1,268 research outputs found

    Capacity scaling of multihop cellular networks

    Full text link
    Abstract—Wireless cellular networks are large-scale networks in which asymptotic capacity investigation is no longer a cliché. A substantial body of work has been carried out to improve the capacity of cellular networks by introducing ad hoc communica-tions, resulting in the so-called multihop cellular networks. Most of the previous research allows ad hoc transmissions between certain source and destination pairs to alleviate base stations’ relay burden. However, since reports show that Internet data traffic is becoming more and more dominant in cellular networks, we explore in this paper the capacity of multihop cellular networks with all traffic going through base stations and ad hoc transmissions only acting as relay. We first investigate the capacity of regular multihop cellular networks where both nodes and base stations are regularly placed. By fully exploiting the link rate variability, we find that multihop cellular networks can have higher per-node throughput than traditional cellular networks by a scaling factor of log 2 푛. Then, for the first time we extend our study to the capacity of heterogeneous multihop cellular networks where nodes are distributed according to a general Inhomogeneous Poisson Process and base stations are randomly placed. We show that under certain conditions multihop cellular networks can also outperform traditional cellular networks by a scaling factor of log 2 푛. Moreover, both throughput-fairness and bandwidth-fairness are considered as fairness constraints for both kinds of networks. I

    Impact of network structure on the capacity of wireless multihop ad hoc communication

    Full text link
    As a representative of a complex technological system, so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.Comment: 30 pages, to be published in Physica

    Capacity of Cellular Networks with Femtocache

    Full text link
    The capacity of next generation of cellular networks using femtocaches is studied when multihop communications and decentralized cache placement are considered. We show that the storage capability of future network User Terminals (UT) can be effectively used to increase the capacity in random decentralized uncoded caching. We further propose a random decentralized coded caching scheme which achieves higher capacity results than the random decentralized uncoded caching. The result shows that coded caching which is suitable for systems with limited storage capabilities can improve the capacity of cellular networks by a factor of log(n) where n is the number of nodes served by the femtocache.Comment: 6 pages, 2 figures, presented at Infocom Workshops on 5G and beyond, San Francisco, CA, April 201

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    An Upper Bound on Multi-hop Transmission Capacity with Dynamic Routing Selection

    Full text link
    This paper develops upper bounds on the end-to-end transmission capacity of multi-hop wireless networks. Potential source-destination paths are dynamically selected from a pool of randomly located relays, from which a closed-form lower bound on the outage probability is derived in terms of the expected number of potential paths. This is in turn used to provide an upper bound on the number of successful transmissions that can occur per unit area, which is known as the transmission capacity. The upper bound results from assuming independence among the potential paths, and can be viewed as the maximum diversity case. A useful aspect of the upper bound is its simple form for an arbitrary-sized network, which allows insights into how the number of hops and other network parameters affect spatial throughput in the non-asymptotic regime. The outage probability analysis is then extended to account for retransmissions with a maximum number of allowed attempts. In contrast to prevailing wisdom, we show that predetermined routing (such as nearest-neighbor) is suboptimal, since more hops are not useful once the network is interference-limited. Our results also make clear that randomness in the location of relay sets and dynamically varying channel states is helpful in obtaining higher aggregate throughput, and that dynamic route selection should be used to exploit path diversity.Comment: 14 pages, 5 figures, accepted to IEEE Transactions on Information Theory, 201
    corecore