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1. CHAPTER I. PROJECT DESCRIPTION 

Globalization is a clear trend in global economy nowadays, and it is observed in the free 

trade agreements between American, Latin-American, European and Asian economies. 

This particular trend affects directly logistics operations which are the pillar for this global 

economy. 

Transportation operations are of a particular interest for logistic networks design because 

they are the most energy consuming operations, and hence the most representative in cost; 

moreover, transportation operations are the most important logistic operations to guarantee 

sustainable development because its efficiency may have a direct impact on fuel 

consumption and hence on environmental impact. 

This Project aims to develop optimization-based solving strategies, for decision support in 

logistic distribution networks planning, on a multi-criteria environment, as a response to the 

competiveness problem which many economies are involved in, that are indeed influenced 

by logistics operations and strategies. The general objective of this project is to solve this 

distribution problem by the design of robust solving strategies supported on a strict 

literature review, which permits identify knowledge gaps, and then serve as a basis for 

optimization-based decision support systems development.  

This document is organized in four chapters; in Chapter I the project description is 

presented, including problem statement, research framework, objectives and methodology. 

Chapter II, presents a complete literature review and analysis; then, knowledge gaps 

identification and the desired level of robustness is explained and defined. Chapter III 

presents the specific problem mathematical definition and the models that support the 

solving strategy. Chapter IV presents experimental results and the solving strategy 

performance evaluation. Finally conclusions and lines for future work are defined. 

1.1. PROBLEM STATEMENT 

On a global basis, freight transportation, and especially physical distribution of goods, is a 

very critical operation in decision making to reduce logistics cost impact, and frequently 

this area is very sensitive to incur on management inefficiencies that lead to increase costs 

due to inadequate resource utilization. In Colombia particularly, productivity of freight 

transportation and hence its competitiveness are low compared to other countries, including 

Latin-American countries with similar economies and economy growth; this is supported 

by World Bank reports
1
 where Colombia’s results, measured by the Logistics Performance 

Index – LPI, have not been satisfactory, standing at rank 82 of 150 countries, and below of 

Latin-American and Caribbean’s average. 

Logistics and hence transportation industry (which represents 40% to 50% of logistics 

costs) importance is sustained on European Economic Community EEC reports, that show, 

up to the year 2005, that logistics industry represented 13,8% of the Gross Domestic 

                                                           
1
 World Bank, Connecting to Compete, 2007. 



Product GDB on a global scale, and its operation costs represents 10% to 15% of the total 

cost of a final good
2
. 

Research and development has proved the potential of the logistics industry to support and 

endorse economic growth; on the other hand, the global economy trend towards 

globalization has driven even more research and development efforts on the different areas 

of logistics and hence, transportation and distribution operations. Moreover, globalization 

trend have turned global markets even more dynamic and demanding, with more 

effectiveness and shorter response times; these demands have encouraged the design and 

development of transportation strategies such as cross-docking and merge-in-transit 

operations, that seek economies of scale in freight cost and better response times, but that 

require a strict synchrony and efficiency in logistic operations, especially in distribution 

operations. In addition, freight transportation operations demand great energy consumption, 

specifically fossil fuels consumption, which is of global concern and an imperative issue in 

sustainable development.  

The main causes for low productivity and hence, low competitiveness in transportation 

industry are: excessive operational costs and resource sub-utilization; in turn, cost overruns 

may be caused by several reasons, among which may be considered, high fuel prices, 

multimodal transport inefficiency (or inexistence) and the lack of adequate logistic 

infrastructure such as: efficient ports, efficient roads with an appropriate free flow velocity, 

navigable waterways, intermodal transfer facilities; however, these issues require direct 

government intervention.  

Transportation industry productivity (particularly in distribution), is extremely sensitive to 

resource allocation and scheduling, having a direct impact on operational costs and 

resource utilization; inefficient resource allocation and scheduling causes operational cost 

overruns and resource sub-utilization, causing a direct negative impact on this industry 

productivity. Resource allocation and scheduling inefficiencies are in turn, caused by an 

inadequate shipment consolidation and inefficient route sequencing.  

A key element to enforce an effective integration and execution of supply processes, 

production and distribution of goods are Information Technologies that support the 

consolidation, guarding, manipulation and distribution of information to support strategic, 

tactic and operative decisions
3
. In the industrial development field, IT have become a 

source of competitive advantage and therefore, supply chain has not been immune to its 

positive impact, which has permitted the development of dynamic logistic operations on a 

global scale, where high quality and timely information is the best tool. 

According this problematic approach, the following research question arises: How, by 

robust solving strategies design and implementation for the vehicle routing problem in 

transportation industry, the total operational cost and resource utilization can be improved? 

1.2. RESEARCH FRAMEWORK 

                                                           
2 La logística del transporte de mercancías en Europa – La clave para la movilidad sostenible. Comunicación 

de la Comisión de las Comunidades Europeas al Consejo, al Parlamento Europeo, al Comité Económico y 

Social Europeo y al Comité de las Regiones, 2006. 
3
 BALLOU, RONALD. Business Logistics management. Prentice Hall, USA , 2004. 



As pointed out in the problem statement, improvement in transportation operations, 

achieved by operational costs reduction and balanced resource utilization, lead to a 

productivity improvement that has a positive impact in logistics operations competitiveness 

supported by specific competitive advantages based on the information value; this is 

reached by advanced decision making. 

Advanced decision making is supported on a variety of processes based on technical and 

scientific processes, such as Business Intelligence and Decision Science; this is because 

advanced decision making involves knowing information opportunely, this implicates data 

mining processes, data warehousing, and the development of robust Information Systems; 

on the other hand, this Information Systems must support an intelligent decision process 

which are based on advanced System Modeling, this type of systems are known as Decision 

Support Systems (DSS). 

One of the tools for advance decision making supported by decision support systems are 

Operational Research techniques. Operational Research is a sub-field of applied 

mathematics, and it is an important approach for distribution operations optimization that in 

Operations Research is known as Vehicle Routing Problems (VRP). This framework 

presents a theoretical framework in which Operational Research approaches and methods 

for distribution operations optimization are presented. 

1.2.1. Integer Linear Programming 

In Operational Research, optimization is one of many fields, which broadly consists of 

maximizing or minimizing a mathematical function, often called objective function, that is 

subject to a set of constraints expressed as mathematical equalities or inequalities; that is, 

choosing the best feasible scenario to compute the best value of a given objective. Among 

linear optimization problems, two types of problems can be defined: continuous programs 

or linear programs (continuous variables) and integer programs (integer variables). Integer 

programs have been matter of a lot of research due to its complexity, and in many cases, 

due to its combinatorial nature which adds even more complexity. Integer Programs can be 

classified into: 

 Binary Programs (BP): Problems that are defined only by binary variables 0 – 1. 

 Integer Programs (IP): Problems that are defined only by integer variables. 

 Mixed Integer Programs (MIP): Problems that are defined by integer and 

continuous variables. 

Mixed Integer Linear Programing has been applied to many engineering topics or fields, 

such as: 

 Production Planning and Scheduling 

 Supply Chain and Distribution Networks design and optimization 

 Telecommunication Networks design and optimization 

 Transportation Engineering 

 Marketing Engineering 

 

1.2.2. Vehicle Routing Problems 



Vehicle routing problems are discrete problems by nature; this is because the decisions 

made take integer and or binary values, e.g.: number of vehicles used (1,2,3,…,n); vehicle 

sequencing, that is the decision of allocate one destination before or after another 

destination (binary variables). By the above, Vehicle Routing Problems mathematical 

modeling is developed by Mixed Integer Linear Programing (MILP).  

Vehicle Routing Problems (VRP) modeling takes first place in 1956, when Flood develop a 

mathematical formulation for the Traveling Salesman Problem (Flood, 1956), this problem 

consists of a selling agent who has to visit n customers in any order at minimum total 

traveling cost. This problem’s formulation is relatively simple, although, it took much 

attention because its complexity to optimally solve: there are (n-1)! possible combinations 

to solve this problem. To conclude, by complete enumeration, it can only be expected to 

solve very small problems; for only 100 customers, there are 9.33 x 10
157

 possible 

combinations. 

Due to research on the Traveling Salesman Problem (TSP), many variants of the problem 

are formulated; this is where the Vehicle Routing Problem (VRP) formulations are 

published. There are many variants of the VRP, which can be summarized in: 

 Vehicle Routing Problem with Time Windows (VRPTW) 

This problem adds time windows constraints to the original VRP, consisting of m vehicles 

of capacity Q, dispatching to n customers with di demand which has to be satisfied in a (li, 

ui) lapse. 

 Vehicle Routing Problem with Multiple Depots (MDVRP) 

This problem consists of m vehicles dispatching to n customers with di demand that can be 

attended from a set of D depots. 

 Vehicle Routing Problem with Pick-up and Delivery (VRPPD) 

In this problem customers can receive or send goods that can be simultaneously attended. 

A complete description of these problems is found in (Toth & Vigo, 2002). 

1.2.3. Solution Methods 

There are two possible approaches to solve complex problems: exact methods and 

approximate methods. As explained before, Mixed Integer Programs, like VRP’s and its 

different variants, due to its combinatorial nature, require a dramatically great 

computational effort to be solved; according to this, if method’s choice and implementation 

is naïve or inconvenient, a lot of computational time can be taken to solve a relatively small 

instance of the problem; that is why often, global optimum can be sacrificed to find a good 

solution in a dramatically shorter time. 

 Exact Methods 

There are several exact methods to solve MILP problems and of course VRP’s which are a 

subset of MILP problems. Among these methods are: Branch and Bound methods; Branch 

and Cut methods, which are a variation of Branch and Bound, where several cutting plane 

procedures are applied to the generated tree of the Branch and Bound algorithm; and 

Column Generation algorithms. 



Many works using exact methods have been published; Laporte et al. (1986), use relaxation 

methods to solve a symmetric and an asymmetric VRP, reducing significantly the 

computational complexity (O|V|
3
and O|V|

2
|E|), respectively, where V is the set of vehicles 

and E is the set of customers; although, the warrantied bound are relatively poor (9% and 

30%, respectively). Moreover, the approach published by Fischetti et al. (1994), proposed, 

based on branch and bound algorithms (such as Laporte), two additive procedures to 

compute lower bounds. The two procedures are considered additive because calculations 

for i
th

 iteration use the bounds for the (i-1)
th

 iteration, and they prove that the sum of the 

two bounds found are lower bounds for the VRP. The results outperform results obtained 

by Laporte et al. (1986), but at a high computational cost (O(n
4
) in both cases). 

Agarwal et al. (1989), Desrochers et al. (1992) and Bixby et al. (1997) developed several 

techniques to find new routes for the VRP, this procedures are used to adapt Dantzig & 

Wolfe (1960) decomposition method to enumerate several feasible routes and the solve the 

respective set covering problem; although, a global optimal solution cannot be ensured 

because the set covering optimal solution is not necessary the optimal solution for the 

original VRP. 

Finally, Desrochers et al. (1992) solved the VRP using a Branch and Price algorithm, in 

which each at node from the search tree, new columns are generated and added to the 

problem. This method ensures a global optimum. 

 Approximate Methods 

Among the approximation methods to solve the VRP are the Heuristic methods and the 

Meta-heuristic methods; the difference between both lies in the computation of new 

solutions, which is deterministic for the Heuristic methods and probabilistic for the Meta-

heuristics. There are several Heuristic algorithms that can be classified in: algorithms based 

on savings procedures, and insertion algorithms. The following works can be highlighted: 

Clarke & Wright (1964); Desrochers & Verhoog (1989); Wark & Holt (1994); Mole & 

Jameson (1976); Christofides, Mingozzi & Toth (1979); Solomon (1987). Among the Meta-

heuristic approaches are Tabu Search algorithms, Simulated Annealing, Genetic 

Algorithms, Scatter Search procedures, Ant System algorithms, etc. 

1.3. OBJECTIVES 

1.3.1. General Objective 

Design a robust solving strategy for the multiple objectives and multiple depot vehicle 

routing problem minimizing operational costs and load imbalance. 

1.3.2. Specific Objectives 

 

 Identify robustness gaps for solving strategies for the multiple objectives and multiple 

depots vehicle routing problem. 

 Define the desired level of robustness for the proposed solving method. 

 Design a multi-objective solution strategy for the vehicle routing problem with multiple 

depots. 



 Validate the solution method and the computational tool performance, comparing 

efficiency (execution times) and effectiveness (solutions quality) solving known 

instances using exact methods. 

 Calibrate execution parameters using formal experimentation techniques. 

 Define implementation outlines for a Decision Support System development for local 

distribution operations. 

 

1.4. METHODOLOGY 

The objective of this research is to design and develop a robust solution strategy for the 

vehicle routing problem with multiple depots and multiple objectives as a response to the 

problematic of distribution operations which may have a strong impact on the retail price of 

goods. This problem is tackled using operational research techniques and applied discrete 

mathematics such as integer linear programming (MILP) and artificial intelligence methods 

(meta-heuristics) for the design of robust algorithms for combinatorial optimization 

problems, in this case, a vehicle routing problem. 

Several experiments were run to evaluate the solving strategy performance; experiments 

were designed based on statistical theory and the instances used for the experiments were 

simulated. Other benchmark instances (Solomon’s) were adapted for this particular 

problem, this benchmark instances were used to compare the results obtained with the 

proposed algorithm with exact results obtained with an MILP model. 

The project was developed in three main phases: 

 Phase 1: Definition of level of robustness for the solving strategy for the MDVRP: A 

complete literature review was made in this phase, to find gaps in the development of 

robust solving strategies for the MDVRP until 2012; then, based on this review the 

desired level of robustness was determined. 

 Phase 2: Solving strategy design for the MDVRP and informatics tool development 

and validation: In this phase, the models and algorithms for the design and development 

of the informatics tool based on the solving strategy were design and adapted; then a 

performance validation was made based on the comparison with other method 

performance. The performance evaluation was made based on execution time and 

solution quality. 

 Phase 3: Adjustments for the solving strategy and support tool and parameter 

calibration: In this phase necessary adjustments were made to guarantee the solving 

strategy robustness; formal experiments were made to calibrate all the execution 

parameters for the support tool.  

  



2. CHAPTER II. LITERATURE REVIEW 

In this chapter a complete literature review is provided; the literature review was made 

specifically for Vehicle Routing Problem with Multiple Depots (MDVRP). This review is 

presented as follows: first, the definition of the literature review and its scope is presented; 

then development works for the MDVRP with single objective are listed and detailed; 

subsequently, the development works for the MDVRP with multiple objectives are 

presented; finally an analysis of the literature and the desired level of robustness for solving 

strategies for the MDVRP is presented. 

2.1. LITERATURE REVIEW DEFINITION AND SCOPE 

The literature review is based on the work made by Montoya-Torres et al. (2012), which is 

a co-authored work, in this paper a complete literature review for the Multiple Depots 

Vehicle Routing Problem (MDVRP) is presented and discussed, and then a taxonomic 

classification was made to put “in the eye of the beholder” the current development in this 

field and to easily identify knowledge gaps. The motivation of a literature review 

exclusively for the MDVRP rather than VRP lies on that the MDVRP is more challenging 

and sophisticated than the single-depot VRP. The variant with multiple depots appears first 

in the literature on the works of Kulkarni and Bhave (1985), Laporte et al. (1988) and 

Carpaneto et al. (1989). Since then, considerable amount of research has been published 

(see Table 1) in the form of journal paper, conference paper, research/technical report, 

thesis or book.  

To the best of our knowledge, despite the great amount of research papers published, there 

is no rigorous literature survey exclusively devoted to the vehicle routing problem with 

multiple depots. A short overview of academic works was proposed by Liu et al. (2011), 

but only presenting the most representative research papers. From the 58 cited references in 

their paper, only 23 of them explicitly refer to the MDVRP. Besides, these authors focus on 

the problem definition, solution methods (dividing them into exact algorithms, heuristics 

and meta-heuristics) and mention some problem variants. In fact, no actual systematic 

review was presented in that paper. Most of the published works focus on the single 

objective problem, while a few consider the multi-objective case. In this literature review, 

an analysis of both single and multiple objective problems is provided. 

Table 1. Number and types of publications on MDVRP 

Type of publication Total 

Journal 96 

Conference 26 

Thesis 7 

Technical report 4 

Book / book chapter 9 

Total 142 

Taken from Montoya-Torres et al. (2012) 



An ambitious search was conducted using the library databases covering most of the major 

journals, such as European Journal of Operational Research, Operations Research, 

Networks, Management Science, Computers & Operations Research, Journal of the 

Operational Research Society, Annals of Operations Research, Journal of Heuristics, IIE 

Transactions, International Journal of Production Economics, Computers & Industrial 

Engineering, Mathematical and Computer Modelling, Annals of Discrete Mathematics, 

Expert Systems with Applications, Transportation Science, Transportation Research Part 

C, Omega, IEEE Transactions on Automation Science and Engineering, RAIRO – 

Operations Research, Applied Artificial Intelligence, Applied Artificial Intelligence, 

Lecture Notes in Computer Science, 4OR: A Quarterly Journal of Operations Research, 

etc. Some conference papers are also included in this review. In addition, the websites of 

leading research groups and the principal authors of major publications were also searched 

for further information about their research projects (PhD projects and sponsored projects) 

and publications. Working papers, theses and research reports were intentionally excluded, 

that were not available online on the Internet because they are very difficult to obtain. 

The initial collection of references was screened first for their relevance and their 

significance for the purpose of this review. Only some representative publications were 

selected to be explained in detail within the text of this manuscript, which are authored by 

leading researchers or groups. These selected authors and research groups have, in fact, 

published a long list of research papers and reports in the field. A collection of over 115 

representative publications are short-listed in this review (see Table 18 and Table 19 in 

Appendix). The short-listed publications are then examined in more detail. The analysis of 

methodological issues and problem variants are presented in detail in numeral (2.4). 

2.2. THE SINGLE OBJECTIVE MDVRP 

For the total of papers considered in this review, 89.3% considers only one optimization 

objective. The list of reviewed papers is presented in Table 18 in the Appendix. This 

section is divided into three main parts, each one corresponding to the type of solution 

procedure employed: exact method, heuristic or meta-heuristic. After the first works were 

published in the decade of 1980, more than a hundred of papers have studied the classical 

version of the MDVRP and its variants, some of them inspired from real-life applications. 

2.2.1. Exact Methods 

In the decade of the 1970’s, some works already mentioned some problems related to 

distribution of goods with multiple depots. However, to the best of our knowledge, the first 

paper presenting formal models or procedures to find optimal solution for the multi-depot 

vehicle routing problem are those of Laporte et al. (1984) who formulated the symmetric 

MDVRP as integer linear programs with three constraints. These authors then proposed a 

branch-and-bound algorithm using a LP relaxation. The works of Kulkarni and Bhave 

(1985), Laporte et al. (1988) and Carpaneto et al. (1989) can also be considered as part of 

the pioneer works on exact methods for the MDVRP. The mathematical formulation 

proposed by Kulkarni and Bhave (1985) was later revised by Laporte (1989). More 

recently, Baldacci and Mingozzi (2009) proposed mathematical formulations for solving 

several classes of vehicle routing problems including the MDVRP, while Nieto Isaza et al. 

(2012) presented an integer linear program for solving the heterogeneous fleet MDVRP 



with time windows. Dondo et al. (2003) proposed a mixed-integer linear programming 

(MILP) model to minimize routing cost in the HFMDVRP, in which heterogeneous fleet of 

vehicles are available. The variant with pickup and deliveries and heterogeneous fleet was 

modeled by Dondo et al. (2008) using MILP model: this model is able to solve only small 

sized instances, and hence a local search improvement algorithm was then proposed by the 

authors for medium to large sized instances. This approach was later employed by Dondo 

and Cerdá (2009) to solve the HFMDVRPTW. The work of Kek et al. (2008) proposes a 

mixed-integer linear programming model and a branch-and-bound procedure for the 

MDVRP with fixed fleet and pickup and delivery. The objective function is the 

minimization of the total cost of routes. Cornillier et al. (2012) presented a MILP model for 

the problem in which heterogeneous fleet of vehicles is available and with maximization of 

total net revenue as objective function, while maximum and minimum demands constraints 

are given. 

2.2.2. Heuristics 

Because the NP-hardness of the MDVRP, several heuristic algorithms have been proposed 

in the literature. This section summarizes some of the most relevant works concerning 

different variants of the problem. The first works were published in the 1990’s, in order to 

solve the capacitated version. Min et al. (1992) studied the version of the MDVRP with 

backhauling and proposed a heuristic procedure based on problem decomposition. 

Hadjiconstantinou and Baldacci (1998) considered a real-life problem taken from a utility 

company that provides preventive maintenance services to a set of customers using a fleet 

of depot-based mobile gangs. Their problem consists on determining the boundaries of the 

geographic areas served by each depot, the list of customers visited each day and the routes 

followed by the gangs. The objective is to provide improved customer service at minimum 

operating cost subject to constraints on frequency of visits, service time requirements, 

customer preferences for visiting on particular days and other routing constraints. This 

situation was solved using the periodic variant: MDPVRP for which a five-level heuristic 

was proposed: first and second levels solve the problem of determining the service areas 

and service days (the periodic VRP); third level solves the VRP for each day; fourth level 

solves a TSP for each route, and fifth level seeks the optimization of routes. 

Salhi and Sari (1997) proposed the so-called “multi-level composite heuristic”. This 

heuristic found as good solutions as those known at that time in the literature but using only 

5 to 10% of their computing time. The heuristic was also tested on the problem with 

heterogeneous fleet. Salhi and Nagy (1999) proposed an insertion-based heuristic in order 

to minimize routing cost. Later, these authors (Nagy and Salhi 2005) also studied the 

problem with pickup and deliveries (MDVRPPD). Their approach avoids the concept of 

insertion and proposes a method that treats pickups and deliveries in an integrated manner. 

The procedure first finds a solution to the VRP, then it modifies this solution to make it 

feasible for the VRPPD and it finally ensures that it is also feasible for the multi-depot case. 

Jin et al. (2004) modeled the MDVRP as a binary programming problem and presented two 

solving methodologies: two-stage and one-stage approaches. The two-stage approach 

decomposes the MDVRP into two independent subproblems: assignment and routing, and 

solves it separately. In contrast, the proposed one-stage algorithm integrates the assignment 



with the routing. Their experimental results showed that the one-stage algorithm 

outperforms the published two-stage methods. 

The HFMDVRP, in which heterogeneous fleet of vehicles is available have captured the 

attention of researchers since the work presented by Salhi and Sari (1997). Irmich (2000) 

proposed a set covering heuristic coupled with column generation and branch-and-price 

algorithm for cost minimization for the heterogeneous fleet and pickup and delivery 

MDVRP. Dondo and Cerdá (2007) proposed a MILP model as well as a three-stage 

heuristic. Before, a preprocessing stage for node clustering is performed and a more 

compact cluster-based MILP problem formulation is developed. Many other papers have 

been appeared in literature on or before 2007 and solution approaches have primarily been 

focused on meta-heuristic algorithms. Hence, this will be discussed more in detail in the 

next Section. 

Concerning the periodic MDVRP, few works appear in literature with heuristic algorithm 

as solution approach. We have identified only the works of Hadjiconstantinou and Baldacci 

(1998), Vianna et al. (1999), Yang and Chu (2000), Maischberger and Cordeau (2011), and 

Maya et al. (2012). The problem with time windows was studied by Chiu et al. (2006) who 

presented a two-phase heuristic method. In contrast with other works in literature, these 

authors considered the waiting time as objective function. Results indicate that the waiting 

time has a significant impact on the total distribution time and the number of vehicles used 

when solving test problems with narrow time windows. The authors also considered a real-

life case study of a logistics company in Taiwan. 

Tsirimpas et al. (2007) considered the case of a single vehicle with limited capacity, 

multiple-products and multiple depot returns. Another characteristic of their problem is that 

the sequence of visits to customer is predefined. They developed a suitable dynamic 

programming algorithm for the determination of the optimal routing policy. For the 

MDSDVRP which consists on the combination of the MDVRP and the Split Delivery VRP 

(SDVRP). The work of Gulczynski et al. (2011) developed an integer programming-based 

heuristic. The objective of this study was to determine the reduction in traveled distance 

that can be achieved by allowing split deliveries among vehicles based at the same depot 

and vehicles based at different depots. The multi-depot capacitated vehicle routing problem 

with split delivery (MDCVRPSD) is studied by Liu et al. (2010). They proposed a 

mathematical programming model and its corresponding graph theory model, with the 

objective of minimizing empty vehicle movements. Also, a two-phase greedy algorithm 

was presented in order to solve practical large-scale problem instances. In the first phase, a 

set of directed cycles is created to fulfill the transportation orders. In the second phase, 

chains that are composed of cycles are generated. A set of local search strategies is also put 

forward to improve the initial results. 

2.2.3. Meta-heuristics 

As for other NP-hard combinatorial optimization problems, meta-heuristic procedures have 

been employed by several researchers for efficiently solving the single-objective MDVRP. 

The first meta-heuristic was proposed in the work of Renaud et al. (1996a) who studies the 

MDVRP with the constraints of vehicle capacities and maximum duration of routes (e.g. 

the time of a route cannot exceed the maximum working time of the vehicle). The objective 

to be optimized is the total operational cost. These authors proposed a Tabu Search 



algorithm for which the initial solution is built using the Improved Petal heuristic of 

Renaud et al. (1996b). Experiments were carried out using classical instances of 

Christofides and Eilon (1969) and Gillett and Johnson (1976). Later, Cordeau et al. (1997) 

proposed a Tabu Search algorithm with the initial solution being generated randomly for 

the MDVRP that can also be used to solve the periodic VRP (PVRP), while Tüzün and 

Burke (1999) proposed a Tabu Search procedure for minimizing the total cost of the 

routing. Cordeau et al. (2001) also proposed a TS procedure with the objective of 

minimizing the number of vehicles. An approximation to real industrial practice was 

studied by Parthanadee and Logendran (2006). In their problem, depots operate 

independently and solely within their own territories. The distributors may hence satisfy 

customers’ requests by delivering products from other depots that hold more supplies. They 

proposed a mixed-integer linear programming model for the multi-product, multi-depot 

periodic distribution problem and presented three Tabu Search heuristics with different 

long-term memory applications. Results revealed that interdependent operations provide 

significant savings in costs over independent operations among depots, especially for large-

size problems. 

The first genetic algorithms were proposed by Filipec et al. (1997) for the problem of 

minimizing total travel distance, by Salhi et al. (1998) and by Skok et al. (2000, 2001). An 

evolutionary algorithm coupled with local search heuristic was proposed by Vianna et al. 

(1999) in order to minimize the total cost. Thangiah and Salhi (2001) proposed the use of 

genetic algorithms to define clusters of clients and then routes are found by solving a 

traveling salesman problem (TSP) using and insertion heuristic. This approach is called 

Genetic Clustering (GenClust). Solutions are finally optimized using the post-optimization 

procedure of Salhi and Sari (1997). Recently, Yücenur and Demirel (2011a) proposed 

geometric shape based genetic clustering algorithm for the classical MDVRP. The 

procedure is compared with the nearest neighbor algorithm. Their experiments showed that 

their algorithm provides a better clustering performance in terms of the distance of each 

customer to each depot in clusters, in a considerably less computational time. 

In the survey by Gendreau et al. (2008) focused on the application of meta-heuristics for 

solving various variants of the VRP, a short revision of the multi-depot problem is 

presented. The equivalence between the MDVRP and the PVRP is also analyzed. Among 

the meta-heuristics presented therein, we can highlight the use of Genetic Algorithms 

(Filipec et al. 2000), Simulated Annealing (Lim and Zhu 2006) of the case of fixed vehicle 

fleet, and Tabu Search (Angeleli and Speranza 2002). Other works proposing meta-

heuristics can be found in (Chao et al. 1993 and Chen et al. 2000). 

The most studied variant of the problem has been the capacitated MDVRP. Among the 

meta-heuristics proposed in literature, we can highlight the Simulated Annealing algorithms 

of Wu et al. (2002) and Lim and Zhu (2006), the Variable Neighborhood Search procedure 

proposed by Polacek et al. (2005, 2008), Tabu Search algorithms from Lim and Wang 

(2005), Aras et al. (2011) and Maischberger and Cordeau (2011). Genetic Algorithms has 

been proposed as well for this problem variant, as illustrated in the works of Bae et al. 

(2006), Vidal et al. (2010). All of these works seek for the minimization of total route 

distance or cost, except the work of Aras et al. (2011) in which the objective is the 

maximization of vehicle utilization rate. It is to note here that the work of Aras et al. (2011) 

is inspired from a particular case of reverse logistics problem in which the aim is to collect 



cores from an enterprise’s dealers. The problem is called the selective MDVRP with price. 

In addition to the Tabu Search procedure, the authors also formulated two mixed-integer 

linear programming (MILP) models. 

Other meta-heuristics, such as GRASP, are presented in the works of Villegas et al. (2010) 

and Maya et al. (2012), respectively minimizing route cost and distance. Özyurt and Aksen 

(2007) solved the problem of depot location and vehicle routing using a hybrid approach 

based on Lagrangian relaxation (LR) and Tabu Search (TS). These procedures improve the 

best solutions found for the set of instances proposed by Tüzün and Burke (1999). A case 

study taken from waste collection system involving 202 localities in the city of Viseu, 

Portugal, is presented by Matos and Oliveira (2004). An Ant Colony Optimization (ACO) 

algorithm is proposed and compared with other procedures from the literature. 

The great amount of heuristics algorithms proposed for the problem variant with 

heterogeneous fleet (HFMDVRP) has been focused on the design of meta-heuristics 

algorithms. We can highlight the works of Jeon et al. (2007), who proposed a hybrid 

genetic algorithm that minimizes the total distance traveled, and that of Filsberg et al. 

(2009) who considered a Tabu Search procedure. Simulated Annealing (SA) has been 

employed as well. Wu et al. (2002) coupled SA with Tabu Search to solve the 

heterogeneous fleet case of the integrated location-routing problem. In their problem, 

location of depots, routes of vehicles and client assignment problems are solved 

simultaneously. The multi-depot heterogeneous vehicle routing problem with time 

windows (MDHVRPTW) was studied by Dondo and Cerdá (2009), who proposed a MILP 

and a Local Search Improvement Algorithm that explores the neighborhood in order to find 

the lowest cost feasible solution. 

Other research papers have also been very interested on the analysis of the problem with 

time windows (MDVRPTW). This variant is studied in 25% of the single-objective focused 

papers considered in this review. The first meta-heuristics reported in literature was the 

Tabu Search procedure of Cordeau et al. (2001) in which the objective function is the 

minimization of the number of vehicles. Polacek et al. (2005) proposed a Variable 

Neighborhood Search (VNS) algorithm for the MDVRP with time windows and with fixed 

distribution of vehicles. This problem was also studied by Lim and Wang (2005) with the 

characteristic of having exactly one vehicle at each depot. Jin et al. (2005), Yang (2008), 

Ghoseiri and Ghannadpour (2010) and Samanta and Jha (2011) proposed Genetic 

Algorithms, Pisinger and Ropke (2007) presented an Adaptive Large Neighborhood Search 

(ALNS) procedure with minimization of routing cost. Ting and Chen (2009) presented a 

hybrid algorithm that combines multiple ant colony systems (ACS) and Simulated 

Annealing (SA). Zarandi et al. (2011) presented a SA procedure to minimize routing cost, 

while Wang et al. (2011) coupled SA with a modified Variable Neighborhood Search 

algorithm, and a clustering algorithm is used to allocate customers in the initial solution 

construction phase. A branch-and-cut-and-price algorithm for the multi-depot 

heterogeneous vehicle routing problem with time windows (MDHVRPTW) was recently 

proposed by Bettinelli et al. (2011). Computational experiments showed that this procedure 

is competitive in comparison with local search heuristics.  

The variants with split delivery (MDVRPSD) or with pickup & delivery (MDVRPPD) have 

been considered by very few authors in the scientific literature. The work of Wasner and 

Zapfel (2004) presents an application to postal, parcel and piece goods service provider in 



Austria. The model employed is the MDVRPPD (MDVRP with pickup and deliveries) with 

the objective of determining the number and location of depots and hubs. Also, the client 

assignment problem is addressed. These authors develop a local search heuristic. As a real-

life problem is solved, additional features are included in the algorithm in order to take into 

account the topography of the country (which is characterized by mountains) by 

considering maximum route length. The decision support system allowed the solution of 

large-sized instances with various millions of variables and constraints. The paper of 

Pisinger and Ropke (2007) studied the MDVRPPD, together with the variants of time 

windows and vehicle capacity constraint. These authors proposed an Adaptive Large 

Neighborhood Search procedure in order to minimize total routing cost. Flisberg et al. 

(2009) also considered heterogeneous fleet of vehicles and time windows constraints, in 

addition to pickups and split deliveries: their case-study is taken from a forest company in 

Sweden. Schmid et al. (2010) studied a realistic case inspired from companies in the 

concrete industry, and presented a mixed integer linear program (MILP) and a Variable 

Neighborhood Search (VNS) procedure to minimize routing cost for the variant with split 

deliveries. Mirabi et al. (2010) addressed the problem of minimizing the delivery time of 

vehicles. They compared three hybrid heuristics, each one combining elements from both 

constructive heuristic search and improvement techniques. The improvement techniques are 

deterministic, stochastic and simulated annealing (SA) methods. 

Crevier et al. (2007) considered a MDVRP in which there are intermediate depots along 

vehicles’ routes where they may be replenished. This problem was inspired from a real-life 

application at the city of Montreal, Canada. A heuristic combining adaptive memory, tabu 

search and integer programming was proposed. The model allows the assignment of 

vehicles to routes that may begin and finish at the same depot or that connect two depots to 

increase the capacity of vehicles to deliver goods. Zhen and Zhang (2009) considered a 

similar problem and proposed a heuristic combining the adaptive memory principle, a Tabu 

Search method for the solution of subproblems, and integer programming. Another variant 

of the MDVRP appears in the work of Zarandi et al. (2011). These authors studied the 

fuzzy version of the Capacitated Location-Routing Problem (CLRP) with multiple depots 

in which the location of depots have to be defined as well as the routes of vehicles. Fuzzy 

travel times between nodes and time window to meet the demand of each customer are 

considered. A simulation-embedded Simulated Annealing (SA) procedure was proposed. 

The framework was tested using standard data sets. 

A good manner of improving the performance of meta-heuristics is to generate good initial 

solutions. Ho et al. (2008) proposed the use of the well-known Clarke & Wright Savings 

(C&WS) algorithm (Clarke and Wright 1964) to generate initial solutions, as commonly 

used for other vehicle routing problems (Juan et al. 2009). Once the solution is generated, 

the Nearest Neighbor (NN) heuristic is employed to improve such solution. In comparison 

with the random generation of initial solutions, their experiments showed that this hybrid 

C&WS + NN approach produces better results regarding total delivery time. Li and Liu 

(2008) considered the multi-depot open vehicle routing problem with replenishment during 

the execution of routes. They proposed a model and an Ant Colony Optimization resolution 

procedure. 

Vidal et al. (2010, 2011) proposed a general framework to solve a family of vehicle routing 

problems, including the multi-depot VRP, the periodic VRP and the multi-depot periodic 



VRP with capacitated vehicles and constrained route duration. Their meta-heuristic 

combines the exploration breadth of population-based evolutionary search, the aggressive 

improvement capabilities of neighborhood search based procedures and advanced 

population diversity management strategies. These authors improved the best known 

solutions and even obtained optimal values for these three problem cases. 

2.3. THE MDVRP WITH MULTIPLE OBJECTIVES 

An important characteristic of real-life logistics problems found in enterprises is that 

decision-makers, very often, have to simultaneously deal with multiple objectives. These 

objectives are sometimes contradictory (e.g., minimizing number of vehicles and 

maximizing service level). In the literature, there are very few papers on the MDVRP that 

consider multiple objectives (MOMDVRP): a bit less than 11% of the papers reviewed 

here. 

The work of Lin and Kwok (2005) studies a realistic particular case of the MDVRP, named 

as location-routing problem (LRP) with multiple uses of vehicles. In this problem, 

decisions on location of depots, vehicle routing and assignment of routes to vehicles are 

considered simultaneously. Tabu search and simulated annealing procedures are designed 

and tested on both random-generated and real data. The objectives are the minimization of 

total operational cost and the balance on vehicle load. Both simultaneous and sequential 

procedures for the assignment of routes to vehicles are tested. Results show that the 

simultaneous versions have advantage over the sequential versions in problems where 

routes are capacity-constrained, but not in the time dimension. The simultaneous versions 

are also more effective in generating non-dominated solutions than the sequential versions. 

A real-life transportation problem consisting on moving empty or laden containers is 

studied by Tan et al. (2006). They called the problem as the truck and trailer vehicle routing 

problem (TTVRP), but in fact it corresponds to a variant of the MDVRP: the solution to the 

TTVRP consists of finding a complete routing schedule for serving the jobs with minimum 

routing distance and number of trucks, subject to time windows and availability of trailers. 

These authors solved the multi-objective case using a hybrid multi-objective evolutionary 

algorithm (HMOEA) with specialized genetic operators, variable-length representation and 

local search heuristic. Lau et al. (2009) considered the multi-objective problem in which the 

travel time is not a constraint but an objective function to be optimized in the model 

together with the total traveled distance. The proposed solution procedure is a hybrid meta-

heuristic named fuzzy logic guided non-dominated sorting genetic algorithm (FL-NSGA2). 

The procedure uses fuzzy logic to dynamically adjust the probabilities of mutation and 

crossover. The algorithm is compared with the well-known algorithms non-dominated 

sorting genetic algorithms 2 (NSGA2), strength Pareto evolutionary algorithm 2 (SPEA2) 

with and without fuzzy logic and the micro-genetic algorithm (MICROGA) with and 

without fuzzy logic. Experiments showed that the proposed FL-NSGA2 procedure 

outperformed the other procedures. This technique was also used by Lau et al. (2010) to 

solve the problem in which the cost due to the total traveling distance and the cost due to 

the total traveling time are minimized. In their work, several search methods, branch-and-

bound, standard GA (i.e., without the guide of fuzzy logic), simulated annealing, and tabu 

search procedure are adopted to compare with FLGA in randomly generated data sets. 

Results of their experiments show that FLGA outperforms the other methods. Ombuki-



Berman and Hanshar (2009) and Weise et al. (2009) also proposed a genetic algorithm. The 

first authors considered the objectives of minimizing the total cost and the number of 

vehicles, while the latter authors considered the total distance, the idle capacity of vehicles 

and the number of externalized deliveries. A Simulated Annealing (SA) procedure was 

presented by Hasanpour et al. (2009) for minimizing transportation costs and maximizing 

probability of delivery to customers. 

Weise et al. (2010) presented the use of evolutionary computation for a real-life problem 

inspired from a joint enterprise-academia research project. Results of the implementation 

are compared against the traditional routing structure employed by the enterprises 

associated with the research. The multi-objective MDVRP with time windows and split 

delivery is studied by Dharmapriya and Siyambalapitiya (2010). The objectives to be 

optimized were defined to be the total transportation cost, the total distance traveled, full 

use of vehicle capacity and load balancing. The problem is solved using Tabu Search, 

Simulated Annealing and a Greedy algorithm. Tavakkoli-Moghaddam et al. (2010) studied 

the multi-objective problem in which depot location and routes of vehicles have to be 

defined simultaneously. This problem is known in the literature as the Multi-Depot 

Location-Routing Problem. Traditionally, this problem is solved sequentially: first, the 

location of depots is addressed and then the routing of vehicles is approached. These 

authors proposed a scatter search algorithm that seeks to maximize total demand served and 

to minimize the total operational cost (cost of opening depots and variable delivery costs). 

Computational experiments showed that the proposed multi-objective scatter search 

(MOSS) algorithm outperformed an Elite Tabu Search (ETS) procedure. 

Jiang and Ding (2010) minimized the distribution cost, the customer dissatisfaction and the 

changes of routes in a disruption measurement model and an immune algorithm. The 

procedure is tested using a simple example. Ghoseiri and Ghannadpour (2010) considered 

the problem of simultaneously optimizing total fleet size and total distance deviation by 

using a genetic algorithm coupled with goal programming. Finally, Venkatasubbaiah et al. 

(2011) proposed the use of a Fuzzy Goal Programming Method to solve the multi-objective 

problem. A fuzzy max-min operator is also proposed to improve the effectiveness of the 

procedure. The algorithm is tested on simple transportation problems from literature, and 

compared with previous works, while Li and Liu (2011) proposed a genetic algorithm so as 

to minimize the number of vehicles and the total travel distance. 

2.4. ANALYSIS OF LITERATURE 

As pointed out before, since the first publication on multi-depot vehicle routing problem 

appeared in 1984, more than 120 papers have been published in the scientific literature this 

problem and its variants. Between the middle of the 1980’s (when the first works on the 

MDVRP were published) and the end of the twentieth century, very few papers were 

proposed in the literature (see Figure 1): only 18 publications (excluding those published in 

2000), which gives an average of 1.12 papers per year. Between 2000 and 2005, there was 

an increase in the number of publication on MDVRP with an average of 4.7 publications 

per year. This gives a total of 46 publications until 2005. The most impressive growing on 

the number of papers published is observed between 2006 and April 2012) with a total 75 

publications, including 4 papers already appeared in the first three months of 2012. 



Figure 1. Distribution of published papers per year for the MDVRP 

 

Taken from Montoya-Torres et al. (2012) 

As can be seen, there is a clearly increasing trend which shows the growing interest in this 

field. It is reasonable to expect that in the coming years the MDVRP will receive an ever 

large amount of attention. There are however some remarks to be made. As shown in 

Figure 2, most of the works have been focused on the minimization of cost, distance or 

time. The papers dealing with vehicle load balancing are in fact papers that seek to optimize 

multiple objectives simultaneously (very often cost and vehicle load). As presented in 

previous sections of this review (see also Figure 2), majority of published works deals with 

the single objective problem. While this problem is of theoretical interest, very often 

decision-makers are faced to optimize multiple (contradictory) objectives. Very few 

published works deals with multi-objective problem. Hence, this gap in current research 

could be overlapped by proposing efficient and effective solution approaches for multi-

objective environments. 

Figure 2. Distribution of objective functions 

 

Taken from Montoya-Torres et al. (2012) 

It is also interesting to study the different methodologies and techniques that the authors 

apply in the reviewed literature. Figure 3 shows two pie charts with this distribution: it first 
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classifies the approaches as exact, heuristics and meta-heuristics algorithms, while the 

second pie presents a distribution of the different approximate algorithms employed in the 

reviewed literature. It can be observed that exact algorithms (branch and bound, 

mathematical programming) are employed in 20.1% of reviewed papers. We have to 

consider that these techniques have proven to be useful for simplified combinatorial 

optimization problems, specific settings and/or small instances. Hence, a larger focus is 

needed on approaches able to solve larger instances. Because of the NP-completeness of the 

MDVRP, approximate heuristics have also been proposed. Under the category of heuristic 

algorithms, a classification of many different algorithms and ad-hoc methods that are 

specific and do not contain a well known meta-heuristic template has been drawn. This 

represents 36% of the reviewed papers. For the other 43.9% a meta-heuristic algorithm is 

proposed. Among the available procedures, Tabu Search (TS), genetic algorithms (GA) and 

simulated annealing (SA) have been the most employed in the reviewed literature (22.9% 

uses TS, 20.8% uses GA and 12.5% uses SA). The other meta-heuristics have less 

employed: ant colony optimization (4.2%) and variable neighborhood search (8.3%). 

Clearly, there is a large opportunity for research here. Meta-heuristics have long ago 

established themselves as state-of-the-art methodologies for the vast majority of vehicle 

routing problems. 

Figure 3. Distribution of employed solution techniques, TS = tabu search, GA = 

genetic algorithm, SA = simulated annealing, ACO = ant colony optimization, VNS = 

variable neighborhood search 

  

Taken from Montoya-Torres et al. (2012) 

Analysis of literature showed that for the Vehicle Routing Problem with Multiple Depots 

and Multiple Objectives (MO-MDVRP), meta-heuristics are the most feasible and adequate 

alternative; however, it is observed that population-based algorithms such as Genetic or 

Evolutionary Algorithms and hybridization of these outperform multi-objective versions of 

path-based or single point meta-heuristics such as Simulated Annealing and Tabu Search, 

this is shown in Lau et al. (2010), in this work experiments showed that a Fuzzy Logic 

Genetic Algorithm clearly outperforms Tabu Search and Simulated Annealing. 

As a final conclusion, scientific research shows a clear trend for Population-Based 

algorithms to solve the MO-MDVRP; this is explained because of the effectiveness of these 

approaches to explore a wide solution space, since it starts on a set of initial solutions; 

moreover, these techniques are proven to be more effective to widely explore a solution 
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space finding good areas; moreover, population-based meta-heuristics are less difficult to 

adapt to variety of multi-objective combinatorial problems as stated in Blum & Roli (2003). 

2.5. DEFINITION OF LEVEL OF ROBUSTNESS FOR SOLVING STRATEGIES 

FOR THE MDVRP 

According to the literature review and analysis, solving strategies for the multi-depot 

vehicle routing problems, have to be efficient and effective decision-making tools in a 

multi-objective environment such as physical distribution of goods, which is essential in 

logistics systems. Efficiency and effectiveness are defined as the capability to solve a very 

complex problem in a reasonable time ensuring at least very good solutions. In addition, 

research works on combinatorial optimization problems show the importance of 

hybridization of meta-heuristics as pointed out in Blum & Roli (2003).  

On the other hand, the literature review has shown that future lines for research must 

consider multi-criterion environments and non-traditional objective functions. Another 

aspect to consider is that the most realistic approach to solve these particularly complex 

problems is an approximate method, where Genetic Algorithms and Tabu Search have been 

the most popular; this draws a future line for research to explore other techniques like 

Grasp, Scatter Search, Ant Colony and hybrid procedures which are of a particular interest. 

Performance analysis for the MO-MDVRP solving approaches (reviewed works presented 

in section 2.3) is focused on execution times, objectives comparison, convergence metrics, 

and Pareto Frontier generation capabilities; up to this date a robustness analysis including 

execution times, quality of solutions and the capability to generate equally expected quality 

of solutions independently of problem shape and size has not been made. Robustness will 

be measured in three dimensions: Efficiency of the solving strategy, measured as the 

capability to find solutions in reasonable times (related to the decision making horizon); 

Capability of the solving strategy to find good solutions, supported on the quality of the 

solutions found compared to exact results; and the capability to improve solutions 

independently of the problem structure i.e. problem size (number of clients and number of 

depots) and topology. 

This research work is oriented to develop solving strategies for the MDVRP considering 

knowledge gaps supported by the literature review and analysis. The proposed solving 

strategy aims to provide robust solutions for a multi-objective vehicle routing problem with 

multiple depots; this research proposes a robustness analysis including execution times 

analysis (efficiency), quality of solutions (Pareto Frontier closeness) and an experimental 

analysis to evaluate the capability to generate equally expected quality of solutions 

independently of problem shape and size.   

The proposed strategy tackles optimization on a multiple criteria environment considering 

non-financial functions like load balance in addition to a critical objective such as total 

operational cost. Moreover, the proposed solving strategy is based on a hybrid procedure 

based on Scatter Search which has not been widely used for the MDVRP.  

  



3. CHAPTER III. THE SOLVING STRATEGY FOR THE 

MULTIPLE DEPOT VEHICLE ROUTING PROBLEM WITH 

MULTIPLE OBJECTIVES. MO-MDVRP 

In this chapter, the design of the solution strategy is presented. This chapter includes the 

MDVRP formulation, as a single objective problem (classic formulation in section 3.1) and 

the specific formulation (minimization of total cost and load imbalance in section 3.2). The 

proposed MILP formulation is presented (sub-section 3.2.2); and then, the proposed solving 

algorithm design is developed (in section 3.3). 

3.1. PROBLEM FORMULATION: Vehicle Routing Problem (VRP) vs Vehicle 

Routing Problem with Multiple Depots (MDVRP) 

Formally, the classical Vehicle Routing Problem (VRP) is represented by a directed graph 

G(E,V), where V = {0,1,…n} represents the set of nodes and E is the set of arcs. The depot 

is noted to be node j = 0, and clients are nodes j = 1, 2, …, n, each one with demand dj > 0. 

Each arc represents a route from node i to node j. The weight of each arc Cij > 0 

corresponds to the cost (time or even distance) of going from node i to node j. If Cij = Cji 

then we are facing the symmetric VRP, otherwise the problem is asymmetric. From the 

complexity point of view, the classical VRP is known to NP-hard since it generalizes the 

Travelling Salesman Problem (TSP) and the Bin Packing Problem (BPP) which are both 

well-known NP-hard problems (Garey and Johnson 1979). A review of mathematical 

formulations for the classical VRP can be found in the work of Laporte (1992). 

In the literature, lots of surveys have been presented analyzing published works on either 

the classical version (Bodin 1975, Bodin and Golden 1981, Laporte 1992, Desrochers et al. 

1990, Maffioli 2002, Liong et al. 2008, Eksioglu et al. 2009) or its different variants: the 

capacitated VRP (Laporte and Nobert 1987, Gendreau et al. 2002, Toth and Vigo 2002, 

Laporte and Semet 2002, Cordeau et al. 2007, Baldacci et al. 2010), the VRP with 

heterogeneous fleet of vehicles (Baldacci et al. 2008, 2007, 2010), VRP with time windows 

(VRPTW), pickup and deliveries and periodic VRP (Solomon and Desrosiers 1988), 

dynamic VRP (DVRP) (Psaraftis 1995), Periodic VRP (PVRP) (Mourgaya and Vanderbeck 

2006), VRP with multiple trips (VPRMT) (Şen and Bülbül 2008), Split Delivery vehicle 

routing problem (SDVRP) (Archetti and Speranza 2008).  

All of these works consider only one depot. Figure 4 presents a hierarchy of VRP variants. 

One of these variants considers a well-known (Crevier et al. 2007) more realistic situation 

in which the distributions of goods is done from several depots to final clients. This 

particular distribution network can be solved as multiple individual single depot VRP’s, if 

and only if clients are evidently clustered around each depot; otherwise a multi-depot-based 

approach has to be used where clients are to be served from any of the depots using the 

available fleet of vehicles. This work considers the variant of the vehicle routing problem 

known as Multiple Depots Vehicle Routing Problem (MDVRP) in which more than one 

depot is considered (see Figure 5). 

Figure 4. Variants of VRP problems 



 

Taken from Montoya-Torres et al. (2012) 

Figure 5. Comparison between VRP vs MDVRP 

 



Taken from Montoya-Torres et al. (2012) 

According to Reneaud et al. (1996a), the MDVRP can be formally described as follows. 

Let G=(V,E) be a graph, where V is the set of nodes and E is the set of arcs or edges 

connecting each pair of nodes. The set V is further partitioned into two subsets: Vc={ v1, 

v2,…, vN} which is the set of customers to be served; and Vd={vN+1, vN+2,…, vM} which is 

the set of depots. Each customer vi Vc has a nonnegative demand di. Each arc belong to the 

set E has associated a cost, distance or travel time cij. There are a total of K vehicles, each 

one with capacity Pk. The problem consists on determining a set of vehicle routes in such a 

way that: (i) each vehicle route starts and ends at the same depot, (ii) each customer is 

serviced exactly once by a vehicle, (iii) the total demand of each route does not exceed the 

vehicle capacity, and (iv) the total cost of the distribution is minimized. According to the 

mathematical model of Kulkarni and Bhave (1985), the MDVRP can be formulated as 

follows. 

  (1) 

Subject to:   

  (2) 

  (3) 

 
 

 
(4) 

  (5) 

  (6) 

  (7) 



  (8) 

 
For  

and  
(9) 

  (10) 

In this formulation, Constraints (2) and (3) ensure that each customer is served by one and 

only one vehicle. Route continuity is represented by Constraints (4). The sets of constraints 

(5) and (6) are the vehicle capacity and total route cost constraints. Vehicle availability is 

verified by Constraints (7) and (8) and subtour elimination is provided by Constraints (9). 

In this formulation, it is assumed that total demand at each node is either less than or at the 

most equal to the capacity of each vehicle. 

3.2. THE MULTI-OBJECTIVE MDVRP: COST AND LOAD BALANCE 

According to the problem statement and literature analysis, not only financial objective 

functions e.g.: Total Cost must be considered to improve transportation logistics, 

specifically distribution of goods; for this reason, another objective function is considered 

to improve resource utilization: Load Balance, measured as the allocated load range, as 

defined in Lin and Kwok (2005), i.e.: the difference between the maximum load assigned 

and the minimum load allocated to the vehicles. To deal with this problem, a meta-heuristic 

approach is proposed, based on Scatter Search algorithms, this Scatter Search algorithm is 

hybridized with several heuristics, SPEA and SPEA2 procedures, and evolutionary 

concepts. To help performance evaluation for the Multi-objective Scatter Search Hybrid 

Algorithm, a multi-objective MILP mathematical model was developed; an alternative 

formulation that avoids sub-tour elimination constraints is used, based on the Dondo & 

Cerdá (2007) formulation. 

3.2.1. Mathematical Formulation for the MO-MDVRP 

Sets 

 Set of nodes 

 Set of vehicles  

 Set of depots 

Parameters 

 Vehicle capacity 

 Fix cost per use of vehicle  

 Travel cost for the arc i – j   

 Travel cost for the arc i – p  



 Demand for node i  

Variables 

 Binary variable which denotes that vehicle v is assigned to depot p 

 Binary variable which denotes that node i is assigned to vehicle v.  

 Binary variable which denotes that node i is visited before node j  or after 

node j   

 Route cost up to node i  

 Total route cost for vehicle v  

 Total load assigned to vehicle v 

(1) Objective Functions 

 

 

Subject to: 

(2) Client to vehicle assignments 

 

(3) Vehicle to depot assignments  

 

(4) Route cost up to client i 

 

(5) Vehicle sequencing constraints  

 

 

(6) Total route cost for vehicle  

 

(7) Vehicle load variable definition 

 

(8) Vehicle capacity constraints 

 

3.2.1.1. Objective Functions 



Two objective functions F1 and F2 are defined for the MO-MDVRP problem. F1 is defined 

as the total cost for the routing problem, consisting of fix costs per use of each vehicle and 

a variable cost depending on client assignments and sequencing for each route. The 

objective function F2 is defined as a load balancing equation (vehicle assigned load range), 

measured as the difference between the maximum load assigned to a vehicle and the 

minimum load assigned. 

3.2.1.2. Problem Decision Variables 

As explained in Dondo & Cerdá (2007), three types of binary variables are used: , this 

set of variables determines whether vehicle v  V is allocated to depot p  P; , which 

denotes if client i  I is assigned to vehicle v   V; and sequencing variables , which 

determines whether client i  I is visited before node j (  or after node j ( . 

Note that variables  are meaningful only if nodes (i,j)  I are on the same route 

; only one sequencing variable is defined for each pair of nodes (i,j), this means 

that sequencing variables consider the relative order of each pair of nodes (i,j) in the set I 

(set of nodes is an ordered set) such that the variables  are defined if the relative position 

of element (node) i is lower than the relative position of element j. As defined before, 

variables  and  define routing cost up to node i  I and total routing cost for vehicle v  

 V, respectively. For the MO-MDVRP mathematical formulation, a positive variable 

which defines the total load allocated to vehicle v was introduced, this variable is necessary 

to calculate the load assignment range for the routing plan. 

3.2.1.3. Problem Constraints 

Constraints (2) are used to assign client nodes to vehicles; it forces to attend one client node 

using only one vehicle. Constraints (3) allocate each vehicle to at least one depot; 

respective vehicle binary variables sum, must be maximum 1; it means that if the respective 

depot – vehicle binary variables sum is 1, the vehicle is allocated to one depot, and if its 

sum is 0, the vehicle is not used. Constraints (4) state that the routing cost up to node i ( ), 

must be at least the traveling cost from the depot to the respective node ( ), only if the 

client i is allocated to depot p, that is when the client node is assigned to vehicle v and the 

respective vehicle v is allocated to depot p (  =  = 1). Equations (5) are two sets of 

constraints defined for each vehicle and every combination (not permutation) of 2 nodes, 

that is, a constraint is declared for every vehicle v and every pair of client nodes (i,j), such 

that the relative position of node i in set I is lower than the relative position of node j in the 

same set (ord(i) < ord(j)); these constraints ensure that the routing cost up to node j ( ) is 

at least the traveling cost from the depot to the node i ( ) plus the travel cost for the arc i-j 

( ) if the node i is a predecessor (not necessarily a direct predecessor) of node j in the 

sequence of the vehicle v (  = 1); on the other hand another constraint is declared for the 

node j being a predecessor of node i (  = 0); both constraints are valid only if both nodes i 

and j are in the same route i.e.  =  = 1. Note that these two sets of constraints are 

disjunctive, to deal with this type of constraints a “big M” ( ) approach is used. 

Constraints (6) are used to compute total routing cost for each vehicle v ( ), which must 

be greater than or equal to the routing cost up to node i ( ) plus the traveling cost from the 



depot to the node i ( ), for every node i; this constraint is valid if the client i is allocated 

to depot p, that is when the client node is assigned to vehicle v and the respective vehicle v 

is allocated to depot p (  =  = 1). Equations (7) and (8) are used to compute the 

assigned load to each vehicle, which is the sum of allocated clients’ demands to its 

respective vehicle. 

3.2.2. A New Mixed Integer Linear Programing Formulation for the MO-MDVRP 

The mathematical formulation for the MO-MDVRP presented in numeral (3.2.1.) cannot be 

solved because the balance function F2 defined in numeral (1) is a non-smooth function 

with discontinuous derivatives, which are forbidden for mixed integer linear programs 

(MILP); and the MDVRP formulation involves binary variables, which are forbidden for 

nonlinear programs with discontinuous derivatives (DNLP). According to this statement, 

the MO-MDVRP minimizing total cost and the assigned load range for all vehicles (load 

balance) is quite challenging, not only for its mathematical complexity, but also because 

there is no algorithm to solve exactly this problem due to the load balance function 

structure. To deal with this restriction an equivalent MILP formulation was developed; this 

new formulation avoids the use of the maximum and minimum functions to define the load 

balance function measured as the load range assigned to the vehicles (

). 

The new MILP formulation introduces two continuous variables R and Lmax, where the 

variable R defines the load balance measured as the load range (the new objective function 

F2 is the variable R), and the variable Lmax defines the maximum load allocated to one 

vehicle. Moreover, two sets of equations are included to compute R and Lmax variables; 

each set of equations has |V| individual equations which are defined as follows in numerals 

(9b) and (10b). The new MILP complete formulation is presented below. 

(9b) Maximum load variable definition 

 

(10b) Load range variable definition 

 

Sets 

 Set of nodes 

 Set of vehicles  

 Set of depots 

Parameters 

 Vehicle capacity 

 Fix cost per use of vehicle  

 Travel cost for the arc i – j   

 Travel cost for the arc i – p  

 Demand for node i  



Variables 

 Binary variable which denotes that vehicle v is assigned to depot p 

 Binary variable which denotes that node i is assigned to vehicle v.  

 Binary variable which denotes that node i is visited before node j  or after 

node j   

 Route cost up to node i  

 Total route cost for vehicle v  

 Total load assigned to vehicle v 

Lmax Maximum load allocated to one vehicle      (*) 

R Load range           (*) 

(1) Objective Functions 

 

          (*) 

Subject to: 

(2) Client to vehicle assignments 

 

(3) Vehicle to depot assignments  

 

(4) Route cost up to client i 

 

(5) Vehicle sequencing constraints  

 

 

(6) Total route cost for vehicle  

 

(7) Vehicle load variable definition 

 

(8) Vehicle capacity constraints 

 

(9) Maximum load variable definition       (*) 

   

(10) Load range variable definition       (*) 



  

(*) Indicates: New statement. 

3.3. THE HYBRID MULTI-OBJECTIVE SCATTER SEARCH ALGORITHM 

The proposed methodology to solve the MDVRP is based in the problem decomposition 

method; a cluster first and route second approach is adapted and then optimized by a hybrid 

Scatter Search algorithm, local improvement and solution polishing heuristics. As 

mentioned in Tavakkoli-Moghaddam et al. (2010), Scatter Search (SS) is a robust solution 

method for solving combinatorial problems such as binary problems, assignment problems, 

and scheduling and routing problems; moreover, due to its population-based approach, it is 

quite useful and simple to work on multi-objective optimization problems; in addition, as 

concluded in the literature review (see Figure 3), SS procedures have not been widely used 

for the MO – MDVRP, which makes SS an interesting alternative to develop a solving 

strategy for the MDVRP. 

Figure 6. General structure for the scatter search algorithm 

 

Taken from López & Nieto (2012) 

The General Structure for the Scatter Search-based algorithm is defined by a three phase 

procedure. As shown in Figure 6, in phase 1, a solution generation method is applied to 

build P diverse feasible solutions for the MDVRP problem, the solution method consists of 

client to depot assignment, route generation and a local improvement procedure based on a 

sequential insertion heuristic; in phase 2, a reference set B is selected from the initial set of 

P solutions generated in phase 1, where |B|/2 solutions are selected by a quality criterion 

and the remaining |B|/2 are selected by a diversity criterion. In phase 3, a hybrid 

evolutionary procedure is executed updating the reference set by the replacement of the 

solutions with new solutions generated by a cross-over and improvement procedure, if any 

new solution outperforms at least one of the solutions in the reference set, the evolutionary 

Random method for initial 

solution generation 

Improvement method: 

Insertion 

Quality: Non-dominated 

Diversity: Cluster 

End if there are not new 

solutions in Refset 

Refset update: 
 Quality - Diversity 

Cross-over 

operator 



procedure is executed until no new solution is found to update the reference set B. The 

general MOSS procedure is shown in Figure 7. 

Figure 7. Hybrid MOSS General Structure 

Hybrid MOSS Procedure 

 Generate diverse random solutions (P) 

 Apply solution improvement procedure to (P) 

 Build a reference set of solutions RefSet (B), with b1 quality (multi-objective) solutions and b2 most 

diverse solutions of (P) set 

While (  solution in (B)) 

 Apply selection rule for RefSet solution combination 

While (  solution in (B) that has not been combined) 

o Apply combination method to generate new solutions (B’) 

o Apply correction method and improvement method to new solutions (B’) 

Let x be and improved new solution 

If (F(f1(x), f2(x)) < F(f1(x
B
), f2(x

B
)) and (x  RefSet)) 

If x dominates x
B
, then x replaces x

B
 

End If 

End While 

End While 

End Procedure 

3.3.1. Diverse Solution Generation Method 

As presented in López & Nieto (2012), the diverse solution generation method, is based on 

the cluster first - route second method, which, adapted to the MDVRP, consists of client-to-

depot assignment, client-to-vehicle assignment, and client sequencing. The client-to-depot 

assignment procedure is based on a Simplified Assignment of Highest Urgency method, 

Giosa et al. (1998), in which clients are assigned, prioritizing by highest urgency criterion, 

to its closest depot with unfulfilled capacity; the urgencies for a client j ( j) and its closest 

and second closest depots D* and D’, respectively, are calculated as follows: 

j = d(j,D’) – d(j,D*)                    (Eq 3.3.1.) 

Where, d(j,D’) is the assignment cost of client j to the second closest depot; and d(j,D*) is 

the assignment cost of client j to its closest depot. 

Figure 8. Client-depot assignment by simplified assignment urgency procedure 



 

Taken from López & Nieto (2012). 

Figure 8 illustrates the urgency computation for a certain client. 

The client-to-vehicle assignment is executed by a random procedure; the objective of this 

randomized procedure is to generate multiple solutions dispersed in a wide solution region. 

Client sequencing is done by a sequential insertion based on the Mole & Jameson (1976) 

algorithm; the purpose of this procedure is to locally improve the randomized solutions, 

such that better solutions may enter the evolutionary procedure. 

3.3.2. Reference Set of Solutions 

Given the P set of initial solutions, the scatter search procedure will apply systematic 

combinatorial procedures to a relatively small subset of solutions; this set is called 

Reference Set, from now on: Ref-Set B (a major difference with evolutionary algorithms 

such as genetic algorithms, SPEA, SPEAII, etc.). The Ref-Set B is selected from the P set 

based on two criteria: Quality solutions and diverse solutions, each subset with |B/2| 

solutions. 

3.3.2.1. Quality Solutions Selection for Ref-Set B 

Since the problem to solve is a multi-objective optimization problem, quality for a given 

solution must be evaluated carefully; this is because in this case two different and in many 

cases conflictive objectives must be improved. To deal with this situation a multi-criteria 

measure was calculated, based on non-domination criteria using the fitness calculation 

defined for SPEA2 algorithms, Zitzler et al. (2001). The |B|/2 solutions with lower (better) 

fitness are selected to enter to the Ref-Set; note that in most cases the quality solutions will 

be the non-dominated solutions of the P set (initial solutions). 

3.3.2.2. Diverse Solutions Selection for Ref-Set B 

The idea of selecting the most diverse solutions is to enter |B|/2 elements from the P set, 

distributed all across the solution space; this is, to select the most distanced elements in P. 

To pick this subset of elements in the solution space, a multi-objective clustering procedure 

was implemented. The clustering procedure computes |B|/2 different clusters; then, the 



element with the lowest Euclidean distance to the centroid of the cluster is selected. This 

selection procedure based on clustering is defined in Figure 9. 

Figure 9. Clustering procedure for diverse solution selection 

Clustering Procedure 

 Set all solutions in P to an individual cluster 

While (number of clusters > |B|/2) 

 Compute distance between all clusters (for cluster with more than 1 element, mean distance is used) 

 Merge closest pair of clusters 

End While 

 Calculate centroid for each cluster 

 Select the closest element (solution) to the centroid of each cluster 

 Include selected elements in the Ref-Set B 

End Procedure 

Figure 10 shows a screenshot taken from the router prototype that illustrates Ref-Set for an 

instance of 300 customers and a set P of 100 solutions. 

Figure 10. Initial solution space 

 



Taken form López & Nieto (2012) 

As shown in the figure above, quality solutions have a trend to the min-min (y axis 

represent total cost, and x axis represent load balance) zone, and diversity solutions are 

dispersed across the solutions space. 

3.3.3. Cross-over Procedure 

Cross-over operator allows the MOSS algorithm to explore and intensify solution space to 

find new solutions which are potentially better or non-dominated solutions. To explore the 

solution space in a wide range, a random based cross-over operator was used and then a 

multi-criteria (total cost and load balance) correction heuristic (will be explained after) was 

designed to improve Ref-Set actualization. Cross-over procedure takes every solution in the 

B set and applies the cross-over operator to a pair of solutions determined by a sub-set 

generation procedure designed to improve diversification for the MOSS algorithm. 

3.3.3.1. Cross-over operator 

Cross-over operator is based on a random partitioning procedure (widely used in Genetic 

Algorithms) to generate solutions in a wide range and to avoid early local optimum 

convergence. Cross-over is applied within and between depots, and the method can be 

described as follows: Two cutoff points are defined, a cutoff point between routes and a 

cutoff point within clients; these points split each solution into four parts. The first cutoff 

point is randomly (uniform probability) determined; the cutoff point is generated based on 

the instance with the lowest number of routes; the cutoff point within clients is based on the 

route with the highest number of clients. Cross-over operator generates four new solutions. 

Figure 11, Figure 12 and Figure 13, outline the cross-over operator. 

Figure 11. Cutoff point between routes for cross-over operator  

 

Taken from López & Nieto (2012) 

Figure 12. Second cutoff point within clients 



 

Taken from López & Nieto (2012) 

Figure 13. Resulting solutions applying cross-over operator for two plans 

 

Taken from López & Nieto (2012) 

3.3.3.2. Subset generation method 

As described in Martí & Laguna (2003), one of the differences between Genetic Algorithms 

and Scatter Search Algorithms is the way in which combinatorial procedures are made; 

Scatter Search uses a systematic method to cross solutions in Ref-Set instead of crossing 

solutions based on random procedures; this difference makes Scatter Search more 

exhaustive on a relatively small sub-set of the solution space. 

Sub-set generation method was designed to ensure that the best (quality) solutions and most 

diverse (diversity) solutions are crossed within and between them; to do this, Ref-Set was 

divided into four parts, where the first two parts are quality solutions, and the last two parts 

of the Ref-Set are diversity solutions. The Sub-set generation procedure builds pairs of 

solutions of quality (quality – quality), pairs of solutions of diversity (diversity – diversity), 



and quality and diversity pairs of solutions (quality – diversity); then, cross-over operator is 

applied to every generated pair of solutions. Figure 14 illustrates this method. 

Figure 14. Sub-set generation method for the cross-over procedure 

 

3.3.4. Optimization Procedure 

3.3.4.1. Correction and improvement heuristics 

The cross-over operator was designed taking certain concepts used and proved for Genetic 

Algorithms and its multi-objective modifications such as SPEA and SPEA2. This cross-

over operator, as mentioned before, splits each solution from the selected set (selected pair 

of solutions to apply cross-over operator by sub-set generation method) into four parts by a 

random method, and then four new solutions are generated combining every part of each 

split solution; this type of cross-over operator and the sub-set generation method was 

adapted to explore widely the solution space; however, cross-over does not ensure that the 

new generated solutions are feasible; to correct every infeasible solution, a correction and 

multi-criteria (cost and load balance) improvement heuristic was designed. 

The bi-criteria improvement and correction heuristic identifies every infeasible solution, 

considering capacity constraint violation for each route (vehicle) and repeated client 

assignment. If the infeasibility lies on repeated clients, every repeated client is removed 

from the route and placed into a temporal list; on the other hand, if the identified feasibility 

problem is capacity constraint violation, a predetermined number (as many as required to 

satisfy capacity constraint) of clients of lowest demand are removed and placed in the 

temporal list to satisfy capacity constraint. 

Given the temporal list (list of removed clients), an allocation method is applied; this 

method allocates clients from the temporal list using a bi-criterion parameter, this 

parameter is calculated for every (client – route) pair, and its goal is to allocate clients to 

the closest route with maximum vehicle utilization.  

A client–to–route proximity is defined as the distance (Euclidean distance) between the 

client and the centroid of the route (calculated as the mean coordinates of every client in the 

route); and the load measure is defined as the difference between vehicle’s idle capacity 

and client’s demand. The heuristic allocates the client which minimizes the bi-criterion 

parameter (if it is feasible) and stops until every client is allocated to one route. The bi-



criterion parameter matrix (i,j) where the subscript i is the unassigned client and j is every 

existing route is defined as follows. 

(i,j) = (ICj – Di) + d(i,kj)                                                                                         Eq(3.3.2) 

Where (i,j) is the bi-criterion parameter matrix; ICj is the idle capacity of route j; Di is 

client’s demand; and d(i,kj) is the distance from the client i to the centroid of route j (kj). In 

Figure 15 the Correction and improvement heuristic is detailed. 

Figure 15. Correction and improvement heuristic procedure 

Correction and improvement heuristic procedure 

 Identify infeasible routes with repeated clients 
 Set repeated clients in the temporal list 
 Identify infeasible routes with violation of capacity constraint 

 

While (Total allocated load > Vehicle capacity) 

  Set lowest demand client in the temporal list 

End while 

 

While (Temporal list ≠ ϕ) 

 Compute (i,j) for every client in temporal list 

 Allocate client i with minimum (i,j) to route j 

End while 

End Procedure 

3.3.4.2. Reference set actualization 

As explained in section 3.3.3.2. the sub-set generation method splits Ref-set into 4 parts to 

ensure cross-over within and between quality and diversity solution; for this reason, Ref-set 

actualization method has to be updated respecting relative order by quality and diversity 

criterions, that is, half set is ordered by quality and the other half by diversity. 

 Figure 16. Ref-set actualization procedure 

Ref-set actualization procedure 

 Clear P 

 Set solutions from B’ to P 

 Set solutions from C to P 

 Select |B|/2 diversity solutions from P Applying clustering procedure with |B|/2 clusters and set selected 

solutions in B 

 Sort solutions in P by quality (applying quality criterion defined in numeral 3.3.2.1) 

 Set |B|/2 quality solutions (applying quality criterion defined in numeral 3.3.2.1) from P to B 

End procedure 

Figure 17. Ref-set actualization scheme 



 

Ref-set actualization method takes solutions of previous iteration Ref-set (B’) and new 

generated solutions by cross-over operator (C) to update initial population (P = B’ + C); 

new Ref-set B is updated with |B| solutions of highest quality from updated P set which are 

placed and ordered in one half by diversity, and in the other half by quality. Ref-set 

actualization is described in Figure 16 and Figure 17. 

 

  



4. CHAPTER IV. EXPERIMENTATION AND RESULTS SOLVING 

THE MULTIPLE DEPOT VEHICLE ROUTING PROBLEM 

WITH MULTIPLE OBJECTIVES. MO-MDVRP 

This chapter presents experimentation and results phase to evaluate performance for the 

proposed solving strategy for the MO-MDVRP. The performance evaluation will consider 

the robustness of the proposed method (solving strategy), as explained in section 2.5, this 

is: reasonable execution times, quality of the solutions and improvement capability. First, 

MILP model results for small known instances are shown: Solomon’s instances R101, 

C101 and RC101 with 10 and 20 nodes; next, parameter calibration experiments for the 

proposed hybrid scatter search algorithm are discussed and presented; as a final point, a 

comparison between exact results, approximate results obtained with the proposed H-

MOSS and a performance evaluation is carried out. 

4.1. EXACT RESULTS 

Exact results were computed using the MILP formulation for the MO-MDVRP minimizing 

total cost and allocated load range (load balance as defined in Lin and Kwok (2005)). The 

model was encoded using standard optimization software with classical multi-objective 

techniques. We used an  - restriction technique to draw a set of non - dominated solutions 

or Pareto Frontier; the  - restriction method takes only one objective function to optimize 

and declare the other objective function as a “less than or equal to” constraint with an 

value on the right side. To obtain the Pareto Frontier a set of different values is 

defined and | | models are run to obtain different non – dominated solutions. The 

mathematical model was encoded using GAMS® and solved with CPLEX®; several 

instances based on the randomized, clustered and randomized-clustered Solomon instances 

of 10 and 20 nodes were solved. The experiments were run using an Intel I7 CPU at 2.20 

GHz with 8 GB of RAM for the 10 nodes instances and 2 parallel Intel XEON processors at 

2.20 GHz for the 20 nodes instances. 

4.1.1. R101 – 10 Nodes 

For this instance, 3 non dominated solutions were found for a 3 vehicle plan; each vehicle 

at 50 units of capacity. Computational results with an optimality gap of 0.0% are shown in 

Table 2 and Figure 18. 

Table 2. Computational Results for R101 – 10 Nodes 

Pareto 

Optimal 

Solution Cost Balance 

CPU 

Time 

(Seconds) # Iterations 

 $       4.976.101,64  1 23,85 511.109 

 $       4.940.007,94  2 5,41 148.638 

 $       4.940.007,94  2 6,49 183.770 

 $       4.933.853,28  4 22,20 636.772 

 $       4.933.853,28  4 21,84 585.979 



Figure 18. Pareto Frontier for R101 – 10 Nodes 

 

4.1.2. RC101 – 10 Nodes 

For this instance, 3 non dominated solutions were found for a 5 vehicle plan; each vehicle 

at 50 units of capacity. Computational results with an optimality gap of 0.0% are shown in 

Table 3 and Figure 19. 

Table 3. Computational Results for RC101 – 10 Nodes 

Pareto 

Optimal 

Solution Cost Balance 

CPU 

Time 

(Seconds) 

# 

Iterations 

 $       8.035.758,29  10 9,87 208.356 

 $       8.033.629,33  20 7,78 153.114 

 $       8.031.233,17  30 27,58 761.869 

Figure 19. Pareto Frontier for RC101 – 10 Nodes 
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4.1.3. C101 – 10 Nodes 

For this instance 4 non dominated solutions were found for a 4 vehicle plan; each vehicle at 

50 units of capacity. Computational results with an optimality gap of 0.0% are shown in 

Table 4 and Figure 20. 

Table 4. Computational Results for C101 – 10 Nodes 

Pareto 

Optimal 

Solution Cost Balance 

CPU Time 

(Seconds) 

# 

Iterations 

 $   6.392.047,35  10 28,33 664.415 

 $   6.391.043,33  30 292,78 5.838.335 

 $   6.389.094,76  40 82,09 1.757.830 

 $   4.804.100,79  50 51,25 985.406 

Figure 20. Pareto Frontier for C101 – 10 Nodes 
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4.1.4. R101 – 20 Nodes 

Results of instance R101 with 20 nodes were calculated with an optimality gap of 3%. For 

this instance 7 models were run, but only 6 non dominated solutions were found for a 7 

vehicle plan. Computational results are shown in Table 5 and Figure 21. 

Table 5. Computational Results for R101 – 20 Nodes 

Pareto 

Optimal 

Solution Cost Balance 

CPU Time 

(Seconds) # Iterations 

=1  $           11.504.754,12  1 7.200,02 44.184.206 

  $           11.481.312,21  3 3.431,07 26.559.897 

  $           11.479.747,00  9 2.795,46 11.479.747 

  $           11.473.437,74  19 603,68 4.190.244 

  $           11.459.877,51  24 453,48 2.093.711 

  $           11.471.563,48  34 1.721,5 8.478.105 

  $             9.858.492,63  50 2.714,57 18.538.061 

Figure 21. Pareto Frontier for R101 – 20 Nodes 
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4.1.5. RC101 – 20 Nodes 

Results of instance RC101 with 20 nodes were calculated with an optimality gap of 3%. 

For this instance only 1 feasible solution was found for a 9 vehicle plan; initial 

parameter was set to 10, (Load Range value for optimum cost: R=10), then no other 

feasible Pareto solutions were found. Computational results are shown in Table 6 and 

Figure 22. 

Table 6. Computational Results for RC101 – 20 Nodes 

Pareto 

Optimal 

Solution Cost Balance 

CPU Time 

(Seconds) # Iterations 

=10 $          14.713.573,19 10 34,43 78.999 

Figure 22. Pareto Frontier for RC101 – 20 Nodes 
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4.1.6. C101 – 20 Nodes 

Results of instance C101 with 20 nodes were calculated with an optimality gap of 3%. For 

this instance 2 solutions were found for an 8 vehicle plan; initial parameter was set to 

20, (Load Range value for optimum cost: R=20), then, parameter was set to 17 but the 

next feasible value for this instance was R=10 (Load Range), no other feasible Pareto 

solutions were found. Computational results are shown in Table 7 and Figure 23. 

Table 7. Computational Results for C101 – 20 Nodes 

Pareto 

Optimal 

Solution Cost Balance 

CPU Time 

(Seconds) # Iterations 

 $         13.074.572,31  10 0,58 452 

 $         12.875.650,98  20 448,75 2.623.809 

Figure 23. Pareto Frontier for C101 – 20 Nodes 
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Several tests were carried out to validate the proposed H-MOSS performance for the 

MDVRP. To improve the procedure performance, formal experiments were designed to 

calibrate execution parameters for the H-MOSS procedure. All experiments were 

performed in the same computer with an Intel Core i7 processor at 2.20 GHz. 

Experiments were designed to discard non-significant factors (execution parameters and 

problem size parameters) for each response variable. Two response variables, one for each 

objective, were computed to measure changes in the H-MOSS performance; response 

variables were defined as the percent reduction of maximum cost and load imbalance in the 

initial ref-set compared to the lowest cost and load imbalance in the ref-set of the last 

generation (iteration). This is defined in Eq.(4.2.1) and Eq.(4.2.2). 

       Eq.(4.2.1) 

 

        Eq.(4.2.1) 

Where % C and % R are the cost and load imbalance percent reduction, respectively; 

 and  are the maximum cost and load imbalance in the Ref-Set of the first 

iteration, respectively; and  and  are the minimum cost and load 

imbalance in the Ref-Set of the last iteration. 

Execution parameters for the H-MOSS were considered as design factors, and problem size 

variables (number of clients and number of depots) were considered as block variables, 

factors and its levels are shown in Table 8. 

Table 8. Design factors and block variables for performance experiments design 

  
Low High 

Design 

Factors 

# Iterations 30 80 

Initial Population Size 50 100 

Ref-Set Size 8 20 

Block 

Variables 

# Clients 50 300 

# Depots 2 8 

As the block variables have two levels, four different blocks appear (combination of each 

level of each block variable); problem size variables were considered as blocks variables to 

evaluate the robustness of the H_MOSS procedure. By the above, a 2
3
 with four blocks 

experiment was designed. In Table 9 the design of the experiment and its results are shown. 

  



Table 9. Design of Experiment for Robustness Evaluation and Parameter Calibration 

Experiment Blocks 
# 

Iterations 

Initial 

population 

size 

Ref_Set 

Size 
% C % R 

Execution 

Time 

1 1 80 100 8 25 73 17,34 

2 1 30 50 20 32 69 15,09 

3 1 80 50 8 17 33 16,50 

4 1 80 50 20 27 47 20,46 

5 1 80 100 20 25 94 33,95 

6 1 30 50 8 7 26 6,19 

7 1 30 100 8 15 45 8,63 

8 1 30 100 20 23 39 13,32 

9 3 80 50 20 33 84 93,13 

10 3 30 100 20 21 68 40,87 

11 3 80 100 20 38 61 166,68 

12 3 30 50 8 23 61 13,37 

13 3 30 50 20 17 72 80,58 

14 3 80 50 8 27 44 37,13 

15 3 30 100 8 14 64 16,40 

16 3 80 100 8 16 67 66,47 

17 2 80 50 20 13 71 102,23 

18 2 30 50 20 19 39 48,91 

19 2 80 100 20 22 63 123,95 

20 2 30 100 8 17 26 20,75 

21 2 30 50 8 3 11 15,69 

22 2 80 50 8 11 48 28,53 

23 2 30 100 20 21 49 38,85 

24 2 80 100 8 6 35 30,76 

25 4 80 100 20 28 35 230,18 

26 4 80 50 8 22 42 85,29 

27 4 30 100 8 9 58 32,50 

28 4 30 50 20 23 75 92,71 

29 4 80 100 8 24 37 56,84 

30 4 30 50 8 13 39 30,14 

31 4 80 50 20 33 57 216,20 

32 4 30 100 20 24 39 98,35 

A total of 32 instances with different execution parameters were solved in a randomized 

order; different sizes for the instances were also included as blocks to discard robustness 

loss related to problem size. 

4.2.1. Performance Analysis and Parameter Calibration 



Performance analysis in this stage is oriented to evaluate the H-MOSS robustness; this is 

analyzed evaluating the significance of the problem structure (topology and size of the 

problem) for the response variables related to each objective (total cost and load 

imbalance), these response variables measure each objective improvement capability; on 

the other hand, the experiment is oriented to calibrate execution parameters for the H-

MOSS. 

Execution parameters (ref-set size, initial population size and maximum number of 

iterations) are defined as main effects to analyze best results (calibration) and problem size 

parameters are set as blocks so that problem size effects may be extracted from execution 

parameters effects. As two different objectives are optimized, the experiments results have 

to be analyzed separately.  

Experiment results for the response variable related to cost improvement (% C) showed 

that the maximum percent reduction was 38% setting Ref-set size to 20 and 80 iterations, 

with and average percent improvement of 20%. Experiments included instances of 

different size which showed that the significant execution parameters are Ref-set size and 

Number of iterations. Normality, homoscedasticity and independence tests were carried 

out showing positive results (see Figure 36 in the Appendix). Figure 24 shows significance 

of the factors where factor A symbolizes Number of iterations, factor B represents Initial 

population size and factor C represents Ref-set size. Blocks were significant for this 

response variable, due to this, a parallel analysis was made to evaluate performance for 

instances of different size.    

Figure 24. Pareto Chart for Standardized Effects (% C) 
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Analysis of the response variable related to the load imbalance (% R) showed that blocks 

are not significant (level of significance of 0.95), this means that robustness of the method 

is not compromised by the size of the problem. Moreover, the experiment showed that 

maximum percent reduction was 94% setting Ref-set size to 20 and 80 iterations, with and 

average percent improvement of 50%. Experiments showed that the only significant 

execution parameter for this variable is the Ref-set size (Factor C, see Figure 25). 

Normality, homoscedasticity and independence tests were carried out showing positive 

results (see Figure 37 in the Appendix). 

Figure 25. Pareto Chart for Standardized Effects (% R) 

 

Experiments related to the response variable % C showed that the blocks (problem size 

parameters) were significant for a significance level of 0.95 (P-value = 0.019); to evaluate 

robustness of the solving strategy related to the problem size, a parallel analysis was 

executed setting the block variables and the significant (supported on the experiment 

results) execution parameters as main factors. 

The parallel analysis showed that at a higher number of clients, the probability of cost 

improvement (measured by the response variable % C) is higher; on the other hand, the 

experiment showed that for instances with a higher number of clients more iterations are 

needed to improve the response variable % C, this is explained by the significance of 

Number of iterations and Number of clients interaction, this is shown in Figure 27. This 

shows that there is no evidence of robustness loss for instances of higher number of clients. 

Figure 26 shows main effects charts for % C. 

Figure 26. Main effects charts for % C (Parallel analysis) 
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Figure 27. Interaction charts for % C (Parallel analysis) 

 

On the other hand, the parallel analysis shows that an increase of number of depots has a 

slight impact on the level of robustness for the solving strategy (see Figure 26). 
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Supported on the significant factors and their effects (see main effects charts in Figure 38 

and Figure 39 in the Appendix) parameters are set to Number of iterations at 80 and Ref-

set size at 20; due to the Initial population size low significance, this parameter is set to 

50 to reduce execution time. This is supported on cube charts for the response variables 

% C and % R (see Figure 28 and Figure 29). 

Figure 28. Cube chart for % C 

 

Figure 29. Cube chart for % R 
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Robustness of the solving strategy is very acceptable, although on instances with a high 

number of depots a slight robustness loss is observed measured by cost reduction 

capability; there is no proof for robustness loss for load imbalance reduction capability; this 

is proved by the low significance of block variables (problem size) on the response variable 

% R. Moreover, robustness of the solving strategy measured as execution time is proven 

by the execution time results, where the highest execution time was 230.18 seconds (less 

than 4 minutes) for a relatively large instance (300 clients and 8 depots). 

4.2.2. Optimality gap evaluation 

Results obtained with the H-MOSS were compared to exact results obtained with MILP 

mathematical model. Results for Solomon’s instances R101, RC101 and C101 with 10 

nodes and 20 nodes are presented below. 

4.2.2.1. 10 Nodes Instances 

Table 10. Results for Solomon’s R101 with 10 nodes 

R101 MILP H-MOSS 

Pareto 

Optimal 

Solution 

Cost Balance 
CPU Time 

(Seconds) 
Cost Balance 

CPU Time 

(Seconds) 

$ 4.976.101,64  1 23,85 $ 4.939.101,00  4 10,605 

$ 4.940.007,94  2 5,41 

   $ 4.940.007,94  2 6,49 

   



$ 4.933.853,28  4 22,2 

   $ 4.933.853,28  4 21,84 

 
 

 

Table 11. Results for Solomon’s RC101 with 10 nodes 

RC101 MILP H-MOSS 

Pareto 

Optimal 

Solution 

Cost Balance 
CPU Time 

(Seconds) 
Cost Balance 

CPU Time 

(Seconds) 

$ 8.035.758,29  10 9,87 $ 8.035.244,00  20 10,639 

$ 8.033.629,33  20 7,78 
 

  $ 8.031.233,17  30 27,58 
 

  
Table 12. Results for Solomon’s C101 with 10 nodes 

C101 MILP H-MOSS 

Pareto 

Optimal 

Solution 

Cost Balance 
CPU Time 

(Seconds) 
Cost Balance 

CPU Time 

(Seconds) 

$ 6.392.047,35  10 28,33 $ 6.393.041,00  10 9,235 

$ 6.391.043,33  30 292,78 
 

  $ 6.389.094,76  40 82,09 
 

  $ 4.804.100,79  50 51,25 
 

  
Figure 30. MILP and H-MOSS Pareto frontier comparison for 10 Nodes Solomon’s 

R101 

 

Figure 31. MILP and H-MOSS Pareto frontier comparison for 10 Nodes Solomon’s 

RC101 
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Figure 32. MILP and H-MOSS Pareto frontier comparison for 10 Nodes Solomon’s 

C101 

 

4.2.2.2. 20 Nodes Instances 

Table 13. Results for Solomon’s R101 with 20 nodes 

R101 MILP H-MOSS 

Pareto 

Optimal 

Solution 

Cost Balance 
CPU Time 

(Seconds) 
Cost Balance 

CPU Time 

(Seconds) 

$ 11.504.754,12  1 7.200,02 $ 9.872.108,00  13 13,85 

$8.031.000,00  
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$ 11.481.312,21  3 3.431,07 $ 9.863.646,00  13 13,85 

$ 11.479.747,00  9 2.795,46 

   $ 11.473.437,74  19 603,68 

   $ 11.459.877,51  24 453,48 

   $ 11.471.563,48  34 1.721,50 

   $ 9.858.492,63  50 2.714,57 

   
Table 14. Results for Solomon’s RC101 with 20 nodes 

RC101 MILP H-MOSS 

Pareto 

Optimal 

Solution 

Cost Balance 
CPU Time 

(Seconds) 
Cost Balance 

CPU Time 

(Seconds) 

$ 14.713.573,19  10 34,43 $ 14.835.273,23  10 15,303 

Table 15. Results for Solomon’s C101 with 20 nodes 

C101 MILP H-MOSS 

Pareto 

Optimal 

Solution 

Cost Balance 
CPU Time 

(Seconds) 
Cost Balance 

CPU Time 

(Seconds) 

$ 13.074.572,31  10 0,58 $ 12.872.995,00  30 13,605 

$ 12.875.650,98  20 448,75 
 

  
Figure 33. MILP and H-MOSS Pareto frontier comparison for 20 Nodes Solomon’s 

R101 

 

Figure 34. MILP and H-MOSS Pareto frontier comparison for 20 Nodes Solomon’s 

RC101 
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Figure 35. MILP and H-MOSS Pareto frontier comparison for 20 Nodes Solomon’s 

C101 

 

Table 16. Execution time comparison for 10 nodes instances 

Instance 

MILP average 

CPU time 

(Seconds) 

H_MOSS 

average CPU 

time (Seconds) 

% CPU 

time 

increment 

R101 15,958 10,605 50% 

RC101 15,07666667 10,639 42% 

C101 113,6125 9,235 1130% 

Table 17. Execution time comparison for 20 nodes instances 
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Instance 

MILP average 

CPU time 

(Seconds) 

H_MOSS 

average CPU 

time 

(Seconds) 

% CPU time 

increment 

R101 2702,825714 13,853 19411% 

RC101 34,43 15,303 125% 

C101 224,665 13,605 1551% 

In general terms, results show a good performance finding in most cases non-dominated 

solutions; dominated solutions found as best solutions by the H-MOSS algorithm are 

clearly close to the Pareto Frontier found by the MILP model. Table 16 and Table 17 show 

the percent increment of execution time for the exact method.  



5. IMPLEMENTATION OUTLINES 

As pointed out in the problem statement transportation is the most expensive process in 

logistics chain; furthermore, distribution operations are even more expensive than massive 

transportation. Information technologies may be a key element to increase transportation 

efficiency optimizing data processing and analysis and the decision making processes, to 

achieve this, the Intelligent Transportation System (ITS) development is an important field. 

Operations Research is an important theoretical framework to develop robust applications 

to automate and optimize decisions for transportation planning, however, due to the 

increasing dynamism in logistic operations, including physical distribution of goods, 

classical optimization approaches may not be complete for real life implementation; this is 

why in many cases optimization approaches may consider dynamic variables in the system 

such as: 

 Dynamic demand information 

 Dynamic service requests 

 Dynamic traffic information 

 Dynamic vehicle availability 

This type of distribution problems are called Dynamic Vehicle Routing Problems (DVRP). 

Up to this date DVRP’s have not been widely studied in the operations research field, 

probably because the difficulty of its nature; nevertheless, many technological advances 

have increased the interest in this type of problem, and also have made information 

technologies based on optimization approaches more feasible for real implementation. A 

full review for DVRP’s is presented in (Pillac et al. 2013). 

Physical distribution operations are different depending of the type of product, service, 

network configuration, strategic transportation operations (e.g. cross docking) and so on; 

this is why Vehicle Routing Problems have been classified in many variants: With Time 

Windows, Heterogeneous Fleet, Multiple Depots, Capacitated, Stochastic, Dynamic, etc. 

Information technologies for distribution systems must consider as many constraints and 

special characteristics as may be possible. This leads to a general view of VRP’s a general 

VRP considering many special characteristics and constraints, this general problem is 

called Multiple Attributes Vehicle Routing Problems (MAVRP), a full survey and synthesis 

for this family of problems is presented in (Vidal et al. 2013). Real life implementation of 

information technologies including basic algorithms and its support technology must 

consider this two situations: Dynamic Information and Multiple Attributes. 

The proposed (initial) solving strategy serve as a basis for the development of Dynamic and 

Multiple Attribute algorithms; also continuing its development will serve as a basis for the 

development of robust Decision Support Systems (DSS) for distribution operations; this 

DSS would support operative planning, providing optimized routing plans; however, the 

implementation of the solution strategy has to be preceded of other processes to provide a 

successful tool. These processes are summarized 4 phases. 

5.1. IMPLEMENTATION PHASE 1: System Characterization. 



A complete system characterization is proposed to properly design a DSS for the 

distribution operations; this is necessary to do requirements elicitation in a proper way, 

considering variables that may affect not only the optimization algorithm performance but 

software usability itself. The system characterization would be made considering two 

different dimensions: Distribution system characterization and Information technology 

characterization. 

 Distribution System Characterization: A complete analysis for the distribution system is 

proposed, including: installed infrastructure, human resources and system restrictions 

related to infrastructure constraints, product constraints, geographical constraints, 

customer constraints. 

 Information Technology Characterization: Current information technology and its 

processes must be analyzed; a characterization of current information systems such as 

ERP (Enterprise Resource Planning), TMS (Transportation Management System), WMS 

(Warehouse Management System), OMS (Order Management System), must be 

considered to properly link up the proposed DSS. 

5.2. IMPLEMENTATION PHASE 2: Data Mining 

The DSS is based on optimization algorithms (solving strategy) which have to be loaded 

with geographical, traffic, technical and financial information. To collect geographical 

information a Geographical Information System (GIS) is required, the GIS will aid to 

compute important geographical information needed to compute distance matrix, for 

example. Traffic information collection may be more difficult, because in-field data such as 

traffic counts to compute free flow velocity that is needed to estimate time travels, must be 

collected; this collection process must be designed and will probably need support 

technology and data mining and data warehousing techniques. Technical and financial 

information may be collected from other information systems, so system interfaces must be 

developed. 

5.3. IMPLEMENTATION PHASE 3: Software Design and Development 

In phase 3 software design must be done considering the system characterization and 

requirements elicitation done in phase 1; the design sub-phase must take into account 

software architecture aspects such as infrastructure needed to support the system. In the 

development sub-phase, adjustments to the general algorithm (solving strategy) must be 

taken into account to consider all constraints defined in phase 1. Define phase must 

consider the system users and their roles. 

5.4. IMPLEMENTATION PHASE 4: Validation and Final Implementation 

In this phase validation must be done solving simulated instances and solving instances 

with historic data. A process performance comparison must be done, comparing real 

historic data of executed plans and solutions provided by the DSS. In this phase software 

design validation must be done, and some modifications must be required. In final 

implementation all system users and administrators must be included, it is important to 

validate their roles, information access and properties. Final implementation must have a 



separate budget and must consider all the human resource aspects including resistance to 

change, training and professional profiles.  

  



6. CONCLUSIONS 

Vehicle routing problems are typical problems in distribution network operations planning 

and they are one of the most difficult problems to solve efficiently because of its 

combinatorial nature; on the other hand, vehicle routing problems with multiple depots are 

a more realistic approach to solve real life distribution operations, and they are even more 

challenging for optimization; moreover, logistics problems are indeed multi-objective and 

real life solutions must consider this condition. An extensive literature review was 

conducted and the literature analysis showed that most of the scientific development in this 

field (vehicle routing problems with multiple depots) is not oriented for multi-objective 

problems, with only 13 publications (11%); this showed an interesting line for research. 

Literature analysis also showed that the preponderant solution strategies are meta-

heuristics, being genetic algorithms and tabu search the most popular techniques. 

Literature review and analysis showed that a strict robustness analysis has not been made 

considering the method capability to find solutions with an equal expected quality, 

independently of the problem topology or size, up to this date the performance analysis has 

considered execution times quality of the solutions and (for multi-objective cases) Pareto 

Frontier distribution. A robustness analysis in three dimensions was proposed: Quality of 

solutions, execution times and the capability to generate equally expected quality of 

solutions independently of problem shape and size. 

This work presents the development of a new hybrid scatter search approach to solve the 

multi-objective vehicle routing problem with multiple depots (H-MOSS), minimizing total 

cost and load imbalance; moreover a new mixed integer linear programing mathematical 

model (MILP) was designed to aid for H-MOSS performance evaluation. The development 

of the mathematical model led to conclude that the multi-objective mathematical model 

minimizing total cost and load imbalance cannot be solved because of the discontinuous 

structure of the load imbalance function; however a new MILP formulation was proposed 

converting the load imbalance function into linear constraints to solve the problem as a 

MILP program. For the H-MOSS development, local improvement techniques based on 

classical heuristics, and multi-criteria heuristics were designed and adapted for this 

particular multi-objective problem; moreover, SPEA and SPEAII multi-objective 

evolutionary concepts were used to hybridize the MOSS procedure. 

H-MOSS results showed, based on formal experimentation, that the proposed solving 

strategy is quite robust for different problem structure including problem topology and 

problem size. On the other hand, exact results obtained for small instances versus H-MOSS 

results comparisons showed that the non-dominated solutions found are indeed solutions 

from the exact Pareto Frontier in most of cases, or at least very close to the Pareto Frontier; 

although, the proposed hybrid procedure showed difficulty to find a set of non-dominated 

solutions for small instances (only 1 non-dominated solution was found in most of cases). 

Execution times for the H-MOSS procedure are very acceptable for large instances, for 

instances of 300 clients and 8 depots the highest CPU time did not exceed 4 minutes. 

The aim of the development of robust solving strategies for distribution operations is to 

provide effective methods for decision making support. This solution strategy may serve as 



a basis model for Decision Support Systems (DSS) development. Implementation outlines 

were defined for this type of DSS. Implementation of optimization-based DSS is expected 

to have a positive impact in the efficiency (cost reduction and balanced resource utilization) 

of distribution operations, especially in local distribution. As indicated in the problem 

statement, transportation costs are 50% of total logistics costs which in turn represent up to 

15% of products final price; according to that, the positive impact in distribution efficiency 

is expected to reduce product unit cost, which may lead to increase industrial 

competitiveness. 

Future lines for research must consider knowledge gaps identified in the literature review 

analysis. These knowledge gaps can be classified in two: 

 Considerations for the problem structure towards real life implementation: Literature 

analysis showed that most of the works consider mono-objective problems; this may be 

a problem in real life applications, since logistics problems, and especially transportation 

problems are multi-objective by nature; moreover, most of the works consider classic 

objective functions such as total cost or total distance traveled. In addition, applications 

designed to support operative decisions in distribution systems must consider changing 

information, such as travel times, traffic, and even topographic information. Future 

works must consider multi-objective problems, considering not only financial objective 

functions but objectives related to time travel, load balance, and objectives related to 

systems sustainability e.g.: carbon footprint, fuel consumption etc. Future works must 

consider also changing information, this is an important field of research, and future 

lines for research must be oriented to develop robust algorithms to solve dynamic 

vehicle routing problems. 

 Considerations to develop robust solution methods: Future works must be oriented to 

provide robust solution strategies. To provide robust algorithms, robustness must be 

considered in three dimensions: Efficiency in execution times, optimality capabilities 

and independency for problem topology (size and shape). It has been shown that 

actually, the most adequate strategy to tackle this type of problem, with the aim to 

provide applications for real implementation, is to develop meta-heuristic algorithms. 

Future works have to consider the development of hybrid meta-heuristics, since it has 

been proved that for difficult problems the possibility to exploit characteristics of 

multiple types of heuristics and meta-heuristics lead to better solutions.   

To continue this work, a performance comparison with other approximate (classic and 

hybrid) methods is proposed due to lack of benchmark instances specifically for the 

MDVRP minimizing total cost and load balance. An improvement of initial population is 

proposed using fuzzy choice for heuristics and/or implementation of various classic 

techniques; furthermore, an improvement of inter-depot-inter-route local search is 

proposed. Finally, sustainable development is a very important field, due to this, the 

inclusion of objective functions related to carbon footprint is proposed. 
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Table 20. Variance analysis for % C 

Análisis de varianza para %Dif Costo (unidades codificadas) 

 

Fuente                             GL   SC Sec.  SC Ajust.  CM Ajust.      F 

Bloques                             3  0,042996  0,0429956  0,0143319   4,11 

Efectos principales                 3  0,093708  0,0937081  0,0312360   8,95 

  Num_Iter                          1  0,023014  0,0230141  0,0230141   6,60 

  Tam_Pobla                         1  0,000168  0,0001678  0,0001678   0,05 

  Tam_Refset                        1  0,070526  0,0705262  0,0705262  20,21 

2-Interacciones de (No.) factores   3  0,000367  0,0003666  0,0001222   0,04 

  Num_Iter*Tam_Pobla                1  0,000145  0,0001447  0,0001447   0,04 

  Num_Iter*Tam_Refset               1  0,000144  0,0001443  0,0001443   0,04 

  Tam_Pobla*Tam_Refset              1  0,000078  0,0000776  0,0000776   0,02 

3-Interacciones de (No.) factores   1  0,002044  0,0020436  0,0020436   0,59 

  Num_Iter*Tam_Pobla*Tam_Refset     1  0,002044  0,0020436  0,0020436   0,59 

Error residual                     21  0,073269  0,0732691  0,0034890 

Total                              31  0,212383 

 

Fuente                                 P 

Bloques                            0,019 

Efectos principales                0,001 

  Num_Iter                         0,018 

  Tam_Pobla                        0,829 



  Tam_Refset                       0,000 

2-Interacciones de (No.) factores  0,991 

  Num_Iter*Tam_Pobla               0,841 

  Num_Iter*Tam_Refset              0,841 

  Tam_Pobla*Tam_Refset             0,883 

3-Interacciones de (No.) factores  0,453 

  Num_Iter*Tam_Pobla*Tam_Refset    0,453 

Error residual 

Total 

 

Table 21. Variance analysis for % R 

Análisis de varianza para %Dif Balance (unidades codificadas) 

 

Fuente                             GL  SC Sec.  SC Ajust.  CM Ajust.     F 

Bloques                             3  0,22054   0,220544   0,073515  2,97 

Efectos principales                 3  0,24526   0,245256   0,081752  3,30 

  Num_Iter                          1  0,03728   0,037279   0,037279  1,51 

  Tam_Pobla                         1  0,00412   0,004122   0,004122  0,17 

  Tam_Refset                        1  0,20385   0,203855   0,203855  8,23 

2-Interacciones de (No.) factores   3  0,09249   0,092488   0,030829  1,24 

  Num_Iter*Tam_Pobla                1  0,00659   0,006588   0,006588  0,27 

  Num_Iter*Tam_Refset               1  0,00042   0,000419   0,000419  0,02 

  Tam_Pobla*Tam_Refset              1  0,08548   0,085481   0,085481  3,45 

3-Interacciones de (No.) factores   1  0,01437   0,014367   0,014367  0,58 

  Num_Iter*Tam_Pobla*Tam_Refset     1  0,01437   0,014367   0,014367  0,58 

Error residual                     21  0,52007   0,520070   0,024765 

Total                              31  1,09272 

 

Fuente                                 P 

Bloques                            0,055 

Efectos principales                0,040 

  Num_Iter                         0,233 

  Tam_Pobla                        0,687 

  Tam_Refset                       0,009 

2-Interacciones de (No.) factores  0,319 

  Num_Iter*Tam_Pobla               0,611 

  Num_Iter*Tam_Refset              0,898 

  Tam_Pobla*Tam_Refset             0,077 

3-Interacciones de (No.) factores  0,455 

  Num_Iter*Tam_Pobla*Tam_Refset    0,455 

Error residual 

Total 

 

 

Figure 36. Residuals graphs for % C 



 

Figure 37. Residuals graphs for % R 

 

Figure 38. Main effect charts for % C 
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Figure 39. Main effect charts for % R 
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