362 research outputs found

    Integrating operations research into green logistics:A review

    Get PDF
    Logistical activities have a significant global environmental impact, necessitating the adoption of green logistics practices to mitigate environmental effects. The COVID-19 pandemic has further emphasized the urgency to address the environmental crisis. Operations research provides a means to balance environmental concerns and costs, thereby enhancing the management of logistical activities. This paper presents a comprehensive review of studies integrating operations research into green logistics. A systematic search was conducted in the Web of Science Core Collection database, covering papers published until June 3, 2023. Six keywords (green logistics OR sustainable logistics OR cleaner logistics OR green transportation OR sustainable transportation OR cleaner transportation) were used to identify relevant papers. The reviewed studies were categorized into five main research directions: Green waste logistics, the impact of costs on green logistics, the green routing problem, green transport network design, and emerging challenges in green logistics. The review concludes by outlining suggestions for further research that combines green logistics and operations research, with particular emphasis on investigating the long-term effects of the pandemic on this field.</p

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A robust solving strategy for the vehicle routing problem with multiple depots and multiple objectives

    Get PDF
    This document presents the development of a robust solving strategy for the Vehicle Routing Problem with Multiple Depots and Multiple Objectives (MO-MDVRP). The problem tackeled in this work is the problem to minimize the total cost and the load imbalance in vehicle routing plan for distribution of goods. This thesis presents a MILP mathematical model and a solution strategy based on a Hybrid Multi- Objective Scatter Search Algorithm. Several experiments using simulated instances were run proving that the proposed method is quite robust, this is shown in execution times (less than 4 minutes for an instance with 8 depots and 300 customers); also, the proposed method showed good results compared to the results found with the MILP model for small instances (up to 20 clients and 2 depots).MaestríaMagister en Ingeniería Industria

    A review of recent advances in the operations research literature on the green routing problem and its variants

    Get PDF
    Since early 2010s, the Green Routing Problem (GRP) has dominated the literature of logistics and transportation. The problem itself consists of finding a set of vehicle routes for a set of customers while minimizing the detrimental effects of transportation activities. These negative externalities have been intensively tackled in the last decade. Operations research studies have particularly focused on minimizing the energy consumption and emissions. As a result, the rich literature on GRPs has already reached its peak, and several early literature reviews have been conducted on various aspects of related vehicle routing and scheduling problem variants. The major contribution of this paper is that it represents a comprehensive review of the current reviews on GRP studies. In addition to that, it is an up-to-date review based on a new chronological taxonomy of the literature. The detailed analysis provides a useful framework for understanding the research gaps for the future studies and the potential impacts for the academic community

    A comprehensive framework for sustainable closed-loop supply chain network design

    Get PDF
    Many companies face challenges in reducing their supply chain costs while increasing sustainability and customer service levels. A comprehensive framework for a sustainable closed-loop supply chain (CLSC) network is a practical solution to these challenges. Hence, for the first time, this study considers an integrated multio-bjective mixed-integer linear programming (MOMILP) model to design sustainable CLSC networks with cross-docking, location-inventory-routing, time window, supplier selection, order allocation, transportation modes with simultaneous pickup, and delivery under uncertainty. An intelligent simulation algorithm is proposed to produce CLSC network data with probabilistic distribution functions and feasible solution space. In addition, a fuzzy goal programming approach is proposed to solve the MOMILP model under uncertainty. Eight small and medium-size test problems are used to evaluate the performance of the proposed model with the simulated data in GAMS software. The results obtained from test problems and sensitivity analysis show the efficacy of the proposed model
    corecore