16 research outputs found

    On the Catalyzing Effect of Randomness on the Per-Flow Throughput in Wireless Networks

    Get PDF
    This paper investigates the throughput capacity of a flow crossing a multi-hop wireless network, whose geometry is characterized by general randomness laws including Uniform, Poisson, Heavy-Tailed distributions for both the nodes' densities and the number of hops. The key contribution is to demonstrate \textit{how} the \textit{per-flow throughput} depends on the distribution of 1) the number of nodes NjN_j inside hops' interference sets, 2) the number of hops KK, and 3) the degree of spatial correlations. The randomness in both NjN_j's and KK is advantageous, i.e., it can yield larger scalings (as large as Θ(n)\Theta(n)) than in non-random settings. An interesting consequence is that the per-flow capacity can exhibit the opposite behavior to the network capacity, which was shown to suffer from a logarithmic decrease in the presence of randomness. In turn, spatial correlations along the end-to-end path are detrimental by a logarithmic term

    A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks

    Get PDF
    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled

    Towards a Simple Relationship to Estimate the Capacity of Static and Mobile Wireless Networks

    Full text link
    Extensive research has been done on studying the capacity of wireless multi-hop networks. These efforts have led to many sophisticated and customized analytical studies on the capacity of particular networks. While most of the analyses are intellectually challenging, they lack universal properties that can be extended to study the capacity of a different network. In this paper, we sift through various capacity-impacting parameters and present a simple relationship that can be used to estimate the capacity of both static and mobile networks. Specifically, we show that the network capacity is determined by the average number of simultaneous transmissions, the link capacity and the average number of transmissions required to deliver a packet to its destination. Our result is valid for both finite networks and asymptotically infinite networks. We then use this result to explain and better understand the insights of some existing results on the capacity of static networks, mobile networks and hybrid networks and the multicast capacity. The capacity analysis using the aforementioned relationship often becomes simpler. The relationship can be used as a powerful tool to estimate the capacity of different networks. Our work makes important contributions towards developing a generic methodology for network capacity analysis that is applicable to a variety of different scenarios.Comment: accepted to appear in IEEE Transactions on Wireless Communication

    Energy-Optimum Throughput and Carrier Sensing Rate in CSMA-Based Wireless Networks

    Get PDF
    Cataloged from PDF version of article.We propose a model for the energy consumption of a node as a function of its throughput in a wireless CSMA network. We first model a single-hop network, and then a multi-hop network. We show that operating the CSMA network at a high throughput is energy inefficient since unsuccessful carrier sensing attempts increase the energy consumption per transmitted bit. Operating the network at a low throughput also causes energy inefficiency because of increased sleeping duration. Achieving a balance between these two opposite operating regimes, we derive the energy-optimum carrier-sensing rate and the energy-optimum throughput which maximize the number of transmitted bits for a given energy budget. For the single-hop case, we show that the energy-optimum total throughput increases as the number of nodes sharing the channel increases. For the multi-hop case, we show that energy-optimum throughput decreases as the degree of the conflict graph corresponding to the network increases. For both cases, the energy-optimum throughput reduces as the power required for carrier-sensing increases. The energy-optimum throughput is also shown to be substantially lower than the maximum throughput and the gap increases as the degree of the conflict graph increases for multi-hop networks. © 2002-2012 IEEE

    Beamforming on Mobile Devices: A First Study

    Get PDF
    In this work, we report the first study of beamforming on mobile devices. We first show that beamforming is already feasible on mobile devices in terms of form factor, power efficiency and device mobility. We then investigate the optimal way of using beamforming in terms of power efficiency, by allowing a dynamic number of active antennas. We propose a simple yet effective solution, BeamAdapt, which allows each mobile client in a network to iteratively identify the optimal number of active antennas with fast convergence and close-to-optimal performance. Finally we report a WARP-based prototype of BeamAdapt and experimentally demonstrate its effectiveness in realistic environments. We also complement the prototype-based experiments with Qualnet-based simulation of a large-scale network. Our results show that BeamAdapt with four antennas can reduce the power consumption of mobile clients by more than half compared to omni directional transmission, while maintaining a required network throughput

    Characterization of the fundamental properties of wireless CSMA multi-hop networks

    Get PDF
    A wireless multi-hop network consists of a group of decentralized and self-organized wireless devices that collaborate to complete their tasks in a distributed way. Data packets are forwarded collaboratively hop-by-hop from source nodes to their respective destination nodes with other nodes acting as intermediate relays. Existing and future applications in wireless multi-hop networks will greatly benefit from better understanding of the fundamental properties of such networks. In this thesis we explore two fundamental properties of distributed wireless CSMA multi-hop networks, connectivity and capacity. A network is connected if and only if there is at least one (multi-hop) path between any pair of nodes. We investigate the critical transmission power for asymptotic connectivity in large wireless CSMA multi-hop networks under the SINR model. The critical transmission power is the minimum transmission power each node needs to transmit to guarantee that the resulting network is connected aas. Both upper bound and lower bound of the critical transmission power are obtained analytically. The two bounds are tight and differ by a constant factor only. Next we shift focus to the capacity property. First, we develop a distributed routing algorithm where each node makes routing decisions based on local information only. This is compatible with the distributed nature of large wireless CSMA multi-hop networks. Second, we show that by carefully choosing controllable parameters of the CSMA protocols, together with the routing algorithm, a distributed CSMA network can achieve the order-optimal throughput scaling law. Scaling laws are only up to order and most network design choices have a significant effect on the constants preceding the order while not affecting the scaling law. Therefore we further to analyze the pre-constant by giving an upper and a lower bound of throughput. The tightness of the bounds is validated using simulations

    Characterization of the fundamental properties of wireless CSMA multi-hop networks

    Get PDF
    A wireless multi-hop network consists of a group of decentralized and self-organized wireless devices that collaborate to complete their tasks in a distributed way. Data packets are forwarded collaboratively hop-by-hop from source nodes to their respective destination nodes with other nodes acting as intermediate relays. Existing and future applications in wireless multi-hop networks will greatly benefit from better understanding of the fundamental properties of such networks. In this thesis we explore two fundamental properties of distributed wireless CSMA multi-hop networks, connectivity and capacity. A network is connected if and only if there is at least one (multi-hop) path between any pair of nodes. We investigate the critical transmission power for asymptotic connectivity in large wireless CSMA multi-hop networks under the SINR model. The critical transmission power is the minimum transmission power each node needs to transmit to guarantee that the resulting network is connected aas. Both upper bound and lower bound of the critical transmission power are obtained analytically. The two bounds are tight and differ by a constant factor only. Next we shift focus to the capacity property. First, we develop a distributed routing algorithm where each node makes routing decisions based on local information only. This is compatible with the distributed nature of large wireless CSMA multi-hop networks. Second, we show that by carefully choosing controllable parameters of the CSMA protocols, together with the routing algorithm, a distributed CSMA network can achieve the order-optimal throughput scaling law. Scaling laws are only up to order and most network design choices have a significant effect on the constants preceding the order while not affecting the scaling law. Therefore we further to analyze the pre-constant by giving an upper and a lower bound of throughput. The tightness of the bounds is validated using simulations
    corecore