatial transformation and image resampling. We observed

that when these operations are applied to discrete label maps, changes in ground

truth topology, including splits and mergers of the cardiac blood pool, can result.
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Figure 4.27: Adapted from Byrne et al. (2019), in which we implemented an
augmentation pipeline to preserve the topology of manually segmented training
labels provided by the HVSMR Challenge. This was composed of two steps: (1)
the original images and labels are spatially transformed (T ); and (2) the labels
are subsequently topologically corrected (C). In this case topological arguments
preserve the appearance of the atrial septum, where conventional spatial transfor-
mation and resampling falsely indicate the presence of an ASD (see arrows).

Though the result of image resampling, such errors might be mistaken for clini-

cally relevant defects: splits being topologically equivalent to discontinuities in the

circulation (such as atretic defects); mergers being topologically identical to asso-

ciative, extra-anatomical communication (such as septal defects). Engineering a

spatial transformation pipeline to constrain digital topology (Kong and Rosenfeld,

1989), we ensured that the congenital defects exhibited by the HVSMR train-

ing labels could be faithfully transmitted to their augmented representations (see

Figure 4.27). Compared with conventional schemes, we found that when trained

using our topology-preserving augmentation scheme, a V-Net architecture made

fewer topological warping errors (Jain et al., 2010) in a five-fold cross-validation.

Though having little to no impact on spatial overlap performance, this approach

suggested an alternative, topological metric of performance, one relevant to the

most clinically pertinent features of CHD anatomy: the defects.

Sadly, we were unable to reproduce these findings in a study of larger data. The

precise cause of this discrepancy remains uncertain. However, we can speculate as

to the range of factors that might offer a partial explanation. A clear difference

between the experimental setting of our conference paper (Byrne et al., 2019), and

our attempts to reproduce the same findings within a larger study, concerns the

data available for experiment. Our previous work employed the HVSMR dataset of

just ten cases for each of training and testing. In contrast, our follow up experiment
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enjoyed access to the Evelina London Children’s Hospital (ELCH) dataset of 150

examples (a contribution of this thesis presented in Chapter 5), including fifty for

testing. We therefore speculate that the findings made within the smaller HVSMR

test set were compromised by their limited statistical power.

Differences in data extend to the quality of the training sets. Later, Figure 5.7b

will indicate that the ELCH cohort contains a broader range of structural varia-

tion than the HVSMR dataset. Hence it is possible that despite the topologically

accurate augmented representations returned by our pipeline, the structural het-

erogeneity of the ELCH dataset hampered associated feature learning. In contrast,

and in the context of the relatively homogeneous HVSMR training labels, the con-

sistent appearances (perhaps in respect of their size, morphology and localisation

to regions of the heart or image volume) of salient topological features could firstly

be learned more readily, and then more reliably, where their accuracy was ensured

by our augmentation pipeline. These differences might explain our failure to re-

produce previous findings (Byrne et al., 2019) within the large ELCH dataset.

Finally, we cite work published by (Pace et al., 2018), the organisers of the

original HVSMR Challenge. Having access to all twenty CMR volumes (ten for

each of training and testing), they modified the associated labels to isolate the

aorta and left ventricle separately. Methodologically, rather than through direct

CNN prediction, they reformulated respective binary segmentation tasks within

a framework for recursive refinement. Given an incomplete segmentation, they

trained a 3D U-Net to infer the next most likely binary label, using a recurrent

relationship to incrementally evolve prediction. Motivating this approach, they

appeal to the advantages of conventional active contours, including topological

constraint. Interestingly, they find their framework to be more robust to severe

congenital malformation than existing methods for direct estimation.

4.5 Conclusion

This chapter has provided the theoretical and practical foundations necessary to

comprehend the remainder of this thesis. By understanding the research findings

that led to the development of the nnU-Net framework (Isensee et al., 2021) and

reviewing its competitors, we have established its underlying U-Net architecture as



4.5. Conclusion 162

both baseline (for performance comparison) and state of the art solution to CNN-

based segmentation of medical images. In the experimental work presented in the

following chapters, we seek to understand the compatibility of this approach with

our motivating clinical interest: the construction of patient-specific, 3D models of

anatomy, so as to inform the personalised care of patients with CHD.

The literature review presented in Section 4.4.1 found that 3D U-Net-like ar-

chitectures performed strongly across a number of whole heart and multi-class car-

diac segmentation tasks, and endorses our line of enquiry. Our more specialised

(and sometimes critical) review (see Section 4.4.2) of the CNN-based segmentation

of CHD anatomy was not so positive. In particular, though the majority of cited

works claim clinical motivations including advanced 3D visualisation for treatment

planning, rarely did they conduct experiments capable of understanding whether

their methods might meet these ambitions. We identify three ways in which the

clinical generalisability of reviewed findings might be improved, addressing each

in the following chapters:

Data

The majority of works concerned with the CNN-based segmentation of 3D CHD

anatomy rely on the HVSMR dataset (Pace et al., 2015). Given the wealth of

research it has admitted, its contribution cannot be in doubt. However, we do

recognise that it is severely limited in its quantity, including only ten labelled

CMR volumes for training and a further ten unlabelled, for testing. We do not

imagine that such a small sample could represent the underlying and structurally

heterogeneous CHD population. This limits the generalisability of both learned

features, and of performance assessment.

Applications of the HVSMR training data (and any representation of anatomy

that can be learned from them) are also limited by the semantic quality of the

provided labels. Namely, the task specification presented by the HVSMR Chal-

lenge seeks the segmentation of data into a unified blood pool class. Neglecting

multi-class labels limits our description of pathology-induced changes that might

be localised to individual cardiac sub-structures. Perhaps even more importantly,

being that they are often defined by the relationship between two or more car-
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diac segments (consider a ventricular septal defect, for example, characterised by

the communication or isolation of left and right ventricles), descriptions of the

whole heart blood pool are ignorant of congenital defects without more careful

consideration.

In these respects, the ImageCHD dataset is far superior to HVSMR. However,

it contains only CT volumes. Free from ionising radiation, isotropic 3D CMR is a

particularly effective imaging modality for the paediatric CHD population (Ntsin-

jana et al., 2011), one that presently, has no publicly available source of segmented,

multi-class training data. Unfortunately, amassing annotated CMR volumes re-

mains both a significant challenge (having been established in Chapter 3) and

motivation for academic research.

In response others have considered alternatives to manual curation. Koehler

et al. (2020) tested whether U-Net models trained with data reflective of acquired

heart disease might faithfully segment the short axis scans of patients with repaired

tetralogy of Fallot. They found that learned features did not generalise well be-

tween pathologies. Alternatively, Karimi-Bidhendi et al. (2020) took a generative

approach to data augmentation, synthesising training examples from a learned

distribution of short axis data acquired from 64 paediatric patients with complex

CHD. Though their approach was associated with improved performance, their

augmented inputs remain closely tied to their initial sample.

1. These arguments outline the need for training data of improved quantity and

quality, as required to support CNN-based solutions to the patient-specific,

multi-class segmentation of CHD anatomy from 3D CMR.

Quantitative performance assessment

Across all works cited in Section 4.4.1 and Section 4.4.2, performance is primar-

ily assessed by spatial overlap and in particular by the DSC. Though an effective

and easily interpreted metric of segmentation performance, inspection of Table 3.5

suggests that according to such metrics, the broad array of existing CNN method-
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ologies are largely indistinguishable. Moreover, the DSC does little to characterise

whether a predicted label set captures the clinically relevant features of data. Spa-

tial overlap makes a pixel-wise assessment of segmentation agreement, all elements

making an equal contribution to the statistic returned. However, in the presence

of CHD, we are primarily concerned by the size, shape and location of defects, de-

fined in relation to a smaller, localised portion of the image. As such, a predicted

segmentation might share a strong spatial overlap with the ground truth, whilst

failing to convey or describe the most clinically important features of the data.

Until performance metrics are better aligned with the downstream clinical re-

quirements that motivate the underlying segmentation task, continuing to compare

CNN-based methodologies using measures of spatial overlap does not appear an

efficient way to gauge nor improve the state of the art. Assessed against a clinically

relevant alternative, the ranking presented by Table 3.5 may be transformed.

These arguments motivate the design of:

2. performance metrics, and

3. loss functions

which expose the most clinically relevant features of image data, reflecting the

extent to which congenital defects are captured and faithfully described by an

accompanying segmentation.



Chapter 5

The ELCH dataset

5.1 Introduction

Chapter 2 motivated the design of automated solutions for the segmentation of con-

genital heart disease (CHD) anatomy from 3D cardiac magnetic resonance (CMR)

data. Drawing on insights from the broader field of cardiovascular image analysis,

Chapter 3 highlighted the recent success of data-driven methodologies, and their

superiority over conventional approaches. The statistical models associated with

deep learning, and most pertinently convolutional neural networks (CNNs), au-

tomatically learn a set of discriminative features through training (Litjens et al.,

2017). The depth of these non-linear models admits the extraction of primitive

image cues and their aggregation within abstract representations of data, such as

anatomical geometry. Exploiting these high capacity models, however, assumes a

large and representative set of training data, capturing the task at hand.

Many datasets (including the comparatively vast UK Biobank (Fry et al.,

2017)), have been both established and successfully applied to CNN-based segmen-

tation of short axis cine data (Chen et al., 2020). In contrast, equivalent resources

relevant to the segmentation of multi-class anatomy from high resolution 3D CMR

are scarce. Moreover, Chapter 4 suggested that training data germane to CHD

anatomy and morphology are fewer still, being limited to a single sample of just

ten training, and ten test CMR volumes (Pace et al., 2015). This number pales in

comparison with the structural heterogeneity exhibited by the CHD population.

165
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In this chapter, we seek to rectify this deficit, curating the unique Evelina

London Children’s Hospital (ELCH) dataset. We recount our methods of data

collection and manual segmentation, and assess the demographic, imaging, diag-

nostic and anatomical characteristics of our patient cohort. Each is informed by a

detailed consideration of the clinical and technical requirements of patient-specific

anatomical modelling, for individuals with CHD.

5.2 Contributions

In this chapter we make the following contributions:

1. We present a dataset of 150, clinically acquired, 3D, isotropically high reso-

lution CMR volumes:

(a) Each is segmented into instances of eighteen different class labels rel-

evant to cardiac anatomy, CHD morphology and associated structural

intervention.

(b) At the pixel level, every segmentation is clinically meaningful, indicating

the communication or isolation of cardiac anatomy as relevant to the

presence of congenital defects or structural intervention.

(c) All cases are accompanied by the additional inclusion of gadolinium-

enhanced, 4D time-resolved magnetic resonance angiography (TR-MRA).

2. We quantitatively characterise the operator burden of manual image segmen-

tation associated with establishing this dataset, including duration and task

complexity.

3. We characterise the heterogeneity of our dataset, reflecting the clinical sta-

tus, demographics and anatomical features of each case, comparing these

properties against existing, publicly available CMR training data.
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5.3 Methods

5.3.1 Information governance

Our use of patient data was reviewed and approved by the UK Health Research

Authority (HRA) (Integrated Research Application System (IRAS) ID: 273807,

Research Ethics Committee (REC) reference: 19/HRA/6918).

5.3.2 Data collection

Data were collected retrospectively from ELCH and Guy’s and St Thomas’ NHS

Foundation Trust electronic archives. All cases underwent clinically indicated

CMR investigation for the assessment of CHD at ELCH between 2013 and 2020, in-

cluding isotropically high spatial resolution, 3D steady state free precession (SSFP)

and gadolinium-enhanced, 4D TR-MRA1. Eligibility was considered at two stages:

(1) CMR report review; (2) Qualitative imaging review.

Suitable paediatric cases (less than eighteen years of age at scan) were initially

identified from their clinical CMR report, building a sample of 150 cases strat-

ified by predominant congenital diagnosis. Five equally sized diagnostic groups

were considered: double outlet right ventricle (DORV), transposition of the great

arteries (TGA), ventricular septal defect (VSD), hypoplastic left heart syndrome

(HLHS) and hypoplastic right heart syndrome (HRHS). Under the lesser used la-

bel of HRHS, we collect patients exhibiting hypoplastic, stenotic or atretic defects

of the right heart, including tricuspid valve or pulmonary valve stenosis or atresia

and right ventricular hypoplasia. Patients co-exhibiting the following diagnoses

were excluded: atrioventricular discordance or criss cross heart, atrial isomerisms

or heterotaxy syndrome and dextrocardia or apex-to-the-right2.

The design of this sample (including its size and diagnostic stratification)

sought to balance two ambitions: (1) to collect a clinically representative group

1Strictly, angiography refers to a radiological study seeking to visualise (components of) the
vascular system, most often via the administration of an exogenous contrast agent. Throughout
this thesis, by using this term within our characterisation of 4D time-resolved magnetic resonance
angiography (TR-MRA), we extend this definition to include visualisation of both blood vessels,
and the blood pool contained by the heart’s chambers.

2Whilst these cases have been excluded from this study, some have already been manually
segmented as part of ongoing efforts to grow and broaden our dataset.



5.3. Methods 168

of patients; and (2) to limit the operator burden of manually segmenting all cases

carefully and with high fidelity. Given the structural and demographic hetero-

geneity of the CHD population, the first of these aims is best met by increasing

the sample size. For every additional patient considered, however, time invested

in image segmentation increases, reducing the time available for experimental in-

vestigation. Accordingly, in balancing these competing demands, we settled on a

pragmatic sample of 150 patients across five representative diagnostic groups.

For all groups: scan date, weight at scan, associated diagnoses and structural

cardiac interventions were noted and subsequently corroborated at imaging review.

Given current applications of patient-specific 3D modelling, those cases who had

not undergone previous structural intervention were prioritised. However, after ex-

hausting this purpose, patients from each group were randomly sampled, including

those to have undergone biventricular repair, or partial or complete conversion to

a palliative univentricular circulation.

Cases deemed eligible with respect to CMR report review were used to query

the picture archive and communications system (PACS). Image quality was sub-

jectively assessed for its consistency with the extraction of a clinically meaningful

patient-specific model. This assessment was made by a clinical scientist with more

than five years’ experience in the segmentation, fabrication and clinical applica-

tion of patient-specific 3D printed models of CHD anatomy. Judgement was made

jointly, considering the 3D and 4D acquisitions of interest. In the event that

dual phase 3D data were acquired, the diastolic volume was preferred. Accepted

cases were finally anonymised and downloaded from PACS in Digital Imaging and

Communications in Medicine (DICOM) format.

Prior to manual segmentation, and to accommodate spatial misalignments as-

sociated with respiratory motion, 4D data were registered to the coordinate space

of the 3D SSFP volume. Registration was performed in two steps: (1) a cascade

of temporally sequential non-linear transforms were used to co-register each tem-

poral dynamic from the 4D series to the coordinate space of the final time step;

and (2) further non-linear transformation was used to spatially register the aligned

temporal dynamics with the 3D SSFP volume. All registrations were completed

using NiftyReg (Modat et al., 2010).



5.3. Methods 169

5.3.3 Guiding principle of manual image segmentation

Understanding and representing the continuity of cardiac anatomy is critical to

the utility of a patient-specific 3D model of CHD. In particular, an ideal model

reflects the clinically meaningful communication between all chambers and asso-

ciated vasculature. Throughout this work, we rely on voxel adjacency to infer the

haemodynamic continuity between the sub-components of cardiac anatomy.

As illustrated by Figure 5.1, this principle permits the definition of clinically

meaningful anatomical features. Adjacency of labelled voxels may indicate the

continuity of blood flow across anatomical junctions (consider the atrioventricular

valves, for example); or might specify the presence of a shunt or septal defect.

Equivalently, non-adjacency excludes communication between anatomical struc-

tures, defining thin tissue interfaces such as the atrial septum; or implying atretic

defects. It is through this principle that the segmented image gains clinically rele-

vant meaning. Moreover, holding our ground truth segmentations to this standard

guarantees the accurate delineation of defects, providing a faithful representation

of their spatial extent, morphology and location.

Accordingly, manual segmentation required that communication between sub-

components of the cardiovascular blood pool be reflected at the pixel level, con-

sidering a 26-connected image grid3. This allows our segmented images to demon-

strate the presence of congenital defects and interventional modifications, as spec-

ified by clinical CMR report. Whilst such a highly detailed segmentation may

not be required by all the applications reviewed in Section 2.2.1, adopting this de-

manding formulation (and multi-class specification, see Section 5.3.4) makes our

approach generalisable to the entire spectrum of use cases.

3Considering the 3D image as a close-packed lattice of cuboids, 26-connectivity associates all
voxels that share a face, edge or vertex. This description admits the 6-connected grid of voxels
that share faces; and the 18-connected grid of voxels that share faces and edges. For segmented
objects to have meaningful digital topology (Kong and Rosenfeld, 1989), complementary (and
reversible) connectivity patterns are defined (foreground, background): (26, 6) and (18, 6).



(a) (b)

Figure 5.1: Throughout this work, we use voxel adjacency to indicate haemody-
namic continuity. (a) Non-adjacency indicates the isolation of cardiac segments,
such as the septum separating left and right atria. (b) Adjacency indicates the
communication of segments, such as is found at valvular junctions, vascular con-
fluence, or - as in this case - VSD.
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5.3.4 Manual image segmentation protocol

All segmentations were completed using Mimics Medical Software (v18.0, Ma-

terialise NV, Leuven, Belgium) by the same clinical scientist referred to in Sec-

tion 5.3.2. Segmentation sought a highly detailed representation of anatomy, being

informed primarily by high resolution 3D data, but also considering 4D TR-MRA.

The imaging volume was separated into instances of eighteen different fore-

ground classes, including: aorta (Ao), Blalock-Taussig (BT), Damus-Kaye-Stansel

(DKS) connection, inferior vena cava (IVC), left atrium (LA), left pulmonary

artery (LPA), left pulmonary vein (LPV), left superior vena cava (LSVC), left ven-

tricle (LV), main pulmonary artery (MPA), ventricular myocardium (MY), patent

ductus arteriosus (PDA), right atrium (RA), right pulmonary artery (RPA), right

pulmonary vein (RPV), right superior vena cava (RSVC), right ventricle (RV),

and total cavopulmonary connection (TCPC). Note that not all of these classes

are present in all cases. In previous work, Pace et al. (2015) opted to terminate

branching vascular structures proximally, citing a sensible desire to avoid obscur-

ing cardiac anatomy. There, however, data were segmented into a combined blood

pool class. In contrast, our multi-class formulation affords control over the visu-

alisation of individual structures relative to one another. Therefore, we elect to

segment the major branches of the pulmonary vasculature as can be confidently

delineated within 3D and 4D data4.

Practically, segmentation proceeded as follows. Initially, a crude representation

of cardiac anatomy was achieved by semi-automated methods including threshold-

ing, cropping and region selection. Ultimately, however, the standard described

necessitated meticulous manual adjustment using multi-slice editing. More gener-

ally, the variety in both structural anatomy and image quality required a considered

treatment, using the majority of editing tools made available in software.

During the course of segmentation, human-computer interaction (including

mouse clicks and key presses) was logged using Mousotron activity monitor (Black-

sun Software, 2021). Duration was also recorded. Due to the extended nature of

the task, timing was automatically paused after idle periods of more than 10 s,

allowing for accurate accounting in the event of distraction.

4TR-MRA often provides differential visualisation of branching pulmonary arteries and veins.
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Unfortunately, given the operator burden of manual segmentation (see Sec-

tion 5.4.4), repeated segmentation for the purpose of intra- or inter-observer vari-

ation was not practical. Each segmentation, however, was reviewed by an expert

paediatric cardiologist with ten years’ experience in the care of patients with CHD,

including within CMR and the fabrication of patient-specific models of anatomy

(Valverde et al., 2017a). Changes were made where indicated.

5.3.5 Comparative analysis

To contextualise the structural heterogeneity expressed by the ELCH dataset

against the array of publicly available training data for cardiac image analysis,

we complete a comparative analysis. Ideally this would contrast our cohort with

publicly available data that were comparable in: patient population (CHD); image

acquisition (isotropically high resolution 3D data); and segmentation task specifi-

cation (multi-class anatomy). Though there exist two notable examples dedicated

to CHD, neither is an entirely suitable reference standard.

The Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular MRI

in Congenital Heart Disease (Pace et al., 2015) (HVSMR) Challenge data include

only ten cases and segment 3D CMR into collective blood pool and myocardial

classes (Pace et al., 2015); though larger (n = 110), ImageCHD computed tomog-

raphy (CT) data are made available without physical pixel spacing, precluding

any but dimensionless analyses (Xu et al., 2020). Whilst the 2017 Multi-Modality

Whole Heart Segmentation (Zhuang et al., 2019) (MM-WHS) dataset also includes

patients with tetralogy of Fallot, these are limited to seven of the twenty available

CMR scans, without representation in the twenty CT acquisitions (Zhuang et al.,

2019). More generally, quantifying the discrete structural changes associated with

defective anatomy remains a significant challenge.

Accordingly and primarily, we frame our analysis in terms of ventricular vol-

ume. This presents the distinct advantage of broadening the pool of reference

datasets, including those associated with short axis cine CMR. Thanks to its posi-

tion as the gold standard approach for ventricular volumetry (Ruijsink et al., 2020),

the segmentation of such images has received more machine and deep learning at-

tention than any other cardiac image analysis task (Chen et al., 2020). Though
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having different imaging characteristics, both short axis cine and spatially isotropic

3D SSFP seek to represent the same underlying ventricular anatomy. As a result,

in addition to those outlined above, we also compare the anatomy of our ELCH co-

hort against: Sunnybrook (Radau et al., 2009), 2012 Right Ventricle Segmentation

Challenge (Petitjean et al., 2015) (RVSC), Kaggle (Kaggle, 2016) Automatic Car-

diac Diagnosis Challenge (Bernard et al., 2018) (ACDC) and 2020 Multi-Centre,

Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge (Campello

et al., 2021) (M&Ms), short axis datasets.

5.3.6 Statistical analysis

The previous sections invite statistical analyses to compare and contrast: the

ELCH dataset with publicly available data; or its sub-groups. In Section 5.4.1,

we check for significant demographic differences between diagnostic sub-groups

using an omnibus and post-hoc testing procedure, using Kruskal-Wallis H-test,

followed by Dunn test with Bonferroni correction. We check for gender dispro-

portion across the ELCH dataset using a one-proportion z-test. To compare the

anatomical characteristics of the ELCH cohort with those of publicly available

data, in Section 5.4.5 we use Mann-Whitney U -tests with Bonferroni correction

for multiple comparison.

5.4 Results

The ELCH dataset constitutes a cohort of 150 patients, reflecting a range of con-

genital diagnoses. Its ambition is to provide a snapshot of those cared for between

2013 and 2020. The following sections seek to characterise these patients: their

disease; relevant interventional histories; CMR investigations; and their cardiovas-

cular anatomy. In so doing, we reflect the heterogeneity of the CHD population.

5.4.1 Demographics

Figure 5.2 demonstrates the demographic characteristics of the ELCH dataset. By

one-proportion z-test, there is no statistically significant evidence for an uneven
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(a) (b) (c)

Figure 5.2: Demographic characterisation of the patients within the ELCH dataset,
reflecting: (a) sex, (b) age at scan, and (c) weight at scan. Results are reported
for each diagnostic group. Please see Section 5.3.2 for acronym definitions.

ratio of female to male patients (67:83, p = 0.1914, see Figure 5.2a). Given the

small sample size (n = 30), we do not attempt sub-group analysis of categorical

sex differences within each diagnostic category. In any case, we do not expect such

differences to be clinically important.

More significantly, the ELCH dataset demonstrates a wide range in age (be-

tween three weeks and seventeen years) and weight (between 2.4 kg and 100 kg)

at the point of scan. These intervals illustrate the heterogeneity of the paediatric

CHD population. Figure 5.2b and Figure 5.2c suggest that the distributions of

both age and weight are positively skewed, with the majority of included CMR

investigations taking place during infancy.

Kruskal-Wallis H-test suggests statistically significant differences within the

omnibus of diagnostic groups (p = 0.0403). Post-hoc Dunn test with Bonferroni

correction reveals that the distribution of patient age significantly differs only be-

tween VSD and HLHS samples (p = 0.0186). At the time of scan, the median

age of the HLHS patients exceeds that of the VSD group by three years. This

reflects the different patient pathways followed in the management of these condi-

tions. HLHS more frequently includes defects which would otherwise preclude life,

necessitating urgent surgical, or hybrid intervention in the neonatal period and

prior to CMR investigation. Diagnostic imaging is subsequently used to consider

the timing of staged palliation or alternative intervention. On the other hand, the



5.4. Results 175

spectrum of VSDs exhibited by this cohort allows for comparatively conservative

management, and can be informed by CMR earlier in life.

This observation also accounts for the significant difference between the dis-

tribution of weight between HLHS and VSD patients (p = 0.0123 by the same

omnibus and post-hoc analyses). As illustrated in Figure 5.2c, growth between

the first and fourth years of life engenders a discrepancy in median patient weight

of 6.25 kg: being 15.65 kg and 9.40 kg in HLHS and VSD samples, respectively. We

are reassured that these demographic characteristics of the ELCH dataset reflect

the distribution of patients encountered in the clinic and their management.

5.4.2 Congenital diagnoses, defects and interventions

In addition to considerable variation in age and weight, the heterogeneity of the

CHD population is extended by an expansive set of structural defects, provoking

deviation from expected cardiovascular anatomy. Whilst the presentation of such

lesions is itself highly variable (see Section 5.4.5 for the impact upon anatomi-

cal distribution), defects are nominally reported for diagnostic and radiological

descriptive purposes.

As determined from clinical CMR report, Table 5.1 breaks down the 600 cardiac

malformations present at the birth of patients making up the ELCH dataset. By far

the most common, ventricular and atrial septal defects account for almost one third

of this total. Distinct from nearly all the remaining defects listed, septal defects

occur in all five diagnostic groups. Conversely and to some extent, the frequency

of most other defects correlates with the separation of cases into diagnostic sub-

groups. Consider the lateralisation of defects associated with HLHS and HRHS,

for example.

The structural interventions sustained by the ELCH dataset are presented in

Table 5.2. This suggests that at the time of scan, only 22 patients had no history of

cardiac intervention. A further 35 cases had undergone intracardiac (such as atrial

septostomy or septectomy) or extracardiac (such as MPA banding or BT shunt)

intervention consistent with consideration for biventricular repair. Another 28 pa-

tients had undergone intracardiac (such as Rastelli or VSD patching) or extracar-



Table 5.1: Number of cardiac defects exhibited by the ELCH cohort at birth.

DORV TGA VSD HLHS HRHS Total

Septal defects

Ventricular septal defect 31 24 26 6 24 111

Atrial septal defect 13 4 13 24 15 69

Membranous septal defect 2 3 7 0 6 18

Atrioventricular septal defect 2 0 1 3 0 6

Tetralogy of Fallot 1 0 2 0 1 4

Coronary sinus defect 1 0 0 0 0 1

Stenotic defects

Sub-pulmonary stenosis 8 12 1 0 4 25

Pulmonary valve stenosis 4 8 1 0 5 18

Coarctation of the aorta 3 1 6 4 4 18

Mitral valve stenosis 2 0 2 10 0 14

Left pulmonary artery stenosis 5 4 2 2 1 14

Right pulmonary artery stenosis 5 2 4 0 2 13

Sub-aortic stenosis 3 3 1 0 0 7

Aortic valve stenosis 0 0 1 5 0 6

Main pulmonary artery stenosis 2 0 0 0 0 2

Pulmonary vein stenosis 1 0 1 0 0 2

Tricuspid valve stenosis 1 0 0 0 0 1

Atretic defects

Mitral valve atresia 8 0 0 8 0 16

Aortic valve atresia 0 0 0 15 0 15

Pulmonary valve atresia 1 1 0 0 7 9

Tricuspid valve atresia 0 0 0 0 6 6

Interrupted aortic arch 1 0 0 0 1 2

Hypoplastic defects

Hypoplastic left ventricle 10 0 0 22 0 32

Hypoplastic right ventricle 1 2 2 0 24 29

Hypoplastic aortic arch 4 2 4 1 2 13

Hypoplastic left pulmonary artery 2 0 0 1 2 5

Hypoplastic right pulmonary artery 1 0 1 1 0 3

Discordant defects

Transposition of the great arteries 0 30 0 0 17 47

Double outlet right ventricle 30 0 0 0 0 30

Double inlet left ventricle 0 1 0 0 16 17

Double inlet right ventricle 1 0 0 0 0 1

Valvular defects

Straddling mitral valve 3 1 1 0 0 5

Bicuspid aortic valve 0 0 3 1 0 4

Straddling tricuspid valve 0 2 1 0 0 3

Bicuspid pulmonary valve 0 1 0 0 0 1

Mitral valve cleft 0 1 0 0 0 1

Vascular defects

Bilateral superior vena cavae 5 0 4 2 3 14

Patent ductus arteriosus 0 2 4 0 0 6

Aberrant right subclavian artery 0 1 2 0 1 4

Partial anomalous pulmonary venous drainage 2 0 0 0 0 2

Left superior vena cava 1 0 0 0 0 1

Total anomalous pulmonary venous drainage 0 0 0 0 1 1

Aortopulmonary window 0 1 0 0 0 1

Left pulmonary arteriovenous malformation 0 0 0 1 0 1

Anomalous left pulmonary artery 0 0 0 0 1 1

Right aortic arch 1 0 0 0 0 1



Table 5.2: Number of interventional modifications exhibited by the ELCH cohort at CMR acquisition.

DORV TGA VSD HLHS HRHS Total

No intervention 4 1 14 0 3 22

Biventricular surgical repair

Arterial switch 1 12 0 0 0 13

Ventricular septal defect closure 0 8 2 1 0 11

Atrial septal defect closure 0 7 1 0 0 8

Rastelli 4 1 0 0 0 5

Rastelli with pulmonary conduit 0 2 0 0 1 3

Atrial switch 0 2 0 0 0 2

Arterial switch with pulmonary conduit 0 1 0 0 0 1

REV 0 1 0 0 0 1

Other surgical repairs

Left ventricular outflow tract resection 0 4 0 1 1 6

Right ventricular outflow tract resection 1 1 0 0 1 3

Vascular surgery

Main pulmonary artery band 11 3 10 0 5 39

Coarctation repair 3 2 4 3 4 16

Ligation of patent ductus arteriosus 3 1 0 0 1 5

Aortic arch repair 4 1 0 0 0 5

Main pulmonary artery repair 4 0 0 0 0 4

Right pulmonary artery repair 0 1 0 2 0 3

Left pulmonary artery repair 0 0 0 0 2 2

Bilateral branch pulmonary artery bands 0 0 2 0 0 2

Main pulmonary artery plication 1 0 0 0 0 1

Repair of partial anomalous pulmonary venous drainage 1 0 0 0 0 1

Repair of total anomalous pulmonary venous drainage 0 0 0 0 1 1

Valvular surgery and surgical replacement

Tricuspid valve repair 1 0 0 1 0 2

Mitral valve repair 1 0 0 1 0 2

Aortic valve replacement 1 1 0 0 0 2

Oversewing of the tricuspid valve 0 0 0 0 2 2

Oversewing of the pulmonary valve 0 0 0 0 2 2

Mitral valve cleft closure 0 1 0 0 0 1

Pulmonary valve replacement 0 1 0 0 0 1

Surgical palliation

Right hemi Fontan cavopulmonary connection 8 2 1 23 19 53

Damus-Kaye-Stansel connection 4 0 0 28 5 37

Fontan total cavopulmonary connection 3 1 0 14 6 24

Atrial septectomy 5 2 0 2 6 15

Right Glenn cavopulmonary connection 3 1 0 5 3 12

Right Blalock-Taussig shunt 1 2 2 0 2 7

Left Glenn cavopulmonary connection 5 0 0 0 2 7

Atrial septal defect enlargement 1 0 0 1 1 3

Left Blalock-Taussig shunt 0 0 1 0 1 2

Ventricular septal defect enlargement 1 0 0 0 0 1

intracardiac catheter intervention

Balloon atrial septostomy 2 11 0 4 0 17

Balloon pulmonary valvotomy 1 0 0 0 0 1

Extracardiac catheter intervention

Patent ductus arteriosus stent 2 2 2 7 3 15

Left pulmonary artery stent 0 0 0 6 0 6

Balloon dilatation of coarctation of the aorta 0 0 0 2 0 2

Blalock-Taussig shunt stent 0 1 0 0 0 1

Right pulmonary artery stent 1 0 0 0 0 1

Patent ductus arteriosus closure 0 0 1 0 0 1

Balloon dilatation of the branch pulmonary arteries 0 0 1 0 0 1

Balloon dilatation of the aortic valve 0 0 0 1 0 1

Balloon dilatation of the right pulmonary artery 0 0 0 1 0 1

Balloon dilatation of the left pulmonary artery 1 0 0 0 0 1



Table 5.3: Number of cardiac defects exhibited by the ELCH cohort at CMR acquisition.

DORV TGA VSD HLHS HRHS Total

Septal defects

Ventricular septal defect 27 12 24 5 23 91

Atrial septal defect 18 9 12 28 21 88

Membranous septal defect 2 3 7 0 6 18

Residual ventricular septal defect 3 0 3 1 0 7

Atrioventricular septal defect 2 0 1 3 0 6

Tetralogy of Fallot 1 0 2 0 1 4

Coronary sinus defect 1 0 0 0 0 1

Stenotic defects

Sub-pulmonary stenosis 7 10 1 0 3 21

Pulmonary valve stenosis 4 8 1 0 5 18

Mitral valve stenosis 2 0 2 10 0 14

Right pulmonary artery stenosis 4 2 3 0 2 11

Left pulmonary artery stenosis 3 4 1 1 1 10

Sub-aortic stenosis 3 2 1 0 0 6

Aortic valve stenosis 0 0 1 5 0 6

Coarctation of the aorta 0 0 2 0 0 2

Main pulmonary artery stenosis 2 0 0 0 0 2

Tricuspid valve stenosis 1 0 0 0 0 1

Pulmonary vein stenosis 0 0 1 0 0 1

Atretic defects

Mitral valve atresia 8 0 0 8 0 16

Aortic valve atresia 0 0 0 15 0 15

Pulmonary valve atresia 1 1 0 0 7 9

Tricuspid valve atresia 0 0 0 0 8 8

Interrupted aortic arch 0 0 0 0 0 0

Hypoplastic defects

Hypoplastic left ventricle 10 0 0 22 0 32

Hypoplastic right ventricle 1 2 2 0 24 29

Hypoplastic left pulmonary artery 2 0 0 1 2 5

Hypoplastic aortic arch 0 0 4 0 0 4

Hypoplastic right pulmonary artery 1 0 1 1 0 3

Discordant defects

Transposition of the great arteries 0 13 0 0 17 30

Double outlet right ventricle 26 0 0 0 0 26

Double inlet left ventricle 0 1 0 0 14 15

Double inlet right ventricle 1 0 0 0 0 1

Valvular defects

Straddling mitral valve 3 1 1 0 0 5

Bicuspid aortic valve 0 0 3 1 0 4

Straddling tricuspid valve 0 2 1 0 0 3

Bicuspid pulmonary valve 0 1 0 0 0 1

Mitral valve cleft 0 0 0 0 0 0

Vascular defects

Bilateral superior vena cavae 5 0 4 2 3 14

Patent ductus arteriosus 0 1 3 0 1 5

Aberrant right subclavian artery 0 1 2 0 1 4

Left superior vena cava 1 0 0 0 0 1

Aortopulmonary window 0 1 0 0 0 1

Left pulmonary arteriovenous malformation 0 0 0 1 0 1

Anomalous left pulmonary artery 0 0 0 0 1 1

Right aortic arch 1 0 0 0 0 1

Partial anomalous pulmonary venous drainage 0 0 0 0 0 0

Total anomalous pulmonary venous drainage 0 0 0 0 0 0

Hypertrophic defects

Hypertrophic right ventricle 3 5 7 1 2 18

Hypertrophic left ventricle 1 2 1 0 0 4
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diac (such as arterial switch) surgical repair maintaining biventricular circulation5.

Lastly, 65 patients had histories including staged or anticipated univentricular pal-

liation: a single patient had undergone hybrid palliation, awaiting the next oper-

ative stage; 19 had been palliated with superior cavopulmonary connection (via

either hemi Fontan or Glenn anastomosis) without neo-aortic reconstruction; 21

cases had progressed through the combined stage I and II Norwood procedure,

including the creation of DKS and superior cavopulmonary connections; and 24

patients had fully transitioned to a univentricular circulation, including Fontan

completion (TCPC).

The combination of congenital diagnoses and interventional histories described,

culminates in the patient-specific anatomy and disease morphology of the ELCH

dataset. In addition to the circulatory modifications outlined in Table 5.2, the 563

defects resultant at the point of CMR examination are tallied in Table 5.3.

5.4.3 Imaging characteristics

All image data were acquired at 1.5 T using Philips Achieva magnetic resonance

imaging (MRI), spanning three scanner software releases. In an effort to secure

patient compliance, and to avoid the distress of extended CMR investigation, lo-

cal practice allowed for acquisition under general anaesthesia for 125 out of 150

patients.

High resolution 3D SSFP was achieved via electrocardiogram (ECG) gating

and respiratory navigation. Where the cardiac cycle could accommodate dual

phase acquisition, the diastolic volume was maintained for segmentation, max-

imising the apparent size of septal defects. This scheme results in the bimodal

distribution demonstrated in Figure 5.3a, including 44 systolic, and 106 diastolic

volumes. Qualitatively, and given our preference for diastolic segmentation, this

plot also suggests a subtle bias for single phase, systolic acquisition at high heart

rate. Given that there are no statistically significant differences in heart rate be-

tween diagnostic groups6, Figure 5.3c confirms that the bimodal distribution is

independent of diagnosis.

5However, it should be noted that residual VSDs remained in seven such cases.
6Although Kruskal-Wallis H-test points to significant difference within the omnibus, this is

not borne out by post-hoc Dunn testing with Bonferroni correction: p > 0.06 in all comparisons.
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(a) (b) (c)

Figure 5.3: The interaction between electrocardiogram (ECG) gating and heart
rate for high resolution 3D imaging. (a) The ELCH dataset is bimodally dis-
tributed between systolic and diastolic volumes. (b) There are no statistically
significant differences in heart rate between patients with different diagnoses. (c)
Accordingly, kernel density estimation suggests the same bimodal distribution is
largely consistent across all diagnostic sub-groups.

TR-MRA relied upon the administration of gadolinium-based contrast agent

in all cases, including: Dotarem (n = 145, 0.2 mLkg−1); Gadovist (n = 4,

0.1 mLkg−1); and Multihance (n = 1, 0.2 mLkg−1). Other representative imaging

characteristics are summarised in Table 5.4.

5.4.4 Burden of manual image segmentation

Our results confirm that high fidelity (including the expression of circulatory con-

tinuity at the pixel level) 3D manual image segmentation is a laborious task. After

adjusting for idle periods, the median segmentation time was 3 hours 17 minutes,

and up to 5 hours 31 minutes in the worst case. Moreover, this task demands

intensive human-computer interaction, requiring a median number of 11,848 indi-

vidual mouse clicks and 6429 key presses. In mediating these actions, the mouse

pointer moved a median distance of 831 m across a 23 inch computer monitor7,

and the scroll wheel completed 814 full revolutions. Although results for compar-

ative medical image processing tasks are scarce, recent publication suggests that

7In segmentation of the ELCH data, the mouse pointer covered a total of 130 km, or around
60 single journeys between Guy’s and St Thomas’ Hospitals.



5.4. Results 181

Table 5.4: Imaging characteristics of the ELCH dataset. Unless otherwise indi-
cated, all results, P50 (Pi, Pj)i,j

, report the median and ranges between the ith and
jth percentiles. References to x, y and z reflect the DICOM standard coordinate
space given by left-posterior-superior convention.

Imaging characteristics

3D SSFP 4D TR-MRA

Image

Size / voxels

x 150 (140, 169)25,75 140 (130, 160)25,75

y 384 (336, 432)25,75 320 (320, 348)25,75

z 400 (352, 432)25,75 320 (320, 352)25,75

Spacing / mm

x 0.72 (0.65, 0.80)25,75 0.82 (0.65, 0.88)25,75

y 0.71 (0.66, 0.78)25,75 0.79 (0.71, 0.85)25,75

z 0.72 (0.66, 0.78)25,75 0.79 (0.71, 0.85)25,75

Slice thickness / mm 1.44 (1.30, 1.50)25,75 1.54 (1.30, 1.76)25,75

Over contiguity∗ 2.00 (1.00, 2.00)0,100 2.00 (1.00, 2.00)0,100

Timing

Scan duration / s 158.5 (131.3, 188.8)25,75 18.5 (14.8, 22.2)25,75

Phases 2 (1, 2)25,75 N/A

Dynamics N/A 11 (9, 11)25,75

Spacing / s N/A 1.7 (1.36, 2.10)25,75

Magnetic resonance

Echo time / ms 2.36 (2.24, 2.43)25,75 1.33 (1.20, 1.45)25,75

Repetition time / ms 4.72 (4.48, 4.87)25,75 4.47 (3.97, 4.96)25,75

Flip angle / ° 90 (70, 90)0,100 25 (25, 30)0,100

Pixel bandwidth / Hz 542 (541, 969)25,75 289 (248, 332)25,75

∗To improve the signal-to-noise ratio our local imaging protocol acquires data on an isotropic grid composed
of over contiguous slices, the slice thickness typically exceeding the spacing between slices by a factor of two.

this level of interaction is at least comparable with the computer operation of a

radiologist completing a clinical reporting shift.

Vosshenrich and Breit (2021) found that a single radiologist moved the mouse

4.6 m and initiated 23 key strokes every minute. In segmentation of the ELCH

data, equivalent median results are: 4.1 m and 30 strokes per minute. Whilst the

distances traversed are difficult to compare due to differences in screen size, the

elevated rate of keyboard input indicates the complexity and intensity of manual

segmentation. This is further increased by another 58 mouse clicks, adding up to

a total of almost 90 discrete inputs per minute.



Figure 5.4: The ELCH dataset (see digital version for “zoomable” view). All examples share a common
coordinate space such that relative differences in anatomical size are visually meaningful.
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(a) LV Volume

(b) RV Volume

Figure 5.5: Disparities in ventricular volume are characteristic of CHD diagnosis.
LV and RV volume are severely reduced in HLHS and HRHS, in (a) and (b)
respectively. The ELCH dataset includes smaller patients with reduced left and
right ventricular volume than those represented in publicly available data.

The results of manual image segmentation are visualised by surface-rendered

representation in Figure 5.4. Note that the perspective (or camera position) of each

rendering takes a constant position with respect to the anatomical centre of mass

and DICOM coordinate space. This allows visual differences in spatial scale and

orientation to reflect the variation in CHD anatomy encountered within clinical

image data. Figure 5.4 provides an immediate impression of CHD heterogeneity

including the distribution of patient sizes discussed in Section 5.4.1. In addition, it

presents a qualitative impression of certain defects, including ventricular imbalance

or hypoplasia, and muscular hypertrophy.

5.4.5 Anatomical characteristics and comparative analysis

The anatomical heterogeneity of the ELCH dataset is quantitatively borne out

by the following comparative analysis. Given its paediatric membership, it is not

surprising that LV and RV volumes expressed in the ELCH dataset are lower

than those represented in publicly available data (see Figure 5.5). Mann-Whitney

U -test after Bonferroni correction suggests that the median ELCH LV and RV

volumes of 19.1 mL and 23.4 mL, respectively, are significantly less than equivalent

results drawn from publicly available data (p < 10−16 in all cases). Perhaps more
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Figure 5.6: The paediatric CHD population predictably exhibits lower ventricular
volumes than those expressed by healthy adults, or those with acquired cardiac
disease (ACDC, M&Ms, MM-WHS). Moreover, patients in the ELCH dataset (par-
ticularly those with HLHS and HRHS) exhibit significant ventricular imbalance,
manifesting as deviation from the dashed, grey line of equality.

interestingly, Figure 5.5 also confirms that LV and RV volume are characteristic of

CHD, particularly for those diagnostic groups that include lateralised defects. As

would be expected, the ELCH dataset demonstrates reduced LV and RV volume

in HLHS and HRHS groups, respectively.

In Figure 5.6 we consider imbalances between LV and RV volume, possibly

associated with CHD, and whether such effects are captured by the ELCH cohort.

In those publicly available datasets for which both LV and RV cavity labels are

made available (ACDC, MM-WHS, M&Ms), cases are tightly grouped either side

of the line indicating equal ventricular volume. In contrast, patients from the

ELCH dataset show substantial ventricular imbalance. This is particularly clear

in diagnostic groups involving ventricular hypoplasia (HLHS and HRHS) and to

a lesser extent within the DORV category. Although a well established and fully

anticipated observation (ventricular imbalance being a definitive characteristic of

these diagnoses), this plot makes clear that the cardiovascular anatomy of the
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(a) (b)

Figure 5.7: (a, left) CHD diagnoses associated with lateralised defects demonstrate
substantial deviation from ventricular volume balance (see HLHS and HRHS) (a,
right) and (b) Even when compared against other CHD-specific examples, the
entire ELCH cohort (n = 150) captures a far broader range of ventricular anatomy
than those making up the ImageCHD (n = 110; dark purple boxplot) or HVSMR
datasets (n = 10).

paediatric cohort cannot be well approximated by a spatially affine transformation

of structurally normal image data, or those reflective of acquired heart disease.

Moreover, the anatomical heterogeneity of the ELCH cohort is not limited to the

discrete circulatory changes associated with the defects list in Table 5.3, but is

also informed by increased continuous variation in anatomical scale and geometry.

We are pleased that our segmentation of the ELCH dataset captures these core

features of CHD morphology.

The structural heterogeneity of the ELCH cohort is reinforced by comparison

with publicly available datasets for the segmentation of CHD anatomy. Given

that the ImageCHD dataset is provided without meaningful pixel spacing, in Fig-

ure 5.7a we consider the dimensionless quantity of LV to RV ratio. As per previous

results, this demonstrates the association between ventricular disproportion and

congenital diagnosis. More interestingly, it also suggests that at least by this

metric, the ELCH dataset captures a wider range of ventricular imbalance (and

perhaps anatomical variation) than the ImageCHD cohort. In particular, the Im-

ageCHD dataset includes fewer examples in which the RV is dominant over a small,

hypoplastic or rudimentary LV. Numerous patients matching this anatomical con-

figuration are represented in DORV and HLHS sub-groups of the ELCH dataset.
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Figure 5.8: The bivariate distribution characterising the structural appearance of
ventricular septal defects according to: defect size (or equivalent circular diameter)
and separation from ventricular outflow. The ELCH dataset captures a wide range
of different defects, reflecting the heterogeneity of the CHD population.

This somewhat surprising disparity (given the approximate equivalence between

the sizes of these two datasets) may expose local differences in clinical practice

and outcomes for various patient groups.

The HVSMR dataset separates 3D SSFP data into a collective blood pool, and

a myocardial class. As such, Figure 5.7b is framed in terms of whole heart blood

pool volume. As might be anticipated from a dataset of just ten cases, the HVSMR

data span a narrower range than the more heterogeneous ELCH dataset. There is

also evidence that the ELCH patients are substantially smaller than their HVSMR

counterparts. The median HVSMR whole heart volume (395 mL) is almost 2.5

times that of the ELCH examples (161 mL).

Finally, we briefly depart from the examination of ventricular volume and turn

our attention to the characteristics of discrete defects. Unfortunately, there are no

appropriate public datasets against which we can compare the following results.

The most frequent lesion within the ELCH cohort, we limit our analysis to VSDs.

Figure 5.8 characterises the distribution of these 98 examples according to their
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size and proximity to the nearest ventricular outflow. These characteristics are

relevant to the consideration of possible surgical closure.

Defects were measured according to surface-rendered representation of relevant

anatomical interfaces (VSD: between LV and RV; aortic valve: between either

ventricle and the (neo-) aorta; pulmonary valve: between either ventricle and the

MPA), as presented by manual segmentation. Subsequently, individual interfaces

were localised by their centre of mass; and VSD size was assessed as the diameter

of the circle with equivalent surface area. Figure 5.8 shows that the majority of

VSDs are located within 35 mm of the nearest ventricular outflow and have an

equivalent diameter of less than 20 mm.

In general, however, these results demonstrate the wide range of septal defects

included within the ELCH dataset. They confirm that the heterogeneity of CHD

is not limited to an accounting of defects by their discrete presence or absence (as

per Table 5.3), or to continuous changes in anatomy (such as ventricular volume).

Rather, variability also extends to the continuous characteristics governing the

appearance of discrete, structural defects themselves. Though these observations

are well established properties of CHD, we are encouraged that they are not only

expressed by patients from the ELCH cohort, but that they can be derived auto-

matically from our manual segmentation of associated image data. This confers

clinical meaning to our ground truth label maps.

5.5 Discussion

5.5.1 Context

Through the lens of CMR, the ELCH dataset aims to reflect the range of anatomy

encountered by those caring for patients with CHD. This variety is captured by

the segmentation of high resolution, spatially isotropic image data. Within this

context, and to the best of our knowledge, the ELCH dataset is unique. The

results of this chapter have demonstrated that compared with publicly available

datasets it offers distinct advantages in both quantity and quality.
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In raw patient numbers, our total of 150 cases is comparable with the largest

publicly available, cardiovascular datasets8. Of those considered, only the M&Ms

dataset includes a greater number of patients, 375, once training and test sets are

combined (Campello et al., 2021). The size of the ELCH cohort is on par with the

popular ACDC dataset (Bernard et al., 2018), also comprising 150 patients, and

exceeds that of: Sunnybrook, 45 (Radau et al., 2009); RVSC, 48 (Petitjean et al.,

2015); HVSMR, 20 (Pace et al., 2015); MM-WHS, 60 CMR and 60 CT (Zhuang

et al., 2019); and ImageCHD, 110 (Xu et al., 2020)9.

In line with the majority of research activity (Chen et al., 2020), most publicly

available data concern the segmentation of short axis cine CMR for the purpose

of quantitative ventricular volumetry. In contrast, segmentation of the ELCH

dataset was primarily motivated by qualitative downstream application, such as

3D visualisation of patient-specific anatomy. As such, and with respect to both

image data and segmentation task, the ELCH dataset diverges from the majority

of publicly available data.

In terms of image acquisition, the ELCH dataset is most comparable with MM-

WHS and HVSMR resources. Each depicts cardiovascular anatomy within high

resolution, isotropic 3D SSFP data. However, and apart from by their quantity,

the HVSMR labels are limited by the formulation of their segmentation task,

separating pixels into whole heart blood pool, myocardium and background classes.

Although this may be useful to downstream applications such as patient-specific

3D printing, whole heart segmentation otherwise limits wider utility. A more

flexible partitioning of data separately delineates anatomical sub-structures of the

heart. MM-WHS and ImageCHD share a formulation that separates image data

into seven foreground classes. Whilst the two diverge in their treatment of the

great arteries, both reflect the anatomy of the four cardiac chambers, the two

cardiac outflows and the ventricular myocardium. The ELCH formulation is more

fine-grained still, including a total of eighteen anatomical components and surgical

connections.

8Note that whilst far larger, at the time of writing, the UK Biobank is not publicly available
(Fry et al., 2017).

9Whilst the combined training and test sets associated with the Kaggle data totals 700 pa-
tients, images are provided without ground truth segmentation (Kaggle, 2016).
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Critically, we also point out limitations in the quality of segmentations made

available by each of HVSMR, MM-WHS and ImageCHD datasets. We would not

go so far as to consider these complaints shortcomings. Rather, the following cri-

tique reflects the ways in which our approach might differ from practice elsewhere.

Having compiled the ELCH segmentations, we are fully aware of the challenges of

curating such resources and do not wish to devalue any of the publicly available

datasets considered. Each will have had their own set of priorities and motivations,

likely differing from our own.

Firstly, whilst ostensibly derived from 3D image data, we do not consider all

MM-WHS labels as true 3D segmentations. Figure 5.9 demonstrates the irregular

anatomical boundaries which result when volumetric data are manually segmented

in a slice-wise fashion. This appearance is shared by more than one quarter of the

MM-WHS training cases. Secondly, where motivated by treatment or surgical

planning, we consider it important that segmented data reflect continuity of the

blood pool. In our work, we confer clinical meaning by reflecting haemodynamic

communication by pixel adjacency (see Figure 5.1). Figure 5.9 shows that none

of MM-WHS, HVSMR or ImageCHD take the same approach, presumably being

more concerned by spatial overlap and surface localisation. Finally, although a

rich resource of 110 patients, ImageCHD data are made publicly available without

meaningful physical pixel spacings. This is problematic in the case that the features

characteristic of cardiac anatomy correlate with patient size. Moreover, inspection

of these data suggests that images were neither acquired nor reconstructed at

(near) isotropic spatial resolution, possibly resulting in distortions in aspect ratio.

Diagnostically, ImageCHD patients are the closest matched to the ELCH co-

hort, both reflecting a wide range in CHD. In this respect the two are highly

complementary, capturing CHD anatomy through the segmentation of CT and

CMR data, respectively. Accumulated across our dataset, detailed reporting iden-

tifies over 600 congenital defects (see Table 5.1), 563 of which are resultant at

the point of diagnostic examination (see Table 5.3). The gap between the two is

partially reconciled by endogenous resolution (for example, spontaneous VSD clo-

sure), but more substantively, is explained by the imposition of discrete structural

intervention (see those listed in Table 5.2). This picture, is further complicated by

the interaction between congenital diagnosis and clinical management.



(a) HVSMR (b) MM-WHS

(c) ImageCHD

Figure 5.9: Representative segmentations from publicly available datasets. None of
the HVSMR, MM-WHS or ImageCHD datasets consistently reflect anatomically
meaningful boundaries. (a) The HVSMR labels include small non-physiological
connections between the superior margin of the LA and the inferior RPA (white
arrows). (b) A significant proportion of the MM-WHS data include jagged arte-
facts associated with 2D slice-wise segmentation of volumetric data. By pixel
adjacency, this example also includes large haemodynamic windows between the
right atrial appendage and aorta (white arrow) and the aorta and MPA (black
arrow). (c) This example from the ImageCHD dataset falsely implies connection
between the LA and RPA (white arrow); LA and LPV (black arrow); and LPV and
RPA (blue arrow). Note that the CT data composing the ImageCHD dataset are
made available without physical pixel spacing, resulting in aspect ratio distortion,
as per this example.
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As alluded to in Section 5.4.1, patient pathways, whether culminating in biven-

tricular repair or staged univentricular palliation, are disease- and patient-specific.

Despite this variation, we observe that fundamentally, both surgical and catheter-

based structural intervention modify the geometry of congenital anatomy in some

way. Such changes are highly relevant to the segmentation and visualisation of

patient-specific disease, and in particular the representation of defects. Successful

surgical VSD closure, for example, represents a discrete change in the commu-

nication of left and right ventricles. Perhaps more significantly, staged univen-

tricular palliation induces dramatic circulatory modification, including DKS and

cavopulmonary connections. Critically, in both its labelled image data, and in its

characterisation, the ELCH reflects these features of structural anatomy.

Our analysis of anatomical characteristics lays bare the extreme differences in

structural anatomy exhibited by the paediatric CHD population. If anything, mea-

surements of ventricular volume suggest greater structural heterogeneity within the

ELCH cohort than between ImageCHD patients. Unlike publicly available data,

the variety captured in the ELCH dataset is further demonstrated by a detailed

reporting of patient demographics, diagnoses and medical histories. Finally, com-

parative analysis highlights the stark differences between congenitally malformed

or surgically modified anatomy, and that of healthy volunteers or those affected

by acquired disease. Whilst commonly understood clinically, these results provide

quantitative evidence, compelling to medical and scientific researchers alike.

Our results rigorously establish the operator burden associated with 3D manual

image segmentation. A median duration of 3 hours 17 minutes is approaching half

a working day for a whole time equivalent member of NHS staff. Perhaps more

problematically, the wide distribution of segmentation times (being over 5 hours

in the worst case) hampers meaningful prediction of the workload associated with

a given case. Comparison with published estimates is made challenging by infre-

quent and imprecise reporting of segmentation time, as well as differences in task

formulation and motivation (see Section 3.2.3). Acknowledging these difficulties,

previous systematic review made a best estimate of between 2 and 3 hours (Byrne

et al., 2016), with which our findings are comparable.

Whilst more difficult to characterise, at least with respect to the intensity of

interaction, our results confirm the manual complexity of this task. If nothing
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else, they highlight the control exerted by the operator, and their influence in de-

termining the form and extent of segmented anatomy. In this regard, the sheer

volume of inputs likely explains the inter- and intra-observer variation previously

reported (Meier et al., 2017). Beyond these observations, drawing more substan-

tive conclusions may necessitate a comprehensive assessment of human-computer

interaction. This line of enquiry may provide a means for assessing and considering

the introduction of semi-automated tools for cardiac segmentation in the future.

We observe that the faithful understanding of anatomy depends on signifi-

cant expertise in image interpretation and protracted experience inspecting and

analysing CHD morphology. Experientially, however, we suggest that these skills

are insufficient: appreciating anatomical structure is one thing; capturing such

an understanding (including the accurate representation of defects and haemody-

namic continuity) within a segmented image, is another. Manual segmentation of

the ELCH dataset also demanded a knowledge of image processing methodologies,

their implementation in software, and above all, practice in their application. Prob-

lematically, these traits are rarely expressed by an individual, tending to be siloed

within medical (radiology or cardiology specialties) and scientific or engineering

professions. In combination, our findings confirm the challenges of this task and to

some extent, explain the limited expansion of patient-specific 3D modelling outside

of all but the largest teaching hospitals and research centres of excellence.

5.5.2 Limitations and future work

The previous Section 5.5.1 presented the unique qualities of the ELCH dataset,

endorsing its potential to inform research and education across a number of do-

mains (including within image processing and cardiac morphology). To deliver on

this promise (and provided we can overcome current obstacles associated with: in-

formation governance, including the ethics of sharing patient data; the imposition

of suitable commercial restrictions; and identification of sustainable funding for

long term storage and access) we intend to make this resource publicly available

in the near future. Leveraging the dataset as the basis of our own segmentation

challenge (similar to HVSMR), may afford an opportunity to maximise exposure

and hence the impact of our contribution.
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For all the strengths of the ELCH dataset, however, we also acknowledge no-

table limitations. Firstly, the size of the cohort is not sufficient to appreciably

represent all possible congenital defects. Several rare lesions are characterised

by lone example, including right aortic arch, coronary sinus defect and aortopul-

monary window. In future, increasing the size of the dataset would undoubtedly

make it more representative of the CHD population.

Adopting such an approach, however, may be to oversimplify the challenge

and its motives. Once surgical modifications are taken into account, the number

of structural permutations is colossal. This is not to mention the heterogeneity in

the presentation of defects as illustrated by Figure 5.8. Hence, it is unlikely that

an expanded ELCH dataset will ever truly represent the underlying distribution

of patients. Therefore, whilst increasing the size of the ELCH cohort remains vital

to our future work, we are pragmatic as to how best to go about this.

In particular, we recognise that the primary motivation in establishing the

dataset was to provide a resource informing efforts to automate the segmentation

of patient-specific models from clinical data. To expedite curation, we opted to

gather historic cases. In future, and if ethical requirements can be satisfied, ex-

panding the dataset by the inclusion of patients conteporaneously with the delivery

of care may be preferable. Simultaneously, this approach allows for the expansion

of the ELCH dataset; the development of methodologies for automated segmenta-

tion; and investigation the effectiveness of patient-specific 3D models within care,

education and patient communication. This is not to mention the direct clinical

benefits conferred by patient-specific 3D printing (reviewed in Section 2.2.1).

The second major limitation of the ELCH dataset concerns its specificity.

Whilst features of the data are undoubtedly generalisable to the wider CHD pop-

ulation, they are expressed by patients treated at a single centre, scanned using

MRI technology provided by a single manufacturer and segmented by a single op-

erator. In these respects, the ELCH data define their own domain. Given our

wider ambition to exploit this dataset, driving feature learning relevant to auto-

mated segmentation, this may prove a limitation. More specifically, due to the

domain specificity of CNNs (Kamnitsas et al., 2017), models trained using our

dataset may not be peformant when presented with images acquired at different

hospitals, using different MRI scanners. Despite this, we consider the ELCH data
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a valuable foundation, to which data from other centres could be contributed.

Multi-centre collaboration, and rigorous assessment of inter- and intra-observer

variability (possibly including ELCH examples) is fertile ground for future work.

5.6 Conclusion

In the curation of the unique ELCH dataset, we have established the motivation

for, and resources necessary to investigate, methods to extract patient-specific

CHD anatomy from 3D CMR. It includes 150 distinct cases, each segmented into

one of eighteen anatomical classes. Vitally, our label maps reflect haemodynamic

continuity by pixel adjacency, conferring measurable clinical meaning. Through

a careful diagnostic and anatomical analysis, we have shown that our dataset

captures the significant structural variation associated with this population. In

this respect, and compared with existing datasets, including those representative

of CHD, ELCH cases demonstrate greater variety. Accordingly, we find that this

task, and the clinically meaningful formulation presented, embody a fundamentally

different proposition to the delineation of ventricular anatomy within short axis

cine data. In this context, the ELCH cases represent the first training dataset

appropriate for CNN-based segmentation, an application we will explore in the

following chapters. More generally, however, we hope that the ELCH dataset will

prove an invaluable starting point for those seeking to understand, and improve

the care of patients with, CHD.



Chapter 6

CNN segmentation of

congenital heart defects

6.1 Introduction

Chapter 5 presented the Evelina London Children’s Hospital (ELCH) dataset,

demonstrating its unique quantity and quality. Equipped with this resource,

this chapter establishes baseline performance for the convolutional neural network

(CNN)-based segmentation of multi-class congenital heart disease (CHD) anatomy

from 3D cardiac magnetic resonance (CMR). As per our curation of these training

data, we attend closely to the clinical aspects of this task. Recognising that a

typical CMR study comprises the acquisition of complementary image series, we

leverage the combination of 3D steady state free precession (SSFP) and 4D time-

resolved magnetic resonance angiography (TR-MRA). We anticipate that spatio-

temporal features describing the dynamics of blood flow inform the structure of

the heart and circulation, including the presence of defects. To ensure the clinical

relevance of our work, CNN predictions are assessed not only against widely ac-

cepted metrics of performance, but also against bespoke measures sensitive to the

representation of congenital defects in an associated patient-specific 3D model.

Prior to our account of baseline performance, we motivate and briefly review

the application of CNNs to high-dimensional data, with particular focus on 4D

and spatio-temporal deep learning.

195
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6.2 Learning from 4D data

6.2.1 Rationale

Each 3D SSFP image in the ELCH dataset is accompanied by dynamic, TR-MRA.

This acquisition reveals the passage of a bolus injection of gadolinium contrast

agent. As observed by Shin et al. (2012), differential enhancement informs the

haemodynamic relationships between anatomical structures. In relation to the

normally configured left and right heart, this is illustrated by Figure 6.1a. Within

such patients, we observe: (1) early enhancement of the right heart following

venous injection (blue curve); (2) enhancement of the left heart (red curve); and

(3) final1 enhancement of the cardiovascular blood pool (convergence of the blue

and red curves). In this description, the patterns of enhancement associated with

the blue and red curves are characteristic of the right and left heart, respectively.

Taken together, the two can be said to indicate differential enhancement, informing

the separation of anatomy.

The presence of a congenital heart defect, however, may disrupt this picture.

Consider an inter-atrial communication, placing the left and right chambers in

continuity. The passage of contrast agent between the two will be reflected in

TR-MRA data, with pixels describing each atrium (and certainly those in close

proximity to the defect) being more likely to share enhancement characteristics.

Specific to CHD, distinctive patterns of enhancement can reflect the presence of

septal defects or atretic junctions. More generally, characteristic enhancement is

an expression of haemodynamic continuity; differential enhancement is an expres-

sion of haemodynamic isolation. In this way, clinically meaningful, anatomical

structure can be inferred from inspection of these data. Notice that these conclu-

sions are drawn from the temporal domain, revealing the presence and integrity of

thin tissue interfaces (such as the atrial septum) which otherwise are a challenge

to resolve spatially, including within 3D SSFP (see Figure 6.2a and Figure 6.2b).

This is not the only way in which TR-MRA and 3D SSFP data are comple-

mentary. Owing to the administration of exogenous contrast agent, TR-MRA

visualises cardiovascular anatomy with high sensitivity. This improves the faithful

1Note that we refer to final rather than late enhancement to avoid confusion with late gadolin-
ium enhancement for the visualisation of ventricular scar.



Figure 6.1: Characteristic enhancement patterns within contrast-enhanced, time-
resolved magnetic resonance angiography (TR-MRA) reveal the configuration of
cardiovascular anatomy and can imply the presence of congenital defects. (a) Tem-
poral variations in signal intensity averaged within regions of interest positioned
in the left (red) and right (blue) ventricles (LV and RV, respectively). We con-
struct proxy representations of the volumetric time series. Those based on: (b)
Descriptive statistics such as the pixel-wise, temporal mean (Aµ) and standard
deviation (Aσ) reflect global enhancement; (c) Dimensionality reduction by prin-
cipal component analysis (PCA) (Λ1, Λ2, Λ3), summarises temporally differential
enhancement in a compact form. All images demonstrate anatomy in a single axial
plane from the volume time series.
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(a)
No ASD

(b)
ASD

(c)
ASD

Figure 6.2: TR-MRA can inform the configuration of the heart where inspection
of SSFP data remains equivocal. In (a) and (b), the limited spatial resolution
of SSFP data provides an ambiguous impression of the atrial septum, possibly
including an atrial septal defect (ASD). (a) Differential enhancement of the left
atrium (LA) and right atrium (RA) rule out an ASD. Whereas in (b), the two
atria share enhancement characteristics, indicating a communication. Finally in
(c), the appearance of the LA is compromised by dephasing artefacts associated
with blood flowing from the right pulmonary vein. Enhancement within TR-MRA
data firstly reveals the approximate shape, size and location of the LA. Secondly,
the common enhancement of both atria is indicative of ASD.

appearance of pulmonary vasculature. In SSFP data, these vessels are frequently

affected by inhomogeneity in signal intensity and dephasing artefacts associated

with flow acceleration (particularly at the confluence of pulmonary veins and left

atrium, see Figure 6.2c). Similarly, TR-MRA data can aid in the visualisation

of anatomy in the presence of the susceptibility artefacts associated with metallic

devices. Relevant to the CHD population, this includes vascular stents (see Ta-

ble 5.2). For all these strengths, however, it must be remembered that TR-MRA

acquisition is not electrocardiogram-gated. Whilst it provides valuable insight as

to the structure of the heart and its arrangement, it does so via a spatially coarse
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representation. Given this configuration, we rely on 3D SSFP for the delineation

of anatomy at high resolution. This is critical to the segmentation of intracardiac

structures and in particular to septal defects. Therefore, and throughout this chap-

ter, we consider TR-MRA data as an adjunct to 3D SSFP data, not the subject

of segmentation in its own right.

6.2.2 Challenges of 4D deep learning

The deep learning methodologies which support state of the art performance across

a range of medical image processing challenges, were first developed within the nat-

ural image domain (Litjens et al., 2017). For the most part, this family of tasks

considers lone 2D images or their sequential combination as frames in a conven-

tional video. In contrast and within the medical domain, 3D volumetric acquisi-

tion via any of CMR, computed tomography (CT), ultrasound or nuclear imaging

(including positron emission tomography (PET)) are commonplace. Whilst volu-

metric time series can also be acquired, in the broader field of image processing,

tasks addressing 4D data are rare (Gessert et al., 2020).

Accordingly, where established methods for 2D and 3D image segmentation

are ubiquitous (consider the popularity of U-Net-like architectures (Ronneberger

et al., 2015)), the same cannot be said for 4D data. Moreover, whilst most deep

learning software libraries, such as PyTorch (Paszke et al., 2019) and TensorFlow

(Abadi et al., 2016), provide functionality for the construction of CNNs based

on 2D and 3D convolution, their 4D equivalent is notably absent. The difficulty

of 4D deep learning is exacerbated by the significant memory demands associated

with an exponential increase in the size of the data, challenging the resources relied

upon for graphics processing unit (GPU)-accelerated training (Gessert et al., 2020).

Methodologically, the same explosion applies to the number of model parameters,

hampering effective, regularised optimisation: avoiding overfitting is particularly

challenging considering the dearth of labelled 4D training data.

Not all of these challenges are unique to 4D segmentation tasks. Software

availability aside, each obstacle posed by the extension of deep learning from 3D

to 4D, equally characterises the difference between 2D and 3D applications. As a

result, previous work has found that the theoretical advantages of 3D application
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cannot always overcome the practical difficulties of 3D CNN training. In such

cases, pragmatic 2D treatments of 3D data often return superior performance

(Choy et al., 2019). Given these challenges, accepted schemes for the application

of deep learning methods to 4D image processing tasks are yet to be established

and remain the subject of open investigation.

6.2.3 Previous work in spatio-temporal deep learning

To inform our review of the relevant literature, we note that the 4D image data

made up by TR-MRA reflect a volumetric time series. That is, the data are defined

in a 3D+T spatio-temporal coordinate space. Correspondingly, our application is

informed not only by previous investigation of 4D image processing tasks, but

also by those concerning lower dimensional spatio-temporal image data. Far more

commonplace, conventional 2D+T video has received greater research interest than

its 3D+T equivalent. We also recognise the ambiguity in references to 2D, 3D and

4D data. More precisely, we will review the literature relevant to the segmentation

of spatio-temporal 4D data, making explicit references to 2D+T and 3D+T where

appropriate.

Previous works can be differentiated by their approach to spatio-temporal fea-

ture learning: whether spatial and temporal features are learned separately in

series or in parallel; or whether truly spatio-temporal features are learned jointly.

Each approach further divides into those based solely on CNNs, and those which

also employ recurrent neural networks (RNNs) to model sequential data.

Separately learned spatial and temporal features

The first family of methods extracts spatial and temporal features separately and

in parallel. Simonyan and Zisserman (2014) used optical flow to construct a tempo-

rally sensitive input of stacked displacement fields. Combined with a static single

frame, they used a dual stream 2D CNN to extract spatial and temporal features.

Subsequent late fusion was used to classify human actions within 2D+T video. A

related approach has been presented by Kang et al. (2019). Rather than by CNN,

they use long short-term memory (LSTM) to extract temporal features per voxel

of 3D+T dynamic contrast-enhanced magnetic resonance imaging (MRI) of the
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prostate. They subsequently fuse spatial and temporal features using a fully con-

nected multi-layer perceptron, demonstrating improved segmentation performance

compared with the application of either stream in isolation.

Alternatively, others have taken a serial approach to spatio-temporal feature

learning. Sun et al. (2015) factorise the 2D+T convolutional operator: features

extracted using a 2D CNN are subsequently transformed using learned 1D convo-

lutional operators, modelling inter-frame dependencies within a video classification

task. In the medical domain, a similarly staged approach has been used to iden-

tify cognitive networks from 3D+T functional MRI data using CNNs (Zhao et al.,

2018). The serial combination of CNN and RNN features has also been explored.

Across a variety of 2D+T natural video processing tasks, Donahue et al. (2015) use

stacked LSTM modules to interrogate the spatial features extracted by 2D CNN.

In the medical domain, this approach was applied to the detection of deficits in a

cohort of 396 patients undergoing 3D+T CT perfusion examination (Vargas et al.,

2019).

Jointly learned spatial and temporal features

Compared with those presented previously, the following works extract truly spatio-

temporal features, leveraging operators (whether convolutional or recurrent) match-

ing the dimensionality of the data considered. The first family rely solely on

high-dimensional convolution, without differentiating between spatial and tempo-

ral axes. This approach has been deployed within 2D+T processing tasks: 3D

CNNs have been applied to human action recognition (Ji et al., 2012), video clas-

sification (Tran et al., 2015) and, pertinently to CMR image analysis, promoting

temporally consistent myocardial segmentation from short axis cine (Yang et al.,

2018b). Within 3D+T processing tasks, 4D CNNs have been used to label 3D

video data capturing rooms or street scenes (Choy et al., 2019); to reconstruct 4D

cardiac CT data (Clark and Badea, 2019); and within the segmentation of the left

ventricular cavity and myocardium from 4D cardiac CT (Myronenko et al., 2020).

In the last case, however, spatial overlap performance was only comparable with,

and did not exceed the application of a 3D CNN.
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In contrast, the following works deploy convolutional recurrent operators for

feature extraction. Following the work of Shi et al. (2015), these methods com-

bine the advantages of CNNs and their treatment of spatially structured data,

with those of temporally unrolled RNNs. Several works have investigated the

benefit conferred by the introduction of convolutional LSTM cells to the U-Net

architecture. Gao et al. (2018) employ these layers within the upsampling path,

improving the segmentation of white and grey matter from longitudinal (3D+T)

paediatric MRI. Meanwhile, Dong et al. (2020) and Fehling et al. (2020) investigate

performance differences when convolutional LSTM cells are included in both or ei-

ther of the encoder and decoder. Their findings suggest that the most significant

performance gains are made by the introduction of these cells to the expanding

portion of the U-Net; but that small incremental gains can be made by addition-

ally including recurrent layers within the encoder. They demonstrate improved

segmentation of the fruit fly heart from 2D+T optical coherence tomography,

and laryngeal anatomy from high speed 2D+T video, respectively. Finally, Van

De Leemput et al. (2019) use stacked, bi-directional convolutional LSTMs to syn-

thesise non-contrast and contrast-enhanced volumes from a 3D+T CT perfusion

study, as relevant to the assessment of stroke. This approach is closely related to

our segmentation task, modelling a “volume-series-to-volume” transformation.

Comparison of approaches

The preceding review presented different approaches to spatio-temporal feature

learning. However, relatively few authors have rigorously compared the perfor-

mance of different schemes for handling high-dimensional and spatio-temporal

data. This number dwindles significantly when our scope is limited to volume-

series-to-volume transformation or segmentation. Notably, Van De Leemput et al.

(2019) find their approach outperforms 3D U-Net. However, questionable design

choices may prevent this baseline from being considered state of the art: they train

for only 1500 iterations; opt to recover high resolution information by the use of

nearest neighbour interpolation rather than learned deconvolution; and fail to con-

cretely describe their strategy for passing sequential volumes to the 3D U-Net.
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In contrast, the related works of Bengs et al. (2020) and Gessert et al. (2020)

present a rigorous comparison of different schemes for the treatment of 3D+T

spatio-temporal data. In the classification of autism spectrum disorder from fMRI,

Bengs et al. (2020) consider spatio-temporal features learned: (1) jointly via 4D

convolution; (2) sequentially by gated recurrent unit (GRU) and then by spatially

3D CNN; and (3) by adding frames as additional input channels to the network.

Related to the final of these, they also consider (4) a formulation of their task

conditioned on a multi-channel, spatially 3D input. Each channel reflects the

pixel-wise mean and standard deviation, as assessed over the temporal dimension.

Whilst this “temporal proxy” captures a relatively meagre representation of se-

quential information, this approach outperformed the trivial inclusion of frames as

additional channels and was comparable to 4D convolution, only being surpassed

by sequential temporal and spatial feature learning. In keeping with Section 6.2.2,

we speculate that the challenges of faithfully optimising a high-dimensional and

high capacity neural network (such as a 4D CNN) with limited medical training

data, allow for this relatively basic approach to remain competitive.

Within the regression task of force estimation from 3D+T optical coherence

tomography data, Gessert et al. (2020) compare spatio-temporal feature learning

by: (1) 4D convolution within a residual architecture; (2) by factorised convolution

(3D spatial and 1D temporal components); and (3) sequentially by 3D CNN fol-

lowed by temporally unrolled GRU and vice versa. In common with Bengs et al.

(2020), their best performing architecture preceded spatial CNN with recurrent

feature extraction. However, 4D convolution was far more competitive within this

work. We speculate that the improved performance of a 4D CNN can be explained

by the availability of a larger training dataset: Gessert et al. (2020) had access to

on the order of 104 samples, whereas Bengs et al. (2020) trained with only 134 sub-

jects. It is plausible that these training data allowed for regularised optimisation

of the high capacity 4D CNN, whilst avoiding overfitting.

Summary

The preceding review demonstrates the potential performance gains that can be

achieved through a considered treatment of spatio-temporal image data. How-
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ever, coupled with the challenges of 4D deep learning, the lack of an accepted

architecture for 3D+T feature extraction makes any application of the reviewed

methodologies an exploratory and open investigation. Given the limited train-

ing data and significant variation associated with the clinical CHD population,

we leave the application of advanced neural architectures, possibly including high-

dimensional or recurrent, convolutional operators, for future work. Instead, we are

encouraged by the relative success of pragmatic efforts to straightforwardly incor-

porate time-series information by the construction of temporal proxies, and their

input to CNNs as additional channels (Bengs et al., 2020). Here we investigate

two such proxies, including pixel-wise, summary statistics of dynamic constrast

enhancement (the mean and standard deviation, see Figure 6.1b); and dimension-

ality reduction via principal component analysis (PCA) (see Figure 6.1c).

6.3 Contributions

In this chapter we make the following contributions:

1. We conduct experiments using the ELCH dataset, establishing a new CNN-

based state of the art for the segmentation of CHD anatomy and disease

morphology from 3D CMR acquisition.

2. Our challenging task formulation separates image data into sixteen anatom-

ical labels relevant to the description of congenital disease morphology, ex-

ceeding the seven-class description favoured by previous work.

3. We present schemes to efficiently leverage 4D CMR data within this task,

demonstrating associated performance gains.

4. In addition to commonly used metrics of performance, we assess the clinical

suitability of predicted segmentations, constructing metrics relevant to the

quantity and quality of congenital heart defects.

5. In so doing, we expose limitations of conventionally trained CNN-based seg-

mentation, demonstrating its inadequacy for clinical practice.
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6.4 Methods

6.4.1 Task formulation

We assess the performance of CNN-based segmentation of CHD anatomy from

3D and 4D CMR data. Our task seeks to divide these images into clinically

meaningful anatomical segments. We consider the input image X : R3 → RC , as

the combination of C channels X1, X2, ..., XC , each constructed from two types of

data:

1. 3D SSFP, the morphological acquisition denoted M : R3 → R, and being

made up by the single volume M .

2. 4D TR-MRA, the angiographic acquisition denoted A : R3 → RT , and being

made up by a time series of T volumes A1, A2, ..., AT .

Our baseline considers the case in which segmentation probability is condi-

tioned only on 3D SSFP data: XM = (M). Experimentally, we consider the

concatenation of M with the proxy temporal representations described in Sec-

tion 6.4.2, achieving pairings with the pixel-wise temporal mean Xµ = (M,Aµ);

standard deviation Xσ = (M,Aσ); and first principal mode of variation XΛ1 =

(M,Λ1). We also construct three and four channel inputs by further concatena-

tion of the second and third principal components, achieving: XΛ2 = (M,Λ1,Λ2)

and XΛ3 = (M,Λ1,Λ2,Λ3), respectively.

In all cases, we train a CNN to infer the probabilistic segmentation Ỹ :

R3 → [0, 1]17, being made up by seventeen mutually exclusive class label maps:

Ỹ1, Ỹ2, ..., Ỹ17, including sixteen foreground classes2. Metrics are computed with

respect to the discrete, predicted segmentation which maximises conditional pixel-

wise probability inferred by CNN. We denote this as Ŷ : R3 → {0, 1}17. We

also allow subscripts to identify anatomical segments by their abbreviation: for

example, ŶLV and ŶRV are the class label maps of the left and right ventricles

respectively.

2Note that due to low frequency of appearance in ELCH data, we subsume labels for both
patent ductus arteriosus and Blalock-Taussig shunt into the aorta class.
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Y YLH,YRH YWH

Figure 6.3: We assess performance of different sets of cardiac labels, each relevant
to a variety of downstream applications of segmented data. Left, Y is the multi-
class blood pool and myocardium. Central, YLH (red) YRH (blue) are the left and
right heart. Right, YWH is the whole heart blood pool.

In addition to these individual labels, we consider groupings of the blood pool

components of the left and right heart anatomy: ŶLH and ŶRH. Each is formed

by the union of pixels from all associated anatomical structures, with the sixteen

foreground classes divided as follows. Left heart structures include: aorta, Damus-

Kaye-Stansel (DKS) connection, left atrium (LA), left pulmonary veins (LPVs),

left ventricle (LV) and right pulmonary veins (RPVs). Right heart structures in-

clude: inferior vena cava (IVC), left pulmonary artery (LPA), left superior vena

cava (LSVC), main pulmonary artery (MPA), right atrium (RA), right pulmonary

artery (RPA), right superior vena cava (RSVC), right ventricle (RV) and total

cavopulmonary connection (TCPC). The final foreground class describes the my-

ocardium bounding the union of ventricular blood pools. Further, we refer to the

combination of ŶLH and ŶRH as the whole heart blood pool, ŶWH (in essence, the

union of all foreground classes except the myocardium, see Figure 6.3). This form

and its associated notation are mirrored by the ground truth segmentation, Y; its

mutually exclusive class label maps, Yi; and left, right and whole heart groupings,

YLH, YRH and YWH.
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6.4.2 Representation of 4D data

We intend to feed proxy representations of TR-MRA data as input to the CNN.

We consider these in two groups:

The first group is based on the pixel-wise statistics describing the temporal

distribution of intensities, the mean and standard deviation3:

Aµ =

∑
t At

T
(6.4.1)

Aσ =

√∑
t (At − Aµ)

2

T
(6.4.2)

For the most part, Aµ and Aσ reflect the (temporally) global enhancement charac-

teristics of the cardiovascular blood pool. All temporal information is reduced to

a single volume, returning a coarse representation of cardiac anatomy with high

sensitivity: enhancing structures appear bright, the non-enhancing background

remains dark (see Figure 6.1). We anticipate that these characteristics provide a

source of features relevant to anatomical segmentation. Firstly, Aµ and Aσ approx-

imate the whole heart cardiac blood pool at low spatial resolution, capturing its

localisation and crude geometry. Secondly, these images (and TR-MRA data more

generally) complement the deficits in image quality commonly associated with 3D

SSFP data. Where the latter is frequently compromised by flow artefacts, Aµ and

Aσ visualise pulmonary vasculature with high contrast. Similarly, thanks to the

introduction of exogenous contrast agent, TR-MRA often appears less affected by

metallic susceptibility artefacts. Relevant to the ELCH dataset, this can improve

the visualisation of anatomy within close proximity to vascular stents.

The second group of TR-MRA proxy representations exploits PCA to reduce

the temporal dimensionality of each angiographic sequence (typically containing

between nine and eleven volumes, see Table 5.4). Where N is the number of pixels

in each At, we consider the N ×T design matrix, A†, achieved by reshaping A. In

essence, A† lists the enhancement curves of every pixel in A. In this context PCA

seeks a change of basis (mediated by linear transformation P), that maximally

3More precisely, this should be referred to as the uncorrected, or sample standard deviation.
However, for brevity we refer simply to the standard deviation throughout this chapter.
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explains the different modes of enhancement expressed by the pixels of A:

Λ† = PA† (6.4.3)

We recover the transformed volume series Λ : R3 → RT , by the reverse of the

reshaping operation associating A with A†. This approach hopes to achieve a

transformed space in which each of the T successive volumes Λ1,Λ2, ...,ΛT , reflect

a different, characteristic mode of enhancement. Compared with A, we reduce

dimensionality by considering the first three modes of variation only: Λ1,Λ2,Λ3.

This is a principled choice, observing the modes of enhancement discussed in Sec-

tion 6.2.1. On average, these explain over 95% of the total variance in dynamic

enhancement.

Consequently, where Aµ and Aσ reflect global enhancement (whether a pixel

describes an enhancing structure or not), Λ1,Λ2,Λ3 capture the differential en-

hancement of cardiac substructures. By the arguments presented in Section 6.2.1,

we anticipate that this may aid the discrimination of anatomical classes, and in-

dicate the presence of defects. Our investigation will test whether transformation

by PCA, a pragmatic, low dimensional treatment of 4D data, returns a source of

features consistent with these aims.

6.4.3 Experiments

All experiments in this chapter make use of the ELCH dataset. Ensuring equal

representation of each diagnostic group, the dataset of 150 pairs of images and

labels were randomly split between training and test sets in the ratio 2:1. This

achieved a training set of 100 examples, exceeding the quantity of data made avail-

able for the Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular

MRI in Congenital Heart Disease (Pace et al., 2015) (HVSMR) Challenge by a

factor of ten. Correspondingly, our held out test set of fifty examples was a fac-

tor of five larger than the number of cases used for HVSMR evaluation. Prior

to experimentation, all data were resampled to an isotropic spatial resolution of

1.00 mm, and normalised to have zero mean and unit variance.



6.4. Methods 209

Inspired by the nnU-Net framework for self-configuring deep learning (Isensee

et al., 2021)4, we make segmentation predictions using an ensemble of models,

trained by five-fold cross-validation. At each fold, a validation set of twenty train-

ing cases was withheld. Training cases were randomly divided between validation

sets without replacement, and after stratifying by diagnostic group. Final predic-

tions were made by averaging individually inferred probabilistic segmentations.

For its ubiquity and state of the art performance, we adopt the 3D U-Net

architecture (Çiçek et al., 2016) in all experiments. Each model was trained us-

ing an equally weighted combination of cross-entropy and generalised Dice losses

(Sudre et al., 2017) for 24,000 iterations. Auxiliary classification of all but the

lowest resolution features learned in the expanding portion of the U-Net, allowed

deep supervision (Lee et al., 2015). Each contribution to the loss was weighted as

per the nnU-Net formalism (Isensee et al., 2021). Optimisation was mediated by

stochastic gradient descent including Nesterov momentum (µ = 0.99). An initial

learning rate of 0.01 was decayed according to the the poly learning rate policy

(Chen et al., 2017). Each minibatch contained two large volumetric patches of

dimension 128 × 128 × 128. We made use of intensive data augmentation, pre-

computing 200 examples per case. Transformations included: rotation about all

three spatial axes ([−10◦, 10◦]), scaling ([0.9, 1.1]) and non-rigid deformation, us-

ing Torchio (Pérez-Garćıa et al., 2021). All CNN experiments were implemented

using PyTorch (Paszke et al., 2019).

6.4.4 Metrics

The following metrics can broadly be grouped into those used widely throughout

the image processing literature, and those which we have adapted specifically for

our application. We refer to these as technical and anatomical metrics respectively.

Technical metrics

Being task agnostic, the following technical metrics are commonly used throughout

the image segmentation literature, assessing performance against the ground truth

4Whilst design choices and hyperparameter settings were inspired by the nnU-Net framework
(Isensee et al., 2021), we favoured a bespoke implementation for its flexibility and efficiency.
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reference standard. They concern well-established technical aspects of performance

including spatial overlap and surface localisation. We measure spatial overlap

performance between ground truth and predicted image segments, Yi and Ŷi, using

the Dice similarity coefficient (Dice, 1945) (DSC):

DSC(Yi, Ŷi) =
2|Yi ∩ Ŷi|
|Yi|+ |Ŷi|

(6.4.4)

Where ∩ indicates pixel-wise set intersection and |·| is the cardinality of the set

contained. A summary measure for multi-class problems, we rely on the generalised

Dice similarity coefficient (Crum et al., 2006) (GDSC) as an objective measure of

spatial overlap performance across foreground anatomical segments:

GDSC(Y, Ŷ) =
2
∑

i |Yi ∩ Ŷi|∑
i |Yi|+ |Ŷi|

(6.4.5)

To align our results with previous work (Pace et al., 2015; Yu et al., 2017a,b;

Wolterink et al., 2017; Du et al., 2020), we also report a whole heart Dice similarity

coefficient (Dice, 1945): DSCWH = DSC(YWH, ŶWH).

Defect visualisation (including extent, morphology and locale) depends on the

accurate localisation of the anatomical surfaces composing the heart. We assess

surface localisation by the bidirectional Hausdorff distance (Huttenlocher et al.,

1993) (HDD) between ground truth and predicted image segments, Yi and Ŷi:

HDD(Yi, Ŷi) = HDD(Ŷi, Yi) (6.4.6)

= max(h(Yi, Ŷi), h(Ŷi, Yi)) (6.4.7)

h(Yi, Ŷi) = max
yi∈Yi

min
ŷi∈Ŷi

δ(yi, ŷi) (6.4.8)

Where h(Y, Ŷ ) is the directed HDD and δ(y, ŷ) is the Euclidean distance between

the centre of the voxels yi and ŷi contained by Yi and Ŷi, respectively. As per

spatial overlap, we are also concerned with the HDD for the union of blood pool

classes, HDDWH(YWH, ŶWH).
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(a) (b) (c)

Figure 6.4: Schematic representation of clinically relevant, anatomical metrics.
(a) The shunt error (SE) is calculated with respect to the number of connected
components of pixels, adjacent between the left (red) and right (blue) heart. In
this case Ŝ = 2, in including: (A) atrial septal defect (ASD) and (B) ventricular
septal defect (VSD). (b) The VSD boundary intersection (VBI) finds the associa-
tion between the ground truth VSD (highlighted in green orange and red pixels)
and the boundary of the predicted whole heart blood pool (white). Whilst the
ground truth whole heart blood pool is not shown explicitly, its form can be in-
ferred by consideration of the terms of Equation 6.4.13: YVSD is the union of green,
orange and red pixels; YVSD ∩ β(YWH) is the union of orange and red pixels; and
YVSD ∩ β(YWH) ∩ β(ŶWH) is set of red pixels only. In this case, VBI = 0.6. (c)
Discontinuities in the left (red) and right (blue) heart are identified by connected
component analysis, being two and four, respectively in this example.
Note that all examples depict a single, 2D axial slice from the CMR volume, down-
sampled to ease visualisation. In reality all metrics are computed throughout the
full resolution, 3D volume, considering adjacency and component connectivity on
a 26-connected grid.

Anatomical metrics

Visually demonstrated in Figure 6.4, the following metrics are designed to cap-

ture the extent to which predicted segmentation returns a clinically meaningful

representation of CHD anatomy. In particular, as per the ground truth (see Sec-

tion 5.3.3), our ambition is that automated segmentation reflects haemodynamic

continuity via pixel adjacency. This is key to the accurate delineation or exclusion

of a variety of defects.
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Accordingly, our first anatomical metric is simply the difference between the

number of connections between the left and right heart exhibited by predicted and

ground truth segmentations. This metric is sensitive to the presence of defects

such as inter-chamber communication, double inlet ventricle and ventriculo-arterial

discordance; and to surgical, structural modification, such as septal defect closure

or Rastelli repair. Often referred to as shunts, the shunt error (SE) associated

with these connections is constructed as follows:

SE = Ŝ − S (6.4.9)

Where S is the number of shunts demonstrated by the ground truth segmentation

(and also known a priori from the CMR report and reflected in Table 5.2 and

Table 5.3), and Ŝ is the number shunts presented by the predicted segmentation.

Ŝ is automatically determined by: finding all voxels within the left heart (ŶLH)

that are adjacent to a voxel in the right heart (ŶRH), and vice versa; separating the

resulting set into 26-connected components; and counting the number of distinct

clusters which result:

S = κ(ϕ(ŶLH, ŶRH)) (6.4.10)

Where the operator ϕ(U, V ) returns the voxels that are adjacent between sets U

and V ; and κ(W ) returns the number of connected components of W . A schematic

representation of S is given in Figure 6.4a.

The most frequent shunt within the ELCH cohort, we subject ventricular sep-

tal defects (VSDs) to further scrutiny. We anticipate that the insight gained from

the associated metrics will be representative of the capacity of CNNs to capture

anatomical interfaces more generally. Firstly, defining the VSD as the union of

pixels that are adjacent between left and right ventricles (see pixel set B in Fig-

ure 6.4a), YVSD = ϕ(YLV, YRV) we consider metrics of spatial overlap and surface

localisation, specific to these defects:

DSCVSD = DSC(YVSD, ŶVSD) (6.4.11)

HDDVSD = HDD(YVSD, ŶVSD) (6.4.12)
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Secondly, we consider a metric relevant to the particular downstream application of

patient-specific 3D printing. In this segmentation use case, cardiac anatomy may

be judiciously demonstrated as the union of blood pool sub-components. Once

this combination is made, it is not so important that the individual left and right

ventricles are labelled with high spatial overlap and accurate surface localisation.

Rather, it is important that their union has these properties. Accordingly and in

this scenario, defining the predicted VSD as the set of pixels that are adjacent

between predicted LV and RV segmentations might be overly punitive. Instead,

we compare the ground truth VSD, with the surface of the predicted blood pool

union. The VSD boundary intersection (VBI) metric finds the fraction of the

pixels on the boundary of YVSD shared by the boundary of ŶWH:

VBI(Y, Ŷ) =
|YVSD ∩ β(YWH) ∩ β(ŶWH)|

|YVSD ∩ β(YWH)|
(6.4.13)

Where β(U) returns the set of pixels on the boundary of the binary segmentation

U . In essence, the VSD boundary intersection relaxes the condition that LV and

RV be segmented faithfully, instead assessing the accuracy with which the pre-

dicted, whole heart blood pool delineates VSDs. A schematic representation is

given in Figure 6.4b.

Where the preceding metrics relate to the inter-connectivity of the left and

right heart, the final metric considered concerns the continuity of each of the great

and small circulations separately. Here, continuity describes the flow of blood be-

tween successive anatomical components. In the normal heart, each of the left

(pulmonary veins, LA, LV, aorta) and right (systemic veins, RA, RV, pulmonary

arteries) circulations are respectively continuous: each is composed by a single

connected component. Discontinuities isolate these flows and increase the num-

ber of connected components. Practically, discontinuities are associated with the

presence of congenital defects such as valvular atresia, and surgical modifications

including superior and total cavopulmonary connections. Our final anatomical

metric is the difference between the number of discontinuities in ground truth and

predicted circulations. The discontinuity error (DE) is constructed as follows:

DEN∈{LH,RH} = D̂N −DN (6.4.14)
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Where DELH and DERH are the discontinuity differences within the left and right

heart circulations respectively; andDN and D̂N are the number of discontinuities in

the relevant circulations of ground truth and predicted segmentations, respectively.

Whilst the number of discontinuities in ground truth circulations (DLH and DRH)

are known a priori, the number of discontinuities in the predicted cardiac anatomy

are found as follows (see Figure 6.4c):

D̂N∈{LH,RH} = κ(ŶN)− 1 (6.4.15)

6.4.5 Clinically relevant covariables

Chapter 5 demonstrated the heterogeneity of the CHD population, including sig-

nificant demographic and structural variation. In response, we seek to understand

the dependence of CNN-based segmentation performance on clinically relevant co-

variables. Perhaps most obviously, we report technical performance per diagnostic

category of the ELCH dataset. However, we also consider the following dependen-

cies on continuous covariables.

Section 5.4.5 demonstrated that the ratio of LV to RV volume is characteristic

of the defects associated with CHD. Therefore, to crudely characterise structural

heterogeneity, we define ventricular imbalance as:

δV =

∣∣∣∣1− VLV

VRV

∣∣∣∣ (6.4.16)

Where VLV and VRV are the left and right ventricular volumes respectively, δV

measures the deviation from ventricular balance (VLV = VRV).

Section 5.4 demonstrated that the heterogeneity of the CHD population is not

limited to differences in diagnosis, anatomical structure and disease morphology,

but also extends to fundamental patient characteristics, such as age and weight.

Moreover, the challenges of CMR acquisition in small children (Ntsinjana et al.,

2011) are well established. Hence, we consider patient weight at the point of scan,

as an explanatory covariable of segmentation performance.

Finally, Table 5.4 highlighted the variety of acquisition parameters associated

with the CMR data composing the ELCH dataset. More generally, we anticipate
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that the distribution of 3D SSFP image quality (QM) exhibited by these data will

affect CNN performance. As a measure of image quality, we consider the standard

deviation of pixel intensities captured under the whole heart blood pool of each

ground truth segmentation, σWH.

QM = 1− σWH (6.4.17)

To allow comparison between images, this is calculated with respect to the nor-

malised image data with zero mean and unit variance. By this measure, we sensi-

tise our analysis to spatial inhomogeneities in signal intensity and the presence of

artefacts, both of which manifest as deviations from the mean blood pool intensity.

6.4.6 Statistical analysis

Across different CNN inputs and clinically relevant covariables, our experimen-

tal setting invites a number of comparisons. We assess these statistically using

the following tests. To compare performance for different CNN inputs (that in-

cluding only morphological, with those also admitting TR-MRA data), we use

Wilcoxon signed rank test, after Bonferroni correction. As shall become clear in

Section 6.5.2, we adopt the same test statistic to compare performance before and

after segmentation post-processing.

Making the same comparison between the diagnostic groups of the ELCH

dataset, we use the Kruskal-Wallis H-test for omnibus analysis, prior to post-hoc

Dunn tests with the same correction for multiple comparison. Where categorical

covariables of performance are limited to two groups (comparing performance for

patients on biventricular and univentricular pathways), we again use the Wilcoxon

signed rank test. To understand the relationship between CNN performance and

clinically relavant covariables we use linear regression, assessing the normality of

residuals to inform our reporting of correlation coefficients. In all cases, we adopt

p = 0.05 as our threshold for statistical significance.
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Table 6.1: Technical metrics summarising the multi-class and whole heart blood
pool segmentation performance of CNN prediction. Spatial overlap is characterised
by the generalised and whole heart Dice similarity coefficients (GDSC and DSCWH);
surface localisation is conveyed using the whole heart Hausdorff distance (HDDWH).
All results reflect performance on the held out ELCH test set (n = 50) and are
presented as P50(P25, P75) where Pi indicates the ith percentile.

Input data GDSC DSCWH HDDWH / mm

XM = (M) 0.854 (0.825, 0.884) 0.899 (0.872, 0.919) 16.4 (13.7, 19.1)

Xµ = (M,Aµ) 0.861 (0.834, 0.888) 0.911 (0.891, 0.925) 15.1 (13.1, 17.0)

Xσ = (M,Aσ) 0.865 (0.826, 0.887) 0.911 (0.893, 0.925) 14.7 (13.2, 17.7)

XΛ1
= (M,Λ1) 0.859 (0.826, 0.888) 0.911 (0.887, 0.925) 14.6 (13.2, 16.4)

XΛ2
= (M,Λ1,Λ2) 0.853 (0.830, 0.887) 0.912 (0.885, 0.927) 13.8 (12.1, 16.7)

XΛ1
= (M,Λ1,Λ2,Λ3) 0.853 (0.826, 0.883) 0.914 (0.883, 0.927) 13.8 (12.3, 16.8)

6.5 Results

6.5.1 Technical performance

Baseline performance

At least with respect to spatial overlap Table 6.1 demonstrates the strong perfor-

mance of CNN-based segmentation on the ELCH test set. Though broadly reflect-

ing normal anatomy or that affected by acquired disease, leading submissions to

the 2017 Multi-Modality Whole Heart Segmentation (Zhuang et al., 2019) (MM-

WHS) Challenge test set (of similar size: n = 40; image data: 3D SSFP; and task:

multi-class cardiac segmentation) achieved a GDSC of around 0.87 (Zhuang et al.,

2019). Comparatively, the ELCH dataset exhibits significant structural variation

and imposes the demanding requirement that extracardiac vasculature be delin-

eated. Given these differences, a median GDSC of 0.854 for the segmentation of

CHD anatomy from 3D SSFP data appears a reasonable baseline.

Methodologically comparable submissions to, and since the HVSMR Challenge

have achieved whole heart Dice scores in excess of 0.92 (Pace et al., 2015; Yu

et al., 2017a; Du et al., 2020). Comparatively, our results for the ELCH dataset

lag behind, achieving a median DSCWH of only 0.899. Whilst both datasets nomi-

nally reflect the CHD population and consider identical acquisitions, Section 5.4.5
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demonstrated the greater structural variation captured by the ELCH data. As pre-

viously mentioned, the challenge of segmenting the distal pulmonary vasculature

likely also accounts for this gap. In any case, we find it unlikely that algorith-

mic performance could adequately be assessed in the HVSMR test set of just ten

cases, especially when drawn from such a heterogeneous patient population. When

coupled with differences in task specification, image quality and anatomical hetero-

geneity, the dependence of the HDD on extreme points of disagreement precludes

meaningful comparison with previous works. In general, however, we are satisfied

that the first row of Table 6.1 reflects a strong baseline for further comparison.

Performance when exploiting 4D data

Overall, predicting segmentation probability conditioned on both 3D SSFP and

4D TR-MRA data improves performance. The second and third rows of Table 6.1

suggest that the inclusion of either the pixel-wise, temporal mean (Xµ) or standard

deviation (Xσ) of TR-MRA aids prediction, improving all metrics compared with

XM . By Wilcoxon signed rank test, and after Bonferroni correction for multiple

comparison (n = 15), this improvement is statistically significant for both inputs

and across all metrics (p < 0.003 in all tests).

The benefit of a temporal proxy based on the pixel-wise principal components

of variation, however, is less clear. Row four suggests that as per Xµ and Xσ,

concatenating the first principal component of temporal variation (XΛ1) to the

CNN input realises statistically significant improvements when compared with the

segmentation of 3D SSFP alone: p < 0.001 for comparisons of all metrics. For

n > 1, however, and albeit without statistical significance (p > 0.1 in both cases),

XΛn actually degrades the median GDSC. On the other hand, the inclusion of

XΛ2 and XΛ3 yield statistically significant improvement in DSCWH and HDDWH

(p < 0.0005 in all cases). Moreover, these inputs return the strongest performance

according to metrics relevant to the whole heart blood pool: achieving median Dice

scores in excess of 0.912 and an HDD of 13.8 mm. In the latter case, the gains

of XΛ2 over Xµ and Xσ are even statistically significant: p < 0.004 in both cases.

Taken together, these results suggest that whilst XΛ2 and XΛ3 might provide more

salient features for distinguishing the blood pool from background, the same are
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not as relevant to the discrimination of one cardiac sub-structure from another.

This is a direct contradiction of our motivation for their inclusion, and discussed

further in Section 6.6.2.

Performance across cardiac sub-structures

Figure 6.5 breaks down the GDSC results of Table 6.1 into cardiac sub-classes.

Individual segmentation labels are grouped into: (a) chambers and ventricular

myocardium; (b) arterial vasculature; and (c) venous vasculature. In so doing,

this grouping suggests that the improvement associated with the inclusion of TR-

MRA within CNN input is most substantial in the segmentation of vascular sub-

components. This can be observed in the qualitative results presented in Fig-

ure 6.6b: in particular, note the improved segmentation of the right ventricular

outflow tract (segmented as part of the RV) and main pulmonary artery at the

25th percentile of performance (P25). This supports our rationale for the inclusion

of TR-MRA data, given their superior visualisation of the pulmonary vasculature

compared with 3D SSFP.

More generally and irrespective of CNN input, Figure 6.5 makes clear the supe-

rior spatial overlap performance achieved in the delineation of cardiac chambers,

when compared with their vascular counterparts. Undoubtedly, this result is in-

fluenced by the association between Dice score and surface area to volume ratio of

the target; the latter tending to be lower for chambers, inflating apparent spatial

overlap. However, performance also depends on the representation of anatomical

structures within the ELCH dataset (training and test), in terms of both frequency

and geometrical complexity.

Predictably, classes which appear with higher frequency are better segmented

than those characterised by fewer examples. All atrial and ventricular anatomy

are present in 99.6% of cases, with the LV absent in just three. Comparatively,

no case includes all vascular components: for example, just 10% of patients from

the ELCH data exhibit left superior vena cava or bilateral superior vena cavas.

This difference contributes to the superior segmentation performance of chamber

anatomy when compared with the vasculature.



(a) Cardiac chambers and ventricular myocardium

(b) Extracardiac arterial vasculature

(c) Extracardiac venous vasculature

Figure 6.5: Per class spatial overlap performance for CNN-based segmentation of the ELCH test set.



(a) P0 (b) P25 (c) P50 (d) P75 (e) P100

Y

XM → Ŷ

Xµ → Ŷ

Xσ → Ŷ

XΛ1 → Ŷ

XΛ2 → Ŷ

XΛ3 → Ŷ

Figure 6.6: Qualitative results of CNN-based segmentation of the ELCH test set. Cases
are selected to represent the ith percentile in GDSC for each input, as indicated by Pi.
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This effect is also apparent within anatomical groupings. In Figure 6.5b, the

abstract representation of the aorta is learned from 100 training cases, whereas

the DKS connection appears only 23 times. Qualitatively, this is reflected in

Figure 6.6d: the DKS is correctly included as part of the blood pool, but the CNN

cannot determine which vascular label it should be assigned. Depending on CNN

inputs, labelling as the aorta, main pulmonary artery, or some combination of the

two are all apparent. A more extreme case, in Figure 6.5c, the right superior vena

cava is characterised in 100 ground truth segmentations; whereas its left-sided

analogue is present in only nine training, and six test cases.

We suggest that other disparities in DSC, including those between structures

equally represented in training data, are associated with the relative per class ge-

ometrical complexity and heterogeneity. Consider segmentation of the aorta and

LPA from 3D SSFP, for example. Both are labelled in all 100 training cases, how-

ever the median DSC for the predicted segmentation of the former is substantially

higher (0.892 compared with 0.580). Qualitatively, this disparity is explained by

the complex branching structure of the LPA, compared with the smooth ascend-

ing, arched and descending portions of the aorta. Moreover, allowing for spatially

affine transformation, the aorta has a relatively uniform appearance throughout

the ELCH dataset. Whereas, variations in both anatomy and image quality make

the geometry of the segmented LPA far more heterogeneous, including highly vari-

able branching structures (see Figure 6.7).

We suspect that consistency and complexity of appearance also favours the

segmentation of cardiac chambers. Whilst trabeculation of the ventricular cavities

introduces a highly irregular interface with the myocardium, this complexity is

largely reflected by pixel intensity5. Moreover, this complexity accounts for a rela-

tively small fraction of ventricular volume, which otherwise appears bounded by a

convex and approximately conical envelope. Finally, heterogeneity in the appear-

ance of ventricular anatomy is largely limited to affine changes in spatial scale and

orientation, modes of variation which are well represented in the ELCH dataset

(see Figure 6.8), and enhanced by data augmentation by spatial transformation.

5This is apparent to anyone who has manually segmented these data. Where branching
vasculature is often defined by manual editing, the trabeculated surface of the ventricular cavities
is achieved simply by intensity thresholding.



(a)

(b)

Figure 6.7: Surface-rendered representation of aorta ((a), yellow) and left pulmonary artery
(LPA) ((b), pink) anatomy in the ELCH test set. Notice that while both anatomical
components demonstrate large variation in size and orientation, the morphology of the LPA
is more heterogeneous. In particular, its branching structure is highly variable compared
with the smooth consistent arch of the aorta.



(a)

(b)

Figure 6.8: Surface-rendered representation of the anatomy of the left ((a), red) and right
((b), blue) ventricular cavities in the ELCH test set. Both structures have trabeculated
epicardial surfaces (being more pronounced around the RV cavity) and exhibit significant
variation in size. However, notice that for the most part, the envelope of ventricular
anatomy takes a relatively simple, conical geometry. This allows for improved abstract
representation by CNN.
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Figure 6.9: A comparison of predicted segmentation performance between pa-
tient groups: (left) Performance on different diagnostic groups (see Section 5.3.2).
(right) Performance on different interventional groups: those on a care pathway
culminating in (or which has culminated in) biventricular repair, and those receiv-
ing univentricular palliation.

Other performance dependencies

Here we consider the dependence of CNN performance on clinically relevant covari-

ables. With respect to the segmentation of 3D SSFP data only (XM)6, Figure 6.9

reflects differences in CNN performance between diagnostic groups. However,

Kruskal-Wallis H-test indicates no significant differences between the omnibus

of diagnostic classes (p = 0.149). Whilst statistically insignificant, qualitative dif-

ferences are apparent. In particular, we note the superior segmentation of cases

drawn from the HLHS group compared with those with DORV or VSD: median

overlap results are 0.880, 0.823 and 0.840, respectively. For some, this might

present a surprising result, especially when it is considered that a greater propor-

tion of the HLHS patients exhibit anatomy consistent with staged univentricular

palliation. We may have expected associated complex anatomical modifications

(including DKS and total cavopulmonary connection connection), to hinder the

accurate delineation of anatomy. Examination of the training set, however, re-

veals that the ratio of patients progressing through a care pathway culminating

(or which has culminated) in biventricular repair, to those receiving univentricular

palliation is almost evenly split. At 51:49, the optimised CNNs had approximately

6Qualitatively, predicted segmentations of Xµ, Xσ, XΛ1
, XΛ2

and XΛ3
, exhibit the same dif-

ferences in performance between diagnostic and interventional groups. Quantitatively, statistical
testing results in the same conclusions, irrespective of CNN input.
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(a) (b) (c)

Figure 6.10: Dependence of CNN performance on: (a) ventricular imbalance; (b)
patient weight; and (c) image quality. Note that in each case, the dashed grey
line indicates the result of linear regression (ρ2 capturing the proportion of shared
variance between the ranked variables as the square of Spearman’s ρ; p being the
statistical significance), and that spatial overlap performance is measured for pre-
dictions conditioned on 3D SSFP data only (XM). Perhaps predictably, image
quality is a strong determinant of CNN performance; perhaps surprisingly, the
structural variation associated with CHD (and represented by ventricular imbal-
ance) is not a strong predictor of CNN performance. Please see Section 6.4.5 for
a description of how ventricular imbalance (δV ) and image quality (QM) are de-
termined.

equal exposure to each mode of clinical management, explaining the comparable

performance observed in their automated segmentation (see Figure 6.9). This is

confirmed by Mann-Whitney U -test: p = 0.188.

The apparent insensitivity of CNN performance to diagnostic classification is

reinforced by considering the relationship between spatial overlap and ventricular

imbalance (see Figure 6.10a). Whilst this plot visualises the linear regression of

these data, residuals to the grey dashed line are not normally distributed. Hence,

we reflect monotonicity by Spearman’s correlation coefficient: ρ = −0.042, in-
dicating a very weak association between worsening segmentation performance

and ventricular imbalance. Moreover, the apparent insensitivity to structural het-
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erogeneity endorses the ELCH dataset as being representative of the underlying

distribution of CHD anatomy.

Given the demographic heterogeneity of the CHD population, and as relevant

to the segmentation of XM , Figure 6.10b demonstrates the relationship between

spatial overlap performance and patient weight. This indicates a weak association

(ρ = 0.218) between improved spatial overlap performance and weight. Interest-

ingly, the monotonicity of this relationship is reduced by the addition of TR-MRA

data to CNN input (ranging between 0.140 and 0.173 for Xµ and XΛ2 , respec-

tively). This may confirm our expectation that by virtue of their contrast sensi-

tivity, TR-MRA data provide a source of features relevant to the localisation of

the heart, irrespective of patient size.

Figure 6.10c demonstrates a strong correlation between GDSC and image qual-

ity: Spearman’s ρ = 0.676. It is perhaps surprising that despite the significant

structural variation associated with CHD (as reflected by diagnostic grouping and

patient weight), image quality remains the most influential covariable informing

CNN performance. As per its relationship with patient weight, the correlation

between spatial overlap performance and 3D SSFP image quality falls after the

introduction of TR-MRA data (ranging between 0.588 and 0.649 for Xµ and Xσ,

respectively). This supports our expectation that TR-MRA data complement

deficits in 3D SSFP image quality, including the artefacts and spatial inhomo-

geneities aforementioned.

6.5.2 Clinical performance

Anatomical coherence

Compared with the technical performance of CNN-based segmentation of congen-

ital heart defects, the following clinical assessment paints a very different picture.

The anatomical metrics presented in Table 6.2 illustrate the tendency of CNN

prediction to include spurious communications between the left and right heart

(or shunts, SE), and discontinuities within each of the great (DELH) and small

circulations (DERH), respectively. Depending on task formulation (or equivalently

mode of presentation, see Figure 6.3), the left and right heart can be combined in

a binary representation of the whole heart blood pool. Given this association, it is
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Table 6.2: Clinically relevant, anatomical metrics summarising the segmentation
of 3D CMR by CNN. With respect to the configuration of the left and right
circulations inferred from clinical CMR report: the shunt error (SE) reflects the
inclusion of spurious shunts between the left and right heart; and the discontinuity
errors (DEs), DELH and DERH, count the number of anomalous discontinuities in
the right and left circulation, respectively. All results reflect performance on the
held out ELCH test set (n = 50) and are presented as P50(P25, P75) where Pi

indicates the ith percentile.

Input data SE DELH DERH

XM = (M) 6.0 (4.0, 9.0) 4.0 (3.0, 6.0) 8.5 (6.0, 13.8)

Xµ = (M,Aµ) 7.0 (5.0, 9.0) 3.0 (2.0, 6.0) 7.0 (5.0, 11.0)

Xσ = (M,Aσ) 6.5 (5.0, 10.0) 3.0 (2.0, 5.0) 5.0 (4.0, 8.8)

XΛ1
= (M,Λ1) 8.0 (6.0, 9.0) 3.5 (2.3, 6.0) 8.0 (5.0, 10.0)

XΛ2 = (M,Λ1,Λ2) 7.5 (5.0, 10.8) 4.0 (2.3, 6.8) 9.0 (6.3, 12.0)

XΛ1 = (M,Λ1,Λ2,Λ3) 7.0 (4.3, 10.0) 4.0 (2.0, 6.8) 8.5 (6.0, 11.0)

perhaps surprising that both these modes of error present simultaneously: SE > 0

being associated with false positive, and DELH,DERH > 0, with false negative

classification. The coincidence of such errors speaks to a lack of spatial coherence

within CNN prediction, and the inference of results which lack anatomically and

clinically relevant meaning.

The inclusion of TR-MRA data within CNN input does little to improve clinical

performance compared with the SSFP baseline. Amongst these results, Wilcoxon

signed rank test (after Bonferroni correction for multiple comparison, n = 15)

suggests that the only significant improvements are conferred by the additional

inclusion of the temporal mean and standard deviation. Compared withXM , DERH

is significantly improved (reduced) by conditioning prediction on Xσ (p < 10−5);

DELH is reduced by Xµ and Xσ (p < 0.02 for both). Whilst these differences are

statistically significant, associated improvements remain relatively small compared

with the total number of circulatory discontinuities. Moreover, the inclusion of the

first and second modes of temporal variation actually serve to increase the number

of spurious shunts: p < 0.02 when XΛ1 and XΛ2 are compared with XM .

Qualitative performance for the segmentation of SSFP data is illustrated in

Figure 6.11. Frequently isolated by thin tissue interfaces (such as the atrial sep-



Figure 6.11: Representation of clinically relevant, anatomical metrics of segmentation performance relating:
(left) the shunts between left and right heart (transparent red and blue, respectively) within the ground
truth (orange loops) and predicted (green loops) segmentations; and (right) the discontinuous compo-
nents of the left (red loops) and right (blue loops) circulations of the predicted segmentation. Note that
performance percentiles, Pi, apply to the CNN prediction prior to post-processing.
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tum), spurious shunts can be introduced by the inclusion of only a small number

of false positive pixels. At the 0th percentile (P0) of performance, this culminates

in a large number of anomalous connections between left and right heart, and

demonstrates the challenge of delineating morphologically complex anatomy in a

clinically meaningful fashion. Even in the median case, six spurious shunts remain.

Turning our attention to circulatory discontinuity, Figure 6.11 demonstrates

that such errors can isolate components of variable volume. All examples pre-

sented illustrate the anomalous inclusion of trivial extra-anatomical components.

However, within examples up until P75, continuity errors can also isolate com-

ponents of substantial volume, and which otherwise faithfully represent anatomy

(sharing significant overlap with the ground truth). Consider the isolation of the

pulmonary arteries from the RV at the median level of performance: there, the

apparent absence of the right ventricular outflow tract limits the anatomical and

clinical coherence of predicted segmentation.

We are far from the first to observe the inclusion of spurious connected compo-

nents, holes and discontinuous gaps within CNN-based segmentation (Painchaud

et al., 2020). Accordingly, previous work has leveraged rudimentary post-processing.

This has included connected component analysis (CCA), suppressing all but the

largest component per foreground class of Ŷ (Isensee et al., 2021). With the ex-

ception of the pulmonary veins, for which we anticipate several components per

side (typically but not reliably two on the left; three on the right), such a prior

is appropriate to our task. Previous works have also chosen to fill small holes (or

voids) predicted within each class. In our case, post-processing via the application

of CCA and hole-filling modifies anatomical performance as per Table 6.37.

Compared with Table 6.2, post-processing most clearly resolves errors in the

continuity of the cardiac blood pool, with particularly pronounced improvement

(reduction) in DERH. We speculate that such gains are more pronounced in the

right heart due to the highly trabeculated endocardial surface of the RV. Its com-

plex morphology, including a multiplicity of small, muscular loops, admits many

anomalous connected components to CNN prediction, and elevates DERH above

DELH in Table 6.2. These are subsequently resolved by CCA.

7Post-processing has a clinically insignificant deleterious effect on spatial overlap performance,
reducing the median GDSC by an amount ≤ 10−4, irrespective of CNN input.
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Table 6.3: Anatomical metrics summarising the segmentation of CMR by CNN af-
ter post-processing by connected component analysis (CCA) and hole-filling. With
respect to the configuration of the left and right circulations inferred from clinical
CMR report: SE reflects the inclusion of spurious shunts between the left and right
heart; and DELH and DERH count the number of anomalous discontinuities in the
right and left circulation, respectively. All results reflect performance on the held
out ELCH test set (n = 50) and are presented as P δ

50(P25, P75) where Pi indicates
the ith percentile, and δ is the difference in performance after post-processing,
compared with raw CNN prediction.

Input data SE DELH DERH

XM = (M) 3.0−3.0 (2.0, 5.0) 0.0−4.0 (0.0, 1.0) 0.0−8.0 (0.0, 2.0)

Xµ = (M,Aµ) 4.0−2.0 (2.3, 6.0) 0.0−3.0 (0.0, 1.0) 0.0−5.0 (0.0, 1.0)

Xσ = (M,Aσ) 3.5−2.0 (2.0, 5.8) 0.0−3.0 (0.0, 1.0) 0.0−5.0 (0.0, 1.0)

XΛ1 = (M,Λ1) 4.0−3.0 (2.0, 6.0) 0.0−4.0 (0.0, 1.0) 0.0−7.0 (0.0, 1.8)

XΛ2 = (M,Λ1,Λ2) 4.5−3.0 (2.3, 7.8) 0.0−3.5 (0.0, 0.8) 0.0−8.5 (0.0, 1.0)

XΛ1
= (M,Λ1,Λ2,Λ3) 4.0−3.0 (2.0, 5.8) 0.0−4.0 (0.0, 0.8) 0.0−8.0 (0.0, 1.0)

It is striking that whilst median performance is characterised by DELH,DERH =

0, examples in Figure 6.11 demonstrate cases for which discontinuity errors remain

after post-processing. Closer inspection suggests that this scheme lends itself to

the elimination of errors associated with the prediction of extra-anatomical com-

ponents of trivial volume. After removing small, anomalous components, only the

discontinuity errors associated with more sizeable objects remain (see Figure 6.12).

Figure 6.11 suggests that the latter can be associated with anatomically and clin-

ically meaningful errors in circulatory continuity. Despite this, and irrespective of

CNN input, Wilcoxon signed rank test suggests that post-processing significantly

improves the meaningful continuity of the cardiac blood pool: p < 10−8 for all

comparisons of DELH or DERH, before and after post-processing.

Whilst the same analysis suggests that rudimentary post-processing also sig-

nificantly reduces the number of anomalous shunts (p < 10−7 for all CNN inputs),

the median SE in Table 6.3 remains non-zero and clinically problematic.
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Figure 6.12: The effect of rudimentary post-processing, including CCA, on the
volume of extra-anatomical components: those separated from the predicted whole
heart blood pool by discontinuity errors with the ground truth cardiac circulation.
Note that to allow comparison, volume is presented as a fraction of the ground
truth blood pool. These boxplots highlight the ability of CCA to remove extra-
anatomical components of small or trivial volume. The distribution of those which
remain has a significantly larger fractional volume (p < 2×10−29 by Mann-Whitney
U -test) compared with raw CNN prediction. As echoed by Figure 6.11, however,
its resolution of discontinuous errors involving larger components is limited.

Defect representation

Given the success of CCA in rectifying discontinuity errors in the left and right

heart, extending this approach to the interfaces between ŶLH and ŶRH appears a

natural choice. Such a procedure firstly involves the identification of shunts accord-

ing to pixel adjacency (as per Figure 6.4a), with each considered a connected com-

ponent. Subsequently, and in a semi-automated framework, shunts are included

or excluded from the post-processed prediction according to a prior specifying the

number anticipated, S. In the simplest case and as per the description of CCA

supplied previously, this scheme selects the S largest shunts predicted by CNN. It

assumes that the prediction of spurious shunts is associated with small groups of

pixels receiving false positive classification within any of the blood pool classes.

Moreover, an extension of this scheme might consider, not only the prediction of

shunts between the left and right heart, but further specify the communication of
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particular cardiac sub-structures, considering all anatomical classes predicted in

Ŷ. Leveraging multi-class prediction, this grants sensitivity to different defects,

differentiating between atrial and ventricular septal defects, for example.

Irrespective of the class of shunt considered, any attempt to enforce an antic-

ipated configuration of cardiac anatomy upon discrete CNN prediction requires

that: (1) candidate shunts can be isolated from one another by pixel adjacency;

(2) that the most credible candidates can be differentiated by their size; and (3)

that within these candidates, there exists an accurate representation of the ground

truth defect or defects concerned. Put another way, it is one thing to manipulate

CNN prediction such that it contains the correct number of shunts, as we have

considered up until now; ensuring that the resulting segmentation meaningfully

represents the structure of the underlying anatomy, including the size, morphol-

ogy and location of any defects, is another. To this end, we now extend our analysis

to consider these facets of defect representation. Whilst we limit our investigation

to VSDs, being the most frequent defect within the ELCH dataset, we expect our

findings to be relevant to the wider array of congenital lesions. As per the previous

discussion, and to make best use of the multi-class prediction Ŷ, we use CCA to

select the V largest VSDs from the predicted segmentation, where V is the number

of defects anticipated a priori and provided in a semi-automated framework.

Table 6.4 reflects these aspects of performance for such post-processed CNN

predictions. It suggests that the deficiencies of CNN-based segmentation extend

to the accuracy of defect representation. For the segmentation of 3D SSFP data

only, median spatial overlap of predicted and ground truth segmentations does not

reach 0.2. Whilst DSCVSD is improved by the inclusion of TR-MRA data within

CNN input, Wilcoxon signed rank test (after Bonferroni correction, n = 15) does

not return a significant result (p > 0.24 in all cases). Such poor performance is

reinforced by Hausdorff distance (Huttenlocher et al., 1993)VSD in excess of 7 mm.

Taken together, DSCVSD and HDDVSD reveal the extent to which CNN predic-

tion satisfies the requirements (1-3) of the effective post-processing scheme outlined

above. Table 6.4 associates a clear improvement in HDDVSD with the selection of

defects from Ŷ. This suggests that inferred segmentations satisfy requirements (1)

and (2), shortening the HDD by the removal of smaller, false positive defects that

are remote and disconnected from ground truth VSDs. Moreover and apart from
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Table 6.4: Clinically relevant, anatomical metrics summarising the segmentation
of CMR by CNN as relevant to the representation of ventricular septal defect
(VSD) after rudimentary post-processing by CCA and hole filling. After identify-
ing VSD as the set of pixels adjacent between left and right ventricles, the DSCVSD

and HDDVSD reflect the Dice Similarity Coefficient and Hausdorff Distance respec-
tively. Whereas, VSD boundary intersection (VBI) assesses the intersection of
the boundary of the predicted whole heart blood pool with the rim of any VSD
captured by the ground truth segmentation. All results reflect performance on
the held out ELCH test set (n = 50) and are presented as P δ

50(P25, P75) where
Pi indicates the ith percentile and δ is the difference in performance after post-
processing, compared with raw CNN prediction.

Input data DSCVSD HDDVSD/mm VBI

XM = (M) 0.193+.000 (0.009, 0.297) 7.9−6.7 (6.4, 22.3) 0.356+.004 (0.263, 0.457)

Xµ = (M,Aµ) 0.234+.009 (0.056, 0.407) 7.0−5.9 (5.5, 21.1) 0.410−.001 (0.285, 0.472)

Xσ = (M,Aσ) 0.276+.041 (0.091, 0.391) 7.3−7.7 (5.5, 20.4) 0.367+.000 (0.263, 0.473)

XΛ1
= (M,Λ1) 0.229+.010 (0.013, 0.339) 8.1−7.7 (5.7, 20.1) 0.356−.047 (0.237, 0.447)

XΛ2
= (M,Λ1,Λ2) 0.214+.013 (0.002, 0.390) 7.0−13.4 (6.4, 20.5) 0.373−.002 (0.233, 0.473)

XΛ1
= (M,Λ1,Λ2,Λ3) 0.236+.012 (0.097, 0.357) 7.2−15.5 (5.0, 20.5) 0.393+.000 (0.275, 0.484)

for XM , this improvement is statistically significant: p < 0.02 for all other inputs.

In contrast, post-processing of defects by CCA results in only a meager increase in

DSCVSD, unlikely to be of clinical significance. This implies that CNN prediction

is not consistent with requirement (3).

Both DSCVSD and HDDVSD infer VSD location and morphology from the ad-

jacency of pixels predicted within the left and right ventricular classes of Ŷ. Con-

sequently, these metrics demand not only that the rim of the VSD (the interface

between the ventricular septum and blood pool) be accurately delineated, but also

that the effective interface between left and right ventricles be localised. They

are sensitive to the misclassification of pixels between these classes. If, however,

our segmentation is motivated by a desire to visualise the whole heart blood pool,

such stringent requirement may be unnecessary, and these metrics, overly punitive.

Instead, VBI compares the effective delineation of VSDs within ground truth and

predicted whole heart blood pools. It is sensitive only to the overlap between the

VSD rim in Y and the blood pool surface of ŶWH. Predictably, therefore, median

VBI exceeds DSCVSD for all CNN inputs. As per DSCVSD, the inclusion of TR-



Figure 6.13: Interpretation of anatomical metrics associated with the representation of ventricular
septal defect (VSD). The percentiles of performance (Pi) relate to the VSD boundary intersection
(VBI) with corresponding Dice similarity coefficients (DSCVSD) and Hausdorff distances (HDDVSD)
provided. Each view demonstrates the VSD from the perspective indicated by the respective black
arrows, with anterior and posterior sections of the heart removed. Note that the ground truth VSD
is indicated by the lime green contour.
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MRA data within CNN input appears to improve VBI. Again, however, this is

found to be statistically insignificant (p > 0.1 for all comparisons).

To aid in the interpretation of DSCVSD, HDDVSD and VBI results, Figure 6.13

visualises the prediction of VSDs in the ELCH test set. The disagreement between

ground truth and predicted defects makes raw CNN prediction inadequate for

clinical application without manual adjustment.

6.6 Discussion

6.6.1 Context

This chapter spans many aspects of the task of segmenting CHD anatomy from

CMR data. These include different task formulations (multi-class and whole heart

specifications); CNN inputs (3D SSFP data and various representations of TR-

MRA); and performance metrics (including those developed to assess the suitabil-

ity of segmentation for clinical application). In summarising these developments,

we firstly highlight the novelty of our work, it being the first dedicated investiga-

tion of multi-class, CNN-based segmentation of 3D CMR data. Whilst previous

works have examined the application of deep learning methodologies to congenital

CMR, these have either: focused on 2D short axis segmentation for ventricular vol-

umetry (Karimi-Bidhendi et al., 2020), including investigation limited to patients

with tetralogy of Fallot (Backhaus et al., 2019; Koehler et al., 2020) or segmenta-

tion of the RV only (Giannakidis et al., 2016); deployed the HVSMR training and

test sets, totalling just twenty cases (Yu et al., 2017a,b; Wolterink et al., 2017; Li

et al., 2017b; Zheng et al., 2019a; Rezaei et al., 2020; Han et al., 2020; Du et al.,

2020) (limiting task specification to the segmentation of the whole heart blood

pool as a single class); or examined the 3D segmentation of individual anatomical

sub-components only (Pace et al., 2018). Experiments involving larger data, in-

cluding their segmentation into multiple anatomical classes have been limited to

X-ray CT imaging (Xu et al., 2019a; Liu et al., 2020a), and have employed the

ImageCHD dataset of 110 cases (or its precursors), provided by Xu et al. (2020).

Irrespective of imaging modality, none of the previous works cited consider the
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segmentation of data into more than seven foreground classes. In contrast, our

ambitious experiments seek the separation of anatomy into sixteen classes.

In the body of work outlined above, little attention has been paid to aspects of

segmentation performance outside of spatial overlap (most often measured by the

DSC with the ground truth) and surface localisation (most often measured by the

HDD or mean surface separation). Such assessments are likely sufficient in studies

of 2D short axis segmentation. However, for those motivated by the extraction

of 3D patient-specific anatomical models for treatment or surgical planning (a

majority of those cited above), we argue that a closer examination of anatomical

coherence and defect representation is critical (see Section 6.6.3). This is implicitly

recognised by Pace et al. (2018); Liu et al. (2020a) and Xu et al. (2020), all of

whom reflect on the topological changes associated with defective anatomy, and

the challenge presented by their accurate segmentation in the presence of poorly

defined or “blurry” image boundaries. Some claim improvements in the delineation

of such interfaces, but provide no quantitative foundation to such findings, relying

only on purposively sampled qualitative examples (Du et al., 2020).

We wish not to discredit the contribution of these works more generally. All

conform to the most popular and widely recognised approaches for the technical

assessment of novel segmentation methodology. We also acknowledge that the

limited size of the HVSMR dataset likely precludes more detailed analyses, partic-

ularly for those submitting to the original Challenge, being bound by its associated

assessment protocol. However, we consider that the work presented in this chapter

provides a comprehensive and unique investigation of CNN performance relevant

to the clinical application of segmented, 3D CMR data.

6.6.2 Successes and failures

The breadth of our analysis benefits greatly from our curation and use of the ELCH

dataset, permitting the investigation of multi-class anatomical segmentation from

3D and 4D CMR data for the first time. Our task formulation, in combination

with the use of bespoke metrics, makes it difficult to compare performance with

previous work. However, once allowances for the difficulty of the task posed are

made (considering the diversity of congenital defects and surgical modifications
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to anatomy; and the challenge of delineating distal pulmonary vasculature), we

speculate that our spatial overlap results are at worst consistent with the state

of the art. Experimenting on the ELCH dataset also allowed us to investigate

the extent to which clinically relevant covariables influence segmentation. This

suggested image quality as the strongest predictor of technical performance, better

explaining spatial overlap than the heterogeneity of the CHD cohort (expressed

through their weight and anatomical diversity), than might have been expected.

Our novel introduction of 4D TR-MRA data via temporal proxies, however,

delivered mixed performance. The rationale for their inclusion was two fold: (1)

that 4D TR-MRA data complement 3D SSFP acquisition, providing highly spe-

cific contrast between the cardiovascular structures (and relevant segmentation

targets) and the background; and (2) that differential enhancement of cardiac

sub-structures might inform the continuity of the cardiac blood pool, including the

presence of congenital defects. For the most part, our technical findings endorsed

the first of these hypotheses, with the most reliable improvements associated with

the inclusion of those proxies based on pixel-wise descriptive statistics (the mean

and standard deviation). Analysing the relationship between performance and

clinically relevant covariables evidenced the complementarity of 3D SSFP and 4D

TR-MRA, the latter accounting for deficiencies in 3D image quality.

In contrast, our attempts to capture and exploit differential modes of enhance-

ment in aid of the second hypothesis were unsuccessful. Figure 6.1 demonstrates

the sensitivity of PCA to differential modes of dynamic contrast enhancement. We

had hoped that the CNN might leverage this representation as a source of discrimi-

native features, improving the isolation and association of cardiac sub-components.

In particular, we were keen to understand whether differential enhancement might

improve the delineation of congenital defects (see the example provided in Fig-

ure 6.2, in which enhancement is characteristic of atrial septal defect). At least

within our current approach based on PCA, the results in Table 6.1 do not support

this expectation.

Due to the heterogeneity of dynamic enhancement, and its dependence on pa-

tient size and heart rate, we elected to compute the principal components of tempo-

ral variation, independently expressed by each case. Accordingly, high-dimensional

(Λn, n > 1) modes of variation captured were not consistent across the ELCH co-
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Figure 6.14: Computed per patient the principal components of temporal enhance-
ment do not reflect consistent modes of variation between cases of the ELCH
dataset. In both (a) and (b), differential enhancement of the left and right heart
is captured by XΛ2 and XΛ3 . However, as the transformed space is not shared
between (a) and (b), the same pattern of enhancement presents differently.

hort. Figure 6.14 illustrates this phenomenon: note that whilst Λ1 has a similar

appearance in both (a) and (b), modes of characteristic enhancement are dis-

tributed differently across the remaining principal components. This effect may

explain the discrepant performance of XΛ1 compared with XΛ2 and XΛ3 .

Despite these challenges, we still believe that dynamic enhancement remains

an untapped source of features relevant to the configuration of cardiac anatomy.

However, and as described, per case PCA did not facilitate effective learning. It

is possible that the alternative, computing principal components across the entire

training set, may provide a representation of dynamic enhancement that is common
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between cases, fostering effective feature learning. Canonical Correlation Analysis

(or other forms of manifold alignment) may also offer a solution (Hardoon et al.,

2004). Another option might consider augmentation by shuffling input channels.

Perhaps a more credible conclusion, however, is that the heterogeneity in dynamic

enhancement cannot be sufficiently modelled by low capacity models based on

handcrafted features, such as PCA. Feature extraction by high capacity, 4D deep

CNN, possibly involving recurrent architectures, might present a more realistic

solution.

The most significant failing in CNN performance concerns the limited clinical

applicability of associated segmentations. Though fruitless in this respect, it is a

strength of our analysis and its bespoke metrics that they draw attention to clin-

ically relevant aspects of performance. These include failings in both the number

of defects implied by multi-class or whole heart segmentation, and the accurate

representation of their location, size and shape. Yet to be comprehensively ad-

dressed in the wider literature, we now expand on these facets of performance and

discuss their importance to clinical applications within CHD.

6.6.3 Relevance to patient-specific anatomical modelling

Section 6.5.2 assessed various aspects of clinical performance across a range of

metrics. To best understand the importance of our findings, it is worth briefly

retreating from the details of this section and recalling the motivations underlying

3D segmentation of CHD imaging. In this task, we seek a patient-specific repre-

sentation of anatomy, including the presence of defects and surgical modifications.

These models find application in each of communication and education; patient

consultation and consenting; and clinical management.

With respect to spatial overlap, CNN-based segmentation performed strongly.

In some cases, this level of performance may be consistent with certain applica-

tions, especially those which predominantly provide a holistic and qualitative de-

scription of patient-specific disease. For example, some of the cases illustrated in

Figure 6.6 may enhance the training of medical students (where patient-specificity

is less critical than at the point of care) or patient consultation. More general

applications might also be enhanced by the presentation of multi-class segmen-
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tation within a unified whole heart blood pool. Such models are likely to be of

greatest value where extracardiac anatomy and its malformation motivate inspec-

tion, rendering the accurate representation of intracardiac features and thin tissue

interfaces incidental.

Perhaps our primary motivation, however, seeks the wider introduction of 3D

models as a means of understanding, considering and managing CHD and the

particular defects exhibited by the specific patient. Via an advanced form of 3D

rendering (such as 3D printing (Giannopoulos et al., 2016) or virtual reality (Ong

et al., 2018)), segmented images can be used to inform the management of pa-

tients with CHD, including planning for catheter-based or surgical intervention.

To this end, the accurate representation of defects is vital. For example, in con-

sidering biventricular repair of double outlet right ventricle with sub-aortic VSD,

the surgeon must plan the course of the intra-ventricular tunnel between VSD and

systemic outflow. This relies on a faithful appreciation of defect size and shape,

its muscular rim, and its displacement from the aortic valve.

In common with other researchers (Painchaud et al., 2020), however, we found

CNN-based segmentations to lack spatial coherence, including spurious connected

components, holes and discontinuities. Given that a majority of congenital defects

concern deviations from the expected configuration of the heart’s chambers, this

deficiency is problematic. When coupled with the observation that a major subset

of malformations (and in particular intracardiac defects) are defined in relation to

(septal defects), or by (atretic defects), thin tissue interfaces, this culminates in

predicted segmentations which lack clinical meaning.

To a limited extent, we were able to rectify such errors by leveraging our

multi-class formulation (relying on the detailed labelling provided by our ELCH

dataset). Whilst rudimentary post-processing reduced the number of errors in

the continuity of the blood pool and eliminated some spurious shunts, the struc-

tural representation (including size, shape and location) of remaining defects was

poor. Without further manual editing, we encountered a level of segmentation

performance that was inadequate for the idealised precision decision-making and

interventional planning described.
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6.6.4 Limitations and future work

At the outset of this project, our ambition was to assess the suitability of CNN-

based segmentation for clinical deployment within the care of patients with CHD.

We had hoped to complete a pragmatic investigation by extending our performance

metrics beyond the quantitative outcomes presented, and asking clinical imaging

experts to rate clinical acceptability. However, the work presented in this chapter,

and in particular our clinically facing metrics, preclude such an experiment at

this stage. There are technical deficiencies within our current CNN methodology

that must be resolved, and performance gains made before any such assessment is

warranted. We touch on some of these developments in the following.

In any segmentation task, the frequency with which targets appear in the under-

lying distribution of image data influence data-driven solutions. Where frequency

imbalances are significant, previous work has introduced loss weighting schemes

(Ronneberger et al., 2015) or judicious batch sampling strategies (Kamnitsas et al.,

2017) to ensure an optimal representation of each class. Such methods are highly

applicable to the multi-class formulation of our task, and would likely improve

the segmentation of rare anatomical components (such as left superior vena cava)

or surgical modifications (such as DKS connection). However, and whilst appro-

priate to any clinical application, given that these approaches are established in

literature, they are less fertile ground for novel investigation.

In contrast, there are a host of developing methods that might be of interest.

These include: high capacity and high-dimensional neural networks for learning

4D features of TR-MRA data, possibly including recurrent operation or temporal

convolution; and the application of spatial transformer networks (Jaderberg et al.,

2015) to handle the diversity of CHD patient size and anatomy. More closely re-

lated to the specifics of our task, dataset and patient population, it would also be of

interest to examine possible performance differences associated with the isolation of

diagnostic groups from the ELCH dataset, and their treatment as individual train-

ing sets. Lastly, given the dependence of performance on image quality, methods

such as: bias field compensation to resolve spatial inhomogeneity in CMR signal

intensity; and the possible synthesis of relevant image artefacts within data aug-

mentation (possibly via a generative approach); are both of interest. Whilst each
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of these address the limitations in current clinical image quality, we also recognise

the benefits that improvements in acquisition and reconstruction methods might

confer in future.

6.7 Conclusion

To the best of our knowledge, this chapter presents the first concerted and compre-

hensive effort to investigate the CNN-based segmentation of CHD anatomy from

3D CMR. Through our ELCH cohort, we achieved a training dataset that was: an

order of magnitude larger than that used in previous works (the HVSMR dataset

being the most comparable); admitted the multi-class segmentation of data into

sixteen anatomical classes; and allowed CNN inference to be conditioned on the

combination of 3D SSFP and 4D TR-MRA acquisitions. In so doing, we estab-

lished the state of the art in this task, including strong spatial overlap performance.

Our results suggest that segmentation can be straightforwardly enhanced by the

introduction of proxy representations of 4D data based on statistics describing con-

trast enhancement. However, our attempts to leverage differential enhancement,

using PCA to extract features relevant to the circulatory configuration of the heart

were unsuccessful. Perhaps most importantly, our investigation sheds light on the

deficiencies within CNN-based segmentation. The use of bespoke metrics relevant

to the number and representation of congenital heart defects revealed a lack of

anatomical coherence within predicted results, sufficient to preclude the majority

of clinical applications without prior manual editing. Being our primary motiva-

tion for the segmentation of these image data, improving the anatomically and

clinically meaningful delineation of such defects will be central to the remainder

of this thesis.



Chapter 7

Topological loss functions

7.1 Introduction

The preceding chapters made every effort to apply, and consider the suitability of

fundamental convolutional neural network (CNN) methodology for the segmenta-

tion of congenital heart disease (CHD) anatomy from 3D cardiac magnetic reso-

nance (CMR) images. Chapter 5 curated the Evelina London Children’s Hospital

(ELCH) dataset, its ground truth segmentations describing a clinically relevant

cohort of 150 patients with CHD. Despite this resource, Chapter 6 demonstrated

the limitations of conventional CNN-based segmentation, and its failure to delin-

eate anatomy in a spatially and clinically coherent fashion. Predictions distorted

the continuity of the blood pool, including errors violating the configuration of

cardiac chambers, and the presence of defects.

In response, this chapter attends to CNN parameter optimisation leveraging

topology as a means of understanding anatomical configuration, and builds asso-

ciated loss functions to promote clinically plausible segmentation. Moreover, we

substantively exploit the multi-class formulation of our data and task, allowing

optimisation against a diagnostically relevant, prior description of CHD. Before

presenting our findings, we review literature relevant to the incorporation of prior

information within cardiac segmentation; and introduce the theory of persistent

homology (PH), on which our loss functions are based.

243
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7.1.1 Limitations of pixel-wise optimisation

The methodological focus of this work, deep learning, and in particular CNNs,

have fostered significant performance gains across an array of cardiac image seg-

mentation tasks (Chen et al., 2020). One key to their success has been the design

of specialised architectures dedicated to image segmentation (the ubiquitous U-

Net model, being the prime example (Ronneberger et al., 2015)). Implicit within

this multi-scale architecture is an acknowledgement that image segments are dis-

criminated by each of pixel, local and global image features. This observation

is reflected by the introduction of operations such as pooling, and strided or di-

lated convolution for the extraction of multi-scale features; and skip connections

for their synthesis. In combination, these serve to expand the receptive field of

a model’s constituent neurons faster than the repeated application of convolution

alone. Theoretically, such approaches permit the learning of image features with

extended spatial context, such as anatomical morphology and topology.

Whilst considerable effort has been devoted to methods for the extraction of

multi-scale image features, less attention has been paid to their role in network

optimisation (Duan et al., 2019). For the most part, segmentation CNNs have

been trained using pixel-wise loss functions such as cross-entropy (CE) or the Dice

similarity coefficient (Dice, 1945) (DSC). Whilst easily implemented and possessing

favourable numerical properties, their treatment of pixels as independent from

one another renders them insensitive to higher order features of the data such as

morphology and topology. This is in stark contrast with the spatially extended

features that we anticipate are learned during training.

Ignorant of such features, CNN optimisation against pixel-wise losses can re-

sult in predicted segmentations which lack spatial coherence. Not limited to the

findings of our own work (see Chapter 6), CNN-based predictions are frequently

reported as presenting with unrealistic properties such as spurious connected com-

ponents or holes (Painchaud et al., 2020). To the operator, such errors can appear

nonsensical, even violating fundamental properties of anatomy. Since these errors

are frequently small and necessarily constrained to the boundaries of predicted

anatomy, their associated segmentation can remain suitable for the assessment of

ventricular volume and certain clinical indices (Ruijsink et al., 2020). For a wider
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array of downstream applications, however, including patient-specific visualisation

of CHD, it is crucial to represent such features faithfully (Byrne et al., 2016).

Across a range of cardiac image segmentation tasks, prior knowledge has been

used to inform the expected configuration of anatomical components (see Chap-

ter 3). In fact historically, and before the advent of deep learning methodologies,

state of the art cardiac segmentation methods were dependent on the use of strong

prior information. Consider atlas-based approaches or those relying on statistical

models of anatomical shape or appearance, for example. In each, prior information

concerning the plausible arrangement of anatomy is implicitly characterised by the

training cases within the atlas or statistical model. Ideally, however, such prior

information should be abstract and adaptable to the variety of cases encountered

in the clinic: not dependent on its appearance within exemplar training data.

In the simplest case, priors might specify a healthy configuration of the heart’s

various chambers, valves and associated vasculature. For example, in short axis

CMR images the right ventricular cavity appears bound to the left ventricular

myocardium, which in turn surrounds the left ventricular blood pool. However,

such a description can also be adapted and extended to characterise the structural

defects associated with CHD. Advantageously to our application, the details of

patient-specific diagnosis are frequently known from previous examination, most

often echocardiography. Hence, at the point of care, prior knowledge can specify

disease morphology, explicitly indicating defect presence and number, and implic-

itly reflecting size, shape and locale.

Whether describing normal or pathological anatomy, and in contrast to the

pixel-wise loss functions aforementioned, such anatomical priors provide a global

description of segmentation coherence. However, whilst these constraints are sim-

ple to express qualitatively, their effective quantitative statement is not trivial.

Furthermore, the opaque nature of CNNs has meant that up until recently, it has

proved difficult to explicitly exploit such prior information in model optimisation.

Addressing these limitations, we present a topological loss function for multi-class

image segmentation. Our approach not only makes use of global features, but also

leverages an explicit prior description of anticipated label map topology that is

independent of exemplar training data.
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(a) (b)

Figure 7.1: The CMR segmentation tasks considered: (a) segmentation of 2D
short axis data into left ventricle (LV) and right ventricle (RV) blood pool cavities
and the left ventricular myocardium (MY); and (b) whole heart segmentation of
3D data into left atrium (LA) and right atrium (RA) classes in addition to those
presented in (a).

7.1.2 Anatomical priors in cardiac segmentation

Given that a comprehensive review of cardiac segmentation methodologies was

provided in Chapter 3 and Chapter 4, here we limit our focus to those works

whose primary contribution leverages prior information. Moreover, in developing

and validating the topological loss functions presented, we explore their application

to tasks of increasing difficulty, incrementing image dimension (moving from 2D

to 3D) and pathological variety (moving from normal to congenitally malformed

anatomy). Hence, the following review examines both 2D short axis and 3D whole

heart or multi-class segmentation (see Figure 7.1).

2D Short axis segmentation

Thanks to its position as the gold standard approach for ventricular volumetry,

CMR short axis segmentation has received the most significant research interest of

these applications. At least in studies of healthy patients, including large training

data, this effort has culminated in a level of performance consistent with inter-

observer variation (Bai et al., 2018). However, for studies involving cardiovascular

disease (for which training sets are typically smaller and morphologically more

variable), a performance deficit remains. This gap is in part characterised by the

sort of anatomically implausible error described in Section 7.1.1 and observed in
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Chapter 6. To address these modes of failure, authors have sought to introduce

prior information to CNN-based segmentation.

One avenue of research has combined conventional methods such as atlas-based

segmentation (Dong et al., 2018; Duan et al., 2019; Zotti et al., 2018) and active

contour refinement (Avendi et al., 2017; Ngo et al., 2017; Rupprecht et al., 2016)

with CNNs. Whilst these extensions admit improvement, their capacity to model

the variation of pathological cases is limited by the make up of the atlas or hand-

crafted features employed. CNNs have also been used in conjunction with statis-

tical shape models: Tóthová et al. (2018) used a CNN to infer the coefficients of

variation at test time; Milletari et al. (2017) include a principal component anal-

ysis layer to learn the distribution of left ventricular shape. The ability of CNNs

to learn shape priors from multi-view CMR data has also been shown to improve

segmentation performance (Chen et al., 2019).

Another area of work has attempted to inject prior information into CNN op-

timisation directly via a learned, latent representation of anatomically plausible

shapes (Degel et al., 2018; Oktay et al., 2017; Yue et al., 2019). Their implicit em-

bedding, however, makes it difficult to understand the extent to which such priors

are related to morphology or topology as claimed. Bridging this gap, Painchaud

et al. (2020) augmented the latent space via a rejection sampling procedure, main-

taining only those cases satisfying sixteen criteria related to anatomical plausibil-

ity. At test time, searching the augmented space for a case’s nearest neighbour

guarantees a credible segmentation result.

3D Whole heart segmentation

Before the shift to deep learning methods, whole heart segmentation made use of

strong prior knowledge. Statistical shape models (Wierzbicki et al., 2008), and in

particular (multi) atlas-based segmentation (Zuluaga et al., 2013; Zhuang, 2016)

made up the state of the art. However, rather than make similar use of priors,

exponents of CNN-based segmentation have been necessarily preoccupied with so-

lutions for best handling large 3D volumes. To make best use of limited graphics

processing unit (GPU) memory, relevant work has focused on architectural modifi-

cations including cascaded processing at multiple spatial scales (Payer et al., 2018;
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Isensee et al., 2018), patch-based inference (Yang et al., 2018b) and slice-by-slice

or 2.5D segmentation (Wolterink et al., 2017).

There are exceptions to this trend, however. In the original 2017 Multi-

Modality Whole Heart Segmentation (Zhuang et al., 2019) (MM-WHS) challenge,

Wang et al. (2017a) incorporated the results of statistical shape modelling as an

additional CNN input channel. In the context of congenital computed tomogra-

phy (CT), Xu et al. (2020) used a graphical representation of the great vessels

to improve both diagnostic classification and segmentation within a large training

dataset. Works combining multi atlas-based registration and CNNs have also been

presented (Luo and Zhuang, 2020; Ding et al., 2020; Dong et al., 2020; Sinclair

et al., 2022). Most recently, Habijan et al. (2021) employed a latent representation

of whole heart anatomy (akin to Oktay et al. (2017)) as a means of assessing spatial

coherence within an associated loss function. Wang et al. (2021b) used the same

approach to determine reliable pseudo-labels in a few shot learning framework,

achieving impressive results.

7.1.3 Topological priors in image segmentation

Here, we touch on key references from the wider image processing literature rele-

vant to segmentation topology. In alternative clinical settings, priors specifying the

adjacency and hierarchical containment of anatomical components have been used

to build associated loss functions. Examples have considered features related to

the anticipated adjacency of brain regions (Ganaye et al., 2018) and the hierarchy

of cellular structures (BenTaieb and Hamarneh, 2016). Alternatively, reformulat-

ing the segmentation task as a layer-wise regression has allowed the segmentation

of optical coherence tomography images, with an anatomical ordering of retinal

layers (He et al., 2019). Inspired by the work of Jaderberg et al. (2015) and tak-

ing a lead from atlas-based registration, Lee et al. (2019) used spatial transformer

networks to learn an optimal mapping of a coronary artery prior to the coordinate

space of the test image.

We observe that across applications (BenTaieb and Hamarneh, 2016; Ganaye

et al., 2018; Painchaud et al., 2020), criteria used to define anatomical plausi-

bility can frequently be summarised by segmentation topology. Though a global
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property, researchers have adapted well-established topological metrics such as the

Rand Index (Briggman et al., 2009) and Warping Error (Jain et al., 2010), for use

in gradient-based, CNN training.

More recently, PH, an emerging mathematical tool for topological data analysis,

has been combined with machine learning methodology. In addition to practical

applications, the theoretical basis for such approaches is developed by Hofer et al.

(2017) and Gabrielsson et al. (2020). Topological features returned by PH have

been employed within image classification and segmentation by K-means cluster-

ing (Assaf et al., 2016) and K-nearest neighbours (Qaiser et al., 2016) classifiers.

They have also been leveraged to distill dermoscopic images (Vandaele et al., 2020).

Specially constructed input layers have been used to feed PH features to CNNs,

improving electroencephalogram classification (Hofer et al., 2019), and the detec-

tion of coronavirus disease (2019) (COVID-19) (Hajij et al., 2021). In cardiac

imaging, PH was used in the identification and restoration of papillary muscles to

a myocardial segmentation of CT data (Gao et al., 2013).

Pertinently to our motives, PH has been employed, not only as a source of

features to be passed to a downstream classifier, but also to extract a supervisory

signal for learned feature optimisation. Moreover, PH has been used to build

topological loss functions for CNN-based image segmentation. Hu et al. (2019),

established a topological loss according to the Wasserstein distance between the

persistence barcodes of predicted and ground truth segmentations, applying their

approach to cellular microscopy and within the natural image domain. They have

also extended their approach to generative adversarial networks (Wang et al.,

2020b).

Other exponents of PH-based losses have instead optimised segmentation topol-

ogy against an explicit topological description known a priori. Example losses have

penalised segmentations of the murine neurovasculature which deviate from its an-

ticipated tree-like topology (Haft-Javaherian et al., 2020). Shin et al. (2020) used

a similar scheme at training time, optimising a set of CNN parameters to infer

the cylindrical topology of small bowel segmentation. Relevant to our tasks, a

similarly constructed loss has been used to encourage toroidal appearance of the

myocardium in short axis view (Clough et al., 2019, 2020). In contrast to those

losses built on a latent representation of plausible shape, PH provides a mechanism
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for segmentation evaluation against an explicit topological prior. The benefits to

interpretability aside, this affords the opportunity to decouple relevant topological,

prior information from its representation within training data, a statistical shape

model or atlas.

7.2 Contributions

To the best of our knowledge and outside of our preliminary work (Byrne et al.,

2021), the application of PH-based loss functions to the task of multi-class seg-

mentation is yet to be explored. Compared with the binary case, extension to

this setting permits consideration of a richer set of topological priors, including

hierarchical class containment and adjacency. In the following, we explore the

application of PH-based loss functions to various CMR segmentation tasks, lever-

aging priors related to the topological relationships between the chambers of the

heart. Our work makes the following contributions:

1. We present a formalism for the construction of PH-based loss functions that

can be used to optimise CNN-based, multi-class segmentation topology.

2. We employ these losses in a CNN post-processing framework, demonstrat-

ing significant improvements in topological performance across 2D and 3D

problems, considering a range of CMR segmentation tasks (see Figure 7.1).

3. We introduce an efficient implementation based on cubical complexes and

parallel computation, making significant performance gains, and admitting

3D application at full spatial resolution for the first time.

4. In addition to within structurally normal anatomy, we apply our approach to

the segmentation of patient-specific CHD anatomy, improving the topology

of predicted segmentations.

5. Throughout we present a faithful and detailed evaluation of our approach,

speculating as to the limits of its generalisability.
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7.3 Theory

Here we provide a practical and largely qualitative introduction to homology and

PH as necessary to inform our construction of cubical complexes and topological

loss functions. For a mathematical background, we direct the reader to Kaczynski

et al. (2006), Edelsbrunner et al. (2008) and Otter et al. (2017).

7.3.1 Betti numbers, homology and cubical complexes

In ND, objects with differing topology can be distinguished by the first N Betti

numbers: b = (b0, b1) in 2D and b = (b0, b1, b2) in 3D. Intuitively, b0 counts the

number of connected components which make up an object, b1, the number of 2D

holes or loops present and b2, the number of 3D holes or voids contained (Otter

et al., 2017). For the purposes of our work, homology is a branch of algebraic

topology concerned with procedures to compute the Betti numbers of objects.

Rather than interrogating an arbitrary topological space, such computation is de-

veloped in conjunction with the representation of objects by combinatorial struc-

tures called simplicial and cubical complexes. Cubical complexes are well suited

to data structured on a rectangular lattice, constructing 3D objects as the com-

bination of points (0-cells), and unit line intervals (1-cells), squares (2-cells) and

cubes (3-cells). Note that the edges of high-dimensional cells (n > 0-cells) align

with the cardinal directions of the image space. In the 2D case, this is illustrated

in Figure 7.2. Provided its representation as a valid cubical complex, homology

returns the Betti numbers of a binary segmentation by linear algebra alone.

In the context of image data, this representation is not only more computa-

tionally efficient and elegant than its simplicial equivalent (as employed in our

previous work (Clough et al., 2019, 2020; Byrne et al., 2021)), but also affords pre-

cise control over the connectivity of pixels. As exemplified by Garin et al. (2020),

there are two approaches for the construction of cubical complexes from ND image

data. These differ in their treatment of image pixels as either 0-cells or N-cells

(in other words, “top dimensional”-cells) of the resulting complex.

The repercussions of this choice are illustrated in Figure 7.2, and best under-

stood in the context of classical pixel connectivity, as it bears on the formalism
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Figure 7.2: Construction of a cubical complex from 2D data. Pixel intensities in (a)
exceeding an arbitrary threshold of three appear white in the binary image (b). In
(c), these white pixels are considered 0-cells, representing a 4-connected foreground,
including three components. In (d) these are considered 2-cells, representing an
8-connected foreground component, containing a hole.

of digital topology (Kong and Rosenfeld, 1989). In the 2D case: treating pixels

as 0-cells results in a 4-connected representation of foreground objects; treating

pixels as 2-cells results in an 8-connected representation of foreground objects.

We will refer to these cases as the 0-construction and N -construction respectively.

It should be noted that the same argument applies in 3D, with correspondences

drawn between the 0-construction and the 6-connected lattice; and between the

N -construction and the 26-connected lattice. In Section 7.5.3, we perform experi-

ments comparing these approaches.

7.3.2 Persistent homology

We intend to interrogate and optimise the topological features of segmented im-

ages, relying on tools from algebraic topology for their extraction. The previous

section demonstrated the construction of a cubical complex for a discrete, bi-

nary image. This approach can be applied equally to the ground truth label map

S : RN → {0, 1}, and to its associated predicted segmentation S̃ : RN → [0, 1],

once binarised at a probability threshold, S̃p = S̃ ≥ p. The homology of such

an object, whilst easily exposed via the mechanics of algebraic topology, is not

immediately compatible with gradient-based, CNN optimisation. In more specific

terms, a loss function comparing the homology of S with S̃p does not return a

differentiable supervisory signal. This is demonstrated by Figure 7.2: modulat-

ing the central pixel incurs a discontinuous change in the object’s Betti numbers.

To overcome this hurdle, previous work (Clough et al., 2019, 2020; Shin et al.,
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2020) has exploited PH, acquiring a representation of the topological features of

the probabilistic segmentation, S̃.

In general, PH describes a scheme for the particular application of algebraic

topology which exposes the topological features of data (or equivalently their Betti

numbers) at multiple scales (Otter et al., 2017). We use the 2D example of Fig-

ure 7.3 to illustrate the result returned by such a procedure (the so-called per-

sistence barcode), providing a practical explanation as it relates to our applica-

tion. Critically, rather than consider topology at a single probability threshold

(as might be exposed at test time), PH captures the topology of S̃ binarised

at all possible thresholds. Descending from the maximal threshold p ≥ 1, this

amounts to computing the homology of a nested sequence of binarised segmen-

tations: S̃1 ⊂ ... ⊂ S̃p ⊂ ... ⊂ S̃−∞. The barcode, therefore, is a dynamic

characterisation of the way that probabilistic segmentation topology evolves as a

function of this threshold, p.

Example segmentations from this sequence are demonstrated in Figure 7.3. At

each value of the threshold, the number of vertically arranged bars indicates the

number of topological features presented by S̃p. Moreover, the presentation of

each bar reveals the dimensionality of the feature described: solid bars indicate

the presence of connected components; open bars indicate the presence of loops.

In this way, the Betti numbers of S̃p are returned by counting the number of each

type of bar vertically intersected.

A bar extends horizontally for the probability interval over which its associated

feature is maintained. Critical values of p admit changes in the topological features

of S̃p. In Figure 7.3, such values are indicated by the endpoints of each bar.

Accordingly, the persistence of a topological feature ∆p is the horizontal length of

its associated bar. Persistent bars are considered robust to small perturbations,

suggesting that they are true topological features of S̃. Hence, in Figure 7.3,

we arrange bars in order of descending persistence after grouping by topological

dimension. From the persistence barcode of the probabilistic segmentation S̃, we

write the lifetime of the lth most persistent feature of dimension d as ∆pd,l(S̃).

Compared with the Betti numbers of a discrete, binary segmentation, topolog-

ical persistence provides a differentiable quantity that is consistent with gradient-

based learning (see Gabrielsson et al. (2020)). To appreciate this, we present two
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Figure 7.3: Computation of the persistent homology (PH) barcode, reflecting the
topological features of the probabilistic segmentation S̃, when binarised at all
possible probability thresholds in the interval [0, 1]. At a particular p: the number
of vertically intersected solid bars counts connected components (d = 0); open
bars count the number of loops (d = 1). Each bar is labelled with its topological
dimension, and its persistence ranking in order of descending lifetime: d, l.

arguments: (1) a small change in the probabilistic segmentation S̃ results in a

small change in the persistence of bars; and (2) respectively, the creation and

destruction of each topological feature (the extremes of each bar) are associated

with particular cells of the cubical complex, and therefore pixels of the predicted

segmentation.
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7.4 Methods

7.4.1 Notation

We address the generic multi-class segmentation task, seeking a meaningful divi-

sion of the ND CMR image X : RN → R into meaningful anatomical segments. In

the three tasks considered, relevant image segments describe the chambers of the

heart, their association, and their relationship to the myocardium (see Figure 7.1).

We use the following shorthand: myocardium (MY) (including left and, depending

on the task, right ventricular components), left atrium (LA), left ventricle (LV),

right atrium (RA) and right ventricle (RV). However, it should be noted that the

formalism presented has the flexibility to accommodate the semantics of a range of

multi-class segmentation tasks. We denote the ground truth image segmentation

by Y : RN → {0, 1}K , being made up by K mutually exclusive class label maps:

Y1, Y2, ..., YK , including K − 1 foreground classes in addition to the background,

Y1.

In each task, we consider a deep learning solution, optimising the parameters, θ,

of a CNN to infer the probabilistic segmentation, Ỹ : RN → [0, 1]N , a distribution

over the per class segmentation maps: Ỹ1, Ỹ2, ..., ỸK . We write segmentation

inference as Ỹ = f(X;θ). In all cases, we achieve a discrete prediction as the

segmentation which maximises pixel-wise probability: Ŷ : RN → {0, 1}N , made

up by K mutually exclusive classes: Ŷ1, Ŷ2, ..., ŶK . Within our formalism, we

consider the topology, not only of individual segmentation objects, but also their

combination: by Yi∪j we reference the Boolean union of classes i and j; by Ỹi∪j we

reference the pixel-wise probability of class i or j. We consider the union of a class

with itself to be the segmentation of the single class: Yi∪j=i = Yi and Ỹi∪j=i = Ỹi.

Given the success of CNN-based solutions, we assume that, at least with respect

to spatial overlap, Ỹ is a reasonable estimate of Y. In this setting we describe

our CNN post-processing framework for the correction of inferred segmentation

topology.
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7.4.2 Multi-class topological priors

As introduced in Section 7.3.1, the Betti numbers are topological invariants per-

mitting the specification of priors for the description of foreground image segments.

They can be specified on a per task (where anticipated topology is uniform across

the population) or per patient basis (perhaps where anticipated topology reflects

the pathology-induced and clinically relevant structural changes associated with

CHD). Consider our 2D, short axis example (see Figure 7.1):

bRV = (1, 0)

bMY = (1, 1)

bLV = (1, 0)

(7.4.1a)

Equation set 7.4.1a specifies that each of the RV, MY and LV should comprise

a single connected component, and that the myocardium should contain a sin-

gle loop. However, these equations only provide a topological specification in a

segment-wise, binary fashion: they fail to capture inter-class topological relation-

ships between cardiovascular anatomy. For instance, they make no specification

that the myocardium surround the left ventricular cavity or that the right ventricle

and myocardium should be adjacent. A richer topological description is returned

by considering combined foreground classes:

bRV∪MY = (1, 1)

bRV∪LV = (2, 0)

bMY∪LV = (1, 0)

(7.4.1b)

By the inclusion-exclusion principle, the topology of a 2D multi-class image seg-

mentation is characterised by that of all foreground objects and all possible object

pairs (Bazin et al., 2007): see Equation set 7.4.1b. For convenience, we collect all

of Equation set 7.4.1 into a Betti array B : {1, 2, 3}×{1, 2, 3}×{0, 1} → R. Each
element Bij

d denotes the Betti number of dimension d for the ground truth seg-

mentation Yi∪j. Note that in Bij
d we divide indices between sub- and superscripts

to make clear the difference between class labels (i, j) and topological dimension

(d), without further significance.



bMY = (1, 0, 0)

bLA = (1, 0, 0)

bLV = (1, 0, 0)

bRA = (1, 0, 0)

bRV = (1, 0, 0)

(7.4.2a)

bMY∪LA = (1, 0, 0)

bMY∪LV = (1, 0, 0)

bMY∪RA = (1, 0, 0)

bMY∪RV = (1, 0, 0)

bLA∪LV = (1, 0, 0)

bLA∪RA = (2, 0, 0)

bLA∪RV = (2, 0, 0)

bLV∪RA = (2, 0, 0)

bLV∪RV = (2, 0, 0)

bRA∪RV = (1, 0, 0)

(7.4.2b)

bMY∪LA∪LV = (1, 0, 0)

bMY∪LA∪RA = (1, 0, 0)

bMY∪LA∪RV = (1, 0, 0)

bMY∪LV∪RA = (1, 0, 0)

bMY∪LV∪RV = (1, 0, 0)

bMY∪RA∪RV = (1, 0, 0)

bLA∪LV∪RA = (2, 0, 0)

bLA∪LV∪RV = (2, 0, 0)

bLA∪RA∪RV = (2, 0, 0)

bLV∪RA∪RV = (2, 0, 0)

(7.4.2c)
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Vitally, even in the absence of the ground truth, B can be determined by

prior knowledge of the anatomy to be segmented. Whilst this requirement may

not always be fulfilled, within medical imaging, segmentation targets frequently

describe anatomical structures with known topology. For example, we can extend

this specification to 3D segmentation of the whole heart, in which case we consider

the topological prior expressed by Equation set 7.4.2.

Firstly, note that in 3D, and according to the same inclusion-exclusion prin-

ciple, multi-class topology is defined not only by that of all foreground objects

(Equation set 7.4.2a) and their pair-wise combination (Equation set 7.4.2b), but

extends to all object triples, as additionally described by Equation set 7.4.2c. Sec-

ondly, we highlight the low topological dimensionality of features associated with

this collective 3D prior (Equation set 7.4.2). At least compared with the highly

detailed segmentations presented by the ELCH dataset in Chapter 5, it expresses

a simpler representation of cardiac anatomy: one which is free from endocardial

trabeculation (of either the atria or ventricles). In part, such a specification al-

lows for the more straightforward application and investigation of the topological

loss functions presented. However, it also matches the semantics of the MM-WHS

segmentation task (the basis of the experiment described in Section 7.5.4) whose

labels include papillary muscles and trabeculation within the blood pool class of

the associated chamber.

Finally, and despite the simplistic representation of individual chambers, note

that Equation set 7.4.2 isolates left and right-sided structures of the normal heart

in a clinically meaningful fashion. For example, bLA∪RA = (2, 0, 0) requires that

the left and right atria compose two connected components, implicitly indicating

their division by a complete atrial septum. In Section 7.5.5 we will manipulate

this prior to specify the presence of patient-specific defects within images drawn

from the ELCH dataset: bLV∪RV = (1, 0, 0) indicating the presence of a single

ventricular septal defect (VSD), for example. Further details, including the in-

teraction between defect number and high-dimensional topology, are discussed in

Section 7.5.5.
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7.4.3 Topological loss function

We now present our formulation for a topological loss function applicable to multi-

class, CNN-based segmentation tasks. In common with previous work (Clough

et al., 2019; Shin et al., 2020), we exploit the differentiable properties of the per-

sistence barcode to construct a loss that exposes the differences between Ŷ and

our prior specification B. However, in contrast with these works, which consid-

ered single-class segmentation problems, our loss is informed by the persistence

of features from multiple per class probabilistic segmentations. Accordingly, the

choice of probabilistic segmentations, from which we extract topological features,

is key. To align with the theory of Section 7.4.2, in 2D we consider the persistence

barcode for all foreground class labels and class label pairs (see Figure 7.4). The

construction of LT is as follows:

LT =
∑

d,i,j≥i

Bij
d − Aij

d + Zij
d (7.4.3)

Aij
d =

Bij
d∑

l=1

∆pd,l(Ŷi∪j) (7.4.3a)

Zij
d =

∞∑
l=Bij

d +1

∆pd,l(Ŷi∪j) (7.4.3b)

Aij
d evaluates the total persistence of the Bij

d longest, d-dimensional bars for the

probabilistic union of segmentations for classes i and j, Ŷi∪j. Assuming that the

inferred segmentation closely approximates the ground truth, and recalling that

l ranks topological features in descending order of persistence, Aij
d evaluates the

presence of anatomically meaningful topological features. In other words, Aij
d mea-

sures the extent to which the anticipated topological features are present within Ŷ.

Zij
d evaluates the persistence of spurious topological features that are superfluous

to Bij
d . Alternatively, Zij

d is sensitive to the presence of topologically implausible

CNN segmentation errors such as additional connected components or holes.

Summing over all topological dimensions d, and considering all class labels

i, j = i and class label pairs i, j > i, optimising LT maximises the persistence of

topological features which match the prior, and minimises those which do not.



Figure 7.4: Construction of the loss LT. Each probabilistic segmentation (Ỹi or
Ỹi∪j), is accompanied by its associated persistence barcode (only bars with ∆pd,l ≥
0.05 are shown). LT weighs the persistence of topological features which match
the topological description (Aij

d ; depicted as green bars), against those which do
not (Zij

d ; depicted as red bars). To sensitise LT to multi-class label map topology,
these are summed over all topological dimensions (d), and individual and paired
label sets (i, j ≥ i).
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In 3D, multi-class object topology is informed by that of all foreground classes,

class label pairs and class label triples (Bazin et al., 2007). Correspondingly, our

3D, multi-class topological losses take the form:

LT =
∑

d,i,j≥i,k≥i

Bijk
d − Aijk

d + Zijk
d (7.4.4)

Aijk
d =

Bijk
d∑

l=1

∆pd,l(Ŷi∪j∪k) (7.4.4a)

Zijk
d =

∞∑
l=Bijk

d +1

∆pd,l(Ŷi∪j∪k) (7.4.4b)

In the following 3D experiments (see Section 7.5.4 and Section 7.5.5), we scru-

tinise the incremental value of label triples (i, j ≥ j, k ≥ i) over only individual

and paired labels (i, j ≥ j); how these gains relate to task specification; and the

associated increase in computational demand.

7.4.4 CNN post-processing framework

As per previous work (Clough et al., 2019; Byrne et al., 2021), we employ our

topological loss function in a CNN-based segmentation post-processing framework.

In the guise of test time adaptation, this scheme seeks an improvement in inferred

topology by fine tuning a pre-trained CNN, f(X;θ). This achieves a new set of

network parameters θn, optimised to correct the topology of the individual test case

Xn. It should be noted that the image features learned during this process are not

assumed to be generalisable, and hence are not maintained for the segmentation

of subsequent test images.

However, since topology is a global property, there are many segmentations that

potentially minimise LT. Hence, where Vn is the number of pixels in Xn, a mean

squared error (MSE) similarity constraint (weighted by the hyperparameter λ)

limits test time adaptation to the minimal set of modifications necessary to align

the segmentation and the topological prior, B. Our topological post-processing
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(TP) framework is mediated by:

LTP = LT(f(Xn;θn),B) + λLMSE(f(Xn;θn), f(Xn;θ)) (7.4.5)

LMSE =
1

Vn

|f(Xn;θ)− f(Xn;θn)|2 (7.4.5a)

7.4.5 Implementation

As noted by Shin et al. (2020), computation of the persistence barcode is an inten-

sive procedure, introducing significant inefficiencies within CNN training. This is

particularly problematic in 3D and multi-task applications, in which our loss for-

mulation demands the extraction of multiple barcodes (accounting for individual

and combined label classes) per gradient update.

Previous works, including our own (Clough et al., 2019; Byrne et al., 2021),

have employed the “TopologyLayer” implementation of Gabrielsson et al. (2020).

This excellent resource was favoured for its close integration with the popular

deep learning library PyTorch (Paszke et al., 2019) (used throughout this work)

and its clear documentation. However, in the context of large, 3D image data,

it has two major drawbacks: (1) without modification, TopologyLayer computes

simplicial rather than cubical persistence, leading to inefficiencies and possible

connectivity ambiguities in the combinatorial representation of pixel data; and

(2) by its authors’ own admission, TopologyLayer is best suited to computation

concerning small- to medium-sized topological spaces, and makes no attempt to

optimise execution in the setting of large data. These drawbacks result in lengthy

computational times for the extraction of the persistence barcode, rendering such

an approach impractical when applied to clinical data.

In this work, we have implemented a thin wrapper1 around the open source

“CubicalRipser” library (Kaji et al., 2020), integrating its functionality with the

automatic differentiation engine of PyTorch. The CubicalRipser implementation

overcomes the highlighted limitations of the TopologyLayer package, its authors

suggesting that to the best of their knowledge, theirs is the fastest and most mem-

ory efficient program for computing the PH of weighted cubical complexes (Kaji

et al., 2020). We build on the associated performance gains, by leveraging Python

1Available at https://github.com/nick-byrne/topological-losses.

https://github.com/nick-byrne/topological-losses
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multiprocessing to extract the persistence barcodes of multiple probabilistic seg-

mentations in parallel. The performance gains and limitations of our approach are

discussed in Section 7.6.2.

7.5 Experiments

7.5.1 Experimental methods and baselines

We compare the performance of our experimental methods with the following well-

established baselines:

U-Net The discrete segmentation maximising the pixel-wise probability

inferred by a conventionally trained and fully supervised U-Net.

CCA Connected component analysis (CCA): the discrete segmentation

composing the per class, largest connected components of U-Net.

We test the performance of several flavours of topological post-processing. Each

of these optimises the weights of the pre-trained, baseline U-Net architecture, de-

ploying a variant of our topological loss function described in Equation 7.4.5. As

for U-Net, the final result is returned by taking the discrete segmentation that

maximises the topologically optimised, pixel-wise probability. We consider the fol-

lowing design choices:

TPi,j=i Post-processing according to a set of per class topological priors,

specified for individual foreground labels only.

TPi,j≥i Post-processing according to multi-class topological priors, speci-

fied for all individual and paired foreground labels.

TPi,j≥i,k≥j Post-processing according to multi-class topological priors, speci-

fied for individual, paired and tripled foreground labels.
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We also compare performance across different pixel connectivity relations. Given

the link between cubical complex construction and conventional pixel connectiv-

ity (foreground, background) (see Section 7.3.1), we use the following superscript

notation: CCA0 and TP0 consider topology according to (4, 8) and (6, 26) pixel

connectivities in 2D and 3D, respectively; CCAN and TPN consider topology ac-

cording to (8, 4) and (26, 6) pixel connectivities. In the case of topological post-

processing, the superscript also indicates the dimensionality of the cubical cells

used in complex construction.

7.5.2 Metrics and statistical analysis

We use the generalised Dice similarity coefficient (Crum et al., 2006) (GDSC) as

our primary, objective measure of spatial overlap performance (Crum et al., 2006),

and note the change induced by post-processing as ∆GDSC:

GDSC =
2
∑K

k=2 |Yk ∩ Ŷk|∑K
k=2 |Yk|+ |Ŷk|

(7.5.1)

We also record per class segmentation performance using the Dice similarity coef-

ficient (Dice, 1945) (DSC), Hausdorff distance (Huttenlocher et al., 1993) (HDD)

and mean surface error between predicted and ground truth segmentations.

We characterise topological accuracy using two metrics. The Betti error (BE)

measures the total deviation between inferred and ground truth topology (b versus

b̂). In 2D, this assessment is made according to the Betti numbers of all individual

foreground classes and all pairs of foreground classes:

BE =
∑
i,j≥i

∥bi∪j − b̂i∪j∥1 (7.5.2)

In 3D, BE also considers all class triples:

BE =
∑

i,j≥i,k≥j

∥bi∪j∪k − b̂i∪j∪k∥1 (7.5.3)

To understand whether improvements in segmentation topology translate into

anatomically meaningful segmentations we also make a binary assessment of topo-
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logical success rate (TS):

TS =

1, if BE = 0

0, otherwise
(7.5.4)

As per the notation for experimental and baseline methods, we add superscripts

to make explicit the pixel connectivity used in the calculation of these metrics:

BE0 and TSN , for example.

Spatial overlap results are described by their median and interquartile range.

To account for large differences in performance, BE is described by the ith per-

centile (Pi) and percentile ranges indicated. Results for GDSC and BE are com-

pared using Wilcoxon signed rank test with Bonferroni correction. TS is described

by sample proportion (ρ) and its associated standard deviation (σρ), and compared

using exact binomial test after Bonferroni correction.

7.5.3 2D Short axis segmentation

Experimental setting

In this experiment we exemplify our approach and novel implementation within

multi-class, 2D short axis segmentation, using a subset of the publicly available

Automatic Cardiac Diagnosis Challenge (Bernard et al., 2018) (ACDC) training

dataset (Bernard et al., 2018). Ignoring irregular anatomical appearances at apex

and base, we extract the three mid ventricular slices from each short axis stack,

including diastolic and systolic frames from all 100 patients. This achieves a data

corpus of 600 short axis images, all sharing a common topological description

summarised by the multi-class prior presented by Equation set 7.4.1. As per the

winning submission to the ACDC Challenge, all image-label pairs were resampled

to an isotropic pixel spacing of 1.25 mm (less than the mean and median spatial

resolution of the training data) and normalised to have zero mean and unit variance

(Isensee et al., 2018). Subjects were randomly divided between training, validation

and test sets in the ratio 2:1:1, stratified by diagnostic group according to ACDC

classification.

For its ubiquity and state of the art performance, we choose a 2D U-Net (Ron-

neberger et al., 2015) as the architecture for our pre-trained CNN. This was trained
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using CE loss and the combined training and validation set of 450 images, for

16,000 iterations. We employed the Adam optimiser (Kingma and Ba, 2014) with

a learning rate of 10−3. Each minibatch contained ten patches of size 352 by 352,

randomly cropped from ten different patients, zero padding where necessary. Data

augmentation applied random rotations between ±15◦.
Using our novel implementation based on cubical persistence, topological post-

processing was performed on the inferred multi-class segmentations of the held-out

test set. As described in Section 7.3.1, we investigated both 0- and N -constructions

of the segmented images as cubical complexes. Each sought to minimise LTP for

the topological priors expressed by Equation set 7.4.1. In Equation 7.4.5 we used

a value of λ = 1000. Test time adaptation used the Adam optimiser (Kingma

and Ba, 2014) with a learning rate of 10−5 for 100 iterations. The reported hy-

perparameters for both supervised training and topological post-processing were

optimised using the validation set of 150 examples.

Results

Row one of Table 7.1 demonstrates that irrespective of the considered pixel con-

nectivity, U-Net segmentations exhibit topological errors in approximately 15% of

cases. This equates to around 0.35 Betti errors on average and up to 5 in the worst

case. Note that these failings present despite strong spatial overlap performance

that is consistent with the state of the art. This confirms our hypothesis that

measures of spatial overlap do not reliably predict topological performance.

It is apparent from rows two and three of Table 7.1 that approximately two

thirds of individual topological errors incurred by U-Net are resolved by rudimen-

tary CCA, suppressing all but the largest connected component per class. Both

CCA0 (p = 0.012) and CCAN (p = 0.011) significantly improve BE compared

with U-Net prediction. These gains translate into a significant improvement in

topological success rate (p = 0.006 and p = 0.006, respectively), accounting for

approximately one half of the cases predicted with incorrect topology by U-Net.

These results are consistent with previous works (Painchaud et al., 2020), observ-

ing the tendency of CNNs to infer the presence of spurious connected components.
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(a) U-Net (b) CCA (c) TPi,j≥i

Figure 7.5: (a) U-Net-based segmentation predicts a spurious connected compo-
nent of the RV. (b) Conventionally applied connected component analysis (CCA)
assumes the superiority of large connected components of the discrete segmen-
tation, removing the offending error. However, CCA is insensitive to high-
dimensional topological features of the data and cannot rectify errors associated
with loops. (c) Our losses for topological post-processing (TP) are sensitive to
the presence of high-dimensional topological features of the probabilistic segmen-
tation. Mediated by CNN parameter optimisation, they permit expressive correc-
tion, considering the interaction between segmentation classes: suppression of the
anomalous RV component is accompanied by consolidation of the LV cavity and
completion of the myocardial torus.

(a) U-Net (b) TPi,j=i (c) TPi,j≥i

Figure 7.6: Specification of topological priors for all pairs of foreground labels
captures the interaction between classes. (a) U-Net predicts a segmentation with
an anomalous gap between the RV cavity and the LV myocardium. (b) Topological
post-processing (TP) according to a set of per class priors (i, j = i) is insensitive
to this error. This is because alone, both the RV and LV myocardium have correct
topology. (c) Additional priors, specifying the topology of all foreground object
pairs (i, j ≥ i) allows topological post-processing to rectify the segmentation.
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Sensitive only to 0D topological features, CCA cannot rectify errors related

to the presence of loops. Moreover, as most frequently employed, CCA takes a

discrete approach to post-processing, considering connected components of the

crisp (or thresholded) segmentation. Comparatively, our topological loss functions

admit improvements in probabilistic segmentation topology by CNN optimisation,

both prediction and post-processing being conditioned on the test image. This

admits topological improvement via expressive modification (see Figure 7.5).

The superior topological performance of our loss functions is quantified in Ta-

ble 7.1. Row four reflects the naive extension of previous work (Clough et al.,

2019, 2020) to the multi-class setting, specifying a single topological prior per

class: TP0
i,j=i. As expected, this setup admits improved topological performance

compared with CCA, resolving all topological errors in over 97% of cases. This

reflects topological correction in more than half the cases for which CCA did not

return an accurate result and a substantial improvement in the average BE. De-

spite these gains, this improvement does not return significant increases in either

BE (p = 0.069) or TS (p = 0.393), when compared against CCA0.

Row six outlines the performance of the full realisation of our approach in 2D,

specifying topological priors per class and per pair-wise combination of classes:

TP0
i,j≥i. This provides topologically accurate results in almost 99% of test images,

failing in just two, and returns the lowest average BE of just 0.02. Compared with

the naive specification of per class topological priors only, pair-wise combinations

expose a richer description of multi-class segmentation topology. This includes

sensitivity to class hierarchies, adjacency and containment. The benefit of this

extension is illustrated in Figure 7.6 and results in significant improvements in BE

(p = 0.026) and TS (p = 0.023), when compared against CCA0.

We now examine the impact of design choices within the implementation of

our topological loss functions. More specifically, we address the use of either 0- or

N-constructed cubical complexes. Comparing rows five and seven (TP0
i,j≥i versus

TPN
i,j≥i), we observe a small improvement in topological performance associated

with the N-constructed cubical complex (recall that this corresponds to an 8-

connected representation of foreground pixels). This resolves all topological errors

in one further test case, achieving a topologically accurate result in more than

99% of examples. However, neither the improvement in BE (p = 1.000) nor



Figure 7.7: Optimisation of LTP in the task of 2D short axis segmentation for
the entire test set. These trajectories reflect the following design choices: speci-
fication of topological priors per class and per class pair and using 0-constructed
cubical complexes. During topological post-processing, the topological loss, LT,
is smoothly and stably reduced. This is balanced by the similarity constraint,
LMSE. After the initial shock associated with the introduction of topological prior
knowledge, these two terms balance to achieve reliable performance.

Figure 7.8: Test set performance as characterised by per class metrics for the
right ventricle (RV), left ventricle (LV) and left ventricular myocardium (MY). In
addition to significantly improving topological performance, our approach to TP
maintains and marginally improves DSC (left), HDD (centre) and mean surface
error (right) compared against U-Net segmentation. Distinctive outliers and their
effect on mean surface error of the RV class are examined as failure cases in Sec-
tion 7.5.3.
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TS (p = 1.000) are significant. It should be noted that a similar trend relating

topological performance to pixel connectivity is observed across U-Net and all post-

processing methodologies considered. Given the apparent consistency between

these options, we adopt the 0-construction in Section 7.5.4 and Section 7.5.5.

Taking a closer look at the performance of our topological loss functions, Fig-

ure 7.7 illustrates the evolution of the different terms of Equation 7.4.5. This

demonstrates a predictable and smooth improvement in LT, balanced by a small

increase in the similarity constraint LMSE. The latter ensures that post-processed

segmentations cannot deviate dramatically from the initial U-Net prediction and

maintains spatial overlap performance. This is borne out in Table 7.1: on average,

all post-processing methods tested achieved marginal improvement in the GDSC

compared with U-Net. Whilst this might have been statistically significant in some

cases, any gain was not substantial when compared with the DSC between manual

segmentations of different observers: estimated to be around 0.9 (Bai et al., 2018).

Rather, we are encouraged that on this task, our topological loss functions do

not degrade spatial overlap performance. Furthermore, Figure 7.8 demonstrates

that our methods are at least consistent with, if not superior to, state of the art

approaches across a range of per class evaluation metrics.

This is not to imply that the topological loss functions presented are impervi-

ous to error. Figure 7.9 demonstrates a case in which U-Net equivocally suggests

the presence of more than one connected component to the right ventricular cav-

ity. In fact, the persistence of the spurious component exceeds that most closely

associated with the ground truth cavity. Compounding this challenge, both com-

ponents are topologically consistent with the multi-class topological prior when

considered in conjunction with the myocardium. Accordingly, optimisation of the

topological loss maintains and suppresses the incorrect and correct components,

respectively. As a result, topological post-processing removes any spatial overlap

between predicted and ground truth RV and significantly increases the 2D mean

surface error (both these results are apparent in Figure 7.8). A similar failure case

is summarised by Figure 7.10.

As the former, poor performance is associated with the equivocal prediction of

topological features. Here, rather than by connected components, post-processing

is confounded by the prediction of more than one topologically credible loop.



(a) X overlay Y (b) ỸRV (c) TPi,j≥i

Figure 7.9: Anatomically spurious components that are both persistent and consis-
tent with the topological prior, can cause errors: (a) A mid-ventricular slice from
the test set, with ground truth contours overlaid. (b) The probability of right
ventricle (RV) cavity predicted by the U-Net. The white arrow indicates a false
positive detection. According to the U-Net probability map, this spurious compo-
nent is the most persistent 0D topological feature. (c) Furthermore, this error is
topologically credible, being adjacent to the left ventricular myocardium. Conse-
quently, the false positive component is maintained by topological post-processing
(TP). Meanwhile, the probability mass correctly associated with the RV cavity is
suppressed (black arrow). This error is associated with poor surface error perfor-
mance and reflected as an outlier in Figure 7.8.

(a) X overlay Y (b) ỸRV∪MY (c) TPi,j≥i

Figure 7.10: Anatomically spurious loops that are consistent with the topological
prior can cause errors: (a) A mid-ventricular slice from the test set, with ground
truth contours overlaid. (b) The probability of right ventricle (RV) cavity or my-
ocardium (MY) predicted by the U-Net. The white arrow indicates the suggestion
of a false positive loop. The black arrow points to an anomalous gap in the MY.
(c) Topological post-processing (TP) with respect to the myocardial prior seeks
to close the anomalous gap and maximise the persistence of a single loop. At the
same time, optimising the topology of the combined RV and MY also expects a
single loop. In this case, the anomalous loop wins out, is maintained in the final
segmentation and actually inhibits completion of the myocardial torus.
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7.5.4 3D Whole heart segmentation

Experimental setting

In this experiment, we apply our methods to the task of segmenting multi-class,

whole heart anatomy from isotropic, high spatial resolution image data. We con-

sider a semantic subset of the MM-WHS Challenge task (Zhuang et al., 2019),

seeking a segmentation of the CMR volume into left and right atria (LA and RA),

left and right ventricles (LV and RV) and left ventricular myocardium (MY)2. In

the context of topological optimisation, this task is made particularly challenging

by the semantics of the publicly available ground truth training data. Primarily

concerned with measures of spatial overlap and surface error, these segmentations

need and do not convey clinically meaningful topology. Hence, this application

of our method seeks to not only refine, but also to impose meaningful segmen-

tation topology. In the present work, we attempt this feat in the context of test

time adaptation, using post-processing to introduce topological features to a CNN

pre-trained in their absence.

Whilst a subset of MM-WHS patients exhibit congenital or structural heart

disease, our inspection of the data suggests that the anatomy of all cases conforms

to the topology of the healthy heart. Hence our topological prior (see Equation

set 7.4.2) reflects: (1) continuity of the atrioventricular junctions - each atrium

is trivially connected to its associated ventricle; (2) isolation of the left and right

heart - no communication between left atrium and ventricle with either of the right

atrium and ventricle; and (3) association of the right ventricular blood pool with

medial epicardium - the RV class is trivially bound to the wall of the MY label.

Theoretically, the topological prior associated with 3D image data should re-

flect all foreground classes, their pair-wise combination (as per the 2D case), and

finally their collection in all possible groups of three. However, for pragmatic

reasons we overlook the topology of label triples. Firstly, moving from a 2D to

a 3D implementation admits a significant increase in the time required to com-

pute the PH barcode. Hence, the number of barcodes that must be computed at

each topological post-processing iteration strongly influences execution time. For

2The full MM-WHS task also seeks segmentation of the ascending aorta and pulmonary artery.
To satisfy computational resources, we disregard these segments
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five foreground classes, including three-way label combinations almost doubles the

number of barcodes from 15 to 253. Secondly, the semantics of our topological prior

do not anticipate anatomically meaningful features involving the combination of

three classes (as would be the case for an atrioventricular septal defect, for exam-

ple). Note that for evaluation both BE and TS assess segmentation topology using

a sound theoretical basis, additionally considering foreground classes combined in

groups of three.

Our experiment made use of the twenty publicly available training cases and

performance was assessed against the encrypted test set of forty examples. Prior to

experimentation, all training data were resampled to an isotropic spatial resolution

of 1.00 mm (approximately the median spacing of the training set) and normalised

to have zero mean and unit variance. We also elected to crop all volumes tightly

around the foreground region of interest. This allows us to maintain high spatial

resolution (granting sensitivity to topological features associated with thin tissue

interfaces, such as the atrial septum) without extreme increases in computational

demand. The applicability of CNN-based foreground detection to this task and

dataset is well established (Zhuang et al., 2019).

For our baseline model we trained a 3D U-Net (Çiçek et al., 2016) using CE

loss. We considered the entire training set and optimised over 40,000 iterations.

We employed the stochastic gradient descent optimiser, using a learning rate of 0.01

and momentum of 0.99. Each minibatch contained two large 3D image patches of

size 192 by 160 by 160. Given the small training set, we made use of intensive data

augmentation, pre-computing 500 examples per case. Transformations included:

rotation about all three spatial axes ([−10◦, 10◦]), scaling ([0.9, 1.1]) and non-rigid

deformation. Pixel intensities were modified using additive noise.

The results of Section 7.5.3 suggested an approximate equivalence between

topological post-processing using 0- and N-constructions in the determination of

cubical persistence. We therefore limit our investigation to the former: the de-

fault option within the CubicalRipser package (Kaji et al., 2020). Accordingly,

we consider TP0
i,j=i and TP0

i,j≥i, seeking to optimise LTP for the topological priors

expressed by Equation set 7.4.2a (singular anatomical classes) and their combina-

3Whilst our implementation allows for their parallel computation, our computational resource
(at least for this experiment, see Section 7.5.5) only includes 16 CPU cores.
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tion with Equation set 7.4.2b (paired anatomical classes), respectively. Topological

fine tuning was mediated by the Adam optimiser (Kingma and Ba, 2014) using a

learning rate of 10−5 for 100 iterations. Similarity with the probabilistic segmen-

tation inferred by the pre-trained U-Net was constrained by LMSE and weighted

by λ = 1. The hyperparameters reported throughout this experiment (within

both U-Net training and topological post-processing) were established by five fold

cross-validation over the training data.

Results

Table 7.2 demonstrates that with respect to spatial overlap, our CCA0 baseline is

consistent with the leading submissions to the MM-WHS challenge (Zhuang et al.,

2019). However, further assessment of topological performance requires careful

consideration. Recall that the training data with which the U-Net was trained do

not consistently reflect the topological prior we are seeking to impose. It could be

argued, therefore, that any evaluation against this prior has limited interpretabil-

ity. To inform this comparison, we examine the topological performance of the

ground truth labels composing the training set: there, an average of 376.2 Betti

errors excluded a single topologically accurate segmentation. Against the train-

ing labels, the topological performance of U-Net showed no statistically significant

difference (p = 0.082).

It is clear from these results that the topology of the ground truth training

labels not only diverges from our clinically relevant specification, but is actually

meaningless. In this context, flavours of topological post-processing attempt to

impose unseen topology at test time. However, they are not alone in this regard,

the same can be said for CCA. Though widely employed as a practical approach to

reduce false positives and improve spatial overlap, it must be acknowledged that

in this case, CCA0 involves the application of a limited, 0D topological prior, one

that conflicts with the features of training data. Despite this, Table 7.2 endorses

the former rationalisation: coupled with a significant improvement in the average

GDSC (p < 10−4), CCA0 effectively modifies segmentation topology, reducing the

number of topological errors by almost 85% (p < 10−7). As per the results of
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(a) U-Net (b) CCA0 (c) TP0
i,j≥i

Figure 7.11: In the presence of strong spatial overlap performance, post-processing
makes minimal corrections to improve segmentation topology. Notable topological
features are outlined and indicated in red: (a) U-Net segmentation achieves strong
spatial overlap with the ground truth but presents a number of topological errors.
(b) Connected component analysis (CCA0) successfully removes small, superflu-
ous connected components, but the association of the left and right heart remains.
(c) Topological post-processing, TP0

i,j≥i, successfully corrects all topological errors,
including those associated with connected components and the anomalous appear-
ance of atrial and ventricular septal defects.



Figure 7.12: Optimisation of our topological loss in the task of 3D whole heart
segmentation for the entire MM-WHS test set. Whilst predictable optimisation
dynamics are achieved, compared with the 2D case, both components (LT and
LMSE) of LTP remain elevated. Here we speculate that topological optimisation is
hampered by more substantial errors in U-Net prediction.

Figure 7.13: Test set performance as characterised by per class metrics for the left
ventricular myocardium (MY), and blood pool cavities of the left atrium (LA), left
ventricle (LV), right atrium (RA) and right ventricle (RV). Compared with U-Net
prediction, topological post-processing (TP0

i,j≥i) improves surface localisation per-
formance, as measured by HDD (centre) and mean surface error (right). However
these gains are not as large as those achieved by connected component analysis
(CCA0). Coupled with a degradation in spatial overlap performance (left), these
results indicate the trade off between improved topological and other metrics of
performance when topological post-processing is applied to this task.
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Section 7.5.3, spurious connected components make up a substantial proportion of

the topological errors made by U-Net.

However, CCA0 remains insensitive to both multi-class and high-dimensional

segmentation topology. Sensitivity to such features is achieved by our topological

loss functions (see Figure 7.11, Figure 7.12). Both TP0
i,j=i and TP0

i,j≥i effectively

adapt segmentation topology, significantly reducing the BE with respect to the

prior specification, when compared with CCA0 (p < 10−5 and p < 10−6, respec-

tively). In the latter case, our full implementation, the average number of Betti

errors is reduced by almost 90%.

It is telling that this improvement constitutes a topologically accurate seg-

mentation in only two of forty test cases (a TS of just 5%). Coupled with the

deleterious effect of topological post-processing on other metrics of segmentation

performance (see Figure 7.13), this goes some way to characterise the challenge of

this task and the limitations of its CNN-based solution. In this experiment, the

gains in topological performance are traded off against a significant degradation

in spatial overlap with the ground truth. This is true for both TP0
i,j=i and TP0

i,j≥i

(p < 10−6 in both cases). Moreover, in addition to being statistically significant,

the drop is clinically significant.

Primarily, such degradation occurs where U-Net segmentation includes multi-

ple, probabilistically credible candidates that, to some extent, are consistent with

the topological prior. Figure 7.14 demonstrates a case in which U-Net localises

the LA to three distinct regions of the image (these are reflected in the persistence

barcode shown in Figure 7.15). Each having a lifetime greater than 0.9, separating

true from anomalous components is probabilistically equivocal. In this context,

TP0
i,j≥i results in a segmentation with two LA components. Remote from its true

location and of significant size4, a spurious component inferior and posterior to

the apex limits spatial overlap performance. Perhaps more problematically, topo-

logical optimisation connects the LA with false positive components inferior to the

base of the heart. This anatomically nonsensical communication not only limits

performance, but also severely degrades spatial overlap compared with U-Net.

4In fact, this is the largest LA component predicted by U-Net and excludes any spatial overlap
with the ground truth where CCA0 is applied.



(a) U-Net (b) CCA0 (c) TP0
i,j≥i

Figure 7.14: The prediction of spurious connected components with high proba-
bility can confound topological post-processing (TP). Notable topological features
are outlined and indicated in red: (a) U-Net segmentation includes significant spa-
tial overlap and topological errors. (b) The largest connected component of the left
atrium (LA) is anomalous. Naive connected component analysis (CCA0) misiden-
tifies the LA, resulting in zero spatial overlap for this class. (c) Probabilistic TP
rectifies the majority of topological errors. However, TP0

i,j≥i is also confounded
by anomalous LA components. The multi-class prior specifies the isolation of LA
and right atrium (RA) by the expectation of two connected components. In the
presence of a superfluous LA component, communication of the atria remains con-
sistent with this specification. The result is a significant drop in spatial overlap
performance.
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0.00.20.40.60.81.0

p

Figure 7.15: The topological credibility of candidate features is reflected by the
persistence barcode. In Figure 7.14, U-Net segmentation indicates the presence
of three connected components of the LA. This is captured by the barcode shown
above (∆pd,l(ỸLA)), which includes three bars with a lifetime greater than 0.9.
In the context of multi-class topological optimisation, it is ambiguous which of
these is the connected component correctly associated with the LA, and which are
spurious features. This limits both topological and spatial overlap performance of
our approach. Schematic representation follows the convention of Figure 7.3, with
the addition of dashed bars to indicate 2D topological features (voids within 3D
foreground objects).

Such errors are problematic in and of themselves. However, given its combina-

torial nature (considering label combinations), they can also confound multi-class

topology. For example, the prior seeks to isolate left and right atria by specifying

that their combination comprise two connected components. Implicit within this

specification, however, is an assumption that both structures demonstrate correct

topology individually. In Figure 7.14, this is not the case. Provided a probabilistic

segmentation that equivocally suggests multiple atrial components, CNN optimi-

sation can reduce LT by reinforcing the communication between the atria. This

modification is at odds with anticipated anatomy and results from the interac-

tion between U-Net error and the specification of multi-class topology by label

combination.



(a) U-Net (b) CCA0 (c) TP0
i,j≥i

Figure 7.16: Insufficient CNN capacity limits the performance of topological post-
processing (TP). Notable topological features are outlined and indicated in red:
(a) U-Net segmentation presents several spatial overlap and topological errors, in-
cluding the appearance of atrial and ventricular communications. (b) Connected
component analysis (CCA0) successfully eliminates spurious connected compo-
nents, but cannot rectify the anomalous association of classes. (c) TP0

i,j≥i corrects
errors associated with both superfluous connected components and both atrial
and ventricular communications. However, the CNN features learned by optimis-
ing our topological loss, introduce associated segmentation changes remote from
any topological error. This is most obvious at the apex of the heart, but also can
be observed from an apparent translation of the tricuspid valve.
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Secondarily, it is clear that our implementation is limited by sub-optimal learn-

ing of the image features necessary to combine strong topological and spatial over-

lap performance. We speculate that this might result from the limited representa-

tional capacity of the 3D U-Net in the context of constrained GPU memory. On

top of the widely acknowledged computational challenges of 3D CNN implemen-

tation, our approach must contend with three further requirements: (1) relevant

topological features are defined in relation to thin tissue interfaces, hence high spa-

tial resolution is vital; (2) topological gains are introduced by test time adaptation,

hence neuron activations and backpropagation are also required during inference;

and (3) abstract anatomical topology is defined in relation to the entire image, so

we cannot trivially exploit patch-wise prediction. In addressing these challenges,

memory-saving adaptations constrain the statistical capacity of our CNN.

Consequently, we hypothesise that the U-Net architecture employed may lack

the representational capacity to learn sufficiently optimal features. For the most

part, TP0
i,j≥i makes sensible modifications, trading off spatial overlap performance

for improved topological accuracy. However, the extent and location of these

changes is neither uniformly minimal nor predictable. Figure 7.16 illustrates a

case for which improved performance is accompanied by geometrical changes at

the cardiac apex, a locale seemingly remote from any associated topological er-

ror. In the context of a fixed post-processing iteration budget, we speculate that

such changes result from insufficient representational capacity. This phenomenon

also contributes to the significant reduction in spatial overlap and surface error

performance when compared with U-Net.

7.5.5 3D CHD segmentation

Patient-specific topological priors

In this experiment, we continue our investigation of applying topological loss func-

tions to 3D, multi-class, cardiac segmentation. Rather than publicly available data,

here we leverage the ELCH dataset developed in Chapter 5. Compared with the

MM-WHS dataset explored in the previous Section 7.5.4, the ELCH data also com-

prise 3D isotropic, spatially high resolution, steady state free precession, volumetric

images, segmented into left and right atrial and ventricular components (amongst
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a wealth of other anatomically meaningful classes). In other respects, however, the

ELCH dataset presents several semantic differences: (1) unlike the MM-WHS data,

the ground truth accompanying each ELCH case describes a clinically meaningful

multi-class topology, reflecting haemodynamic continuity by pixel adjacency; (2)

rather than label the left ventricular myocardium, the ELCH data delineate a com-

bined myocardium class, describing the muscular tissue surrounding both left and

right ventricles; and (3) this myocardial class is manually segmented to represent

the muscular annuli surrounding atrioventricular and ventriculoarterial valves. As

a consequence of (2) and (3), and compared with the MM-WHS formulation (see

Equation 7.4.2), the ELCH myocardium class presents notable high-dimensional

features. At least in the setting of normal anatomy, we anticipate its Betti num-

bers to be: bMY = (1, 2, 0), the two 1D loops being associated with the passage

of blood through the left and right heart respectively. For the application of our

topological loss functions, however, perhaps the most important difference between

ELCH and MM-WHS data concerns anatomical variety. Within the ELCH data,

extant congenital defects disrupt the topology of the normal heart (presented in

Equation 7.4.2) such that a uniform topological prior is not sufficient. The impact

of different defects is explained in the following examples.

Consider the presence of a VSD: a communication between the normally iso-

lated left and right ventricles. Whilst this lesion has no effect on the anticipated

Betti numbers describing either ventricle alone (bLV = bRV = (1, 0, 0)), compared

with the normal heart (left of arrow below) their combination now makes up a

single connected component:

bLV∪RV = (2, 0, 0)
VSD−−→ bLV∪RV = (1, 0, 0) (7.5.5)

Each additional VSD increments the number of 1D loops by one:

bLV∪RV = (2, 0, 0)
2×VSD−−−−→ bLV∪RV = (1, 1, 0) (7.5.6)

Such that in the general case we can write for n > 0:

bLV∪RV = (2, 0, 0)
n×VSD−−−−→ bLV∪RV = (1, n− 1, 0) (7.5.7)
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Note that in these cases, the multiplicity of n VSDs introduces high-dimensional

topological features to the prior specification.

Whilst an identical pattern holds for the presence of atrial septal defects (ASDs),

the same approach can be applied for any defect or surgical modification that as-

sociates two segments isolated from one another in the normally connected heart.

Though complicated somewhat by the presence of (or coincidence with) an atri-

oventricular septal defect, the same reasoning holds and can be applied.

In opposite fashion to septal defects, valvular atresias isolate the anatomical

structures that ensure haemodynamic continuity between segments of the normal

heart. For example, mitral valve atresia (MA) compromises the left atrioventricu-

lar junction, precluding communication between the left atrium and ventricle, and

modifying multi-class topology. As per our VSD example, MA has no effect on the

topology of the individual left atrial and ventricular labels (bLA = bLV = (1, 0, 0)),

only becoming apparent upon consideration of their pairing within a multi-class

prior:

bLA∪LV = (1, 0, 0)
MA−−→ bLA∪LV = (2, 0, 0) (7.5.8)

The atretic valve haemodynamically isolates atrium and ventricle, giving rise to

two separately connected components. As per extra-anatomical communication,

this principle can be applied in relation to any defect or surgical modification

introducing discontinuity to great or small circulations.

The topology of more complex defects can be described by the application of

both principles (association and discontinuity) simultaneously to more than one set

of anatomical labels. For example, consider double inlet left ventricle (DILV), in

which both left and right atria connect to the LV. In this case, the atrioventricular

associations are summarised:

bLA∪LV = (1, 0, 0) bLA∪LV = (1, 0, 0) (7.5.9a)

bRA∪LV = (2, 0, 0) bRA∪LV = (1, 0, 0) (7.5.9b)

bLA∪RV = (2, 0, 0)

DILV−−−→
bLA∪RV = (2, 0, 0) (7.5.9c)

bRA∪RV = (1, 0, 0) bRA∪RV = (2, 0, 0) (7.5.9d)
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Equations 7.5.9a and 7.5.9b describe the normally related LA and LV, and the

abnormal association of the RA with LV, resulting in double inlet. Equations

7.5.9c and 7.5.9d describe the normal isolation of LA from RV, and the abnormal

separation of RA from RV.

This approach can be extended to the combination of defects. To the DILV

example presented, consider the addition of an ASD. The association between LA

and RA aside, the combination of DILV with ASD impinges on the topology of

the union of LA, RA and LV classes:

bLA∪RA∪LV = (2, 0, 0)
DILV−−−→
ASD

bLA∪RA∪LV = (1, 1, 0) (7.5.10)

This combination of defects introduces a high-dimensional topological feature (a

1D hole) to the combination of these classes. Note that this hole is not described

by any pair-wise combination of LA, RA and LV.

A multi-class topological prior, considering the combination of all labels, and

their paired and tripled combinations, provides a powerful, flexible and patient-

specific description of CHD. Critically, this approach is also clinically relevant:

the patient’s diagnosis, from which these priors can be constructed, is typically

known from previous echocardiography examination, ahead of the acquisition of

any tomographic images (such as CMR or CT) to be segmented. Whilst the

Betti numbers for such a prior can be defined through analytical consideration of

anatomical association, such an approach is not trivial and particularly challenging

when considering the union of three classes and high-dimensional features. Hence,

we find it more efficient and convenient to build a schematic representation of

the normal heart, to which the defects of a clinically known, qualitative diagnosis

can be automatically added. The Betti numbers of the adjusted schematic (see

Figure 7.17) can be straightforwardly computed by homology or otherwise. Note

that given the topological accuracy of ELCH labels, we could have computed

multi-class topological priors from the ground truth segmentations of the test

set. However we prefer the presented approach, its use of a cardiac schematic

illustrating a potential implementation within a clinical workflow, in which ground

truth segmentations are clearly unavailable.
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(a) Normal heart (b) DILV + ASD + VSD

Figure 7.17: Multi-class topological priors provide a flexible description of CHD
anatomy, that can be tailored to the individual patient. For their efficient spec-
ification, we consider a schematic representation of the normal heart to which
the discrete defects of a clinically known, qualitative diagnosis can be added. In
the task specified in Section 7.5.5: (a) The great (left atrium (LA) and left ven-
tricle (LV)) and small (right atrium (RA) and right ventricle (RV)) circulations
of the normal heart each comprise a single connected component without high-
dimensional topological features. (b) The presence of congenital defects modifies
the multi-class topology of the heart: (1) a ventricular septal defect (VSD) allows
communication of the left and right ventricles, the LV and RV forming a single
connected component; and (2), the combined presence of double inlet left ventricle
(DILV) and atrial septal defect (ASD) introduces a 1D hole (dashed orange loop)
to the union of LA, RA and LV.

Experimental setting

Chapter 6 demonstrated the challenge of contending with the significant structural

heterogeneity of CHD. Therefore, to most effectively expose the topological per-

formance of our loss functions, we purposively sample data from the ELCH cohort.

By selecting transposition of the great arteries (TGA) and VSD diagnostic groups

(for which ventricular disproportion is reduced, see Figure 5.6 and Figure 5.7),

we realise a distribution in which continuous changes in cardiac morphology (the

geometry and relative proportion of anatomical segments) are minimised; but in

which a broad variety in discrete label map topology is maintained.
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Prior to experimentation, we manually adjust the ELCH ground truth labels

to include the papillary muscles and endocardial trabeculation within the relevant

chamber class: one of LA, RA, LV or RV. Were these features maintained within

ground truth data, they would contribute a large number of high-dimensional topo-

logical features so as to obscure the patient-specific description of defects developed

in the previous section. Whilst this change is made to facilitate methodological

development, we note that a topologically accurate presentation of such defects

normally outweighs that of the fine structural details composing the endocardium -

at least within a 3D model for patient-specific planning. Removal of the latter sim-

plifies intra-class topological complexity, discarding all high-dimensional features

and meaning that uniformly: bMY = (1, 2, 0); bLA = bRA = bLV = bRV = (1, 0, 0).

At the same time, the sensitivity of patient-specific, multi-class topology to the

thin tissue interfaces which divide the heart and define defects is maintained.

The importance of class triples to the topological description of patient-specific

CHD presents a challenge to the parallel computation of persistence barcodes.

Were our task formulation to require the segmentation of the sixteen anatomical

classes considered in Chapter 6, each gradient update would demand the calcu-

lation of 696 barcodes. Whilst this experiment benefits from access to a 32-core

central processing unit (CPU)5, interrogating such an extensive set of labels with

this hardware is impractical, even via our parallel implementation. Instead, we

limit our experiment to the five classes shared by MM-WHS and ELCH datasets:

MY, LA, RA, LV, RV. Whilst this formulation requires the computation of 30

barcodes per optimisation step, these can be entirely parallelised as per previ-

ous experiments. This allows for a practical implementation which remains both

theoretically sound and clinically relevant.

In equal proportion, we split the combined TGA and VSD cases (considering

steady state free precession data as the only CNN input) into training and test

sets of 20 and 40, respectively (matching the separation of examples within the

MM-WHS challenge). Otherwise, we prepared training data in line with the ratio-

nale presented in Section 7.5.4. Prior to experimentation, all training data were

resampled to an isotropic spatial resolution of 1.00 mm, cropped tightly around

the foreground classes of interest and normalised to have zero mean and unit vari-

5A CPU with only 24 cores was used in the completion of Section 7.5.4



7.5. Experiments 289

ance. Our baseline U-Net optimisation (including hyperparameter settings) also

mirrored the previous 3D experiment with respect to loss function, data augmen-

tation and batch preparation. For our baseline model we trained a 3D U-Net

(Çiçek et al., 2016), considering an augmented training set and applying CE loss

over 40,000 iterations.

For each test case, a multi-class topological prior was automatically defined by

the homology of a cardiac schematic (see Figure 7.17), adjusted for the patient-

specific diagnoses established in Chapter 5. The only caveat to this approach

concerns those patients exhibiting networks of many small, associated VSDs, in-

cluding “Swiss cheese” septal morphology (Serraf et al., 1992). In such cases

(n = 4), the number of inter-ventricular communications is not known a priori,

being comprised by small septal defects demonstrated at the limit of spatial reso-

lution of any clinical imaging modality, be it echocardiography or CMR. Therefore

for these patients, we disregard the contribution of high-dimensional topological

features to LT, for any label pair or triple describing both LV and RV.

Apart from our choice of topological prior, post-processing (including hyper-

parameter settings) was performed identically to Section 7.5.4. This meant the

representation of image data using the 0-constructed cubical complex, optimising

various flavours of LTP over 100 gradient updates, mediated by the Adam opti-

miser (Kingma and Ba, 2014) and a learning rate of 10−5. Similarity with the

probabilistic segmentation inferred by the pre-trained U-Net was constrained by

LMSE and weighted by λ = 1. Post-processing sought to align CNN prediction with

priors specifying the topology of individual (TP0
i,j=i), paired (TP0

i,j≥i) and tripled

(TP0
i,j≥i,k≥i) labels, evaluating the incremental benefit conferred by each.

Results

At least with respect to spatial overlap (as measured by the GDSC), Table 7.3 sug-

gests that the performance of our U-Net baseline is consistent with the ELCH state

of the art established in Chapter 6. Whilst the median GDSC is slightly elevated

(being 0.883 compared with 0.854, see Table 6.1) it must be remembered that the

current experiment considers only a subset of both the ELCH data and task spec-

ification. Limiting segmentation to the cardiac chambers and myocardium within
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VSD and TGA diagnostic groups (for which structural heterogeneity is reduced)

likely explains the gain in U-Net spatial overlap performance.

Unlike in the preceding 3D experiment, owing to the topological fidelity of

the ELCH ground truth, interrogation of the topological performance of the U-

Net baseline is meaningful: optimised against a topologically accurate ground

truth, we may expect U-Net predictions with fewer Betti errors, culminating in

an elevated rate of topological success. However, row one of Table 7.3 does not

support this expectation, there being a median number of 332 topological errors

per case and no entirely accurate prediction.

As in Section 7.5.4, CCA0 improves topological performance, reducing the me-

dian number of Betti errors to 281. After Bonferroni correction, Wilcoxon signed

rank test finds that this gain is statistically significant (p < 10−5). However, com-

pared with its application to the the MM-WHS data, CCA0 does not as effectively

reduce BE, on average accounting for only 15% of errors within U-Net segmenta-

tion of ELCH cases. In contrast, this reduction was closer to 86% in Section 7.5.4.

We suggest that this difference results from the high-dimensional topological fea-

tures expressed by our patient-specific topological description of CHD. Effectively

a 0D topological prior, CCA is insensitive to the 1D holes presented by extra

anatomical association (such as by multiple defect, see Figure 7.17) and by the

ELCH specification of myocardial anatomy. Being highly relevant to the clinically

meaningful representation of defects, this limits the utility of CCA to refine the

predicted segmentation of CHD anatomy.

As per previous experiment, improved topological performance is achieved by

the application of our topological loss functions. Whether informed by topological

priors describing individual, paired or tripled labels, these make a substantial

and significant reduction in the number of Betti errors compared with both U-

Net and CCA0 prediction (p < 10−7 in all cases). Figure 7.18 illustrates a case

in which segmentation topology is effectively modified, removing spurious atrial

and ventricular septal defects. Whilst considerably reduced, BE remains elevated

compared with the previous 3D experiment (see Table 7.2). Given the topological

complexity introduced by congenital defects, this is perhaps to be expected.

Incrementally, rows three to five of Table 7.3 support the application of top-

logical post-processing with respect to priors informed by the combination of



(a) U-Net (b) CCA0 (c) TP0
i,j≥i,k≥i

Figure 7.18: Provided a high fidelity U-Net segmentation, topological post-
processing (TP) effectively imparts clinical meaning to inferred segmentations. (a)
U-Net prediction includes several topological errors: those involving single classes
only (outlined in red and including a superfluous but persistent right ventricle (RV)
connected component) in addition to spurious atrial septal defect (ASD) and ven-
tricular septal defect (VSD) (outlined in orange). (b) Superfluous connected com-
ponents (0D topological features) are effectively removed by connected component
analysis (CCA0). However, high-dimensional topological errors remain (including
1D holes at the inferior margin of the myocardium and inter-chamber communica-
tions). (c) Topological post-processing successfully corrects high-dimensional and
inter-chamber errors. Importantly, after optimisation by TP0

i,j≥i,k≥i, both atrial
and ventricular septa appear intact, as would be expected by clinical knowledge of
previous imaging examination. However, note that the superfluous RV component
anomalously inferred by U-Net is not suppressed, presenting a probabilistically
credible candidate.



Figure 7.19: Optimisation of our topological loss in the task of 3D whole heart
segmentation for the ELCH-derived test set. In common with our previous exper-
iments, our formulation admits smooth and predictable optimisation dynamics.
However, as per our previous 3D experiment (see Figure 7.12) and in contrast
with the 2D case (see Figure 7.7), both the topological (LT) and (dis)similarity
components (LMSE) remain elevated.

Figure 7.20: Post-processing performance on the ELCH-derived test set. Com-
pared with U-Net prediction, topological post-processing (TP0

i,j≥i,k≥i) improves
topological performance. However, and in contrast to our previous 3D experi-
ment (see Figure 7.13) both surface localisation and spatial overlap performance
worsen. On this challenging CHD segmentation task, these results indicate a trade
off between topological and other metrics of performance. Disregarding high-
dimensional topology, connected component analysis (CCA0) provides a means of
improving surface delineation whilst maintaining spatial overlap performance.
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foreground classes. Considering individual label topology only, TP0
i,j=i accounts

for 90% of U-Net errors. This fraction increases to over 96% once paired labels

(TP0
i,j≥i) are added to the prior, incrementally realising a statistically significant

result (p < 10−6). Extending the prior to include the topologies of all class combi-

nations when collected in groups of three, TP0
i,j≥i,k≥i also reduces BE, the median

falling to just 11 (rectifying almost 97% of U-Net errors). This result supports

the theoretical description of 3D multi-class topology via the combination of all

individual, paired and tripled labels (Bazin et al., 2007). Furthermore, Figure 7.19

demonstrates that such priors remain consistent with our loss formulation, demon-

strating predictable behaviour on the ELCH data. However, given that the com-

putational resources necessitated by TP0
i,j≥i,k≥i deliver only a marginal (and not

statistically significant) gain, TP0
i,j≥i might be considered the most efficient and

pragmatic implementation in this case.

Despite this reduction in the number of Betti errors, and similarly to Sec-

tion 7.5.4, these gains do not translate into predicted segmentations that are topo-

logically and clinically meaningful. TS remains zero for all cases, across all baseline

and post-processing methods. Substantively, this level of performance is consistent

with the findings of Section 7.5.4, where we applied our approach to the normal

cardiac anatomy exhibited by the MM-WHS test set. Moreover, in the current

experiment we again observe a trade off between improvements in segmentation

topology (as delivered by topological post-processing) and other aspects of per-

formance. Each of TP0
i,j=i, TP

0
i,j≥i and TP0

i,j≥i,k≥i are associated with clinically

and statistically significant reductions in spatial overlap performance, the median

GDSC falling by almost 0.2 compared with U-Net prediction (p < 10−6 in all

cases). This compromise is also reflected by worsening surface localisation perfor-

mance (see Figure 7.20). The challenge of balancing these ambitions in the context

of our highly challenging, CHD segmentation task is demonstrated in Figure 7.21.

As per Figure 7.14, we primarily attribute this tension to low fidelity U-Net seg-

mentation, and in particular to the prediction of multiple probabilistically credible

candidates that whilst clinically nonsensical, remain at least partially consistent

with the topological prior.



(a) U-Net (b) CCA0 (c) TP0
i,j≥i,k≥i

Figure 7.21: Low fidelity U-Net prediction can severely limit the performance of
topological post-processing (TP). (a) U-Net prediction includes many spurious
connected components (outlined in red) and interface communications between
classes (outlined in orange). Collectively, the latter far exceed the single VSD ex-
pected by clinical prior knowledge (outlined in green). (b) At least some of these
topological errors are associated with spurious, extra-anatomical connected com-
ponents. These are resolved by connected component analysis (CCA0). Whereas,
several anomalous ASDs remain. (c) Whilst the number of anomalous interfaces is
reduced by topological post-processing, improvement is largely achieved through
the agglomeration of the substantial U-Net errors, rather than their isolation and
suppression. This case also reflects the challenge of resolving the high-dimensional
topological features associated with the myocardium. To do this faithfully, pre-
dicted segmentations must capture the muscular annuli of the cardiac valves. In
this instance, U-Net fails to capture these high resolution features, TP0

i,j≥i,k≥i in-
stead introducing a superfluous hole towards the apex of the left ventricle (LV)
(red arrow). Finally, the yellow arrow indicates the tendency for TP0

i,j≥i,k≥i to
modify segmentation topology remote from relevant errors, and which we previ-
ously attributed to limited CNN capacity.



(a) U-Net (b) CCA0 (c) TP0
i,j≥i,k≥i

Figure 7.22: The insensitivity of U-Net to clinically salient high resolution features
limits the performance of topological post-processing (TP), particularly where
these failings are in conflict with the prior applied. (a) U-Net segmentations fre-
quently fail to capture topologically and clinically relevant features defined at the
limit of the spatial resolution of the ground truth data (outlined in green). Ac-
cordingly, there is a mismatch between the number of VSDs predicted by U-Net
(outlined in orange) and that anticipated clinically: two versus four. (b) Whilst
connected component analysis (CCA0) successfully removes a small, spurious right
ventricle (RV) component from the U-Net prediction (outlined in red), it makes
no impact upon topological errors associated with inter-chamber communications.
(c) In this context, although topological post-processing realises a segmentation
that predicts the correct number of atrial and ventricular septal defects (ASDs
and VSDs, outlined in orange), the absence of fine details from U-Net prediction
precludes their correct spatial localisation by TP0

i,j≥i,k≥i. This means that topo-
logical post-processing actually introduces a large, anomalous, inlet VSD. As per
previous example, this case also illustrates sub-optimal topological modification,
including changes to the left ventricular apex at a location seemingly remote from
topological error (yellow arrow).
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More specifically, however, the performance of our approach is constrained by

the inability of U-Net to capture high resolution features of image data. Unlike in

Section 7.5.4, where our loss functions imposed a topological prior to restore the

gross anatomy of the normal heart, in this experiment we seek to refine topological

features defined at the limit of spatial resolution. Small VSDs between LV and

RV, holes within the thin tissue interface making up the atrial septum, and the

myocardial annuli sourrounding the atrioventricular valves (see Figure 7.21) are

all examples. As shown in Figure 7.22, topological post-processing cannot enhance

or refine the representation of such features if not adequately captured by U-Net.

Given that the topological specification is determined a priori, the absence of

high resolution topological features from CNN prediction can confound our loss

functions. Moreover, due to the combinatorial nature of our multi-class prior (and

as observed in Section 7.5.4), the degradation in performance extends beyond the

immediately compromised classes, also affecting associated label pairs and triples.

7.6 Discussion

7.6.1 Context

Frequently concerned with the delineation of structured anatomical targets, medi-

cal image segmentation often benefits from the incorporation of prior information.

Our work adds to a rich body of research concerned with methods to leverage and

make best use of such priors. Historically, a motivation for their use has been a

desire to constrain predicted segmentations to anatomically credible morphology

and, in the case of multi-class segmentation, configuration. We interpret these

ambitions through the lens of topology, a property that, whilst long acknowledged

as critical to anatomical plausibility, has rarely been considered explicitly. Instead,

topology has more often been captured implicitly, within the examples compris-

ing an atlas or statistical shape or appearance model, for example. In contrast,

our work makes use of PH, an increasingly popular tool from topological data

analysis, to expose the topological features of image data. Accordingly, topology

provides both the motivation for and, unlike a significant body of previous work,

the mathematical basis of our methodology and performance metrics.



7.6. Discussion 298

Most recently, given the CNN-based state of the art, authors have considered

means to inject prior information into parameter optimisation. Popularised by Ok-

tay et al. (2017), anatomically constrained neural networks learn a compact, latent

representation of anatomically plausible segmentations. A supervisory signal can

subsequently be determined by the separation of ground truth and predicted seg-

mentations in feature space. In common with Degel et al. (2018) and Yue et al.

(2019), this approach assumes that the properties which characterise anatomy

(morphology, topology etc.) can be implicitly encoded. In the time since, this has

been shown not to be the case: CNNs optimised against a latent representation

of plausible anatomy can still make predictions with anatomically implausible fea-

tures. In response, Painchaud et al. (2020) engineered a highly successful solution

based on nearest neighbour search within the augmented, learned latent space. At

test time, their approach guaranteed a plausible result, accepting a small degra-

dation in spatial overlap performance.

Compared with this family of methods, our topological loss functions per-

mit optimisation against an explicit topological prior. This is beneficial to inter-

pretability, making no assumption as to the faithful representation of anatomically

relevant features within a learned representation. However, perhaps its greatest

strength is drawn from the abstract quality of the prior information it employs.

Methods based on a learned representation of anatomy are necessarily biased on

the training data on which they depend. In contrast, topological priors are ab-

stracted from the expert’s knowledge of segmentation targets, rather than their

appearance within particular examples. This enhances the generalisability of our

approach, extending its application to the low data setting: in Section 7.5.4, our

loss functions successfully improved CNN-based segmentation topology, training

with just twenty cases. It seems unlikely that an effective latent representation

of highly variable, 3D cardiac anatomy could be established from such a limited

sample. Moreover, by decoupling prior information from its appearance within

training data, our approach is less susceptible to performance losses in the pres-

ence of out of sample test cases, including pathology-induced structural variation.

In fact, the use case presented (topological post-processing by test time adapta-

tion) is well suited to such a scenario, affording a bespoke topological specification

for the case at hand.
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As demonstrated across all experiments, the use of Betti numbers to explicitly

specify multi-class segmentation topology provides a powerful and interpretable

description of anatomy. In the context of our ELCH cohort, this approach extended

elegantly to the characterisation of patient-specific CHD. This illustrated not only

the flexibility of a topological description, but also its consistency with qualitative

diagnoses: our implementation automatically constructing a patient-specific prior

according to a clinically predetermined medical history. The versatility of our

approach extends beyond the specification of priors, but also their incorporation

within bespoke PH-based loss functions and optimisation schemes. In this respect,

interpretability is critical, allowing different components of the loss to be weighted

or even disregarded as relevant to the clinical motivation (consider our approach to

the high-dimensional topology of uncountably multiple, or “Swiss cheese” septal

defects, for example).

Finally, we are keen to stress that topology is just one component of anatomical

plausibility. For all the advantages presented above, our topological loss functions

remain insensitive to unrealistic anatomical morphology and geometry. There-

fore, the present approach should be seen as complementary to those based on an

implicit, learned representation of anatomical segmentations.

7.6.2 Computational performance

Computation of the PH barcode is an intensive procedure and remains an active

area of algorithmic development (Otter et al., 2017). In Section 7.4.5 we discuss

the strengths and weaknesses of two such software libraries. Compared with our

previous work (Byrne et al., 2021), adopting the CubicalRipser algorithm (Kaji

et al., 2020) and integrating its functionality with PyTorch (Paszke et al., 2019)

permitted practicable extension to the 3D setting. The performance of our imple-

mentation further benefits from the parallel computation of persistence, making

trivial use of multiprocessing from the Python Standard Library.

The effect on execution time is stark. Using our previous implementation

based on the TopologyLayer package (Gabrielsson et al., 2020), topological post-

processing of a single, 2D short axis slice required over six minutes (Byrne et al.,
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2021). Here, identical topological refinement of the same test cases had a mean

execution time of only 7.12 s, an approximate fifty-fold acceleration.

In the 3D setting, such performance gains not only improve convenience, but

arguably enable practicable scientific investigation. By our previous software im-

plementation, computing the PH barcode for a single, random volume from the

MM-WHS dataset took over an hour. When it is considered that our loss for-

mulation necessitates the computation of at least fifteen such barcodes for all one

hundred steps of iterative optimisation, such an approach is clearly impractical.

In contrast, in this work, 3D topological post-processing (including all iterations)

required a mean of 15.7 minutes.

Practical post-processing times for 3D volumetric data permit the specification

of topological priors truly related to anatomy, rather than its appearance in 2D

cross-section. This averts the technical challenge of anticipating the slice-wise

topological changes associated with tomographic reconstruction and makes our

formulation generalisable to many multi-class segmentation tasks.

7.6.3 Limitations and future work

We have demonstrated our approach within three CMR segmentation tasks, ex-

hibiting varying degrees of success. Whilst the proposed topological loss functions

reliably and predictably improve segmentation topology, they can also be asso-

ciated with degradation in other metrics of performance when compared against

U-Net prediction. Prior to topological fine tuning, CNN pre-training establishes

an optimal set of parameters with respect to spatial overlap via CE loss. Hence,

by introducing topological prior information, some compromise is perhaps to be

expected. Our experiments demonstrate that the extent to which this trade off

is felt is strongly dependent on the task considered. In 2D short axis segmen-

tation, topological post-processing actually coincided with a minute increase in

spatial overlap performance. Whereas in 3D, topological improvement was associ-

ated with a statistically and clinically significant drop in whole heart segmentation

accuracy. Aside from the limitations of our approach, this result also indicates the

inability of pixel-wise loss functions to promote topological feature learning.
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Figure 7.23: We speculate that the association between U-Net spatial overlap and
topological performance informs the applicability of topological post-processing.
Here we relate the value of the topological loss, prior to any post-processing, with
U-Net GDSC. For ease of inspection, metrics are normalised across their respective
test sets. We use linear regression to demonstrate the strength of association
between variables in each case, relaxing normality requirements for the purpose of
visualisation only.

As described in Section 7.5.4 and Section 7.5.5, we assert that this difference is

strongly associated with pre-trained U-Net performance. A rich body of research

indicates the successes of CNN-based short axis segmentation (Chen et al., 2020).

Compared with the majority of 3D applications, this task benefits from relatively

large amounts of training data, reduced structural variability and often a surplus

of GPU memory resource in relation to adequate model capacity. This culminates

in vastly improved CNN-based segmentation of the 2D short axis image compared

with the 3D whole heart or CHD volumes.

Qualitatively, we suggest that the 2D task is more closely aligned with our

contextual assumption for the application of topological post-processing: that pre-

trained CNN segmentation closely approximates the ground truth, aside from a

small number of topological errors of limited spatial extent. Quantitatively, we
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speculate that the applicability of our approach is related to the degree to which

pre-trained CNN topological error is explained by spatial overlap performance.

Figure 7.23 illustrates this relationship per task considered.

In consideration of these results we stress a key distinction between both 2D

short axis and 3D whole heart segmentation tasks, when compared with the la-

belling of CHD anatomy. That is: in the former tasks, anatomical topology takes a

structural appearance that is consistent across both training and test sets, reflect-

ing the normal heart. Consequently, and allowing for the limitations of pixel-wise

optimisation, we might anticipate a crude association between improved spatial

overlap and topological performance. This expectation is borne out in Figure 7.23.

Comparing the strength of association between these two, Spearman’s Rho sug-

gests that in the 3D task, there is greater association between U-Net spatial overlap

and topological performance (ρ = -0.364 versus -0.228, p < 0.05 in both cases).

This indicates that the topological errors presented by U-Net are more likely to be

associated with significant deficits in spatial overlap. Equivocation between true

and spurious topological features results.

In contrast, in the task of CHD segmentation, we apply patient-specific topo-

logical priors per case. Not only does anatomical topology vary in a clinically

meaningful sense, but so does the structural appearance of these topological fea-

tures. For example, a VSD may be located at the atrioventricular inlet, at the

apex, or at the ventriculoarterial outlet; can take different size; and occur in dif-

ferent number. The inability of pixel-wise optimisation to capture an abstract

representation of this structurally and topologically heterogeneous distribution is

demonstrated by Figure 7.23. This shows that for the CHD segmentation task

there is a negative correlation between U-Net spatial overlap and topological per-

formance. Presumably, this indicates that parameter optimisation according to

CE loss culminates in a set of learned features that are insensitive to clinically

meaningful anatomical topology. As a result, we assert that the application of

our topological post-processing scheme is hampered by a highly disadvantageous

parameter initialisation: one that is entirely ignorant of the topological features

we aim to promote. Hence, and as observed in Section 7.5.5, any improvement in

topological performance is associated with substantial degradation in other aspects

of segmentation performance. It is possible that this obstacle might be alleviated
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by introducing topological supervision within pre-training, perhaps in combination

with those losses based on a latent representation of plausible anatomy. Validation

of these assertions across a range of tasks will be necessary to fully understand the

generalisability of our approach.

From a theoretical perspective, our formulation presents a framework that is

applicable to any multi-class image segmentation task, admitting a variety future

applications. More generally, we speculate that our topological loss functions may

enhance a range of CNN training paradigms. Given our efficient implementation,

our approach could easily be incorporated into conventional CNN optimisation as

part of a multi-component loss. Furthermore, the abstract and explicit topological

priors on which such losses are based could plausibly provide a supervisory signal

for weakly or semi-supervised learning.

Finally, whilst we remain concerned by degradation in GDSC, we stress the

importance of anatomically meaningful segmentation to an array of downstream

tasks, including surgical planning (Valverde et al., 2017a). For these purposes,

we think it important that diverse aspects of performance, including topology, are

represented and considered alongside spatial overlap in future.

7.7 Conclusion

Building on previous works, we have extended PH-based loss functions to multi-

class image segmentation. In the context of state of the art spatial overlap per-

formance, our novel approach made statistically significant and predictable im-

provements in label map topology within 2D and 3D tasks (including within our

bespoke ELCH dataset representative of CHD anatomy).

Our approach is theoretically founded, building a multi-class prior as the col-

lection of both individual and combined label map topologies. Compared with the

naive consideration of singular labels, the superiority of this scheme is borne out

experimentally. Moreover, we considered different approaches to the construction

of cubical complexes and demonstrated their consistency in relation to the pro-

posed loss functions. Crucially, we adopted a highly efficient algorithmic backbone

for the computation of PH, achieving dramatic improvements in execution time

and permitting practicable extension to the 3D setting.
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A careful analysis of both quantitative and qualitative performance allowed

us to faithfully reflect the limitations of our approach and enables consideration

of its wider application. Whilst impressive topologically, degradation in other

aspects of performance currently limit the clinical application of such losses to

the segmentation of CHD anatomy from 3D CMR. Despite these obstacles, our

consideration of CHD anatomy through the lens of topology and PH shows great

promise for future work, in particular the description of patient-specific disease by

multi-class Betti number specification.

Whilst demonstrated in the field of CMR image analysis, our formulation is

generalisable to any multi-class segmentation task: we envisage many applications

across a diverse range of anatomical and pathological targets.



Chapter 8

Conclusions

8.1 Summary

This thesis set out to investigate the application of convolutional neural network

(CNN)-based methodologies to the segmentation of 3D congenital heart disease

(CHD) anatomy from cardiac magnetic resonance (CMR) data. In our considera-

tion of this (and related) tasks, we firstly observed the paucity of relevant training

data. The most closely aligned, pre-existing and publicly available dataset, that

provided by the Whole-Heart and Great Vessel Segmentation from 3D Cardiovas-

cular MRI in Congenital Heart Disease (Pace et al., 2015) (HVSMR) Challenge,

included just twenty examples. Whilst a larger collection of 110 congenital scans

had been presented by Xu et al. (2019a), the ImageCHD dataset caters only to

computed tomography (CT) acquisition. Hence, our first ambition set out to cu-

rate our own training dataset, one that might admit experimentation in support

of our broader investigation.

In so doing, we achieved the Evelina London Children’s Hospital (ELCH)

dataset, a resource of 150 volumetric CMR acquisitions, each: acquired at isotrop-

ically high resolution; accompanied by associated 4D time-resolved magnetic res-

onance angiography (TR-MRA); and labelled according to a multi-class manual

segmentation protocol including eighteen different anatomical structures. Sup-

plementing our account of data curation, Chapter 5 advanced a comprehensive

characterisation of our dataset, the patients contained (including clinically rele-

305
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vant diagnoses and medical histories) and the imaging protocols used. Moreover,

our analysis made stark the significant structural variation exhibited by our pa-

tient population, even outstripping that captured by the comparable ImageCHD

dataset. Taken together, we believe that the ELCH dataset, its characterisation

and its diverse distribution of CHD, represents much more than the first credible

resource for CNN-based segmentation of volumetric CMR. More generally, we hope

that it will prove an invaluable starting point for those seeking to understand, and

improve the care of patients with, CHD in the future.

Critical to its value, our labelling scheme encoded haemodynamic continuity via

pixel adjacency, allowing each segmentation to capture the presence of congenital

heart defects in a clinically meaningful fashion. This is just one way that our unre-

lenting focus on the clinical requirements of our segmentation task (a consideration

that we sometimes perceive to be lacking from, or only superficially addressed in

the technical literature) has shaped the progression of our work. Concentrating

on these clinical requirements has conferred great value to this project.

Our focus was brought to bear in Chapter 6, in which we leveraged the ELCH

dataset to investigate CNN-based segmentation of patient-specific anatomy from

3D CMR images. Firstly, it prompted us to make use of all ≥ 3D data made

available by clinically routine CMR protocols. This meant the inclusion of 4D

TR-MRA and the exploration of different approaches to incorporate temporally

resolved data, concatenated as additional channels of our input. Though these

design choices failed to deliver on their hypothesised advantages (that cardiac seg-

ments in close spatial proximity, and perhaps isolated by an indistinct boundary,

could be separated by their differential dynamic contrast enhancement), they did

make marginal improvements in the segmentation of the extracardiac vasculature.

Perhaps more importantly, our clinical focus motivated the design of novel per-

formance metrics, sensitive to the accurate delineation of defects. Moving beyond

the technical metrics considered in the majority of the literature, we were able to

identify limitations in conventional CNN-based methods, as applied to our task.

Namely, these centre on the anatomically spurious predictions that can result when

CNNs are trained with pixel-wise loss functions, ignorant of extended spatial co-

herence. Problematically, errors of this sort also limit the clinically meaningful

representation of heart defects.
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Considering our previous metrics through the lens of topology, in Chapter 7

we extended existing persistent homology (PH)-based loss functions for binary

segmentation, to the multi-class setting. These expose the differences between a

predicted segmentation and its anticipated topology, as specified by a Betti number

prior. Key to the success of our approach, coupled with our combinatorial multi-

class framework, we presented an efficient formulation based on cubical complexes

and parallel execution. This allowed the application of PH-based topological post-

processing (in the guise of CNN parameter adaptation at test time) in 3D, for

the first time. The fact that such priors can be expressed and optimised in 3D

allows the specification of anatomical topology, rather than its appearance in 2D

cross-section. This extension is key to the generalisability of our approach and

allowed us to apply multi-class topological losses to the ELCH dataset. Demon-

strating that topology can provide a compact description of CHD, we were able

to construct and apply patient-specific topological priors. In all experiments, our

multi-class PH-based losses made statistically significant improvements in topol-

ogy. We anticipate many applications of this approach across a range of different

medical image segmentation tasks.

8.2 Clinical impact

Having maintained a strong clinical focus throughout, including within its design,

execution and consideration, we believe our work has the potential for significant

impact in future. Given our motives, we hope this will be felt through the eventual

consolidation of 3D, patient-specific anatomical modelling as a gold standard tool,

routinely deployed in the management of all patients with CHD. Whilst we make

no claims as to the clinical suitability of CNN-based solutions to this task at

present, we hope that our work has fostered, and can inspire, progress in pursuit

of this ambition. Were this objective to be fulfilled, many clinical applications -

some established, others only presently idealised - might become possible.

Firstly, our motivations concern the extraction of such models for the purposes

of multi-disciplinary communication. Where readily available, patient-specific

models of disease promote a shared understanding of anatomy that is accessi-

ble to all team members. Within the CHD population, this level of 3D structural
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appreciation serves to improve consensus decision-making, and, where appropri-

ate, planning of surgical and cardiac catheter-based intervention. We anticipate

that improved image segmentation methods, possibly building on our own work,

will foster the growth of such techniques. In turn, this might extend the promise

of personalised care to more patients treated in more centres, improving outcomes.

As argued in Chapter 2, greater patient throughput raises the prospect of

effectively powered Health Technology Assessment. This might rigorously establish

the clinical effectiveness of patient-specific anatomical modelling. Moreover, in the

same chapter we reviewed a range of other applications of such models, including

within: device development; patient consenting, communication and education;

medical training; and academic research. Each of these applications stands to

gain from further developments in CNN-based segmentation, particularly when

conducted with the strength of clinical focus advanced by our work.

Secondly, and perhaps more speculatively, if the burden of segmentation is en-

tirely eliminated, realising the automated preparation of patient-specific models,

population-based analyses may become possible. The accepted wisdom suggests

that no two cases of CHD are alike. However, were a representative and com-

putationally tractable distribution of anatomical geometry made available, subtle

trends and associations between currently disparate diagnostic groups may emerge.

Other clinically relevant structural insights may be revealed. The academic inves-

tigation of such topics would further our collective 3D understanding of cardiac

anatomy, including its modes of defective development. In this sense, automated

segmentation may present the opportunity for a new field of study, one investigat-

ing cardiac morphology in vivo.

8.3 Directions for future work

Seeking to expedite the segmentation of patient-specific CHD anatomy from vol-

umetric imaging data, we suggest several directions for future work. These are

closely linked to the limitations of the three main contributions made by our work.

Firstly, and perhaps most importantly, we are sufficiently encouraged by our

assessments of CNN-based segmentation to endorse continued investigation. How-

ever, we think it important to acknowledge the limited representational capacity
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of the ELCH dataset (despite it being the largest of its kind). There are clear

ways that this might be improved, including scan data from another centre or

scanner, for example. Fundamentally, however, the CHD population remains so

structurally diverse as to likely preclude its effective representation within a finite

dataset. Hence, instead of promoting the accumulation of more labels from retro-

spective scan data, we argue for the incorporation of dedicated manual annotation

(meeting the requirements of a protocol similar to that outlined in Chapter 5)

within prospectively administered care. In such a scenario, the various motiva-

tions and ambitions of clinical practice, and its underpinning scientific methods

act cooperatively. More specifically, prospective labelling provides a basis for both:

(1) the patient-specific anatomical models that enhance the delivery of care; and

for (2) the accumulation of training examples to support the development of data-

driven methodologies (possibly including CNN-based segmentation of the same,

prospectively acquired image data).

The limitations of the experimental work contained in Chapter 6 prompt an

obvious technical extension for the treatment of 4D TR-MRA data within CNN-

based segmentation. Given their sequential nature, salient features might be better

extracted using a convolutional recurrent neural network. However, the broader

thrust of this experiment suggests a more general question: why only incorporate

the 3D structural and 4D dynamic acquisitions? A routine CMR protocol includes

an array of different series, including black blood and cine stacks. These are

acquired for their complementary semantics, which could, or perhaps should, also

be leveraged within CNN-based segmentation. Going one step further, future work

might look to incorporate scan data acquired by other modalities. In particular,

neither CMR nor CT visualise the heart’s valves with great acuity. In contrast,

3D echocardiography demonstrates these anatomical features faithfully. Key to

certain congenital diagnoses (for example where the valve apparatus might straddle

the ventricular septum), such data may provide another source of complementary,

discriminative features in the future.

Lastly, the limitations of our multi-class topological loss functions suggest a

number of technically focused avenues for future work. In Chapter 7, our ex-

periments observed that while such losses reliably confer statistically significant

improvements in segmentation topology, they can also be associated with degra-



8.4. Closing statement 310

dation in spatial overlap performance. We theorised that such deterioration might

be associated with the difficulty of the task considered, speculating as to a de-

pendence on the extent to which topological errors in U-Net prediction coincide

with inaccuracies in spatial overlap. Establishing the veracity of this hypothesis

is fertile ground for future work. More generally it seems at least plausible that

the conflict between topological and spatial overlap performance might be resolved

by incorporating PH-based losses within conventional pre-training, or fine tuning.

Optimisation against an abstract topological prior also allows for the investigation

of semi-supervised learning.

8.4 Closing statement

The marriage of medical imaging and 3D modelling technologies has shown great

promise. Through their support of personalised care, the patient-specific mod-

els of anatomy which result have changed the lives of individual patients with

CHD. Problematically , however, the burden of (manual) image segmentation, an

unavoidable step in their construction, precludes the application of these excit-

ing technologies to all but the most complex cases, treated at the most specialist

hospitals.

In this thesis, we have investigated the possibility of automating this segmen-

tation task, depending on CNN-based methods from the field of deep learning.

By curating a unique training dataset of 150 patients and applying a clinically

focused analysis, we have highlighted the limitations of existing approaches. In

response, we have developed and leveraged a multi-class topological description of

patient-specific anatomy, one that we have incorporated into a loss function, and

that is sensitive to the presence of congenital heart defects. Whether through our

unique training dataset, our keen clinical assessments or our highly generalisable

topological loss functions, we anticipate many applications and extensions of our

work. I am incredibly grateful to have had the opportunity to make these con-

tributions, and hope that they drive developments in the personalised care of all

members of the CHD population in the future.
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Pérez-Garćıa, F., Sparks, R. and Ourselin, S. (2021). TorchIO: a
Python library for efficient loading, preprocessing, augmen-
tation and patch-based sampling of medical images in deep
learning. Computer Methods and Programs in Biomedicine
208: 106236.

Peters, J., Ecabert, O., Meyer, C., Kneser, R. and Weese, J.
(2010). Optimizing boundary detection via simulated search
with applications to multi-modal heart segmentation. Medi-
cal image analysis 14(1): 70–84.

Peters, J., Ecabert, O., Meyer, C., Schramm, H., Kneser, R.,
Groth, A. and Weese, J., Automatic whole heart segmenta-
tion in static magnetic resonance image volumes. In Med-
ical Image Computing and Computer-Assisted Intervention–
MICCAI 2007: 10th International Conference, Brisbane, Aus-
tralia, October 29-November 2, 2007, Proceedings, Part II 10.
Springer Berlin Heidelberg, 2007, 402–410.

Petitjean, C. and Dacher, J.-N. (2011). A review of segmenta-
tion methods in short axis cardiac MR images. Medical image
analysis 15(2): 169–184.

Petitjean, C., Zuluaga, M. A., Bai, W., Dacher, J.-N., Grosge-
orge, D., Caudron, J., Ruan, S., Ayed, I. B., Cardoso, M. J.,
Chen, H.-C. et al. (2015). Right ventricle segmentation from
cardiac MRI: a collation study. Medical image analysis 19(1):
187–202.

Peyrat, J.-M., Delingette, H., Sermesant, M., Xu, C. and Ay-
ache, N. (2010). Registration of 4D cardiac CT sequences
under trajectory constraints with multichannel diffeomor-
phic demons. IEEE transactions on medical imaging 29(7):
1351–1368.

Pracon, R., Grygoruk, R., Konka, M., Kepka, C. and Demkow,
M. (2018). Percutaneous Closure of Ventricular Septal De-
fect Resulting From Chest Stab Wound in an 18-Year-Old
Boy: A 3-Dimensional Heart Model–Guided Procedure. Cir-
culation: Cardiovascular Imaging 11(11): e008326.

Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E.
and Nielsen, M., Deep feature learning for knee cartilage
segmentation using a triplanar convolutional neural net-
work. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2013: 16th International Conference,
Nagoya, Japan, September 22-26, 2013, Proceedings, Part II
16. Springer, 2013, 246–253.

Qaiser, T., Sirinukunwattana, K., Nakane, K., Tsang, Y.-W.,
Epstein, D. and Rajpoot, N. (2016). Persistent homology
for fast tumor segmentation in whole slide histology images.
Procedia Computer Science 90: 119–124.

Qian, N. (1999). On the momentum term in gradient descent
learning algorithms. Neural networks 12(1): 145–151.

Qian, Z., Wang, K., Liu, S., Zhou, X., Rajagopal, V., Meduri,
C., Kauten, J. R., Chang, Y.-H., Wu, C., Zhang, C. et al.
(2017). Quantitative prediction of paravalvular leak in tran-
scatheter aortic valve replacement based on tissue-mimicking
3D printing. JACC: Cardiovascular Imaging 10(7): 719–731.

Queirós, S., Barbosa, D., Heyde, B., Morais, P., Vilaça, J. L.,
Friboulet, D., Bernard, O. and D’hooge, J. (2014). Fast au-
tomatic myocardial segmentation in 4D cine CMR datasets.
Medical image analysis 18(7): 1115–1131.

Quimby Jr, D. L., Ford, J., Tanner, G. J., Mencer, N., Decker,
S. and Matar, F. (2022). Three-dimensional cardiac print
assisted percutaneous closure of left ventricular pseudoa-
neurysm in patient with Behçet’s disease. Catheterization
and Cardiovascular Interventions 99(2): 512–517.

Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A. and Wright,
G. (2009). Evaluation framework for algorithms segmenting
short axis cardiac MRI. The MIDAS Journal-Cardiac MR
Left Ventricle Segmentation Challenge 49: 4.

Ran, C., Liu, P., Qian, Y., He, Y. and Wang, Q., U-shaped
densely connected convolutional networks for automatic 3D
cardiovascular MR segmentation. In 2018 IEEE International
Conference on Robotics and Biomimetics (ROBIO). IEEE,
2018, 1010–1015.

Razavi, R. S., Hill, D. L., Muthurangu, V., Miquel, M. E., Tay-
lor, A. M., Kozerke, S. and Baker, E. J. (2003). Three-
dimensional magnetic resonance imaging of congenital car-
diac anomalies. Cardiology in the Young 13(5): 461–465.

Ren, S., He, K., Girshick, R. and Sun, J. (2015). Faster r-cnn:
Towards real-time object detection with region proposal net-
works. Advances in neural information processing systems 28.

Rengier, F., Mehndiratta, A., Von Tengg-Kobligk, H., Zech-
mann, C. M., Unterhinninghofen, R., Kauczor, H.-U. and
Giesel, F. L. (2010). 3D printing based on imaging data:
review of medical applications. International journal of com-
puter assisted radiology and surgery 5: 335–341.

http://doi.org/10.1007/978-3-030-00889-5_38
http://doi.org/10.1007/978-3-030-00889-5_38
http://doi.org/10.1007/978-3-030-00889-5_38
http://doi.org/10.1007/978-3-319-24574-4_10
http://doi.org/10.1007/978-3-319-24574-4_10
http://doi.org/10.31222/osf.io/v7gm2
http://doi.org/10.31222/osf.io/v7gm2
http://doi.org/10.31222/osf.io/v7gm2
http://doi.org/10.1109/tmi.2020.3003240
http://doi.org/10.1109/tmi.2020.3003240
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://doi.org/10.1007/978-3-319-75541-0_20
http://doi.org/10.1007/978-3-319-75541-0_20
http://doi.org/10.1007/978-3-319-75541-0_20
http://doi.org/10.1007/s10334-015-0521-4
http://doi.org/10.1007/s10334-015-0521-4
http://doi.org/10.1007/s10334-015-0521-4
http://doi.org/10.1177/2150135120952072
http://doi.org/10.1177/2150135120952072
http://doi.org/10.1177/2150135120952072
http://doi.org/10.1016/j.cmpb.2021.106236
http://doi.org/10.1016/j.cmpb.2021.106236
http://doi.org/10.1016/j.cmpb.2021.106236
http://doi.org/10.1016/j.cmpb.2021.106236
http://doi.org/10.1016/j.media.2009.10.004
http://doi.org/10.1016/j.media.2009.10.004
http://doi.org/10.1007/978-3-540-75759-7_49
http://doi.org/10.1007/978-3-540-75759-7_49
http://doi.org/10.1016/j.media.2010.12.004
http://doi.org/10.1016/j.media.2010.12.004
http://doi.org/10.1016/j.media.2014.10.004
http://doi.org/10.1016/j.media.2014.10.004
http://doi.org/10.1109/tmi.2009.2038908
http://doi.org/10.1109/tmi.2009.2038908
http://doi.org/10.1109/tmi.2009.2038908
http://doi.org/10.1161/circimaging.118.008326
http://doi.org/10.1161/circimaging.118.008326
http://doi.org/10.1161/circimaging.118.008326
http://doi.org/10.1007/978-3-642-40763-5_31
http://doi.org/10.1007/978-3-642-40763-5_31
http://doi.org/10.1007/978-3-642-40763-5_31
http://doi.org/10.1016/j.procs.2016.07.033
http://doi.org/10.1016/j.procs.2016.07.033
http://doi.org/10.1016/s0893-6080(98)00116-6
http://doi.org/10.1016/s0893-6080(98)00116-6
http://doi.org/10.1016/j.jcmg.2017.04.005
http://doi.org/10.1016/j.jcmg.2017.04.005
http://doi.org/10.1016/j.jcmg.2017.04.005
http://doi.org/10.1016/j.media.2014.06.001
http://doi.org/10.1016/j.media.2014.06.001
http://doi.org/10.1002/ccd.29582
http://doi.org/10.1002/ccd.29582
http://doi.org/10.1002/ccd.29582
http://doi.org/10.54294/g80ruo
http://doi.org/10.54294/g80ruo
http://doi.org/10.1109/robio.2018.8664897
http://doi.org/10.1109/robio.2018.8664897
http://doi.org/10.1109/robio.2018.8664897
http://doi.org/10.1017/s1047951103000957
http://doi.org/10.1017/s1047951103000957
http://doi.org/10.1017/s1047951103000957
http://doi.org/10.1109/tpami.2016.2577031
http://doi.org/10.1109/tpami.2016.2577031
http://doi.org/10.1109/tpami.2016.2577031
http://doi.org/10.1007/s11548-010-0476-x
http://doi.org/10.1007/s11548-010-0476-x


Bibliography 325

Rezaei, M., Yang, H. and Meinel, C. (2020). Recurrent gen-
erative adversarial network for learning imbalanced medical
image semantic segmentation. Multimedia Tools and Applica-
tions 79(21-22): 15329–15348.

Riahi, M., Velasco Forte, M., Byrne, N., Hermuzi, A., Jones, M.,
Baruteau, A.-E., Valverde, I., Qureshi, S. A. and Rosenthal,
E. (2018). Early experience of transcatheter correction of su-
perior sinus venosus atrial septal defect with partial anoma-
lous pulmonary venous drainage. EuroIntervention 14(8):
868–876.

Riesenkampff, E., Rietdorf, U., Wolf, I., Schnackenburg, B., Ew-
ert, P., Huebler, M., Alexi-Meskishvili, V., Anderson, R. H.,
Engel, N., Meinzer, H.-P. et al. (2009). The practical clinical
value of three-dimensional models of complex congenitally
malformed hearts. The Journal of thoracic and cardiovascu-
lar surgery 138(3): 571–580.

Ringenberg, J., Deo, M., Devabhaktuni, V., Berenfeld, O., Boy-
ers, P. and Gold, J. (2014). Fast, accurate, and fully auto-
matic segmentation of the right ventricle in short-axis car-
diac MRI. Computerized Medical Imaging and Graphics 38(3):
190–201.

Rohlfing, T., Brandt, R., Menzel, R. and Maurer Jr, C. R.
(2004). Evaluation of atlas selection strategies for atlas-
based image segmentation with application to confocal mi-
croscopy images of bee brains. NeuroImage 21(4): 1428–
1442.

Ronneberger, O., Fischer, P. and Brox, T., U-net: Convolutional
networks for biomedical image segmentation. In Medical Im-
age Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. Springer Interna-
tional Publishing, 2015, 234–241.

Rosset, A., Spadola, L. and Ratib, O. (2004). OsiriX: an open-
source software for navigating in multidimensional DICOM
images. Journal of digital imaging 17: 205–216.

Roth, H. R., Shen, C., Oda, H., Sugino, T., Oda, M., Hayashi,
Y., Misawa, K. and Mori, K., A multi-scale pyramid of 3D
fully convolutional networks for abdominal multi-organ seg-
mentation. In Medical Image Computing and Computer As-
sisted Intervention–MICCAI 2018: 21st International Confer-
ence, Granada, Spain, September 16-20, 2018, Proceedings,
Part IV 11. Springer International Publishing, 2018, 417–
425.

Ruijsink, B., Puyol-Antón, E., Oksuz, I., Sinclair, M., Bai, W.,
Schnabel, J. A., Razavi, R. and King, A. P. (2020). Fully
automated, quality-controlled cardiac analysis from CMR:
validation and large-scale application to characterize cardiac
function. Cardiovascular Imaging 13(3): 684–695.

Rumelhart, D. E., Durbin, R., Golden, R. and Chauvin, Y.
(1995). Backpropagation: The basic theory. Backpropaga-
tion: Theory, architectures and applications : 1–34.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986).
Learning representations by back-propagating errors. nature
323(6088): 533–536.

Rupprecht, C., Huaroc, E., Baust, M. and Navab, N. (2016).
Deep active contours. arXiv Preprint (arXiv:1607.05074).

Ryan, J., Plasencia, J., Richardson, R., Velez, D., Nigro, J. J.,
Pophal, S. and Frakes, D. (2018). 3D printing for congenital
heart disease: a single site’s initial three-yearexperience. 3D
printing in medicine 4(1): 1–9.

Saeed, D., Ootaki, Y., Noecker, A., Weber, S., Smith, W. A.,
Duncan, B. W. and Fukamachi, K. (2008). The Cleveland
Clinic PediPump: Virtual fitting studies in children using
three-dimensional reconstructions of cardiac computed to-
mography scans. Asaio Journal 54(1): 133–137.

Schaffer, M. (2013). Spectrum of congenital cardiac defects. Pe-
diatric and congenital cardiology, cardiac surgery and intensive
care, London: Springer : 1419–1123.

Schievano, S., Migliavacca, F., Coats, L., Khambadkone, S.,
Carminati, M., Wilson, N., Deanfield, J. E., Bonhoeffer, P.
and Taylor, A. M. (2007). Percutaneous pulmonary valve
implantation based on rapid prototyping of right ventricular
outflow tract and pulmonary trunk from MR data. Radiology
242(2): 490–497.

Schievano, S., Taylor, A. M., Capelli, C., Coats, L., Walker,
F., Lurz, P., Nordmeyer, J., Wright, S., Khambadkone, S.,
Tsang, V. et al. (2010). First-in-man implantation of a novel
percutaneous valve: a new approach to medical device de-
velopment. EuroIntervention: journal of EuroPCR in collab-
oration with the Working Group on Interventional Cardiology
of the European Society of Cardiology 5(6): 745–750.

Schmauss, D., Haeberle, S., Hagl, C. and Sodian, R. (2015).
Three-dimensional printing in cardiac surgery and interven-
tional cardiology: a single-centre experience. European Jour-
nal of Cardio-Thoracic Surgery 47(6): 1044–1052.

Schneider, K., Ghaleb, S., Morales, D. L. and Tretter, J. T.
(2019). Virtual dissection and endocast three-dimensional
reconstructions: maximizing computed tomographic data for
procedural planning of an obstructed pulmonary venous baf-
fle. Cardiology in the Young 29(8): 1104–1106.

Serraf, A., Lacour-Gayet, F., Bruniaux, J., Ouaknine, R., Losay,
J., Petit, J., Binet, J.-P., Planché, C. and Kirklin, J. W.
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