
Hierarchical Control for Self-adaptive IoT Systems
A Constraint Programming-Based Adaptation Approach

Mahyar T. Moghaddam
University of Southern Denmark

mtmo@mmmi.sdu.dk

Eric Rutten
INRIA Grenoble

eric.rutten@inria.fr

Guillaume Giraud
RTE Paris

guillaume-np.giraud@rte-france.com

Abstract

The self-adaptation control of Internet of Things
(IoT) systems ought to tackle uncertainties in the
dynamic environment (application level), as well as
the dynamic computation infrastructure (architecture
level). While the control of those two levels
is generally separated, they should coordinate to
guarantee functionality and quality. This paper
proposes a conceptual model for the separation
of concerns in controlling the environment and
infrastructure events. The approach is applied on
a real case: Melle-Longchamp area’s smart power
transmission network (in France). A hierarchical
architecture with a control mechanism formalized with
constraint programming (CP) is modeled. The control
system assesses the reconfigurations that enhance the
quality of service (QoS) while considering the internal
and external limitations. The CP considers the
desired application level control modes and assesses
their feasibility by computing the response time and
availability using a Netflow algorithm. The outcomes of
this research supported design decisions and provided
architectural reconfiguration solutions to the French
Power Transmission Company (RTE).

keywords. Software architecture, Self-adaptation,
Constraint programming, Performance, Smart grid.

1. Introduction

The Internet of Things (IoT) includes a large
number of devices across various domains that
are interconnected to exchange data and provide
services. Due to distribution, heterogeneity,
context-dependability, and diversity of languages
and protocols, the internal and external risks impact
the IoT systems’ functionality and quality. In response
to these challenges, self-adaptation systems equip
IoT software systems with capabilities to cope with
contextual and internal dynamic risks. Self-adaptation
is generally performed by control elements that interact
with system components and the environment to

guarantee functionality and QoS. The adaptation
control is typically performed by an adaptation manager
that comprises the application logic and supervises the
managed system [1]. Making an adaptation decision
based on the mix of all adaptation possibilities in
the application and infrastructure levels may not
be traceable since the manager should cover a huge
search space to find an adaptation decision. We thus
believe that separating those two adaptation levels,
concentrating on each level, and providing a consensus
(or coordination mechanism) between the two levels
could solve the issues.

In previous work [2], we used queuing networks
(QNs) approach to model various control loops in
charge of architectural and application adaptations.
However, some questions should still be answered: i)
can the previous approaches separate the application
and architecture level concerns while addressing their
coordination to ease the adaptation decision-making?
ii) do previous methods which decide the composition
of computing elements in a probabilistic way optimize
the QoS? iii) how could the trade-off among several
non-functional requirements be considered to create
additional decision-making value? This paper
introduces novel methods to answer those questions.

The separation of concerns concept presented in this
paper is formalized with a constraint programming (CP)
approach. The CP first models the desired control
functions and specifies their priorities based on the
environmental risks. The feasibility of those control
mechanisms is further evaluated by a CP in charge
of assessing the quality of service associated with the
infrastructure and architectures. The CP formulates
and solves a linearized, time-indexed flow problem on
a network representing feasible packet transmission at
a suitable frequency. Moreover, the proposed model
could be easily evolved to integrate new application
or architecture characteristics to allow new QoS-related
constraints to be developed and added.

We apply our approach to a real smart grid
application: the Melle-Longchamp area (France).

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 7627
URI: https://hdl.handle.net/10125/80258
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

The main problem is dealing with overcurrent in
the transmission lines due to the excess of energy
generation in windfarms, which creates danger for
people and goods situated under the transmission
lines. Overloading in the lines happens because
environmental dynamics should be managed at
application and architecture levels by suitable actuation.
We design the self-adaptive software architecture of the
Melle-Longchamp case with a CP core to deal with the
issues mentioned above. We evaluate a set of scenarios
that consider various application control modes and
architectural reconfigurations to establish a reliable
hierarchical control mechanism for RTE. The paper
makes the following main contributions:

• Presenting a conceptual model that, while separating
the concerns on environmental and architecture levels
adaptation, addresses their coordination.

• Applying the approach concretely on a real smart grid
system to establish effective operation;

• Designing and evaluating a constraint programming
model with a structure enforcing the conceptual
separation of concerns. The CP model hierarchically
controls various system and environment aspects to
enhance the adaptation decision-making quality.

The paper is organized as follows. We performed a
literature review presented in Section 2. The separation
of adaptation concerns is presented in Section 3. We
specify the problem in Section 4 and formulate it in
Section 5. The experimental results and lessons learned
are discussed in Section 6, and the conclusions are
drawn in Section 7.

2. Literature Review
Predicting the uncertainties an IoT system could

face during its operation is challenging but necessary.
Such predictions at design-time (often outcomes of
modeling) input the knowledge-base of the system at
run-time. Several configurations are generally modeled
to be composed and selected based on dynamic goals
and situations. In this way, software architectures could
be designed based on expectations and further adapted
based on run-time dynamics. Adaptive systems could
specify strategies or generate different architectural
instantiations as models to find the best way of adapting
the structure and behavior of the system to changes [3].
Predefined strategies require design effort but impose
a low computation overhead, while run-time model
generations could explore optimal solutions with higher
computation power needed. While using architectural
adaptation provides benefits, the architecture’s control
mechanism that manages such adaptation could impact

the efficiency of adaptation. Optimization algorithms
could play the role of the adaptation decision-maker.

Self-optimized systems aim to adapt to changes that
may occur in their operational contexts, environments,
and system requirements in an optimized manner
[4]. Self-optimization through runtime adaptation
guarantees not only the functionality but also an
optimal trade-off among QoS requirements. Constraint
programming (CP) is used to act as architectural
reconfiguration decision-maker [5]. Mathematical
models could represent different dimensions and
characteristics of a system. The variations of
resource consumption, functions’ migration, network
allocation, and reconfiguration cost could be set to
optimize the functionality and QoS. The objective
functions support the selection of the most suitable
configuration regarding specific QoS dimensions. More
specific for IoT, CP techniques could find a suitable
configuration considering the distributed resources
impacted by contextual changes [6]. Using this decision
method could find a compromise between contradictory
systems and context dimensions. On the system side,
managing edge/fog/cloud based on CP could balance
cost and revenues while meeting the service and system
constraints [7]. Modeling major IoT systems with the
distributed collaborative cloud may impose challenges
regarding scalability. At the fog level, CP could
facilitate the development of generic service placement
[8]. Using CP for service placement can enhance
deployment constraints and objectives and provide a
trade-off between resolution times and solutions quality.

Optimization algorithms are used in the smart grid
domain but mostly in optimization of power flow that
deals with environmental concerns only (not QoS)
[9]. Some studies addressed QoS solutions to enhance
the performance of communication between the power
supplier and power customers. [10] derives the smart
grid QoS requirements via an optimization problem that
maximizes the total revenue and then proposes a routing
algorithm for the requirement of high-speed routing.

The approach presented in this paper builds on
top of the mentioned literature to present a conceptual
approach for application and architectural adaptation
by designing a CP that manages the adaptation
hierarchically. Our approach enables the IoT system to
monitor its own situation and the environment to reflect
it into the system’s architecture, realize opportunities for
QoS improvements, select a set of priorities and actions,
and execute changes within a feedback control loop.

3. Separation of Adaptation Concerns
3.1. Dynamics

Environment and infrastructure levels.
Self-adaptive systems generally deal with dynamic

Page 7628

environment as well as dynamic computation
infrastructure (Figure 1.a). Traditionally, those systems
are represented by managing, and managed systems
that get input from the environment [1] (Figure 1.b).
The managed system comprises the application logic
that provides the systems domain functionality. The
managing system supervises the managed system and
comprises the adaptation logic. The environment is the
real world by which the software system interacts [11].
The environment includes both physical and virtual
elements, that the system might not directly control
their functionality. We emphasize that a self-adaptive
system should be able to sense both contextual and
system events to act through physical and architecture
adaptation actuators.

Two dimensions of self-adaptation. In this work,
we target a generic architecture for a decomposition
between the two adaptation levels. As shown in Figure
1.a, it is possible to consider the dynamicity in different
manners. Static infrastructures in a static environment,
such as traditional large numeric computations in
High-Performance Computing (HPC), concerned most
computing systems until the 80s or 90s. Dynamic
environment with static computation infrastructure was
the case of, e.g., traditional hard real-time systems
where their very static implementation involved no
pointers for reasons of strict predictability. This
approach is used in very dynamic environments
like physical processes control (e.g., engines, signal
processing). Dynamic computation infrastructure that
does not consider changes in the environment is the case
of, e.g., off-line applications like simulation, modern
large numeric computations in HPC with dynamic
resource management. This dimension includes systems
that deal with dynamicity from fault tolerance and
”resilience or loss of resources through stealing”
by more priority applications or jobs. Dynamic
computation infrastructure, in coordination with the
dynamic environment management, is the more general
case where IoT/CPS belongs. In this space, both
dimensions have to be managed, but keeping a
separation of concerns with adequate coordination can
help to face the complexity of the design.

3.2. Coordination architecture
We propose the separation of concerns in controlling

the environment and infrastructure events. As shown in
Figure 1.c, the environment includes non-controllable
hardware, software, and physical space context that
interact with the IoT physical resources. The
sensors frequently retrieve raw data of events, and
actuators receive periodic action commands to affect
the environment. The mentioned data transmission

is continuous or event-based since the environment is
not under full control of the software system, and the
dynamics of the environment should be tackled.

In our approach, the managed system represents the
composition of IoT resources in the form of software
architecture models. An architecture, influenced by
the environment, guarantees specific functionalities
and QoS. The architectures could therefore adapt to
keep the desired functional and QoS according to
objective/policy. In this paper, modeling and further
simulating different architectures could support the
design decisions and tackle environmental and system
uncertainties. As shown in Figure 1.c, the manager
gets inputs from generated events to analyze and
plan for the system functionality by application-level
control and for the resources placement, migration, and
activation by architecture-level control. In other words,
the application-level control comprises the adaptation
logic that allows the system to perform the intended
adaptation within the environment and architecture-level
control supports a continuous reconfiguration in sensing,
computing, and actuating elements composition.

It is worth mentioning that the two levels
of control coordinate to adjust to each others’
situations and requirements. For instance, when
the application requires specific functionality with
QoS, the infrastructure chooses specific architectural
placements to satisfy those needs. On the contrary,
if the infrastructure faces some constraints regarding
the availability or performance of the resources,
the application chooses graceful degradation. The
coordination between the two levels can take care
of differences of methods and tools used for each
of them, e.g., managers can be designed in a simple
programmatic approach, using a general-purpose
language (C, Java, or Python), or a more specialized
language like EAC rules (Event-Condition-Action),
or behavioral models such as in Control Theory
(continuous or discrete). Other methods are CP, as
is done in deployment management in distributed
infrastructures [8], or machine learning (e.g.,
Reinforcement Learning in a feedback loop).

3.3. Architecture Reconfiguration
The above-explained approach could support

architecture reconfiguration. Figure 2 shows the generic
hierarchical architecture of IoT systems that could be
changed to distributed collaborative or centralized if
the situation requires. As shown in Figure 1, both
the architecture and application levels adopt MAPE-K
(Monitor- Analysis- Plan- Execute- Knowledge) [1]
control loops. At the application level, the MAPE-K
loop affects the environment. At the architecture level,

Page 7629

Application-Level Control

Architecture-Level Control

Coordination

IT software infrastructure

Environment

Managed System

Environment

Managing System

monitor affect

monitor adapt

events

eventsevents

actions (on physical resources)

actions (start/stop/migrate/modes)

In
fra

st
ru

ct
ur

e

En
vi

ro
ne

m
en

t

(b) (c)

Manager/Controller

Managed System

Monitor Analyze Plan Execute
K K K

Monitor Analyze Plan Execute
K K K

Self-adaptive Software System

monitor

dynamic

dynamic

Computation
Infrastructure

Environment

e.g. classical hard real-time systems

e.
g.

 o
ffl

in
e

ap
pl

ic
at

io
ns

e.g. self-adaptive IoT/CPS

(a)

Figure 1. a) dynamicity of computation infrastructure and/or environment, b) classical self-adaptation approach,

c) the proposed approach on separation of concerns for application and architecture self-adaptation.

it chooses among different instances of the architecture
in run-time to act on the system. At the architecture
adaptation level, decision-maker (a CP in this paper)
acts as the analysis and planning of the MAPE-K loop.
The goal is to automatically compute and plan a new
suitable system configuration model from an original
one. It could decide about the optimal placement of
functions on edge, fog, and cloud nodes.

In the beginning, various possible configurations
could be stored in knowledge base. The monitor
component frequently gathers the system’s state
information, and the potential for the reconfiguration
will be assessed by the analysis component. The
decision maker further plans for adaptation by
considering the current configuration model. It
then produces a set of executions that have to be
applied to possibly migrate functions to other local
or remote control elements. The executor relies on
actuators deployed on the edge/fog/cloud to apply the
migration actions [12, 13]. According to the run-time
conditions and constraints, the mentioned process can
be re-executed as many times as required. It is worth
mentioning that, since a real IoT system needs to run
several functions simultaneously, a level of computation
might be optimally performed locally and on another
level remotely [14]. The approach presented could
help dynamic distribution and placement of function
between edge, fog, and cloud. This dynamic migration
of software at the edge/fog/cloud highly impacts the
functionality and quality of IoT systems.

4. Problem Specification
Built upon [2], the conceptual model presented in

the previous section is applied to the RTE company’s
transmission network in the Melle-Longchamp area

Remote
Control

CLOUD

Perception &
Application

Control on
Network Edge

Control on
Device Edge Processor

Processor Processor

Network

Internet

M

Processor Processor

A P E M A P E M A P E M A P E

M A P E M A P E

M A P E

k k kk k k k k

k k k k k k k k k k k k

k k k

FOG FOG

Figure 2. IoT hierarchical architecture.

(France). The smart grid network includes 35
substations connected by 30 lines. In addition to the
power flowing through the network, the area contains
wind farms with a total peak production capacity of 300
MW. Such renewable generation is mainly connected
to the 20kV distribution grid but impacts the 90kV
transmission grid as well. Based on research performed,
the RTE company shifted from a traditional PLC-based
system to a smart adaptive system with hierarchical
decision-making to improve the transmission network’s
ability to connect more generations without building
new power lines. The area’s control infrastructure
takes advantage of servers on substations, gateways
(fog nodes) in a potential collaboration, and a powerful
central processor or alternatively cloud.

In the RTE case, we face two main challenges that
concern environment and infrastructure dynamics:

1. The potential overload on transmission lines due
to unplanned generation from renewable generators,
e.g., wind farms, when unexpected strong wind is
blowing needs to be managed. This context-related
problem may impose safety issues for humans or
objects located under the transmission lines.

Page 7630

2. To deal with environment-related issues, the
computation resources and functions should be
available. In addition to that, the performance should
be kept at an acceptable level to let the safety-critical
system quickly react in real-time.

4.1. Application Level Control
For the environment related concerns, various

solutions could be foreseen, such as limiting the
production on wind farms, charging batteries, opening
circuit breakers, or a combination of these solutions
[15]. Dealing with transmission overload risk
necessitates an area-wide control considering some
information from sensors such as values of currents
and voltages on every line, state of the network circuit
breakers, state of battery’s charge, and also a set of
parameters such as time to limit production of the wind
farms, current overload thresholds on every line and
eventually generator merit order [2]. At this level,
an adaptation of modes may be needed to handle the
situation. RTE has three control modes to manage the
physical environment:

• Mode 1: Fast action mode. Due to a critical situation
of the transmission network, a simple flow chart logic
is used to activate the circuit breakers only. This mode
is a fall-back plan of mode 2 as well. The computation
consumes a low CPU.

• Mode 2: Normal mode. The Model Predictive
Control (MPC) solver bases the computation on
a cost function to give the optimal use of all
levers (wind-farms modulation, batteries, and circuit
breakers) on a 60 seconds horizon. If no solution is
found in the allocated time slot, it switches to mode 1.
The computation consumes medium CPU.

• Mode 3: Enhanced forecasting mode. The system
receives forecasts for the next day’s generation and
weather (wind and sunlight). It also receives the
day-ahead studies result indicating the level of risk in
the area (alert condition is the higher risk assessment).
An enhanced MPC with a 4-hour horizon uses this
data on its model to determine if strong variations
of generation will occur if they will last for a long
time. It also considers the generators’ plan to stop
during the day (e.g., for maintenance purposes). With
all these parameters, it can make smarter decisions
with smoother operation. The computation consumes
high CPU.

By considering the modes mentioned above, the
choice between modes 3 and 2 is triggered by external
conditions (application). When New Area Zonal
Automatons (NAZA) platform [15] (an application level

controller used by RTE) gets all information needed,
and the infrastructure has no failure, mode 1 is not
generally used. If a risk is detected, mode 3 is
preferred. In the absence of risk, mode 2 is preferred
to be adopted. It is worth mentioning that the risk
level is determined by day-ahead studies based on wind
and grid forecasts. It is essential to consider that the
architecture level control mechanism presented in the
following subsection decides the feasible modes based
on the availability and performance requirements and
assigns the feasible degraded modes if needed.

4.2. Architecture Level Control
The architecture level control represents the system

as a hierarchical software architecture with various
levels of control, intending to deal with QoS challenges.
Figure 3 shows the global architecture of the area control
network. It consists of sensing, network facilities,
various processing and storage layers, as well as
actuation. Substations’ gateways are industrial servers
such as Advantech ECU-4787 or MOXA 681-C. Current
and voltage measurements (in protocol IEC61850) are
sent every second to the local gateway. The position
of the circuit breaker (in protocol IEC60780-5-104) is
sent to the local gateway on every event. Each gateway
can act as the central controller of the whole network,
with limited CPU capacity that is five times less than
the local controllers. Local controllers retrieve and store
data from the gateways, perform the computation, and,
based on the run-time requirements, either send the data
to the cloud or send the orders to the actuators.

As already mentioned, controlling the application
adaptation is performed by NAZA, which could
run on all fog and cloud nodes. NAZA platform
principally relies on RESTful API to communicate
with the gateways. The collected data is stored in
a MySql DBMS. The DBMS can also provide the
solver inner-component with summary and real-time
statistics. Besides, the system associated with the
simulator service allows the back office to monitor
the system state. The solver implements an MPC or
flow chart model (presented above) to optimize a cost
function to use levers such as battery set-points and
generation limit values. It gets real-time data from
the substations and calculates the values for actuators
every 5 seconds. In some cases that the algorithm
finds no solution or computation takes too long, simple
flow charts enforce safety rules such as curtailing all
necessary generations.

The application level adaptation that chooses and
places the NAZA control functions on processing
elements is managed by the constraint solving approach
presented in Sub-section 5.2. At this level, the

Page 7631

Circuit Breakers Set

i

Windmills Set

ii

Batteries Set

ii

Battery 1 Battery 2

Dashboards Set

ii

Dashboard 1 Dashboard 35

Windfarm 2Windfarm 1

Circuit Breaker 35

o

C
lo

u
d

NAZA Platform

S
o

lv
e
r

s
e
rv

ic
e

S
im

u
l.
 S

e
rv

ic
e

D
B

 s
e
rv

ic
e

o

o

Io
T

 A
c
tu

a
to

rs

i

Circuit Breaker 1

o

Transducers

o

Position Relays

o Io
T

 S
e

n
s

o
rs

Local
Servers

ioi

Gateway

o

Sub-Station 1

Transducers

o

Position Relays

o Io
T

 S
e

n
s

o
rs

Local
Servers

ioi

Gateway

o

Sub-Station 2

Transducers

o

Position Relays

o Io
T

 S
e

n
s

o
rs

Local
Servers

ioi

Gateway

o

Sub-Station 35

i

Figure 3. Software architecture of the transmission network.

RTE architecture is assessed based on availability and
performance indices, and architectural reconfiguration is
proposed. The availability is important since the system
shall be available at 99.99% of operation time. Since we
have only one control algorithm running at each time in
the transmission level, and the algorithm could run on all
processing elements over the network, the availability
issue could be overcome by dynamically reallocating
the material resources (e.g., CPU and bandwidth).
The main focus of this work is then performance,
since i) some types of sensors and actuators have
a significant service time, ii) enhanced forecasting
algorithms for generation require a notable computation
time, iii) network transmission and propagation delays
sometimes become long, and iv) the collaboration
pattern among local and remote control resources (with
various processing power) is not always efficiently
designed. In the RTE case, the computation response
time must be kept less than 2 seconds.

4.3. Application and Architecture Controls’
Coordination

When an environmental risk necessitates adaptation,
the architecture controller decides about the
reconfigurations and modes that satisfy the system
functionality and keeps the system response time within
the threshold. To do so, the system should consider
various combinations of the processing elements for
each mode, to assess if the data should be processed at
the fog, the central RTE controller, or cloud. Therefore,
the feasibility of a preferred mode should be assessed
by events on the infrastructure (telecommunication,
computing load, missing data) and QoS specifications.
If the infrastructure situations make adopting a preferred
mode impossible, a degraded mode will be triggered.
If no environmental risk is detected, the preference
is running mode 2, but if the infrastructure controller
sees QoS violation, mode 1 will be adopted. If a risk
(such as overload because of strong wind) is detected,
the preference is running the system with mode 3. If

it violates the QoS, mode 2 will be run, and the last
solution will be adopting mode 1. It is important to
note that the constraint program-based infrastructure
controller assesses the QoS associated with each mode
by considering different architectural configurations.

5. Problem Formulation
This section will formulate the control problem

in three levels: the application, architecture, and
coordination. We keep the CP formulation general to
advantage other domains and use-cases as well.

5.1. Application Level Formulation
The application self-adaptation control, which

perceives and acts on the environment, could be
performed using simple rules, model predictive control,
machine learning, and optimization algorithms. In
the case presented in this paper, if a strong wind
blows, the RTE control system should manage the
overload of the transmission lines by activating circuit
breakers, batteries, or wind-farm modulations. These
are handled by the three modes presented in the
previous section. Since the focus of this study goes
to architectural reconfiguration, we refer the interested
readers to an RTE previous work detailing MPC
algorithms [15], which models an overload management
system by mixing batteries and renewable generation
curtailment. In this paper, we consider the constraints
on choosing a mode in the presence and absence
of environmental risks by adopting a MAPE-K loop:
monitoring the environment, detecting and analyzing
potential risks, and deciding on mode selection and
execution. Therefore, considering B as a Boolean
variable specifying the environmental risks, and M=
{m1,m2, . . . ,mn} a set of modes to run on processing
element; mp represents the set of preferred modes at
specific time:

mp =

{
k if B=0, k ⊆M
z if B=1, z ⊆M

Page 7632

Section 5.3 explains that the mode selection is
exposed to feasibility check by infrastructure level
control. The quality tied up with modes and
architectures determines either running a preferred
mode is possible, or a degraded mode should be adopted.

5.2. Architecture Level Formulation
The construction of the IoT system shown in Figure

3 could be presented as a network (like Figure 4) which
includes sensors, communication links, processing
elements, and actuators. The corresponding graph
consists of nodes and arcs G=(V,A). Nodes correspond
to processors, sensors, and actuators. The arcs represent
the dependency (network links) between nodes, which
are exposed to network constraints. With no loss
of generality, arcs are supposed directed. Sensor
nodes represent the origins of the network and push
packets either frequently or in an event-based manner.
The actuator nodes receive the output of the network.
For simplicity, all the actuators are connected to an
imaginary destination: node 0. The computation
nodes have the different processing power. This is
why placement of computation on fog, central server,
or a cloud becomes a crucial aspect for availability
and performance. Figure 4 shows examples of
reconfiguration possibilities. The upper network shows
processing on a central node that could be RTE powerful
central server or cloud. This could also represent the
case that one of the fog nodes of a substation acts
as a central processor. The lower network shows a
distributed pattern in which fog nodes are in charge of
processing their substation with a potential collaboration
and data sharing to obtain a global view. We denote:
T = {0, 1, . . . , τ}, set of unit time slots;
ni = capacity of node i: the maximum nominal amount
of packets that i can host to process or service at
any time. We also consider a nc that is capacity of
computation node c, when c∈C⊆V;
yti = state of node i ∈ V at time t ∈ T , that is, the
number of packets being processed in i at t: this number
is a known model parameter for t = 0;
xtij = the number of packets moving from node i to an
adjacent node j in (t, t+ 1];
bij = bji = bandwidth (capacity) of the network between
node i and node j: this is the maximum amount of
packets that, independently from packets queue on node
j, can traverse the network in the time unit.

The flow model uses an acyclic digraphD with node
set V × T and arc set

E = {(i, t)→ (j, t+ 1) : ij ∈ A, t ∈ T}

D models all the feasible transitions (packets moves
between adjacent nodes) that can occur in the network in

the time horizon T . Transitions are associated with the
x-variables defined above, whereas y-variables define
the packet congestion at each time. Our objective is to
reduce the delay by maximizing the packets arrived at
the destination in a minimum time:

max yτ0 (1)

To find the minimum total time in which packets
arrive at the destinations, a max flow problem could
be solved for different τ looking for the least value
that yields (a zero value: if sending packets stops)
optimal solution. The method can thus provide
the decision-maker with the Pareto-frontier of the
conflicting objectives min{τ},max{yτd}. Assuming
that x and y are integer, the following constraints
guarantee the flow of packets in the network and sets
the capacities:

ytj − yt−1j −
∑
i:ij∈A

xt−1ij +
∑
i:ji∈A

xt−1ji = 0 (2)

j ∈ V, t ∈ T, t > 0

0 ≤ xtij + xtji ≤ bij t ∈ T, ij ∈ A (3)

0 ≤ yti ≤ ni t ∈ T, i ∈ V (4)

Stc =

{
0; if c is missed
nc; otherwise

t ∈ T, c ∈ C (5)

Equation (2) is just a flow conservation law: it
expresses the packets on node j at time t as the number
yt−1j of packets present at time t−1, augmented of those
that during interval (t − 1, t] transmit to j from another
node i 6= j, minus those that in the same interval leave
node j for another node i 6= j. Constraint (3) reflects
the limited communication capacity (bandwidth), and
constraint (4) puts a computation capacity limitation on
nodes. Constraint (5) is designed for the specific case
of assuring resiliency if a computation node is missed
because of an attack or fault. Thus, if a computation
node is missed, its temporal capacity (S) goes to zero,
and the situation of the network will be assessed in
the absence of that node. The linear structure of
the presented model allows its solution with a large
number of variables to improve model granularity.
More importantly, it can also help approximate the
non-linearities of arc capacities. In fact, cij constant
in (3) fails to model packets congestion. A more
accurate model of congestion requires arc capacity to
be a concave decreasing function of node occupancy.
Linearizing this function is quite standard [16] in
applications: we consider the three-pieces linearization
in our simulations.

Page 7633

5.3. Application and Architecture
Coordination Formulation

As already mentioned, the choice of modes is
influenced by the preference as well as the QoS. If
the set of modes M= {m1,m2, . . . ,mn} (including
k associated to non-risky and z associated to the
risky environment) is arranged in decreasing order of
preferences, let H ∈ R represent the quality threshold
and let Q denote the quality function (dynamic based on
architectural reconfiguration), then the objective of the
optimization function, O, can be defined as a piecewise
function, where the objective is to find the value of i 3:

O(i) =

{
mi; if Q(mi) < H

O(i+ 1); otherwise

The optimization function aims at finding the highest
priority mode in which the associated quality remains
under the threshold. We apply our CP-based control
approach to the RTE case through the experimentation
performed in the following section.

6. Experimentation
We next report the outcome of simulations using

the optimization model under various conditions and
configurations. We computed the minimum time
required of N packets (based on the scenario) to flow
through the network towards actuators in all tests.
We performed 12 simulations based on architecture
patterns and computation modes formulated by CP and
9 simulations on JMT [17]. This allowed us to compare
our approach with queuing networks application that
is already presented in the literature. To reduce
computation time in CP simulations, we computed the
optimal response time by logarithmic search, which
imposes many simulation iterations. In the simulations,
we considered 35 packets per second are sent from the
35 current/voltage sensors located in RTE substations
and few packets from position relays in specific events.
The code for CP simulation was written in OPL
language, and problems were solved by CPLEX version
12.8.0. We ran all the experiments on a Corei7 2.7GHz
computer with 16Gb of RAM memory under Windows
10 pro 64-bits.

While flowing through the network (Figures 4),
each packet takes a certain amount of service (CPU)
demand on each visited node. We set the model
parameters using the real data provided by the RTE
company. Table 1 shows the mean service time on
each component and layer. The table shows the service
time for various architectural reconfiguration scenarios
and the CPU needed for the three RTE operating
modes. The network delays are the sum of transmission
and propagation delays. Our CP model proposes the

best reconfiguration based on requirements imposed
due to environmental changes. Thus, the architectural
self-adaptation within our process is initiated by mode
adaptation and completed by computation placement
on different processors. In this study, we are mainly
concerned with mean computation response time, which
is the mean time spent for computation. We tested four
architectures with different computation placements for
each mode and situation imposed by the environment.
The possible architectural configurations are shown
in Figure 4, where the upper network corresponds
to central processing on either central RTE processor
or cloud, the middle network shows processing on
distributed fog, and the lower network shows distributed
processing on several collaborative fog nodes on which
a distributed version of the control algorithm is running.
It is worth mentioning that collaborative fog architecture
requires a distributed MPC that RTE has not yet
finalized. We simulate that architecture as well to
anticipate its potential advantages to RTE managers.

Table 1. Service times for the RTE system.Table 2. Service times for the Melle-Longchamp case.

Layer Service Center
Mean Service Time (milliseconds)

Centralized
RTE

Distributed
Fog

Collaborative
Fog

Hierarchical
Fog-Cloud

IoT Eelements (sensors)
Current/voltage 200
Position Relays 500

Network
Sense to Gateways (td+pd)

Gateways to Controllers (td+pd) 400 200 1200

Processing Controllers
Mode 1 15 35 10
Mode 2 200 440 150
Mode 3 800 1760 600

Network

Control to Dashboard (td+pd) 150
Control to Circuit Breakers (td+pd) 150

Control to Batteries (td+pd) 300
Control to Windmills (td+pd) 300

IoT Elements (actuators)

Dashboards

Circuit Breakers 100
Batteries 1000

Windmills 20000

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

107 108 109 110 111 112 113 114 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143

178 179

181 180

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

106

107 108 109 110 111 112 113 114 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143

178 179

181 180

71 72 73 74 75 76 77 78 79 80 81 82 83 84

85 86 87 88 89 90 91

92 93 94 95 96 97 98 99 100 101 102 103 104 105

70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

107 108 109 110 111 112 113 114 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143

178 179

181 180

Sensor Nodes

Fog Nodes

Actuator Nodes

Sensor Nodes

Fog Nodes

Actuator Nodes

Sensor Nodes

Fog Nodes

Actuator Nodes

Cloud Node /
Central Processor

Figure 4. Network associated to Melle area: hierarchical (and centralized not considering fog nodes),

distributed, and collaborative.

Simulation 1: Mode feasibility in environmental
risk situations. In the first simulation that intends to deal
with the environment, we assess the mode adaptation
and architecture reconfiguration based on infrastructural
constraints, environmental risk presentation, and mode
preferences. Based on Section 4.3, in case of no risk,
RTE prefers mode 2. Using the Netflow algorithm
presented in this paper for mode 2, all architectural
configurations keep the response time under the required
threshold of 2 seconds (See Table 2). However, the
MPC placement associated with mode 2 in collaborative
fog provided the minimum response time. If the
response time threshold requirement of RTE changes to
1 second, a transition to mode 1 and an architectural
reconfiguration to distributed or collaborative fog will
be required. If an environmental risk is detected,
the preferred mode 3 could be adopted but only if
architectural reconfiguration to collaborative fog or
hierarchical fog-cloud styles occurs. If, e.g., using a
centralized style is strictly required, the computation
component should run on degraded mode 2.

Page 7634

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

107 108 109 110 111 112 113 114 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143

178 179

181 180

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

106

107 108 109 110 111 112 113 114 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143

178 179

181 180

71 72 73 74 75 76 77 78 79 80 81 82 83 84

85 86 87 88 89 90 91

92 93 94 95 96 97 98 99 100 101 102 103 104 105

70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

107 108 109 110 111 112 113 114 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143

178 179

181 180

Sensor Nodes

Fog Nodes

Actuator Nodes

Sensor Nodes

Fog Nodes

Actuator Nodes

Sensor Nodes

Fog Nodes

Actuator Nodes

Cloud Node /
Central Processor

Figure 4. Network associated to Melle area: hierarchical (and centralized not considering fog nodes),

distributed, and collaborative.
Table 2. Response time for different modes and

configurations (seconds).

Mode 1 Mode 2 Mode 3

Centralized RTE 1.1 1.4 2.35

Distributed Fog 0.65 1.1 2.3

Collaborative Fog 0.95 1 1.9

Hierarchical Fog-Cloud 1.75 1.75 1.75

Simulation 2: Resiliency. This case which concerns
infrastructure evolution, assumes that some computation
nodes are missed due to either fault or cyber-attack. In
this case, the centralized styles cause a single point of
failure if the central computation component is missed.
In collaborative fog configuration (Figure 4, the network
on the bottom), we assume that nodes 90 and 91 are
missed, and we recalculate the performance. We see
that, while the availability requirement is satisfied, the
queue of packets increases the response time to 1.15,
1.3, and 2.25 seconds for mode 1, mode 2, and mode 3,
respectively. We observe that this situation leads to the
performance requirement violation in mode 3.

Simulation 3: Comparison with Queuing Networks
(QNs). We model the exact same system with
different architecture configurations with QNs, using
a probabilistic routing strategy. We used JMT [17]
to model and simulate the QNs. The results showed
that our proposed Netflow constraint program reduces

the response time (compared with QNs) in all modes
and architectural configurations: in centralized style by
22%, 13%, and 6%; in distributed fog style by 52%,
29%, and 13%; in collaborative fog style by 45%, 33%,
and 18%; and in hierarchical fog-cloud style by 19%,
19%, and 19%, for modes 1, 2, and 3 respectively. These
results could be due to avoiding packets’ congestion the
Netflow algorithm provides.

Lessons Learned. The work on modeling and
development of the Melle-Longchamp area smart grid
system is still ongoing. Our proposed approach and
experimentation results supported RTE company to set
their propositions towards a higher quality smart grid
system. We learned that, while the environmental
and infrastructural adaptations are performed by
different teams, they need to interact, coordinate, and
continuously input each other to satisfy functionality
and quality. We showed that the coordination of
the two levels of control is crucial to overcome the
external and internal risks. We learned that constraint
solving algorithms could be suitable decision-makers
to optimize the intended functionality and QoS. We
showed that architectural self-adaptation using CP
could provide optimal reconfiguration and migration of
software on processing elements. We observed that
using the proposed CP is compliant with real-time
applications since its computation requires 0.86 seconds

Page 7635

(presolve included) in the worst case. Our simulations
that are set based on real data support design phases by
giving ideas of various scenarios. This could be helpful
since, even if some functions and properties are not yet
available, they could contribute to the design methods.
Based on the results, we proposed to RTE to design the
control algorithms that could be distributed to provide a
better performance and reduce the possibility of failure.
This research’s proposed architecture reconfiguration
strategies helped RTE deal with the overcurrent situation
while improving QoS.

7. Conclusion
This paper presented an approach to separate

the concerns on application and architecture level
adaptations while keeping their coordination. We
formalized the approach with constraint programming
and applied it to a real smart power transmission
case. We established a feedback loop that considers
the preference on control algorithms and the possible
QoS satisfaction that architectural reconfiguration could
provide. Our approach proposed optimal architectural
adaptations to keep the response time at an acceptable
level. As future work, from the point of view of
constraints and models, we want to consider more
dynamics (e.g. speed and acceleration of variations)
in relation with Control Theory [18]. We intend to
consider resource consumption in our future scenarios
to assess the trade-off between performance and energy
consumption. The challenge of computation functions
placement on fog nodes is here addressed in a simplified
way, but a more elaborated consideration based on
run-time adaptation will be discussed.

Acknowledgement
This work was financially supported by European

commission through CPS4EU project that has received
funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 826276. The JU receives support
from the European Union’s Horizon 2020 research and
innovation program and France, Spain, Hungary, Italy,
Germany.

References

[1] D. Weyns, B. Schmerl, V. Grassi, S. Malek,
R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson,
H. Giese, and K. M. Göschka, “On patterns for
decentralized control in self-adaptive systems,” in
Software Engineering for Self-Adaptive Systems II,
pp. 76–107, Springer, 2013.

[2] M. T. Moghaddam, E. Rutten, P. Lalanda, and G. Giraud,
“Ias: an iot architectural self-adaptation framework,”
in European Conference on Software Architecture,
pp. 333–351, 2020.

[3] J. Cámara, D. Garlan, B. Schmerl, and A. Pandey,
“Optimal planning for architecture-based self-adaptation
via model checking of stochastic games,” in Proceedings
of the 30th annual ACM symposium on applied
computing, pp. 428–435, 2015.

[4] H. Khazaei, A. Ghanbari, and M. Litoiu, “Adaptation as
a service.,” in CASCON, pp. 282–288, 2018.

[5] C. Parra, D. Romero, S. Mosser, R. Rouvoy, L. Duchien,
and L. Seinturier, “Using constraint-based optimization
and variability to support continuous self-adaptation,” in
Proc. 27th ACM Symp. on Applied Computing, 2012.

[6] N. Gamez, D. Romero, L. Fuentes, R. Rouvoy,
and L. Duchien, “Constraint-based self-adaptation of
wireless sensor networks,” in 2nd int. workshop on
adaptive services for the future internet and 6th int.
workshop on web APIs and service mashups, 2012.

[7] Z. Al-Shara, F. Alvares, H. Bruneliere, J. Lejeune,
C. Prud’Homme, and T. Ledoux, “Come4acloud:
An end-to-end framework for autonomic cloud
systems,” Future Generation Computer Systems,
vol. 86, pp. 339–354, 2018.

[8] F. A. Salaht, F. Desprez, A. Lebre, C. Prud’Homme, and
M. Abderrahim, “Service placement in fog computing
using constraint programming,” in 2019 IEEE Int. Conf.
on Services Computing (SCC), 2019.

[9] S. S. Reddy, V. Sandeep, and C.-M. Jung, “Review
of stochastic optimization methods for smart grid,”
Frontiers in Energy, vol. 11, no. 2, pp. 197–209, 2017.

[10] H. Li and W. Zhang, “Qos routing in smart grid,”
in 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, pp. 1–6, IEEE, 2010.

[11] J. Cámara, B. Schmerl, and D. Garlan, “Software
architecture and task plan co-adaptation for mobile
service robots,” in Proceedings of the IEEE/ACM 15th
Int. Symp. on Software Engineering for Adaptive and
Self-Managing Systems, 2020.

[12] H. Muccini and M. T. Moghaddam, “Iot architectural
styles,” in European Conference on Software
Architecture, pp. 68–85, Springer, 2018.

[13] H. Muccini, R. Spalazzese, M. T. Moghaddam,
and M. Sharaf, “Self-adaptive iot architectures: An
emergency handling case study,” in Proceedings of the
12th European Conference on Software Architecture:
Companion Proceedings, pp. 1–6, 2018.

[14] M. T. Moghaddam and H. Muccini, “Fault-tolerant iot,”
in International Workshop on Software Engineering for
Resilient Systems, pp. 67–84, Springer, 2019.

[15] C. Straub, S. Olaru, J. Maeght, and P. Panciatici, “Zonal
congestion management mixing large battery storage
systems and generation curtailment,” in 2018 IEEE Conf.
on Control Technology and Applications (CCTA), 2018.

[16] C. Arbib, M. T. Moghaddam, and H. Muccini,
“Iot flows: a network flow model application to
building evacuation,” in A View of Operations Research
Applications in Italy, 2018, pp. 115–131, Springer, 2019.

[17] M. Bertoli, G. Casale, and G. Serazzi, “Jmt:
performance engineering tools for system modeling,”
ACM SIGMETRICS Performance Evaluation Review,
vol. 36, no. 4, pp. 10–15, 2009.

[18] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas,
H. Müller, H. Giese, R. Rouvoy, and E. Rutten,
“What Can Control Theory Teach Us About Assurances
in Self-Adaptive Software Systems?,” in Software
Engineering for Self-Adaptive Systems 3: Assurances,
vol. 9640 of LNCS, Springer, May 2017.

Page 7636

