579 research outputs found

    Hybrid clouds for data-Intensive, 5G-Enabled IoT applications: an overview, key issues and relevant architecture

    Get PDF
    Hybrid cloud multi-access edge computing (MEC) deployments have been proposed as efficient means to support Internet of Things (IoT) applications, relying on a plethora of nodes and data. In this paper, an overview on the area of hybrid clouds considering relevant research areas is given, providing technologies and mechanisms for the formation of such MEC deployments, as well as emphasizing several key issues that should be tackled by novel approaches, especially under the 5G paradigm. Furthermore, a decentralized hybrid cloud MEC architecture, resulting in a Platform-as-a-Service (PaaS) is proposed and its main building blocks and layers are thoroughly described. Aiming to offer a broad perspective on the business potential of such a platform, the stakeholder ecosystem is also analyzed. Finally, two use cases in the context of smart cities and mobile health are presented, aimed at showing how the proposed PaaS enables the development of respective IoT applications.Peer ReviewedPostprint (published version

    Activity Report 2020 : Automatic Control Lund University

    Get PDF

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Data-Driven Capacity Planning for Vehicular Fog Computing

    Get PDF
    The strict latency constraints of emerging vehicular applications make it unfeasible to forward sensing data from vehicles to the cloud for processing. To shorten network latency, vehicular fog computing (VFC) moves computation to the edge of the Internet, with the extension to support the mobility of distributed computing entities (a.k.a fog nodes). In other words, VFC proposes to complement stationary fog nodes co-located with cellular base stations with mobile ones carried by moving vehicles (e.g., buses). Previous works on VFC mainly focus on optimizing the assignments of computing tasks among available fog nodes. However, capacity planning, which decides where and how much computing resources to deploy, remains an open and challenging issue. The complexity of this problem results from the spatio-temporal dynamics of vehicular traffic, varying computing resource demand generated by vehicular applications, and the mobility of fog nodes. To solve the above challenges, we propose a data-driven capacity planning framework that optimizes the deployment of stationary and mobile fog nodes to minimize the installation and operational costs under the quality-of-service constraints, taking into account the spatio-temporal variation in both demand and supply. Using real-world traffic data and application profiles, we analyze the cost efficiency potential of VFC in the long term. We also evaluate the impacts of traffic patterns on the capacity plans and the potential cost savings. We find that high traffic density and significant hourly variation would lead to dense deployment of mobile fog nodes and create more savings in operational costs in the long term

    Hierarchical Control for Self-adaptive IoT Systems: A Constraint Programming-Based Adaptation Approach

    Get PDF
    The self-adaptation control of Internet of Things (IoT) systems ought to tackle uncertainties in the dynamic environment (application level), as well as the dynamic computation infrastructure (architecture level). While the control of those two levels is generally separated, they should coordinate to guarantee functionality and quality. This paper proposes a conceptual model for the separation of concerns in controlling the environment and infrastructure events. The approach is applied on a real case: Melle-Longchamp area's smart power transmission network (in France). A hierarchical architecture with a control mechanism formalized with constraint programming (CP) is modeled. The control system assesses the reconfigurations that enhance the quality of service (QoS) while considering the internal and external limitations. The CP considers the desired environment control modes and assesses their feasibility by computing the response time and availability using a Netflow algorithm. The outcomes of this research supported design decisions and provided architectural reconfiguration solutions to the French Power Transmission Company (RTE)
    corecore