2,951 research outputs found

    Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence

    Get PDF
    Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675–775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning

    Remote Sensing of Sun-Induced Chlorophyll Fluorescence for Advanced Ecosystem Evapotranspiration Estimates

    Get PDF
    A precise ecosystem evapotranspiration (ET) estimate is essential for understanding the complex relationship between plants' energy-water-carbon fluxes. Besides, robust ecosystem ET estimation under different water stresses can provide insight into plants' response to extreme weather and environmental conditions. However, for such very preciseness, we must accept the individual and comprehensive interlinked mechanistic relationships between ecosystem ET and its controlling variables for determining the response of ecosystem ET towards extreme climate events. Due to recent drought events in the European continent since the 2000s, many geographical hotspots are getting attention to understanding the complicated mechanistic relationship between ecosystem ET and its controlling variables under such extreme water stress conditions. Consequently, precise ecosystem ET estimation of the European continent's water-stressed ecosystems, i.e. agriculture, will give insight into the sustainability of Europe's agricultural production to ensure sufficient food for millions of people in future. The recent heatwaves and drought in 2018 impacted ecosystem ET substantially over the European continent, which may be a big concern for the European ecosystems' future water, energy, and CO2 balance. The research outcomes of the first research article (c.f. Ahmed et al., 2021) showed that the European continent had up to 50% reduced ecosystem ET compared to a 10-year reference period due to a combined heatwave and drought event in 2018. The results also showed extreme surface air temperature (Tsa) and precipitation (P) anomalies. Due to such extreme climatic phenomena, agricultural land, mixed natural vegetation, and the European continent's non-irrigated agricultural areas were mainly affected. In conclusion, the first research article explains the importance of modelling precise ecosystem ET in variable time and space. However, modelling and estimating precise ecosystem ET is still challenging, especially under extreme climates within continuous time and ample variable space. Remote sensing (RS) data based modelling approaches often encounter uncertainties due to complex parameterizations of different variables for ecosystem ET modelling schemes. Further, uncertainties may be introduced by different data types, data quality, multi-sensor systems, and spatio-temporal resolution of satellite images. The growing advancement of using RS based sun-induced chlorophyll fluorescence (SIF) for ecosystem studies has introduced SIF's use case for ecosystem ET estimates. However, previous studies have limitations due to applying specific ET models, only considering energy or water constraints and different strategies to add SIF in such specifically selected models. The second research article (c.f. Ahmed et al., 2023) investigated possible SIF integration in an advanced ecosystem ET modelling scheme. The research considers the mechanistic relationships between SIF and ecosystem ET and their abiotic and biotic drivers. The results concluded the best possible ways of empirically applying SIF for ecosystem ET estimates under water-limited and well-watered conditions under an experimental setup in maize crop fields in northern Italy. The research assesses the absolute and relative sensitivity of several SIF based ecosystem ET estimation strategies for evolving soil water limitation using extensive in-situ and airborne RS data acquired during the water limitation experiment. The study evaluated five strategies to integrate SIF in an ecosystem ET modelling framework based on the Penman Monteith (PM) and the Ball-Berry-Leuning (BBL) models. The results showed that replacing canopy conductance (including canopy resistance and leaf's net CO2 assimilation rate), leaf area index and net radiation with SIF significantly correspond with in-situ reference ecosystem ET (unit based conversion of measured sap flow) under evolving water limitation. Indeed, considering a single SIF as an indirect proxy for ecosystem ET with a one-to-one relationship showed inconsequential outcomes. In conclusion, the research's outcomes give insight into the importance and scientific advantage of applying SIF in a multi-sensors RS data based framework to increase the sensitivity of SIF based ecosystem ET estimates for evolving water limitations. Besides, the results highlighted the uses of SIF for the scientific advancement of ecosystem drought monitoring. Recent studies have proposed the usability of SIF to establish SIF-based drought indices (DIs) using comparatively coarse spatio-temporal resolution RS data. However, the temporal and spatial sensitivity of such newly proposed SIF-based DIs for growing crop water limitation with higher spatio-temporal resolution RS data must be determined. Therefore, the third Ph.D. research article (in review) conducted a temporal and spatial sensitivity analysis of SIF-based DI for gradually increasing soil and crop water limitation for different crop types. Temporal sensitivity analysis of the study showed that SIF based DI is sensitive throughout evolving soil water limitations, and traditional optical index (OI) based DI is only sensitive at extreme soil water limitations. However, both DIs showed their sensitivity towards the highest soil water limitation. Spatial sensitivity analysis reveals that SIF based DI is sensitive towards decreasing plant available water (PAW) zones and continues till the lowest PAW zones, and OI based DI is only sensitive in the lowest PAW zones. Furthermore, like the temporal analysis, from the spatial analysis, it is also visible that both DIs are sensitive towards the lowest PAW. The research concludes that both SIF based and traditional OI based DIs are sensitive to increasing soil and crop water limitation; however, the experimental setup was not sufficient to say that SIF based DI can be more beneficial for monitoring crop water limitation throughout drought events than OI based DI, instead, both DIs can be applied for monitoring evolving soil and crop water limitation within shorter spatio-temporal scales. Besides, SIF based DI can be applicable for predicting early crop water limitation and promoting incentive preparation for drought, but further studies within different ecosystems with different environmental conditions are needed. In contrast, resulting ecosystem ET values and SIF have been examined with their absolute, relative, temporal, and spatial sensitivities under different soil and crop water availability for monitoring and predicting early plants’ water limitation within different spatio-temporal scales in various spaces and times. Combining all three research articles gives a forward consideration towards the sensitivity of SIF for robust forward ecosystem ET modelling and SIF embedded drought monitoring application within an advanced multi-sensors RS data modelling approach

    Airborne lidar experiments at the Savannah River Plant

    Get PDF
    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed

    Comparison of Measurements and FluorMOD Simulations for Solar Induced Chlorophyll Fluorescence and Reflectance of a Corn Crop under Nitrogen Treatments [SIF and Reflectance for Corn]

    Get PDF
    The FLuorescence Explorer (FLEX) satellite concept is one of six semifinalist mission proposals selected in 2006 for pre-Phase studies by the European Space Agency (ESA). The FLEX concept proposes to measure passive solar induced chlorophyll fluorescence (SIF) of terrestrial ecosystems. A new spectral vegetation Fluorescence Model (FluorMOD) was developed to include the effects of steady state SIF on canopy reflectance. We used our laboratory and field measurements previously acquired from foliage and canopies of corn (Zea mays L.) under controlled nitrogen (N) fertilization to parameterize and evaluate FluorMOD. Our data included biophysical properties, fluorescence (F) and reflectance spectra for leaves; reflectance spectra of canopies and soil; solar irradiance; plot-level leaf area index; and canopy SIF emissions determined using the Fraunhofer Line Depth principal for the atmospheric telluric oxygen absorption features at 688 nm (O2-beta) and 760 nm (O2-alpha). FluorMOD simulations implemented in the default "look-up-table" mode did not reproduce the observed magnitudes of leaf F, canopy SIF, or canopy reflectance. However, simulations for all of these parameters agreed with observations when the default FluorMOD information was replaced with measurements, although N treatment responses were underestimated. Recommendations were provided to enhance FluorMOD's potential utility in support of SIF field experiments and studies of agriculture and ecosystems

    CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands

    Full text link
    The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO2 fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the "Fluorescence Explorer" (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype airborne sensor AirFLEX quantified fluorescence in the oxygen A and B bands, (ii) a hyperspectral spectrometer (ASD) measured reflectance along transects during 12 day courses, (iii) spatially high resolution georeferenced hyperspectral data cubes containing the whole optical spectrum and the thermal region were gathered with an AHS sensor, and (iv) the first employment of the high performance imaging spectrometer HYPER delivered spatially explicit and multi-temporal transects across the whole region. During three measurement periods in April, June and September 2007 structural, functional and radiometric characteristics of more than 20 different vegetation types in the Les Landes region, Southwest France, were extensively characterized on the ground. The campaign concept focussed especially on quantifying plant mediated exchange processes (photosynthetic electron transport, CO2 uptake, evapotranspiration) and fluorescence emission. The comparison between passive sun-induced fluorescence and active laser-induced fluorescence was performed on a corn canopy in the daily cycle and under desiccation stress. Both techniques show good agreement in detecting stress induced fluorescence change at the 760 nm band. On the large scale, airborne and ground-level measurements of fluorescence were compared on several vegetation types supporting the scaling of this novel remote sensing signal. The multi-scale design of the four airborne radiometric measurements along with extensive ground activities fosters a nested approach to quantify photosynthetic efficiency and gross primary productivity (GPP) from passive fluorescence

    Investigating Forest Photosynthetic Response to Elevated CO2 Using UAV-Based Measurements of Solar Induced Fluorescence

    Get PDF
    The response of ecosystems to increasing atmospheric CO2 will have significant, but still uncertain, impacts on the global carbon and water cycles. A lot of infounation has been gained from Free Air CO2 Enrichment (FACE) experiments, but the response of mature forest ecosystems remains a significant knowledge gap. One of the challenges in FACE studies is obtaining an integrated measure of canopy photosynthesis at the scale of the treatment ring. A new remote sensing approach for measuring photosynthetic activity is based on Solar Induced Fluorescence (SIF), which is emitted by plants during photosynthesis, and is closely linked to the rates and regulation of photosynthesis. We proposed that UAV-based SIF measurements, that enable the spectrometer field of view to be targeted to the treatment ring, provide a unique opportunity for investigating the dynamics of photosynthetic responses to elevated CO2. We have successfully tested this approach in a new FACE site, located in a mature oak forest in the UK. We flew a series of flights across the experiment arrays, collecting a number of spectra. We combined these with ground-based physiological and optical measurements, and see great promise in the use of UAV-based SIF measurements in FACE and other global change experiments.Peer reviewe
    • …
    corecore