45 research outputs found

    Dynamic Virtual Network Restoration with Optimal Standby Virtual Router Selection

    Get PDF
    Title form PDF of title page, viewed on September 4, 2015Dissertation advisor: Deep MedhiVitaIncludes bibliographic references (pages 141-157)Thesis (Ph.D.)--School of Computing and Engineering and Department of Mathematics and Statistics. University of Missouri--Kansas City, 2015Network virtualization technologies allow service providers to request partitioned, QoS guaranteed and fault-tolerant virtual networks provisioned by the substrate network provider (i.e., physical infrastructure provider). A virtualized networking environment (VNE) has common features such as partition, flexibility, etc., but fault-tolerance requires additional efforts to provide survivability against failures on either virtual networks or the substrate network. Two common survivability paradigms are protection (proactive) and restoration (reactive). In the protection scheme, the substrate network provider (SNP) allocates redundant resources (e.g., nodes, paths, bandwidths, etc) to protect against potential failures in the VNE. In the restoration scheme, the SNP dynamically allocates resources to restore the networks, and it usually occurs after the failure is detected. In this dissertation, we design a restoration scheme that can be dynamically implemented in a centralized manner by an SNP to achieve survivability against node failures in the VNE. The proposed restoration scheme is designed to be integrated with a protection scheme, where the SNP allocates spare virtual routers (VRs) as standbys for the virtual networks (VN) and they are ready to serve in the restoration scheme after a node failure has been identified. These standby virtual routers (S-VR) are reserved as a sharedbackup for any single node failure, and during the restoration procedure, one of the S-VR will be selected to replace the failed VR. In this work, we present an optimal S-VR selection approach to simultaneously restore multiple VNs affected by failed VRs, where these VRs may be affected by failures within themselves or at their substrate host (i.e., power outage, hardware failures, maintenance, etc.). Furthermore, the restoration scheme is embedded into a dynamic reconfiguration scheme (DRS), so that the affected VNs can be dynamically restored by a centralized virtual network manager (VNM). We first introduce a dynamic reconfiguration scheme (DRS) against node failures in a VNE, and then present an experimental study by implementing this DRS over a realistic VNE using GpENI testbed. For this experimental study, we ran the DRS to restore one VN with a single-VR failure, and the results showed that with a proper S-VR selection, the performance of the affected VN could be well restored. Next, we proposed an Mixed-Integer Linear Programming (MILP) model with dual–goals to optimally select S-VRs to restore all VNs affected by VR failures while load balancing. We also present a heuristic algorithm based on the model. By considering a number of factors, we present numerical studies to show how the optimal selection is affected. The results show that the proposed heuristic’s performance is close to the optimization model when there were sufficient standby virtual routers for each virtual network and the substrate nodes have the capability to support multiple standby virtual routers to be in service simultaneously. Finally, we present the design of a software-defined resilient VNE with the optimal S-VR selection model, and discuss a prototype implementation on the GENI testbed.Introduction -- Literature survey -- Dynamic reconfiguration scheme in a VNE -- An experimental study on GpENI-VNI -- Optimal standby virtual router selection model -- Prototype design and implementation on GENI -- Conclusion and future work -- Appendix A. Resource Specification (RSpec) in GENI -- Appendix B. Optimal S-VR Selection Model in AMP

    Network-provider-independent overlays for resilience and quality of service.

    Get PDF
    PhDOverlay networks are viewed as one of the solutions addressing the inefficiency and slow evolution of the Internet and have been the subject of significant research. Most existing overlays providing resilience and/or Quality of Service (QoS) need cooperation among different network providers, but an inter-trust issue arises and cannot be easily solved. In this thesis, we mainly focus on network-provider-independent overlays and investigate their performance in providing two different types of service. Specifically, this thesis addresses the following problems: Provider-independent overlay architecture: A provider-independent overlay framework named Resilient Overlay for Mission-Critical Applications (ROMCA) is proposed. We elaborate its structure including component composition and functions and also provide several operational examples. Overlay topology construction for providing resilience service: We investigate the topology design problem of provider-independent overlays aiming to provide resilience service. To be more specific, based on the ROMCA framework, we formulate this problem mathematically and prove its NP-hardness. Three heuristics are proposed and extensive simulations are carried out to verify their effectiveness. Application mapping with resilience and QoS guarantees: Assuming application mapping is the targeted service for ROMCA, we formulate this problem as an Integer Linear Program (ILP). Moreover, a simple but effective heuristic is proposed to address this issue in a time-efficient manner. Simulations with both synthetic and real networks prove the superiority of both solutions over existing ones. Substrate topology information availability and the impact of its accuracy on overlay performance: Based on our survey that summarizes the methodologies available for inferring the selective substrate topology formed among a group of nodes through active probing, we find that such information is usually inaccurate and additional mechanisms are needed to secure a better inferred topology. Therefore, we examine the impact of inferred substrate topology accuracy on overlay performance given only inferred substrate topology information

    Mobility management architecture and modeling for label switched networks (mobility label based network) : a thesis

    Get PDF
    With the proliferation of IP based mobile applications network layer mobility management is expected to play an increasingly significant role in the architectures of the mobile networks. The mobile network evolution offers higher data rates and lower latencies that target mobile-to-mobile traffic patterns and applications that are all based on IP. However, the underlying network layer mobility management schemes employed in the 3G and 4G architectures are not optimized for mobile-to-mobile traffic patterns and result in the user- as well as the network-facing performance penalties that may be considered as inhibiting factors in the network evolution.We present a Mobility Label Based Network (MLBN) - a new approach to the network layer mobility management that relies on Multi-Protocol Label Switching (MPLS) and provides native integration between the MPLS-aware control and the MPLS-based forwarding planes. MLBN is a scalable, survivable hierarchical mobility management system capable of providing macro- and micro-mobility for IPv4 or IPv6 mobile hosts or routers without the use of Mobile IP while guaranteeing optimal traffic routing between the communicating mobile devices. MLBN uses MPLS to decouple the IP address assigned to a mobile node or a prefix served by a mobile router from the logical topology of the IP network thus resolving a topological conflict associated with the move of a mobile node from a home to a foreign IP network.When a user connects to the MLBN the mobile device is associated with a Mobility Label while maintaining the original IP address. The Mobility Label is then bound to the device’s IP address at the edge of the MLBN and this binding is advertised using the MPLS-aware control plane protocol into the label switched network. We show that it is possible to effectively update the network following the mobile node movements and perform optimal packet routing based on the modifiable sequence of the Label Switched Paths.Ph.D., Electrical Engineering -- Drexel University, 201

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Hybrid Routing in Delay Tolerant Networks

    Get PDF
    This work addresses the integration of today\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Hybrid routing in delay tolerant networks

    Get PDF
    This work addresses the integration of today\\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets
    corecore