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How terrestrial ecosystems respond to environmental changes affects the well-

being of human society. Thus, extreme climate events, increasing the atmospheric 

concentration of CO2, and drastic changes in temperature are sources of major concern. 

However, our current capacity to understand and predict these responses is still limited 

because a myriad of physical, chemical, and biological processes are involved. While 

many mechanistic-based land surface models have been developed, their performances 

remain relatively poor and require continuous improvement. While ground-based and 

space-based observational datasets of the surface of the Earth have been available for a 

long time, their linkages to the functional aspects of the processes in terrestrial 

ecosystems often are weak. In this study, I used the approach of integrating in-situ 

measurements, land surface models, and remote sensing by satellites. I hypothesized that, 

through such integration, the impacts of environmental changes on terrestrial processes at 

multiple scales could be better understood and even predicted, especially the impacts 

related to the functions of important ecosystems. I tested this hypothesis at the local, 

regional, and global scales. 
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At the local scale, i.e., at a Midwest forest site known as the isoprene volcano of 

the world, I examined the effects of droughts on the emissions of isoprene, which is the 

most abundant, non-methane, biogenic volatile organic compound. I compared flux tower 

observations with simulations performed by a state-of-the-art land model (CLM) coupled 

with the model of emissions of gases and aerosols from Nature version 2.1 (MEGAN2.1), 

and I used these observations to develop an understanding of how the amount of moisture 

in the soil and the ambient temperature affect the prediction of isoprene emissions during 

droughts. I found that temperature had a delaying effect on isoprene emissions, which are 

sensitive to variations in the moisture content of the soil. Thus, during drought 

conditions, both the delaying effect and the sensitivity to moisture are overlooked by the 

model. A better model that does not have these two shortcomings is required for realistic 

predictions of isoprene emissions. 

At the regional scale, I investigated the potential of using sun-induced chlorophyll 

fluorescence (SIF) retrieved from a satellite to monitor vegetation activities in an arid 

region and a semi-arid region in Australia. I chose these two types of regions for this 

investigation because the ecosystems in such regions have important effects on the global 

carbon cycle, while their contributions are poorly constrained in global carbon budgets. I 

found that SIF was synchronized better with the activity of vegetation than other indices 

that are commonly used for this purpose. I quantified the relationships between the 

various activities of plants and the amount and frequency of precipitation, and I was able 

to demonstrate that, over the region being studied, SIF represented the activity of 

vegetation in response to the availability of water better than other, remotely-sensed 

variables. 

At the global scale, I used multiple model ensembles to determine the climatic 

and anthropogenic controls on the terrestrial evapotranspiration trends from 1982 to 
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2010. After climatic influences, increases in CO2 were found to be the second-most 

dominant factor that affected the trend of ET. CO2 causes a decreasing trend in the 

canopy’s transpiration and ET, and this is especially of concern for tropical forests and 

high-latitude shrub lands. The increased deposition of nitrogen amplifies the global ET 

slightly due to enhanced growth of plants. On a global scale, land-use-induced ET 

responses are minor, but they can be significant locally, particularly over regions with 

intensive changes in the land-cover. The results of my studies demonstrated that 

integrating in-situ measurements, models of the surface on the land, and remote sensing 

using satellites can provide insights regarding the impacts of environmental changes on 

terrestrial processes at multiple scales. This approach is particularly important when 

models are imperfect and observations are lacking. My findings indicated ways that 

future models can be improved and identified key observational needs for the functions 

of terrestrial ecosystems. 
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CHAPTER 1: Introduction 

1.1. MOTIVATION AND OBJECTIVES 

Terrestrial ecosystems are the backbone of all life on Earth, and they provide the 

essential resources that people need. Everything we eat comes directly or indirectly from 

plants. Throughout human history, approximately 7,000 different plant species have been 

used as food because of their ability to store carbon and produce nutrition for people and 

animals. Plants also help regulate the water cycle by moving water from the soil to the 

atmosphere in what is, in reality, a purification process. The terrestrial ecosystem 

involved many complicated biogeochemical and biogeophysical processes. All these 

processes are influenced by atmospheric conditions, and they also give feedback to the 

climate. Past studies have shown that, in the near future, climate change is likely to 

increase global temperatures by at least 2 oC and to reduce precipitation significantly 

during the summer months compared to the amounts of precipitation that occurred from 

1986 through 2005 (IPCC, 2014). Also, there is substantial evidence that climate change 

will result in the increased frequency and intensity of extreme events on the Earth, such 

as heat waves and droughts during the summer months (Perkins et al., 2012). In addition, 

intensification of the global hydrological cycle has been observed over the past few years 

(Gedney et al., 2014). Therefore, it is important to understand how all of these important 

climatic changes might interact with environmental conditions.  

1.2. RESEARCH FOCUSES 

1.2.1. Isoprene Emission under Drought 

I am interested in studying isoprene emissions during drought conditions because 

this compound is produced by plants and is an important component in many reactions 
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that occur in the biosphere. Isoprene (2-methyl-1,3-butadiene, C5H8) is the second most 

abundant biogenic volatile organic compound (BVOC) in the terrestrial ecosystem. Its 

production on a global basis amounts to 570 Tg/year (Guenther et al., 1995), which is 

associated with carbon assimilation (Minson & Fall, 1989; Loreto & Sharkey, 1990; 

Lerdau et al., 1997; Guenther 2002). Thus, this compound offers great promise for 

productive studies of atmospheric chemistry (Houwelling et al., 1998; Greanier et al., 

2000; Collins et al., 2002).  

Regarding the response of isoprene emissions to drought, some leaf-level studies 

have suggested the isoprene is characterized by a protective action when deficits in water 

cause stress (Sharkey & Loreto, 1993; Fortunati et al., 2008). The emissions of this 

compound also have been found to have a different response to drought conditions than 

the emissions of CO2. Explanations for these phenomena are that the biosynthesis of 

isoprene is catalyzed by enzyme isoprene synthase (ISPS) (Schnitzler et al., 1996). The 

isoprene synthase protein is produced in the chloroplast, and roughly 80% of the carbon 

in the isoprene molecule is derived from newly-assimilated photosynthetic intermediates 

in unstressed plants. When drought conditions exist, the production of carbon via 

photosynthesis in plants decreases, but a shift to alternative sources of carbon can sustain 

the production of isoprene. (Funk et al., 2004). Isoprene also is considered to improve the 

thermotolerance of leaves, thereby protecting photosynthetic membranes, i.e., the 

thylacoids, from permanent damage during severe conditions (Penuelas et al., 2005; 

Sharkey and Singsaas, 1995; Velikova and Lereto, 2005).  

To more reliably estimate isoprene emissions during drought, several sensitivity 

studies have quantified the contributions of the principal environmental variables 

(Guenther, 2006; Wiedinmyer et al., 2001). Temperature has been found to be the 
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primary driver of seasonal variations relative to other activity factors (Huang et al., 

2015). Soil moisture has been identified as a key uncertainty and must be improved for 

better representations of water stress (Monson et al., 2012; Tawfik et al., 2012; Huang et 

al., 2015) since the frequency of drought stress is predicted to increase as a result of 

climate change (Field et al., 2012). Many studies have highlighted the importance of 

using realistic wilting-point data and threshold (Guenther et al., 2014; Seco et al., 2015). 

The values of the soil moisture factor are very sensitive to the threshold and wilting point.  

In this study, the Emissions of Gases and Aerosols from Nature model (Guenther 

et al., 2006, 2012) was used to determine the roles of soil moisture and temperature in 

predicting isoprene emissions during drought. 

1.2.2. Role of Semiarid/Arid ecosystem and SIF retrieved from satellite 

The impetus for my study of the activity of plants in a semi-arid/arid ecosystem 

was their disproportional role in determining the inter-annual variability of the global 

carbon cycle. Semi-arid ecosystems provide an important contribution to the global 

dynamics of atmospheric carbon. Such ecosystems include areas that provide limited 

water for grass and other plants, e.g., areas such as grasslands, open shrublands, and 

savannas. The growth of plants in semi-arid areas is dependent largely on the availability 

of water over regions in which the annual precipitation is usually low and occurs mainly 

in a few months rather than year-round (Jung et al., 2011). Such high sensitivity to water 

stress makes the role of semi-arid regions very important in a warming climate. Although 

most previous studies have identified tropical forests as the main driver of global carbon 

uptake, several recent studies have shown that semi-arid regions, especially those within 

the Southern Hemisphere, can dominate the inter-annual variability of the global 

terrestrial carbon cycle (Rotenberg and Yakir, 2010; Bastos et al., 2013; Poulter et al., 
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2014, Cleverly et al., 2016). A study using flux tower data over the southwestern part of 

the United States indicated that a semi-arid system could switch from a net sink of carbon 

to a net source when different levels of precipitation occur. However, the representation 

of photosynthesis in boreal forests by current modelling and observational methods is still 

challenging. Anav et al. (2015) suggested that there were urgent needs to improve 

observation-based datasets and to develop carbon cycle modeling. They contended that 

these needs existed because the available data and modeling approaches at that time were 

inadequate and too simplistic to correctly estimate present GPP and to quantify the future 

uptake of carbon dioxide by the world’s vegetation. Thus, a better understanding of the 

intrinsic link between hydroclimatic variations and carbon sink-source dynamics over 

global semi-arid regions is an urgent need.  

 Sun-induced fluorescence (SIF) is an electromagnetic signal emitted by the 

chlorophyll of leaves. The first global retrievals of satellite-based SIF, which was 

accomplished in 2011 (Frankenberg et al., 2011; Joiner et al., 2011), showed potential for 

being a direct proxy for photosynthetic activity, and the SIF signal responds 

instantaneously to perturbations in environmental conditions, such as light and water 

stress (Flexas et al., 2002; Papageorgiou and Govindjee, 2014; Daumard et al., 2010; 

Porcar-Castell et al., 2014; Baker et al., 2008; Sun et al., 2015). Many seasonal scale 

studies have been conducted using SIF datasets. Strong positive seasonal correlations 

between SIF retrieved from GOSAT and GOME-2 and GPP from model simulations and 

flux tower estimates have been determined empirically for different biomes (Frankenberg 

et al., 2011; Guanter et al., 2012; Lee et al., 2013; Parazoo et al., 2013; Joiner et al., 2014; 

Walther et al., 2016). Yang et al. (2015) reported that there were high diurnal and 

seasonal correlations between satellite-based and ground-based SIF and tower GPP in 
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deciduous forests. Also, the first efforts to constrain model GPP with SIF brought 

remarkable results in that the adjusted GPP values and seasonalities were in closer 

agreement with the flux tower measurements (Guanter et al., 2014; Parazoo et al., 2014; 

Zhang et al., 2014). However, no seasonal analysis was conducted for Australia with SIF 

data. In this study, we used satellite measurements of sun-induced chlorophyll 

fluorescence (SIF) to exam the seasonality of vegetation in response to variations in 

water stress over arid and semi-arid regions of Australia, depicting the plant phenology 

across a variety of ecosystems (Joiner et al., 2014; Walter et al., 2016), 

We used the SIF retrieval from the the Global Ozone Monitoring Experiment-2 

(GOME-2) and Orbiting Carbon Observatory-2 (OCO-2) (Crisp et al., 2008) with 

continuous global coverage. GOME-2 measures in the red and near-infrared (NIR) 

spectral regions with a spectral resolution of ~ 0.5 nm and a pixel size of ~ 40 km x 80 

km (40 km x 40 km for MetOp-A since July 2013). The relatively coarse spectral 

resolution of GOME-2 was compensated by its high radiometric sensitivity and wide 

spectral coverage. This observational scenario was completed by the first SIF data from 

the NASA-JPL OCO-2 mission (launched in July 2014) with high resolution spectra of 

the O2-A band (757-775 nm), which enabled the retrieval of far-red SIF. Potentially, it 

could yield more accurate estimates of SIF. 

1.2.3. Natural and anthropogenic effects on ET dynamics. 

I also extended my research scope to biogeophysical components to obtain a more 

thorough understanding of the terrestrial ecosystem. Terrestrial evapotranspiration (ET) is 

arguably the central component of the biogeophysical process and functions as a vital 

link between energy, water, and carbon cycles, so it has important implications for the 

availability and usage of fresh water resources by people and terrestrial ecosystems 
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(Seneviratne et al., 2006; Trenberth et al., 2009; Fisher et al., 2011; Wang and Dickinson, 

2012). 

Natural environmental factors (e.g., precipitation, temperature, incident solar 

radiation, soil moisture, wind and atmospheric teleconnections) regulate ET and its 

variability across different terrestrial ecosystems (Teuling et al., 2009; Jung et al., 2010; 

Wang et al., 2010; Vinukollu et al., 2011; Zhang et al., 2012; Miralles et al., 2014). These 

natural controls and limitations/co-limitations of ET are scale-dependent. Their 

mechanistic understanding is very important to predict the tendency and variability of ET 

(Wang and Dickinson, 2012). Changes in land use and land cover, in the withdrawal of 

ground water, and irrigation induced by people can directly alter the amount and timing 

of ET by modifying the local water and energy balances (Piao et al., 2007; Gerten, 2013; 

Leng et al., 2013, 2014a, 2014b; Lo and Famiglietti, 2013; Sterling et al., 2013; Lei et al., 

2014c). People’s activities that contribute to the emissions of greenhouse gases, the 

deposition of atmospheric nitrogen (NDE), and ozone pollution also can alter ET 

indirectly through changes in the physiological, structural, and compositional responses 

of plants (Gedney et al., 2006; Betts et al., 2007; Sitch et al., 2007; Cao et al., 2009; 

Leakey et al., 2009). Discriminating these anthropogenic perturbations from natural 

factors is expected to increase in importance as anthropogenic transformation of the 

Earth’s systems becomes more pervasive (Seneviratne et al., 2010; Gerten, 2013). 

To develop a better understanding of these differences in simulated ET patterns 

and the relative roles of the sensitivities and structures of the models, the experimental 

setup and boundary/initial data must be similar among the different models that are used. 

We leveraged the controlled factorial experiments and model simulation protocol from 

the Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) 
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(Huntzinger et al., 2013). Further, we synthesized a global ET time series (1982–2010) 

based on a diverse set of diagnostic ET products (Table 1) and on the methodology 

reported recently by Mueller et al. (2013). The partitioning of ET (e.g., canopy 

transpiration (Tr) and evaporation from wet canopy and bare soil (ET–Tr)) and the 

variation of those ET components are poorly understood and less constrained by 

observations (Lawrence et al., 2007; Jasechko et al., 2013; Swenson and Lawrence, 2014; 

Wang et al., 2014). The MsTMIP modeling framework advanced researchers’ 

understanding of trends in ET by providing predictions of the individual ET components. 

Thus, in this study, we conducted further investigations of the contributions of individual 

influencing factors on the spatial and temporal characteristics of these ET constituents. 

1.3. SCIENTIFIC QUESTIONS 

The scientific questions addressed in this dissertation are: 

(1) What are the relative contributions of temperature and soil moisture to the 

dynamic of isoprene? Can the model simulate the variations of isoprene emissions for 

different intensities and phases of droughts? 

(2) Can the use of satellites to conduct remote sensing of solar-induced 

chlorophyll fluorescence (SIF) accurately represent the seasonal cycles of arid/semi-arid 

plants? Is SIF a better indicator of photosynthetic activity than other biomass variables? 

(3) What are the roles of natural and anthropogenic factors on controlling global 

terrestrial evapotranspiration trends from 1982 to 2010? 

To answer the above scientific questions, in Chapter 2, we used MEGAN2.1 

embedded in CLM4.5 to develop an understanding of the roles of the moisture content 

and the temperature of soil, and we compared the results of the simulations with canopy-

level flux data. In the discussion presented in Chapter 2, we provide insights for 
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improving the modeling of the response of isoprene emissions to drought conditions. 

Chapter 2 evaluates the capability of SIF to synchronize the plant activity by qualifying 

and quantifying its relationship with the availability of water. To answer the question (3) 

above, in Chapter 4 we leveraged the controlled factorial experiments and model 

simulation protocol from the Multi-Scale Synthesis and Terrestrial Model 

Intercomparison Project (MsTMIP). With the MsTMIP modeling framework, we 

analyzed the individual ET components and determined how the individual influencing 

factors impacted ET. In Chapter 5, our major findings are summarized and future 

directions are discussed. 
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CHAPTER 2: Disentangling the Roles of Soil Moisture and Air 
Temperature in Predicting Isoprene Emissions during Drought: A Case 

Study in a Temperate Forest in the Missouri Ozarks 

2.1. ABSTRACT 

Drought conditions strongly affect the emissions of biogenic volatile organic 

compounds (BVOCs). However, predicting BVOC emissions during such conditions is 

challenging because of the intermingled roles of water deficits and high air temperatures, 

which are the two main environmental stressors during droughts. In this study, we 

investigated changes in the emissions of isoprene, the second-most common BVOC in 

terrestrial ecosystems (after methane). Our investigation was conducted during two 

drought events that occurred at a given site in the Missouri Ozarks that had exhibited the 

highest, canopy-scale isoprene emissions reported to date for temperate deciduous 

forests. Our aim was to develop an understanding of the roles of these two stressors, i.e., 

water deficits and high temperatures, in predicting isoprene fluxes during drought. The 

two drought events we studied were a moderate drought event in 2011 and a severe 

drought event in 2012. We compared observations with simulations by a state-of-the-art 

land model coupled with the Model of Emissions of Gases and Aerosols from Nature 

version 2.1 (MEGAN2.1) during the different phases of the drought. The model captured 

the overall variations of the observed emissions for both events during the pre-drought 

phases when the temperature dominated the temporal dynamics of the isoprene 

emissions. However, after the pre-drought phase, there were substantial differences 

between our observations and the model’s predictions of isoprene emissions. Specifically, 

our observations depicted a delayed response of isoprene fluxes to deficits of water in the 

soil, while the results from the model indicated that there was an immediate response to 

the onset of the drought. During the peak stress phase, especially that of the 2012 event, 
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isoprene emissions and the water content of the soil were observed to be strongly 

correlated, but no strong correlation was indicated by the model’s predictions. We also 

tested the sensitivity of predicted isoprene emissions to various parameterization schemes 

for the controlling effect of soil water. Our results demonstrated that temperature and the 

water content of the soil water jointly controlled isoprene emission, but their relative 

effects were sensitive to the phases in the development of the drought. To determine the 

phase dependencies of the relative temperature/water stress effects during the drought, 

there was a need for more realistic model representations of the controls of biochemical 

and physiological processes (e.g., carbon substrate dynamics, isoprenoid synthesis, and 

the nonlinearity of plant water stress vs. the water deficit in the soil) on isoprene 

emission. 

2.2. INTRODUCTION 

Other than methane, isoprene is the most abundant volatile organic compound 

emitted from terrestrial ecosystems, with a global flux of approximately 400-600 

TgCyear-1 (Ashworth et al., 2010; Guenther et al., 1995; Guenther et al., 2006; Müller et 

al., 2008; Arneth et al., 2008; Henrot et al., 2016). Isoprene emissions affect atmospheric 

chemistry by acting as a precursor of tropospheric ozone and by leading to the formation 

of secondary organic aerosols (Houweling et al., 1998; Granier et al, 2000; Hu et al., 

2016; Collins et al., 2002). The magnitude of isoprene’s effects depends on the biological 

properties of plant species and environmental factors (Monson et al., 2012; Tawfik et al., 

2012; Monson et al., 1994; Arneth et al., 2011). For example, some oak trees are strong 

emitters of isoprene, and their emission rates can be as high as 53 mg m-2 h-1 (Seco et 

al., 2015; Geron et al., 2001; Wiedinmyer et al., 2005). Since the emissions from most 

needle-leaf deciduous trees are negligible (Guenther et al., 2012), this indicates a strong, 
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inter-species difference. Leaf phenology (e.g., Leaf Area Index, LAI) determines the 

amount of leaves that potentially can serve as emission units in a given plant, which, in 

turn, affects the seasonal variation in the isoprene emissions of deciduous plants (Tawfik 

et al., 2012; Kuhn et al., 2004; Huang et al., 2014; Gulden et al., 2007). Environmental 

factors, including temperature, light, the concentration of CO2, and the availability of 

water, affect plants’ biological traits and strongly influence the rate of isoprene emissions 

(Guenther et al., 1993; Harley et al., 1996; Owen et al., 2002; Rodríguez-Calcerrada et 

al., 2012; Pétron et al., 2001; Sharkey et al., 1996; Rosenstiel  et al., 2003; Pegoraro et 

al., 2004a; Wilkinson et al., 2009; Fortunati et al., 2008; Funk et al., 2004; Genard-

Zielinski et al., 2014; Lathiere et al., 2010; Pegoraro et al., 20014b; Llusià et al., 2008). 

Among these factors, temperature and the availability of water are of particular 

importance because both of these factors regulate isoprene synthase activity (Lehning et 

al., 1999; Monson et al., 1992; Rasulov et al., 2010; Fall et al., 1998) and the supply of 

dimethylallyl diphosphate (DMADP) (Schnitzler et al., 2005; Sun et al., 2013; Li et al., 

2011). 

Isoprene emissions usually increase as the temperature increases up to 40 oC 

(Monson et al., 1992; Sanadze et al., 1966), depending on the plants’ physiological 

constraints. Studies also have shown that temperature and CO2 concentration can interact 

and impact isoprene emissions, but the underlying mechanism is unresolved (Monson et 

al., 2012; Sun et al., 2013; Monson et al., 2016; Li et al., 2013; Potosnak et al., 2014a). 

There have been contradictory reports regarding the impact of the availability of water on 

isoprene emissions, and this availability ultimately depends on the supply of moisture in 

the soil. Peñuelas and Staudt (2010) reviewed previous studies concerning the 

relationship between isoprene emissions and water stress, and they indicated that about 
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50% of the studies reported decreased isoprene emissions due to water stress, and the rest 

reported increased emissions or no fundamental changes. Such discrepancies probably 

resulted from variations in the intensity and timing of the stress and from different 

species having different resistances to drought. Thus, the mechanisms that determine 

plants’ responses to water stress are complicated. The rate of isoprene emissions is 

regulated by both the concentration of the DMADP substrate and the isoprene synthase 

activity (Rasulov et al., 2010; Wolfertz et al., 2004; Rasulov et al., 2009). Water stress 

can suppress the activity of an enzyme (ISPS), which catalyzes the conversion of 

DMADP into isoprene (Fortunati et al., 2008; Schnitzler et al., 2005). However, the 

increased temperature of the leaves, which is caused by reduced transpiration due to the 

closure of stomata due to water stress, may enhance the isoprene emission rate.  

Understanding the relative effects of temperature and moisture in the soil on 

isoprene emissions is critical during drought because heat stress and water stress usually 

occur simultaneously, but they have counteracting impacts on isoprene emissions. 

However, their relative effects on isoprene emissions are difficult to determine based 

solely on observations. Several studies have quantified their individual and collective 

effects using models to predict isoprene emissions (Müller et al., 2008; Huang et al., 

2015; Wiedinmyer et al., 2001). It has been reported that temperature, unlike other 

factors, primarily affects the seasonal variations in emissions (Müller et al., 2008; Tawfik 

et al., 2012; Huang et al., 2015; Stavrakou et al., 2014). The effect of the availability of 

water on isoprene emissions has been identified as a key source of uncertainty in 

predicting isoprene emissions during the stress of a drought (Monson et al., 2012; Tawfik 

et al., 2012; Huang et al., 2015). Since the frequency of drought is likely to increase with 
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climate change (IPCC, 2013), it is important to realistically represent the impact of 

drought on the future trajectory of isoprene emissions. 

Our aim in this study was to separate the relative effects of temperature and 

moisture in the soil on isoprene emissions during drought. We investigated both in-situ 

measurements and state-of-art model simulations conducted for two drought events (one 

in 2011 and one in 2012) at the Missouri Ozarks Forest site (MOFLUX), a core 

AmeriFlux site (Gu et al., 2006, 2007, 2015). We chose the Model of Emissions of Gases 

and Aerosols from Nature, version 2.1 (MEGAN2.1) as our testbed, which has been 

incorporated into the National Center for Atmospheric Research’s (NCAR’s) Community 

Land Model version 4.5 (CLM4.5). CLM simulates the dynamics of the leaf temperature 

and soil moisture stress factors through its energy and water balance framework, 

providing direct environmental conditions that are needed as inputs to MEGAN for 

predicting isoprene emissions. Thus, the MEGAN/CLM coupling allows us to evaluate 

the performance of model representations of environmental stressors and better 

understand the separate and joint effects of these stressors on isoprene emissions. 

2.3. METHOD 

2.3.1. The Two Extreme Drought Events: A Comparative Case Study 

In this paper, we report the results of our study of two drought events at 

MOFLUX in 2011 and 2012, with the former having moderate severity and the latter 

having extreme severity. This contrast between 2011 and 2012 provides a good 

opportunity to evaluate the response of isoprene emissions to soil moisture deficits and 

high temperatures during droughts of different severities. At the beginning of July 2011, 

hot and dry conditions started to spread across southwestern Missouri, affecting 
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vegetation activities (Potosnak et al., 2014b). Although cooler air occurred occasionally 

in Missouri, the dry conditions continued until October 2011. The 2012 drought event 

was one of the most severe in the past 25 years in Missouri (Gu et al., 2015). Water stress 

started to develop at the end of June 2012, and it reached the “extreme” category as 

defined by the U.S. Drought Monitor (USDM) in August 2012. 

2.3.2. Site Characteristics and Measurements of Isoprene Emissions 

The study site (MOFLUX) is located in the Baskett Wildlife Research and 

Education Area, Missouri, USA (38.7o N and 92.2o W; elevation = 219 m). MOFLUX is 

dominated by oak trees and is known as the “isoprene volcano” of the world (Wiedinmye 

et al., 2005), because it has the highest rate of isoprene emissions ever reported in the 

literature (53 mg m-2 h-1) (Potosnak et al., 2014b). The site has two strong isoprene 

emitters, i.e., white oaks (Quercus alba L.) and red oaks (Q. velutina L.). To the best of 

our knowledge, it is the only site for which there have been whole canopy measurements 

of isoprene emissions during severe drought events. These features make MOFLUX one 

of the best sites in the world to perform our study. Previous studies at the same site 

reported discrepancies between the observed and model-predicted isoprene emissions at 

both the leaf level (Geron et al., 2016) and the canopy level (Geron et al., 2001; Potosnak 

et al., 2014b), but the relative roles of temperature and water deficit were not quantified.  

At MOFLUX, the average height of the canopy is 20 m, and the average peak 

LAI is 3.7 during the growing season. There is a broad range of dominant soils at the site, 

and they are classified as "Steep Stony Land," a designation that includes all of the rocky 

slopes that have a thin covering of soil and Weller silt loam (fine, smectitic, mesic 

Aquertic Chromic Hapludalf) (Young et al., 2003; Garrett et al., 1973). The 

characteristics of the soils at the site potentially could exacerbate water stress during 
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periods of drought. The measurements of the isoprene flux were collected at a height of 

29 m with a fast isoprene sensor in 2011 (Potosnak et al., 2014b) and with a Proton 

Transfer Reaction Mass Spectrometer (PTR-MS) (Karl et al., 2001) in 2012 (Seco et al., 

2015). The volumetric water content of the soil was measured at several depths between 

0 and 100 cm at time steps of 30 min. To monitor the dynamics of the effects of water 

stress and drought on the plants, the pre-dawn leaf water potential Ψ!" was measured 

with a pressure chamber using leaf samples collected before dawn (Pallardy et al., 1991; 

Turner et al., 1981). The value of Ψ!" is a reliable measure of the availability of water 

to the plants, and it is an integrated indicator of the plants’ water stress. It has been found 

to explain the inter-annual variability in tree mortality at the MOFLUX site (Gu et al., 

2015). Measurements of Ψ!" were made either weekly or biweekly during the growing 

seasons from mid-May to late October (Pallardy et al., 2015; Yang et al., 2010; Belden et 

al., 2009). More details on the characteristics of the site and the associated measurements 

are provided elsewhere. 

2.3.3. Model of Emissions of Gases and Aerosols from Nature (MEGAN) 

The MEGAN model is a modeling parameterization to simulate BVOCs’ fluxes 

emitted from a land system. It has been used extensively to estimate isoprene emissions 

from landscapes from regional to global scales. MEGAN has been coupled to various 

land surface models that produce dynamic simulations of the energy balance of the 

canopy and soils and of the water and carbon cycles. In this study, we used the NCAR 

community land model, version 4.5 (CLM4.5) and the land component of the Community 

Earth System Model (CESM) as a testbed (Oleson et al., 2010). In then following, we 

briefly describe the formulations of the models of isoprene emissions in the latest version 

of MEGAN, i.e., MEGAN 2.1. The details of the derivation of the model and the 
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parameters used can be found elsewhere (Guenther et al., 2006, 2012). In our case, the 

standard conditions were defined as an air temperature 29.9 oC, a soil moisture of 0.3 

mm3mm−3, solar elevation angle of 60o, and photosynthetic photon flux density (PPFD) of 

~1500 µmolm-2s-1 at the top of the canopy. More details can be found in citation 

(Guenther et al., 2006). The isoprene flux of a canopy in MEGAN2.1 is formulated as a 

product of two components, i.e., the basal emission rate and the emission activity factors 

that represent the regulation of environmental conditions and plant 

structural/physiological states:  

𝐹 = 𝛾 𝜀!𝜒!,                                    (2.1) 

where F is The emissions rate of isoprene from terrestrial landscapes, εi is the basal 

emission factor at standard environmental conditions for vegetation type i, χi is the 

corresponding fractional areal coverage, and γ is a composite emission activity factor that 

consists of several terms representing major processes that drive the variations in 

isoprene emissions. The equation for γ is:  

𝛾 = 𝐶!"𝐿𝐴𝐼𝛾!𝛾!𝛾!"#𝛾!"𝛾! ,                        (2.2) 

where γP is the light-dependent emission factor controlled by PPFD, γT is the temperature 

response of enzymatic activity, γSM is the soil moisture response, γage is the leaf age 

response, γC is the CO2 response, and LAI is the leaf area index. CCE is defined as the 

canopy environment coefficient and, herein, it is assigned the constant value of 0.3, 

which normalizes γ to 1 at standard conditions (Guenther et al., 2012). The value of CCE 

depends on the canopy model that MEGAN is coupled with, and we used CLM. A 

different canopy model would require the use of a different CCE. 

Specifically, the temperature activity factor, γT, is calculated as:  

        𝛾! = 𝐸!"#[𝐶!!𝑒𝑥𝑝  (𝐶!!𝑋)/(𝐶!! − 𝐶!!(1− 𝑒𝑥𝑝  (𝐶!!𝑋)))],     (2.3) 
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where 𝐸!"#is the maximum normalized emission capacity at the optimal temperature Topt, 

CCE = 95, and CCE = 230) are empirical coefficients, and X is expressed as: 
                 𝑋 = [ !

!!"#
− !

!
]/0.00831,                         (2.4)  

where T is the leaf temperature, simulated by CLM, and details on the calculation of Topt 

can be found in (Guenther et al., 2006).  

The soil moisture activity factor is computed as:  

𝛾!" =    𝑟!
!!""#
!!! 𝑚𝑎𝑥  (0,𝑚𝑖𝑛  (1, (𝜃! − 𝜃!!)/Δ𝜃!)),             (2.5) 

where 𝜃! is the volumetric water content (mm3mm-3),   𝜃!! is the wilting point (a water 

content threshold below which plants wilt), and Δθ1 is an empirical parameter (0.06) 

(Pegoraro et al., 2004a). Both 𝜃! and 𝜃!! are soil-layer specific and simulated by CLM. 

The soil moisture activity factor is calculated as a weighted sum by root fractions (𝑟!) 

across all soil layers (with Nroot = 10 layers), which are 286 cm deep (Oleson et al., 2010). 

MEGAN2.1 uses this formulation to represent soil moisture stress in the range from zero 

(soil moisture fully depleted) to one (no water stress). 

To examine the sensitivity of soil moisture activity factor on modeled isoprene 

emissions, we tested two additional formulations of the soil moisture function along with 

the default MEGAN2.1 formulation defined in Equation 2.5. First, we tested the soil 

moisture stress factor used in CLM, denoted as βCLM, which is used to down-regulate 

photosynthesis and stomatal conductance under water stress. The term βCLM is calculated 

as: 

          𝛽!"# = 𝑟!𝑚𝑖𝑛  (1.0, (Ψ! −Ψ!)/(Ψ! −Ψ!))
!!""#
!!! ,          (2.6) 

where Ψi is the soil water matric potential (mm), and Ψo and Ψc are the soil water 

potentials (mm) at which the leaf stomata are fully open and fully closed, respectively. 

Equation 2.6 indicates that βCLM follows a similar format as γSM, but it uses the water 
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matric potential rather than the volume content used in MEGAN to calculate the soil 

moisture activity factor. 

In the second test, we used the soil moisture stress factor from the Simple 

Biosphere model (SiB) (Xue et al., 1991):  

𝛽!"# = 𝑟!𝑚𝑖𝑛  (1.0, 1.0− 𝑒!!!!"  (!!"#$/!!))!!""#
!!! ,            (2.7) 

where Ψwilt is the soil water potential at the wilting point, and c2 is a slope factor that is 

equal to 5.57 for the broadleaf deciduous trees in MOFLUX (Xue et al., 1991).  

All three soil moisture factors range from zero to one, but they have different 

functional shapes with SWC (soil water content) (Figure 2.1). The MEGAN formulation, 

γSM, increases linearly with SWC, while βCLM and βSiB have non-linear relationships with 

SWC. In particular, βSiB (and βCLM to a lesser extent) decreases rapidly when SWC is low. 

In this sensitivity test, we replaced γSM with βCLM or βSiB to investigate the effect on the 

modeled isoprene emissions. 

2.3.4. Model Simulation Experiments 

In this study, we ran MEGAN/CLM simulations at MOFLUX in the offline mode, 

driven by observed meteorological datasets (air temperature, shortwave and longwave 

radiation, relative humidity, precipitation, and wind speed). Other site-specific 

information used included seasonally-varying, measured LAI, temperate broadleaf 

deciduous forest as the plant functional type, and soil texture was 55% sand, 40% silt, 

and 5% clay. Hydrology calculations were conducted with 10 soil layers, and they 

depended on the root distribution of the PFT (plant functional type), as in standard CLM 

simulations. With these meteorological-forcing and site-specific parameters, CLM4.5 

simulated the leaf temperature and SWC, which were used as inputs to MEGAN to 

predict isoprene emissions. We performed a 50-year spin-up simulation to ensure that the 
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soil moisture reached equilibrium. The spin-up simulation was driven by observed 

meteorological data from 2011. Then, we ran the actual model simulations for 2011 and 

2012 at a time step of 0.5 hr, consistent with the measured isoprene flux emissions. Four 

different model simulations were performed for comparison with observations (Table 

2.1). The first simulation (denoted as MOD_γSM ) used the default soil moisture factor in 

MEGAN, the second (denoted as MOD_βCLM) replaced the default soil moisture factor 

with the CLM formulation, and the third (denoted as MOD_βSiB) replaced the default soil 

moisture factor with the SiB formulation. We performed a fourth simulation (denoted as 

MOD_SWCobs), which replaced the CLM-simulated SWC with the observed SWC at 

MOFLUX and the wilting point parameter 𝜃!! (Equation 2.4) with a value of 0.23 

mm3mm-3, a site-specific value suggested by Seco et al. (2015). The purpose of 

performing the last simulation was to investigate the impact of bias in soil moisture 

simulated by CLM on predicted isoprene emissions. This impact is in addition to that of 

the bias that resulted from the parameterization of the soil moisture activity factor. The 

potential bias in simulated soil moisture may come from both “process” and “parameter” 

errors in the calculation of soil moisture (Du et al., 2016). 

2.3.4. Data Analysis Framework 

In our analysis, we divided each individual drought event into four phases, i.e., 

pre-drought, developing, peak stress, and post-drought. Here, the seasonal pattern of 

predawn leaf water potential (Ψpd) was used to identify the different phases of the 

drought. In 2011, the pre-drought phase was identified to be the time before Ψpd dropped 

rapidly to -0.5 MPa. The developing phase occurred with -1.4 MPa < Ψpd < -0.5 MPa. 

The peak phase occurred when Ψpd < -1.4 MPa. The post-drought phase was identified 

when Ψpd recovered to above-0.5 MPa. The temporal dynamics of Ψpd in 2011 showed 
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that the drought started at the end of July, peaked around mid-September, and ended one 

month later. We did not include the post-drought phase of 2011 in our analysis because 

the growing season ended before Ψpd recovered (Figure 2.2). In 2012, the seasonal pattern 

of Ψpd showed a pre-drought phase of Ψpd > -0.7 MPa, a developing phase of -2.5 < Ψpd < 

-0.7 MPa, a peak phase of Ψpd < -2.5 MPa, and a post-drought phase when Ψpd returned 

to above -0.7 MPa. The 2012 drought event was more severe and peaked earlier than that 

of 2011. We used Ψpd instead of soil moisture to determine drought phases because Ψpd 

directly tracks the status of the plants’ water. Note that corresponding drought phases had 

different ranges of Ψpd in 2011 and 2012 because the droughts in these two years had 

markedly different severities. Using the same Ψpd threshold values for 2011 and 2012 

would result in some periods clearly misidentified for their stages in the drought 

development process. For the purpose of this study, it is important to clarify the impact of 

drought phase development on isoprene emissions modeling, which justifies the use of 

different ranges of Ψpd for 2011 and 2012.  

We analyzed the relative effects of temperature and soil moisture for each drought 

phase. We chose air temperature instead of leaf temperature in our study to correlate with 

isoprene emissions because 1) leaf temperature, although it directly regulates the 

emission fluxes, is not directly observable, and, hence, it is difficult to compare with 

model simulations and 2) leaf temperature depends ultimately on air temperature and, 

thus, is highly correlated with air temperature on scales from diurnal to seasonal; 

therefore, air temperature can serve as a good proxy for leaf temperature. In the following 

texts, we use “temperature” to refer to air temperature unless specified otherwise.  

To quantify the relationship between isoprene emissions and temperature/soil 

moisture, we computed both the Pearson correlation coefficient and the partial correlation 
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coefficient. The former is a linear correlation between two variables of interest, while the 

latter quantifies the linkage between the dependent and independent variables when 

multiple independent variables are involved. In our case, the partial correlation 

coefficient can quantify the coupling between isoprene emissions and temperature (or 

SWC) by removing the impact of SWC (or temperature). Then, we computed the 

student’s-t value to test the significance of the correlation coefficient. The paired datasets 

also were fitted to a linear least squares model. We calculated and plotted the regression 

lines if the regressions passed the 0.05 significance test (p-value < 0.05). 

2.4. RESULTS 

Our results show that the observed and simulated isoprene emissions were in good 

agreement and both increased with increasing temperature during the pre-drought phase 

for both 2011 and 2012 (Figure 2.1). In this pre-drought phase, there was sufficient water 

supply, and, hence, the value of the soil moisture activity factor remained at one, 

indicating that plant growth was not limited by the water supply. The observation-model 

agreement held for all simulation experiments regardless of the different formulations of 

soil moisture activity factor. However, modeled predictions of isoprene emissions 

diverged from each other and from the observation two weeks after the onset of the 

drought (i.e., the developing phase). For example, the default model (MOD_ γSM ) 

simulated decreased emissions following the sudden decrease in Ψpd and soil moisture in 

2011, while the observed emissions continued to increase with increasing temperature in 

the earlier stage of the developing phase. MOD_SWCobs did a good job of tracking the 

initial increase in emissions that were observed, but it underestimated the emissions as 

compared to observation. In 2012, the MOD_γSM generally underestimated the isoprene 

emissions two weeks after the drought progressed into the developing phase, but it 
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captured the observed isoprene emission variations reasonably well. However, 

MOD_SWCobs overestimated the emissions throughout the peak phases.  

These highly dynamic responses of predicted isoprene emissions to soil moisture 

motivated us to further quantify their relationships in a broader context (Figure 2.3 and 

Table 2.2). Here, we focused only on the event in 2012 because we had limited 

observational data for the peak drought phase in 2011. We found that, in the default 

MEGAN simulations, temperature dominated over soil moisture in controlling the 

model’s prediction of isoprene emissions for all drought phases (Table 2.2). In contrast, 

observed emissions were controlled primarily by soil moisture as opposed to temperature 

in the peak stress and post-drought phases, and they even were affected adversely by soil 

moisture in the pre-phase and the developing phase (a negative correlation coefficient). 

The partial correlation coefficients revealed a similar pattern (Table 2.2) despite an 

elevated emission-SWC correlation in the model simulations. These results suggest that 

MEGAN tends to overestimate the dependency of isoprene emissions on temperature and 

to underestimate the dependency on soil water content during drought, especially when 

soil moisture is severely depleted. 

The linear regression analysis shows positive slopes of observed isoprene 

emissions against SWC in both the peak-drought and post-drought phases, but it shows a 

negative slope in the pre-drought phase (Figure 2.3). In contrast, model-predicted 

isoprene emissions had a negative regression slope with SWC in the peak-drought phase 

and a positive slope in the post-drought phase. Such patterns hold with SWC at both 10 

cm and 100 cm, despite the different absolute magnitudes of SWC at these two depths. 

This indicated that the observation-model discrepancy did not result from the depths of 

SWC used to perform the regression analysis. Thus, we proposed and tested two 
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hypotheses that may potentially explain the observation-model discrepancy, i.e., (1) the 

bias in simulated soil moisture itself by CLM and (2) the MEGAN formulations of the 

soil moisture activity factor that regulates isoprene emissions. To test the first hypothesis, 

we compared the emission-SWC relationships between MOD_γSM and MOD_SWCobs 

since the latter experiment used the observed SWC, excluding potential CLM bias in 

simulating SWC. We found that MOD_SWCobs produced a positive regression slope of 

isoprene emissions against SWC in the peak-drought phase (Figure 2.4a, Figure 2.4b), in 

agreement with observations (Figure 2.3a, Figure 2.3c) but in contrast with the default 

MEGAN/CLM simulations. This difference indicated that the soil moisture bias would 

contribute to the observation-model discrepancy in the soil moisture control on isoprene 

emissions. However, removal of soil moisture bias in the MEGAN simulation does not 

reverse the relative role between temperature and SWC as predicted by the default 

MEGAN simulation (Table 2.3). This each of reversal implies that the formulations of 

soil moisture activity factor also may have contributed to the observation-model 

discrepancy, motivating us to test the second hypothesis by performing a sensitivity test 

with different soil moisture activity factors (Table 2.3). We found that the relative effects 

of temperature and SWC on the prediction of isoprene emissions generally varied in the 

opposite direction in different simulation experiments, i.e., the partial correlation 

coefficient R of emission-temperature decreased while that of emission-SWC increased 

from MOD_ γSM, to MOD_βCLM and MOD_βSiB. Among all of the experiments, the 

default MEGAN simulation showed the closest R as compared to observations. This can 

be explained by the linear shape of γSM (Figure 2.1), which produces a steady response of 

soil moisture activity factor to SWC in the range of ~ 0.18-0.2 mm3mm-3, a typical range 
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in the peak-drought phase (Figure 2.2). The βCLM and βSiB, however, tended to saturate 

faster than γSM in this SWC range. 

As mentioned above, we used air temperature as a proxy for leaf temperature, 

which directly controls isoprene emissions, because the latter is not directly observable at 

MOFLUX. We leveraged the model simulations to examine whether the use of air 

temperature would lead to any potential bias in the emission-temperature relationship 

(Figure 2.4c, Figure 2.4d). Our analysis showed that the relationship was very similar 

between air temperature and leaf temperature, indicating that the use of air temperature 

can well serve our purpose of isolating the roles of temperature from SWC. Note that this 

analysis relied on MOD_SWCobs, and hence the potential effect of simulated SWC bias 

was avoided. 

2.5. DISCUSSIONS 

Our study highlights the need for a more realistic model representation of 

dynamic isoprene emissions under various drought development phases. Even though the 

MEGAN model can simulate seasonal variation in isoprene fluxes reasonably well under 

normal conditions, it deviates from observations when the water supply is depleted. The 

current model tends to overestimate the control of temperature during a drought when 

heat stress also occurs. We showed that temperature may dominate the emission rate 

when water supply is not limiting, but its role diminishes when a severe water deficit 

constraint is present. Similar results were obtained for the leaf-level measurements of 

isoprene in 2012 at the same site (Geron et al., 2015). Our study, building on previous 

studies, separated the relative roles of temperature (stimulating the emissions) and soil 

moisture (suppressing the emissions) on the phases of drought development. 
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Our experiments cannot exclude the possibilities of the presence of other 

unrealistic model parameterizations that may be adjusted to improve the models’ 

performance. Similarly, there may be other forms of soil moisture factor that work better. 

Nevertheless, the results obtained in this study made us wonder whether it is adequate to 

simply represent the soil moisture effect on isoprene emissions as a single factor that 

varies monotonically between 0 and 1. We believe our analysis highlights the urgency of 

developing an improved model representation of the influence of soil moisture on 

isoprene emissions. An explicit soil-to-leaf mechanistic basis of drought-induced stress 

might be a better solution (Xu et al., 2016; Fisher et al., 2006, 2007; Sperry et al., 1998). 

Potosnak et al. (2014b) suggested leaf temperature could be the key to understanding the 

response of isoprene emissions to drought. Leaf temperature directly regulates isoprene 

emissions because it depends on the supply of water in the soil and influences stomatal 

conductance. Potosnak et al. (2014b) determined a time-dependent response of isoprene 

emissions to drought, which, according to them, could not be explained by the MEGAN 

algorithm, and they suggested that isoprene emission should be decoupled with 

photosynthesis rather than sharing a similar water stress factor. During the beginning 

phase of a drought, the continuing increase of isoprene emissions was observed while 

photosynthesis started to decrease (Wu et al., 2015; Dani et al., 2014). Currently, there is 

no mechanism in the MEGAN model for considering this phenomenon because the 

process is complicated and remains unclear. Recent studies (Arab et al., 2016; Yuan et 

al., 2016) attributed the continuing increase during minor drought to the decrease in 

oxidative stress. Some mechanistic models also have been developed to investigate the 

effect of drought on isoprene emissions (Dani et al., 2014; Grote et al., 2014). A 

conceptual algorithm was proposed by Potosnak (2014b) in which low soil moisture led 
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to low photosynthesis, which increases leaf temperature. Isoprene emissions can continue 

for a period of time by using stored carbon. But as the drought continues, the carbon 

reserves are depleted, and isoprene emissions decrease. The conceptual model describes 

an increase of isoprene emissions at the beginning for a week, after which a decrease 

occurs.  In addition, Grote el al. (2014) and Dani et al. (2014) demonstrated mechanistic 

models that partition plant absorbed energy between photosynthesis and isoprenoid 

synthesis.  The models can well represent the effects of stomatal closure on isoprene 

emissions by coupling with the photosynthetic rate. Therefore, to better represent the 

drought effect, leaf physiological variables should be incorporated in the models in 

addition to soil variables. Also, some studies (Geron et al., 2016) have shown that 

atmospheric conditions have significantly different impacts on different plant species, 

and it’s necessary to investigate species-specific feedback between plants and the 

atmosphere. They suggested that more species-level studies are needed in addition to 

canopy level. As such, additional mechanisms in desiccation tolerance should be included 

in the model algorithm. Therefore, a model that includes more realistic biochemical 

processes and biophysical processes during drought also should be developed.  

2.6. CONCLUSIONS 

We examined the separate effects of temperature and soil water content on 

isoprene emissions at the MOFLUX site during two drought events in 2011 and 2012. 

We compared observation data and the MEGAN model simulation coupled with CLM 

4.5 in different phases of drought development. We found that temperature was a 

dominant factor under normal conditions without water stress. However, during a severe 

water deficit, exemplified by the peak stress phase, the impact of soil moisture on 

isoprene emissions was more critical than the impact of temperature. Model simulations 
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gave reasonably good isoprene emission predictions compared to observations under non-

stress conditions, but they deviated from observations when soil moisture was severely 

depleted. The discrepancies between model results and observations during different 

drought phases suggest that the mechanisms through which soil moisture and temperature 

affect isoprene emission during drought are not well represented in the isoprene emission 

model, which is overly sensitive to temperature variations. A more process-based, time-

dependent algorithm is required to realistically interpret environmental impacts on 

isoprene emissions for different drought intensities and development phases. 
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Simulation Description 

MOD_γSM Simulation with the default soil moisture stress factor in MEGAN 

MOD_βCLM Simulation with the soil moisture stress factor βCLM in CLM 

MOD_βSiB Simulation with the soil moisture stress factor βSiB in SiB 

MOD_SWCobs Same as MOD_γSM except that the CLM-simulated SWC was replaced with the 
measured SWC and the observed wilting point parameter 𝜃!! 

Table 2.1. Descriptions of the simulations 

 
 R Rpartial 

OBS MODEL OBS MODEL 

SWC TEMP SWC TEMP SWC TEMP SWC TEMP 

Pre-drought -0.50* 0.62* -0.04 0.83* -0.34 0.52* 0.15 0.83* 

Developing -0.14 0.43* 0.03 0.45* 0.14 0.43 0.55* 0.67* 

Peak stress 0.81* 0.56* -0.36* 0.84* 0.71* 0.14 0.61* 0.89* 

Post-drought 0.60* 0.33 0.54* 0.88* 0.53* -0.06 0.51* 0.87* 

R: correlation coefficient; Rpartial: partial correlation coefficient; * p-value < 0.05 

Table 2.2. Correlation analysis for isoprene emissions (MOD_ γSM) and environmental       
variables 
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 Rpartial 

      MOD_ γSM MOD_βCLM MOD_β SiB MOD_SWCobs 

SWC TEMP SWC TEMP SWC TEMP SWC TEMP 

Pre-drought 0.15 0.83* 0.16 0.83* 0.03 0.90* 0.12 0.87* 

Developing 0.55* 0.67* 0.40* 0.70* 0.19 0.84* 0.57* 0.88* 

Peak stress 0.61* 0.89* 0.52* 0.87* 0.32* 0.83* 0.46* 0.88* 

Post-drought 0.51* 0.87* 0.44* 0.87* 0.07 0.88* 0.65* 0.83* 

* p-value < 0.05 

Table 2.3. Partial correlation analysis for isoprene emissions and environmental variables 
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Figure 2.1. Sensitivity of isoprene emissions to different soil moisture factors. The model 
simulations used three different soil moisture factor candidates, i.e., the 
default MEGAN soil moisture activity factor (γSM), the CLM soil stress 
factor (βCLM), and the SiB model soil stress factor (βSiB). All factors are 
scaling factors from 0 to 1. 
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Figure 2.2. Time series of daytime average of environmental variables and isoprene 
emissions. Fig 2 includes the observed 2-meter air temperature (T2m, red); 
observed and model simulated 10 cm soil water content (denoted as 
OBS_SWC10cm and MOD_SWC10cm, respectively, daytime average from 
6:30 A.M. to 18:30 P.M.), and predawn leaf water potential (Ψ pd ) for 2011 
and 2012 at the MOFLUX site. The bottom panel shows the comparison 
between observed and modeled isoprene emissions. Three model 
simulations were performed with different soil moisture factors, i.e., the 
default MEGAN soil moisture activity factor (denoted as MOD_γSM), the 
CLM formulation of soil moisture factor (MOD_βCLM), the MEGAN factor 
with a site-specific wilting point (0.23 mm3mm-3) and soil water content 
from observations (denoted as MOD_SWCobs). The last simulation used 
observed soil moisture, while the first two took advantage of the CLM 
prediction of soil moisture. All soil moisture activity factors were on a scale 
from 0 to 1. Different drought phases are marked with different grey scales, 
including the pre-drought phase, the developing phase, the peak stress 
phase, and the post-drought phase. 
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Figure 2.3. Regression analysis for isoprene emissions and environmental variables. 
Relationships of the isoprene emission (ISP) versus the water content of 10 
cm of soil (SWC10cm) (a), (b); water content of 100 cm of soil (SWC100cm) (c) 
(d); 2m air temperature (T2m) (e), (f); at individual drought phases for year 
2012. (a), (c), (e) are observations, and (b), (d), (f) are model predictions 
from default MEGAN soil moisture formulation (MOD_γSM). Each scatter 
represents one single daytime-average value. The linear regression line 
information is shown if it passes the 0.05 significance test (p-value < 0.05). 
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Figure 2.4. Regression analysis for isoprene emissions (MOD_SWCobs) and 
environmental variables Relationships of the isoprene emission (ISP) versus 
10-cm soil water content (SWC10cm) (a), 100-cm soil water content 
(SWC100cm) (b), 2-m air temperature T2m (c), or leaf temperature Tleaf (d). The 
isoprene emissions are model predictions from default MEGAN soil 
moisture formulation with measured SWC (MOD_SWCobs). Each scatter 
represents one single daytime-average value. The linear regression line is 
shown if it passes the 0.05 significance test (p-value < 0.05). 
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CHAPTER 3: The seasonality of dryland plants over Australia as 
revealed by satellite chlorophyll fluorescence 

3.1. ABSTRACT 

Arid and semi-arid ecosystems have critical roles in global terrestrial carbon 

cycling, but, currently, it is still challenging to observe and model photosynthesis in dry 

areas. In particular, the applicability of existing, satellite-based proxies of greenness to 

indicate photosynthetic activity is hindered by the weak signals emitted by sparse 

vegetation and by the confounding background effects. As an alternative, satellite 

measurements of solar-induced chlorophyll fluorescence (SIF) can be used as a direct 

proxy of photosynthetic activity. In this study, the sensitivity of the functioning of 

arid/semi-arid plants to water stress was analyzed using space-borne SIF measurements 

retrieved from the GOME-2 and OCO-2 instrument, and the results were compared to the 

Enhanced Vegetation Index (EVI), the Normalized Difference Vegetation Index (NDVI), 

and the Gross Primary Production (GPP) derived from MODIS data. We found that SIF 

and precipitation had similar spatial and seasonal variability in the arid and semi-arid 

regions in Australia. However, there were lags in the correlations between vegetation 

indices and precipitation. Our results demonstrated that space-borne SIF measurements 

are sensitive to water availability and capable of detecting rapid responses of plant 

activity in arid and semi-arid ecosystems. 

3.2. INTRODUCTION 

Arid and semi-arid ecosystems contribute to the dynamics associated with global 

atmospheric carbon. These ecosystems include grasslands, open shrublands, and savannas 

(Cherwin et al., 2012; Ponce-Campos et al., 2013; Moran et al., 2014; Ma et al., 2015; 

Scott et al., 2015). The growth of arid and semi-arid plants over the regions that usually 
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have low amounts of annual precipitation depends significantly on the availability of 

water, and their growth only occurs during a few months of the year (Jung et al., 2011). 

Such high sensitivity to water stress makes the arid and semi-arid regions especially 

vulnerable to the adverse effects of global warming (Yi et al., 2014; Huang et al., 2016). 

Although most previous studies identified tropical forests as vitally important for global 

carbon uptake, several recent studies have shown that semi-arid regions, especially those 

within the Southern Hemisphere, can dominate the inter-annual variability of the global 

terrestrial carbon cycle (Rotenberg and Yakir, 2010; Bastos et al., 2013; Poulter et al., 

2014, Cleverly et al., 2016). A study using flux tower data over the southwest United 

States indicated that a semi-arid system could switch from a net sink to a net source of 

carbon during different precipitation levels (Scott et al., 2015). There is an urgent need to 

improve observation-based datasets and to develop carbon cycle models to correctly 

estimate the current GPP and to better quantify the future uptake of carbon dioxide by the 

world’s vegetation (Anav et al., 2015). In particular, better information about the intrinsic 

link between hydroclimatic variations and carbon sink-source dynamics over global semi-

arid regions is urgently needed. In this study, we focused on an important semi-arid 

region, Australia, because it impacts the global carbon cycle and also experiences the 

largest climate variability among the continents (Poulter et al., 2014; Ahlström et al., 

2015). We performed seasonal scale analyses to investigate how Australia’s semi-arid 

ecosystems respond to variable levels of precipitation with the aim of detecting rapid 

responses by the activities of plants in these systems. 

Flux towers and remote sensing commonly are used for monitoring vegetation. 

The Australian and New Zealand flux tower network (OzFlux) provides important 

information, such as canopy-level CO2 flux data and a small amount of images with 
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phnocams. In Australia, despite the dominance of deserts and xeric shrublands (49%) and 

the overwhelming importance of arid/semi-arid ecosystems (74%), only a small fraction 

of the OzFlux sites (two towers, 8% of the network) are located in these regions 

(Beringer et al., 2016). Vegetation information can be derived from satellite remote 

sensing imagery to achieve broad coverage of land areas. Satellite data provide spatially 

explicit time series of vegetation indexes (VI). VI typically are a function of reflectance 

in the red (R) and near-infrared (NIR), for example, Normalized Difference Vegetation 

Index NDVI = (NIR-R)/(NIR+R). The Enhanced Vegetation Index (EVI) in many ways 

is similar to NDVI, but it includes a term that eliminates the atmospheric effects of 

aerosols released during the burning of biomass (Huete et al., 2002). The difference in 

reflectance in R and NIR differentiates green vegetation from soil and non-photosynthetic 

vegetation. At the canopy level, the EVI has a linear relationship with the fraction of 

absorbed, photosynthetically-active radiation (fAPAR), which should be directly related 

to the photosynthetic capacity of the canopy. However, sometimes the relationship 

between vegetation and EVI can be confounded by soil reflectivity in sparse canopies, 

such as open shrub over semi-arid eco-regions (Huete et al., 1997; Gilabert et al., 2000; 

Asner et al., 2004; Dawelbait and Morari, 2011). The rareness of ground-truth 

observations and the uncertainty in greenness indexes call for new techniques to monitor 

the characteristics of vegetation more accurately. 

Solar-induced fluorescence (SIF), emitted by the chlorophyll of leaves exposed to 

sunlight, is an optical signal emanating from the core of the photosynthetic machinery. 

Although active fluorescence has been used for decades to probe photosynthesis in vivo 

at the tissue and leaf scales (Papageorgiou and Govindjee, 2014; Porcar-Castell et al., 

2014; Baker et al., 2008), passive SIF from instruments in space only became available 
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recently. Since the first global retrieval of satellite-based SIF (Frankenberg et al., 2011; 

Joiner et al., 2011; Guanter et al., 2012), SIF has been shown to be highly correlated with 

gross primary productivity across variance temporal and spatial scales (Frankenberg et 

al., 2011; Guanter et al., 2012; Lee et al., 2013; Parazoo et al., 2013; Joiner et al., 2014; 

Walther et al., 2016). For example, strong positive correlations between SIF retrieved 

from GOSAT and GOME-2 and GPP from model simulations and flux tower estimates 

have been found empirically for different biomes (Frankenberg et al., 2011; Guanter et 

al., 2012; Lee et al., 2013; Parazoo et al., 2013; Joiner et al., 2014; Walther et al., 2016). 

Yang et al. (2015) reported high diurnal and seasonal correlations between satellite-based 

and ground-based SIF as well as flux-tower based GPP in a deciduous forest.  

Similar to photosynthesis, SIF is sensitive to water stress, and evidence of this has 

been demonstrated at different spatial scales (Flexas et al., 2002; Papageorgiou and 

Govindjee, 2014; Daumard et al., 2010; Porcar-Castell et al., 2014; Baker et al., 2008; 

Sun et al., 2015). At the leaf scale, for example, Flexas et al. [2002] reported a water 

stress-induced reduction of fluorescence yield under for C3 leaves. At the canopy scale, 

Daumard et al. [2010] found an SIF decrease during a drought episode, while canopy 

greenness was not affected. At the regional scale, Lee et al. [2013] found a simultaneous 

decrease of precipitation and SIF in the seasonally-dry Amazon rainforests. Sun et al. 

(2015) and Yoshida (2015) both found negative SIF responses to extreme drought events 

in the Great Plains of the U.S. and Russia. However, to the best of our knowledge, no 

efforts have been made to examine the response of SIF to seasonal water stress in the arid 

and semi-arid regions in Australia.  

In this study, we used the SIF retrieved from the Global Ozone Monitoring 

Experiment-2 (GOME-2) (Joiner et al., 2013) and Orbiting Carbon Observatory-2 (OCO-
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2) (Frankenberg et al., 2014) to examine vegetation seasonality in response to variations 

of water stress over the arid/semi-arid regions of Australia. The main goals of this study 

were (1) to evaluate the sensitivity of SIF to the seasonal variation of precipitation and 

(2) to compare the effectiveness and robustness of SIF, EVI, NDVI, and GPP in tracking 

the variation of plant activity and water availability in arid/semi-arid regions of Australia. 

3.3. DATA AND METHOD 

3.3.1. Precipitation dataset 

Precipitation data were obtained from the Australia Bureau of Meteorology's 

network of rain gauges and weather stations (Jones et al., 2007, 2009). Twenty-four 

accumulated rainfalls from local time 9:00 A.M. one day to 9:00 A.M. the next day were 

measured at 3,000 sites across the country. Then, these rainfall values from about 3000 

sites across the country were mapped onto 0.25 x 0.25-degree grids with quality control.  

3.3.2. Satellite SIF dataset 

At the canopy level, steady-state fluorescence from plant chlorophyll can be 

simply expressed as (e.g., Berry et al., 2013): 

𝑆𝐼𝐹 = 𝑒 ∗ 𝜑 ∗ 𝑓𝑃𝐴𝑅 ∗ 𝑃𝐴𝑅,                        (3.1) 

where e is the fractional amount of fluorescence that escapes the canopy, theta is the 

fluorescence efficiency, and fPAR is the fraction of absorbed PAR. e*φ  can be 

considered as the product of the actual fluorescence yield of the canopy and the fraction 

of the canopy emission that escapes to the atmosphere. In Equation (3.1), SIF, fPAR, and 

PAR can be estimated from remotely-sensed variables. 

In this work, we used the SIF dataset from GOME-2 measurements for 2007 to 

2015 (Joiner et al., 2013). GOME-2 is an operational, nadir-viewing, UV/visible, cross-



39 
 

track scanning spectrometer. It is part of the European Meteorological Satellite 

(EUMETSAT) Polar System (EPS) MetOp mission series. GOME-2 measures the 

Earth’s backscattered radiance and the extra-terrestrial solar irradiance at wavelengths 

between 240 and 790 nm in four detector channels. We used the retrieval of the far-red 

chlorophyll fluorescence peaking at 740 nm, which was estimated from measurements 

over a broad spectral range (734 - 758 nm) (Joiner et al., 2013, 2014). The resulting SIF 

data were gridded at 0.5° cell boxes and binned at monthly intervals. In addition, we 

applied SIF retrievals from the OCO-2 (Frankenberg et al., 2014) from January 2015 to 

December 2016. The OCO-2 mission was launched in July 2014, offering the possibility 

of monitoring SIF globally with a 100-fold improvement in spatial and temporal 

resolution with respect to other products, including GOME-2 and GOSAT (Frankenberg 

et al., 2014; Guanter et al., 2015). 

3.3.3. Satellite EVI dataset  

EVI is widely used as a proxy of canopy “greenness” to address spatial and 

temporal variations in terrestrial photosynthetic activity (e.g., Huete et al., 2002; Ma et 

al., 2013). EVI is expressed as (Huete et al., 1997): 
𝐸𝑉𝐼   = 𝐺 !"#  !  !"#

!"#  !  !!!"#  !  !!!"#$  !  !
,                       (3.2) 

where 𝐿 is the canopy background adjustment, and 𝐶!, 𝐶! are the coefficients of the 

aerosol resistance term, 𝐺 is the gain factor. Coefficients adopted for MODIS EVI 

algorithms are: 𝐿 = 1, 𝐶! = 6, 𝐶! = 7.5, and 𝐺 = 2.5 (Huete et al. 2002). 𝑁𝐼𝑅, 𝑅𝐸𝐷, 

and 𝐵𝐿𝑈𝐸 are atmospherically corrected, either fully or partially, values of surface near-

infrared(841–876 nm), red(620–670 nm) and blue (459–479 nm) spectral reflectance. 

MODIS monthly VI products (MOD13A3.005) for February2000–2013 were obtained 

from the USGS repository (http://e4ftl01.cr.usgs.gov/MOLT/MOD13A3.005/). This 
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dataset is produced globally over land at 1-km resolution and monthly compositing 

periods from atmospherically corrected surface reflectance. The compositing algorithm is 

based on a constrained-view angle-maximum value composite (CV-MVC) to minimize 

atmospheric and bidirectional reflectance distribution function(BRDF) influences (Huete 

et al., 2002). 

3.3.4. Satellite GPP dataset  

The Gross Primary Production product (MOD17A2) is designed to provide an 

accurate regular measure of the growth of the terrestrial vegetation using daily MODIS 

landcover, fAPAR/LAI and surface meteorology at 1 km for the global vegetated land 

surface (Field et al., 1998). GPP values are calculated using MODIS greenness indices in 

conjunction with ancillary meteorological data as following: 

𝐺𝑃𝑃   =    𝜀!"# ∗𝑚(𝑇!"#) ∗𝑚(𝑉𝑃𝐷) ∗ 𝑓𝑃𝐴𝑅 ∗ 𝑆𝑊!"# ∗ 0.45,       (3.3) 

where 𝜀!"# is the maximum land use efficiency (LUE) obtained from lookup tables on 

the basis of vegetation type. The scalars 𝑚(𝑇!"#) and 𝑚(𝑉𝑃𝐷) reduce 𝜀!"# under 

unfavorable conditions of low temperature and high 𝑉𝑃𝐷. 𝑓𝑃𝐴𝑅 is the Fraction of 

Photosynthetically Active Radiation absorbed by the vegetation and 𝑆𝑊!"# is shortwave 

solar radiation. 𝑇!"# , 𝑉𝑃𝐷  and 𝑆𝑊!!"  are obtained from large spatial-scale 

meteorological data sets that are available from the NASA Global Modeling and 

Assimilation Office (GMAO) (http://gmao.gsfc.nasa.gov/). 

3.3.5. Methods 

Figure 3.1 shows a map of the biomes on the continent of Australia, and the map 

includes tropical forests, temperate forests, croplands, and tropical savannahs and 

grasslands, as defined by Prentice et al. (YEAR). The analysis was done primarily over 
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“desert shrub and grassland” regions as marked in light brown with black outline. All of 

the datasets were remapped into 0.5 resolution from 2007 to 2015 except for OCO-2, 

which was available only from 2014 to 2016 with 2o x 2o resolution. Summary statistics of 

the average monthly values of SIF, NDVI, EVI, and precipitation were calculated over 

the entire study area. The leading and lagging cross correlations and the standard 

deviation of the monthly spatial averages were calculated to indicate the correlation of 

each variable with precipitation. In addition, the maximum and minimum values  month 

map are shown in the spatial analysis. 

3.4. RESULTS 

Figure 3.1b shows that SIF followed the trend of precipitation throughout the 

year, reaching a maximum in January, decreasing continuously until September, and then 

starting to increase again near the end of the year. In contrast, EVI started at an 

intermediate value in January, increased to its maximum in April, decreased steadily to 

its lowest value in November, and started to increase again in December. The increase in 

EVI to its maximum value in April occurred in a period when precipitation decreased 

dramatically from the previous month. Therefore, SIF variations match the cycle of 

precipitation closely, i.e., highest in the summer season (December, January, and 

February) and lowest in the winter season (X, Y, and Z). The cycle of EVI is about three 

months behind the precipitation cycle. Figure 3.2c shows that the seasonal cycles of NIR 

and RED correlated with each other throughout the year. However, theoretically, they 

should change in opposite phases, i.e., when NIR reaches its maximum, RED should be 

at its minimum and vice versa. The mismatch suggests that the retrieval of red reflectance 

is confounded by the land background. Figure 3.1d shows the other variables, including 

NDVI and GPP, and it also shows similar, lagging cycles versus precipitation. The NDVI 
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curve forms a wave crest from March to July and a wave trough from October to 

December, lagging precipitation by about three months. MODIS GPP had two peaks, one 

in May and one in August, with its lowest points in November to January, which were 

almost exactly opposite phases from those of precipitation. 

Figure 3.2 further supports the findings in Figs. 1b-d via spatial analyses. It 

represents the month when the maximum values occurred (left column) and minimum 

values (right column) for precipitation (PREC), SIF from different instruments 

(SIF_GOME2 and SIF_OCO-2), and EVI. It shows that the spatial pattern of SIF was 

more similar to that of precipitation (PREC) than EVI over the study area (desert area in 

Fig. 1a), especially for the month in which the maximum value occurred. Note that the 

month in which the minimum value of SIF (right column) occurred did not show a 

pattern similar to precipitation. That was because the vegetation was sparse in the arid 

and semi-arid regions. In the dry season (summer), the signal emitted by plants is very 

weak and hard to retrieve. 

The lead and lag correlations show the extent of the correlation between a given 

variable and precipitation if the curve of the variable shifts earlier or later during certain 

months. For example, when the lag was three months, the correlation between 

precipitation and EVI was 0.9, which means that, if the EVI curve shifts to three months 

earlier, its correlation with the precipitation curve is 0.9. Since the lag of three months 

gave the largest positive correlation among all months, the change in EVI was considered 

to ‘lag’ precipitation by three months. Similarly, it can be concluded that the timing of 

SIF_GOMES2 matched precipitation perfectly, the timing of SIF_OCO-2 lagged slightly 

(for one month), and the timing of NIR lagged by five months. 
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3.5. CONCLUSIONS 

The seasonal dynamics of vegetation were found to be sensitive to the availability 

of water throughout the region. Analysis of the lead-lag correlations between 

precipitation and SIF, EVI, and NDVI indicated that SIF and rainfall are well 

synchronized in their variations, but this was not the case for EVI and NDVI. Our results 

indicated that the retrieved fluorescence provides critical information about the seasonal 

dynamics associated with the production of vegetation.   

We have demonstrated for the first time that SIF can be used to investigate the 

response of Australian arid/semiarid ecosystems to water stress on a seasonal scale. This 

is because SIF measures the light emissions that originate from the cores of the 

photosynthetic machinery, while other variables, such as EVI, NDVI, and MODIS GPP, 

cannot detect instantaneous and dynamic photosynthetic activity. 
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Figure 3.1. Vegetation map and time series of all biomass variables. a) is the vegetation 
type map of Australia continent. The study regions of arid/semiarid plants 
are shown in sand color with marked boarder. b)-d) are seasonal variation of 
different variables averaged over study region from 2007-2015 (for data 
retrieved from OCO-2 are from 2014-2016). 
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Figure 3.2. Spatial distribution of the month when maximum value or minimum value 
occurs. 
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Figure 3.3. The correlation coefficients between precipitation(PREC) and the 5months 
lagging or leading plant related variables (SIF_OCO-2, SIF_GOME2, EVI, 
NIR). 
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CHAPTER 4: Disentangling climatic and anthropogenic controls on 
global terrestrial evapotranspiration trends 

4.1. ABSTRACT 

In this study, we examined the change of natural and anthropogenic controls on 

terrestrial evapotranspiration (ET) from 1982 to 2010 using multiple estimates from 

remote sensing-based datasets and process-oriented land surface models. A significant 

increasing trend of ET in each hemisphere was consistently revealed by observationally-

constrained data and multi-model ensembles that considered historic natural and 

anthropogenic drivers. The climate impacts were simulated to determine the 

spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after 

the predominant climatic influences, and yielded decreasing trends in canopy 

transpiration and ET, especially for tropical forests and high-latitude shrub land. 

Increasing nitrogen deposition slightly amplified global ET via enhanced plant growth. 

Land-use-induced ET responses, albeit with substantial uncertainties across the factorial 

analysis, were minor globally, but pronounced locally, particularly over regions with 

intensive land-cover changes. Our study highlights the importance of employing multi-

stream ET and ET-component estimates to quantify the strengthening anthropogenic 

fingerprint in the global hydrologic cycle. Amazonia.  

4.2. INTRODUCTION 

An intensified global hydrological cycle has been observed and modeled during 

the past few years (Huntington 2006; Gerten et al., 2008; Wang et al., 2010; Durack et 

al., 2012; Douville et al., 2013; Sterling et al., 2013; Wu et al., 2013; Gedney et al., 

2014). Terrestrial evapotranspiration (ET) is arguably the central component of this 

changing hydrologic cycle, and functions as a vital link between energy, water and 
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carbon cycles, thereby having important implications for the availability and usage of 

fresh water resources by humans and terrestrial ecosystems (Seneviratne et al., 2006; 

Trenberth et al., 2009; Fisher et al., 2011; Wang and Dickinson 2012). 

Natural environmental factors (e.g. precipitation, temperature, incident solar 

radiation, soil moisture, wind and atmospheric teleconnections) regulate ET and its 

variability across different terrestrial ecosystems (Teuling et al., 2009; Jung et al., 2010; 

Wang et al., 2010; Vinukollu et al., 2011; Zhang et al., 2012; Miralles et al., 2014). These 

natural controls and limitations/co-limitations of ET are scale-dependent. Their 

mechanistic understanding is very important to predict the tendency and variability of ET 

(Wang and Dickinson, 2012). Human-induced land use/land cover change, ground water 

withdrawals, and irrigation can directly alter the amount and timing of ET by modifying 

the local water and energy balances (Piao et al., 2007; Gerten, 2013; Leung et al., 2013, 

2014a, 2014b; Lo and Famiglietti, 2013; Sterling et al., 2013; Lei et al., 2014c). Human 

activities that contribute to greenhouse gas emissions, atmospheric nitrogen deposition 

(NDE), and ozone pollution can also alter ET indirectly through changes in physiological, 

structural and compositional responses of plants (Gedney et al., 2006; Betts et al., 2007; 

Sitch et al., 2007; Cao et al., 2009; Leakey et al., 2009). Discriminating these 

anthropogenic perturbations from natural factors is expected to increase in importance as 

anthropogenic transformation of the Earth System becomes more pervasive (Seneviratne 

et al., 2010; Gerten, 2013). 

Based on mechanistic and empirical algorithms that are driven by remotely sensed 

observations, a variety of globally gridded diagnostic ET products have been compiled 

and evaluated in recent years (Willmott et al., 1985; Fisher et al., 2008; Jiménez et al., 

2009; Jung et al., 2009; Sheffield et al., 2010; Zhang et al., 2010b; Miralles et al., 2011; 
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Mueller et al., 2011; Vinukollu et al., 2011; Zeng et al., 2012; Schwalm et al., 2013). 

These gridded ET estimates offer crucial sources and benchmarks for quantitative 

investigations of historical ET dynamics over the land surface. However, the accuracy of 

these observation-based ET products has yet to be reconciled due to limitations in 

underlying hypotheses and errors in input datasets (Mueller et al., 2011, 2013; Polhamus 

et al., 2012). Moreover, due to their reliance on the satellite observations, these datasets 

offer a limited historical temporal record that encompasses only a few decades (Badgley 

et al., 2015). 

To predict future changes in ET patterns, process-based simulation and 

understanding of the magnitudes, mechanisms and interactions that control historical ET 

dynamics will be required and should be within uncertainty of both historical and 

present-day observations. Mechanistic land surface models (LSMs), driven by 

measurement-based environmental properties, are useful tools for the detection and 

attribution of natural and anthropogenic effects on ET dynamics. For the past decade, 

global factorial LSM experiments have been conducted and analyzed by different 

modeling groups to investigate the separate effects of environmental stresses on land 

surface and subsurface runoff, river flow, ET and water use efficiency (Gedney et al., 

2006, 2014; Piao et al., 2007; Shi et al 2011, 2013; Tian et al., 2011; Liu et al., 2012; Tao 

et al., 2014). The role of climate impacts on these hydrologic variables has been 

characterized across different regions of the globe. The relative role of natural 

environmental change versus anthropogenic activities, however, was modeled to be 

heterogeneous and geographically dependent. Nevertheless, due to large differences in 

initial model conditions, driver data, and complex parameterizations that govern models, 
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the simulated ET was demonstrated to vary in magnitudes and responses across models at 

both temporal and spatial scales (Wang et al., 2010). 

To disentangle these differences in simulated ET patterns and the relative role of 

model sensitivity and structure, the experimental setup and boundary/initial data must be 

similar among different participating models. We leveraged the controlled factorial 

experiments and model simulation protocol from the Multi-Scale Synthesis and 

Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013). Further, 

we synthesized a global ET time series (1982–2010) based on a diverse set of diagnostic 

ET products (Table 4.1), and the methodology reported recently in Mueller et al (2013). 

The partitioning of ET (e.g canopy transpiration (Tr) and evaporation from wet canopy 

and bare soil (ET–Tr)) and the variation of those ET components are poorly understood 

and less constrained by observations (Lawrence et al., 2007; Jasechko et al., 2013; 

Swenson and Lawrence, 2014; Wang et al., 2014). The MsTMIP modeling framework 

can advance our understanding of trends in ET by providing predictions of the individual 

ET components. In this study, we thus further investigated the contribution of individual 

influencing factors to the spatial and temporal characteristics of these ET constituents.  

4.3. DATASETS AND METHODS 

To We created a merged diagnostic ET data (DIA) from 11 long-term diagnostic 

datasets, all based on different assumptions and constrained with extensive in situ 

observations or satellite retrievals or both (Table 4.1). We remapped the monthly raw 

datasets from their original spatial resolutions to the half-degree resolution of the model 

output from 1982 through 2010 based on data availability. Following Mueller et al 

(2013), we applied both physical and statistical constraints for quality control and bias 

corrections. For the physical constraint, we developed a dataset of seasonal net radiation 
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maxima using the surface radiation budget (SRB3.0) datasets (Gupta, 1983). We then 

excluded grid points with values exceeding net radiation maxima by more than 25%. The 

outliers were identified as values that exceed ±3 standard deviations (Weedon, 2011). 

Then the median values of these quality-controlled multiple ET estimates were treated as 

the merged product, and were comprehensively compared with the LSM results in this 

study. As shown in Figure 4.5, the annual anomalies of the previously synthesized ET in 

Mueller et al (2013) are well within the spread of this newly-merged diagnostic data 

product. This updated product however, provides longer-term dynamics and is more 

amenable for studies at multi-decadal timescales. 

To isolate the contributions of environmental drivers to multi-year ET variations, 

we utilized the factorial ET simulations from the MsTMIP data archive. Driven by the 

same environmental forcing (climate variability and trends, rising atmospheric CO2 

concentrations causing fertilization and reducing stomatal opening, nitrogen deposition, 

land use/land cover change, and soil texture and vegetation types), these state-of-the-art 

LSMs were employed to identify the principal drivers of interannual variability and 

multi-decadal changes of ET. Because the evaporation component for canopy and soil, 

and the snow sublimation, were not separately archived in the standard model outputs in 

the MsTMIP I protocol (Huntzinger et al., 2013, 2015), we included all relevant available 

outputs, namely the ET, Tr and the total evaporation (ET–Tr). Four model experiments: 

(1) SG1 (time varying climate), (2) SG2 (time-varying climate and land use change 

history), (3) SG3 (time-varying climate, land use, and atmospheric CO2), and (4) BG1 

(time-varying climate, land-use, atmospheric CO2 and nitrogen deposition), were 

analyzed to quantify the effects of each environmental forcing factor on the study 

variables for the years 1982 through 2010. The transient simulations began in 1901, 
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turning on one time-varying driver at a time. Simulations BG1 or SG3 were used to 

address the combined impacts from various historical forcing agents for models with 

(BG1) or without (SG3) an explicit nitrogen cycle. Simulation or simulation differencing 

was used to quantify the contribution to ET and ET component changes from climate 

change (CLI) (derived from SG1), land use/land cover change (LUC) (derived from SG2-

SG1), rising atmospheric CO2 (CO2) (derived from SG3-SG2), NDE (derived from 

BG1-SG3), or all forcing (ALL) (derived from BG1 or SG3) (Table 4.1). To account for 

the overall effects from human activity (OTH), we derived the human-induced ET to be 

the difference between the BG1 and SG1 or SG3 and SG1 simulations. 

Annual cropland area and total tree coverage information for the 1982–2010 

period were derived from the merged product of the SYNergetic land cover MAP (Jung 

et al., 2006) and the annual time series of the land use harmonization data (Hurtt et al 

2011). Additional details on the aforementioned driver data and experimental design can 

be found in Wei et al (2014a, 2014b) and Huntzinger et al (2013, 2015). 

Growing season ET generally dominates the annual sum over the vegetated area 

of land (Wang et al., 2007). We focused our analysis on growing season ET for all 

observational and modeled data. The dynamic annual growing season information, used 

to mask the monthly ET between 1982 and 2010, was first determined from the global 

inventory modeling and mapping studies normalized difference vegetation index 

(NDVI3g) dataset (Pinzon and Tucker, 2014) using a Savitzky–Golay filter (Chen et al., 

2004; Jonsson and Eklundh, 2004). It was then refined by excluding the freeze period 

identified by the Freeze/Thaw Earth System Data Record (Kim et al., 2011, 2012). In 

particular, the growing season of tropical rainforests was set to 12 months and it started in 

January. 
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4.4. RESULTS 

Across the globe, statistically significant increasing trends of ET were recorded 

from 1982 to 2010 in the observation-based ET estimates (DIA) (1.18 mm yr−2) and 

modeled ET from the ALL simulation (0.93 ± 0.31 mm yr−2) (Figures 4.1 and 4.6, and 

Table 4.2). Significantly positive annual correlations between the simulated ALL ET and 

the observed ET were obtained, particularly in the Northern hemisphere (NH) 

(Land: R2 = 0.58, p < 0.01, NH: R2 = 0.72, p < 0.01, and the Southern hemisphere 

(SH): R2 = 0.46, p < 0.01). The simulated multiyear increasing trend and interannual 

variability of the ALL ET were mainly explained by the CLI ET. In contrast, the overall 

human-induced OTH ET was predicted to decrease somewhat, and to exhibit relatively 

small interannual variations. 

Spatial analysis of linear trends of ET for the merged observation product 

revealed remarkably consistent increasing tendency over most continents (Figure 4.2a). 

Local hotspots of reduced ET were diagnosed to occur in the arid regions of Western 

North America, central Africa, Northern China and Southeastern Asia. By contrast, the 

modeled changes of ALL ET underestimated the magnitude of ET changes in Eastern 

North America and Western Europe, and missed the ET decreases in central Africa. But 

the placement of increasing or decreasing trends in ALL ET largely agreed favorably 

with those of the observed ET trends, indicating the suitability of examining multi-year 

ET trends using the all-factor simulations. 

Increasing nitrogen deposition led to increasing leaf area index (LAI) (Figures 

4.4b and Figure 4.7b), and consequently to enhanced terrestrial ET, particularly over 

South America, Africa and Southeastern China (Figures 4.2(f) and 4.6). The areas 

undergoing strong increase in forest fraction and decrease in cropland fraction, such as in 



54 
 

central Eastern North America and central Europe, clearly showed increasing annual ET 

(Figures 4.2(g), 4.4(c) and (d)). In contrast, regions with evident loss of trees, such as 

Eastern China and Southeastern South America, show a downtrend of annual ET. 

Compared to the CO2 and nitrogen deposition effects, however, the effect of LUC on 

land ET was important locally. Relatively large uncertainties from the LUC were also 

found between individual models (Figures 4.6 and 4.10). 

Trends for the Tr and total ET–Tr were dominated by the climatic changes across 

various continents. For Tr, 85.4% of the study area was impacted by the climatic changes, 

and 88.7% for ET–Tr (Figures 4.3(b), (c), 4.8(a)–(f)). Congruent with the response of ET 

changes to rising CO2 (48.4 ppm during the period 1982–2010), most areas, especially 

these regions covered by tropical broadleaf evergreen trees and high latitude shrubs, 

showed decreasing Tr. This is due to the CO2-induced reduction in stomatal conductance 

overwhelming the LAI-induced increase of canopy evaporation and transpiration under 

elevated CO2 concentration (Figures 4.3(e) and 4.8(j)). On the other hand, CO2 

fertilization would enhance canopy LAI through increasing photosynthate allocation to 

leaves, and caused more canopy transpiration and evaporation than the reduced 

transpiration by CO2 physiological effects, especially over dry areas with sparse 

vegetation (e.g. the Western North America, central Eurasia, and Australia) (Figures 

4.7(a) and 4.8(j)). Reversed ET–Tr trends in these arid regions imply that decreasing soil 

evaporation was the dominant factor in changing ET–Tr (Figures 4.8(j)–(l)). For most 

areas that showed decreasing Tr but increasing ET–Tr under CO2 enrichment, the 

augmented evaporation of intercepted rainfall and increasing soil evaporation may have 

been coincidental. 
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Increasing ET caused by nitrogen deposition was due to enhanced Tr (Figures 

4.2(f), 4.8(m) and 4.9). A decrease of ET–Tr caused by the nitrogen deposition effect, as 

seen in central North America and in Western Europe, was due to reduced soil 

evaporation (Figures 4.8(n) and 4.9). The latter is a consequence of the increasing LAI 

providing more shade and so reducing solar energy for soil evaporation. In addition, the 

increasing Tr further depleted soil water, which reduced soil evaporation. In the 

evergreen broadleaf forests of the Western Amazon and Congo basin, nitrogen deposition 

and higher LAI resulted in increasing canopy evaporation. The increase in canopy 

evaporation more than offset the decrease in soil evaporation and hence dominated the 

increasing ET–Tr and even the nitrogen-induced increase in total ET (Figures 4.8(m)–

(o)). 

LUC led to a decreasing trend in Tr across densely inhabited regions that had 

experienced substantial land use perturbations (e.g. clearing trees for crops) during the 

study period. These occurred mainly in Southeastern South America and the Eastern 

China (Figures 4.4(c), (d), 4.8(p) and 4.9). Tr trends showed a general negative sign over 

central Eastern North America and Western Europe, where croplands had been replaced 

mainly by forests and woodlands. This reduction of Tr with reforestation implies that the 

tree species that replaced the crops had lower stomatal conductance than the crop species, 

the younger and smaller trees of the returning forests had lower LAI than the croplands 

they replaced, or the available soil water for plants decreased because of the removal of 

irrigation. These aspects deserve further study. 

4.5. DISCUSSIONS 

Between 1982 and 2010, the observation-based and simulated ALL ET 

consistently showed a significantly increasing trend across the globe. These findings are 
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consistent with previous studies, which reported an intensified global hydrological cycle 

in response to global warming following the Clausius–Clapeyron law (the relationship 

between equilibrium water vapor pressure and temperature, about 7% per °C of warming) 

(Held and Soden, 2006), as well as increasing importance of the radiative component of 

ET (Johnson and Sharma 2010). Climatic factors accounted for much of the spatial and 

temporal variations in terrestrial ET, Tr and ET–Tr. This supports previous studies 

regarding the prevalent climatic mechanisms controlling the long-term ET trends such as 

temperature, precipitation, soil moisture, energy and internal climate variability (Teuling 

et al., 2009; Jung et al., 2010; Wang et al., 2010; Vinukollu et al., 2011; Zhang et al., 

2012; Ukkola and Prentice, 2013; Miralles et al., 2014). 

In our study, the rising atmospheric CO2 concentration, as tested by model 

factorial experiments, induced an overall suppression of Tr and hence a general 

decreasing ET. Our results further suggest that the sign of change and regional pattern of 

these CO2 physiological effects on ET were moderated by changes in LAI. The overall 

response of ET was eventually determined by the balance among the changes of Tr, 

canopy evaporation and soil evaporation. These results are consistent with modeled and 

observed plant physiological responses to the increase of CO2 concentration in the 

atmosphere (Betts et al., 2007; Leakey et al., 2009). They also reiterate previous findings 

that show the concurrent physiological and structural responses of vegetation to rising 

CO2, and associated hydrological effects (Gedney et al., 2006; Leipprand and Gerten, 

2006; Ainsworth and Rogers, 2007; Betts et al., 2007; Kurc and Small, 2007; Piao et al., 

2007; Cao et al., 2009; Leakey et al., 2009; Lei et al., 2014b). 

Simulation experiments that consider NDE showed enhanced global LAI as a 

result of increasing nutrient availability (Figures 4.4(b) and 4.7(b)). The nitrogen-induced 
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enhancement of canopy Tr and canopy evaporation, however, was regionally offset by 

decreasing soil evaporation, and led to lower ET for the nitrogen fertilization effect. 

Nonetheless, mineralized nitrogen in the rooting system was governed by not only the 

amount of deposited N, but also by leaching and denitrification, which are affected by 

environmental conditions (Hovenden et al., 2014). This highlights the necessity of better 

understanding the interactions among these environmental drivers, and the underlying 

mechanisms responsible for biogeochemical and hydrologic cycles. 

Previous modeling studies (Boisier et al., 2012, 2014; Shi et al., 2013; Sterling et 

al., 2013; Tao et al., 2014) agree with our results that anthropogenic activities modified 

ET and its components locally, and human-induced LUC effects tended to counteract 

each other at a global scale. We found large uncertainties associated with LUC impacts 

among the MsTMIP LSMs, particularly over the NH and areas having marked land cover 

conversions. Though based on the same merged LUC dataset, different LSM groups 

prescribed the dynamic evolution of plant functional types with model-specific 

classifications (Wei et al., 2014a, 2014b). The sensitivity of biophysical and 

biogeochemical processes to the reconstructed historical scenario of LUC, moreover, 

varied considerably from model to model (Huntzinger et al 2013). For example, for the 

SIB3-JPL models, abnormally higher LUC ET was simulated over the NH and global 

land compared to that of other models (Figure 4.10). In SIB3-JPL, ET is a function of 

stomatal conductance and is sensitive to changes in photosynthetically active radiation 

(PAR). In LUC simulations, plant functional type changes over time, but the PAR is 

prescribed from present day NDVI climatology and is thus fixed to modern vegetation. 

This can lead to a bias in gross primary production in cases where grasslands are 

converted to forests, since the NDVI and resulting fraction of incident PAR absorbed by 
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green leaving in the canopy (fPAR) are calculated from a modern day forest ecosystem 

but used to estimate stomatal conductance and ET for the historical grassland it replaced. 

The sensitivity to land-use change and cultivated ecosystems (e.g., irrigated croplands) 

reinforce the need for better LUC characterization, improved parameterization of ET in 

croplands, and the development of forcing datasets (e.g., PAR) that are not artificially 

dependent upon land cover. Improvements in these areas may help reduce the large inter-

model spreads in the responses of ET to LUC. 

Quantitative estimation of ET partitioning has been refined recently, but 

information on long-term variations and the precise drivers of each ET component are 

lacking (Jasechko et al., 2013; Wang et al., 2014). By using a multi-model ensemble, we 

assessed the annual trends of the Tr and ET–Tr over nearly three decades, and further 

estimated their spatial-temporal responses to various environmental stresses. These 

modeled results, however, remain rather uncertain without observational constrains that 

are sufficiently long and representative. Comprehensive synthesis of long-term 

observation-constrained ET components is needed to improve our understanding of the 

controlling mechanisms, and to better characterize the partitioning schemes. 

4.6. CONCLUSIONS 

The relative contribution of climate and anthropogenic activities to the spatio-

temporal changes in ET was quantitatively characterized with the newly-merged ET and 

multifactor ensemble simulations from MsTMIP. In the LSMs, climate, CO2, nitrogen 

deposition, and land use impacts were separated experimentally to determine the ET 

variations between 1982 and 2010. Climate, and in particular, changes in precipitation, 

was the dominant control of multi-year ET trends and variability. The overall CO2 

physiological and structural effect induced decreasing plants transpiration and the total 
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ET, especially in areas where vegetation was dense. Compared to climate change and the 

elevated CO2 effects, the impacts of nitrogen deposition and land use change on ET were 

less important and acted locally. Other detailed explorations are needed, such as the 

implementation of more compelling statistical techniques and fully-coupled modeling 

systems (Douville et al 2013, Wu et al 2013, Gedney et al 2014) to detect and attribute 

the natural and anthropogenic effects on ET with more certainty. ET-related feedback 

studies are also required to account for land-atmosphere interactions and anthropogenic 

impacts in the integrated earth system models (Seneviratne et al 2010, Bond-Lamberty et 

al 2014, Collins et al 2015) and to understand future trajectories of drought (Sheffield et 

al 2012, Zarch et al 2015). Given that human activities continue to grow and intensify in 

the Anthropocene Epoch, we emphasize utilizing multi-stream datasets and multi-

modeling frameworks to better diagnose and project anthropogenic influences on 

terrestrial ET, hydrologic cycle and overall climate change. 
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Table 4.1. Overview of the diagnostic ET datasets used for the merged ET of this study, 

Group Name Algorithm Spatial 
Resolution 

Precipitatio
n Data 

Time 
Period 

Citation 

D
ia

gn
os

tic
 E

T 

GLEAM Modified Priestley-
Taylor 

0.25° x 0.25° GPCP 
CMORPH 

1982-2010 Miralles et 
al. (2011) 

CSIRO Modified Penman-
Monteith 

0.5° x 0.5° SILO 1984-2005 Zhang et al. 
(2010b) 

MPI Empirically derived 
from FLUXNET 

0.5° x 0.5° GPCC 1982-2008 Jung et al. 
(2009) 

NTSG Modified Penman-
Monteith 

0.5° x 0.5° GPCC 1983-2006 Zhang et al. 
(2010a) 

 
PRUNI (3 

sets of data) 

Penman-
Monteith/Priestley-

Taylor (ISCCP, 
AVHRR, SRB) 

 
 0.25° 
x0.25° 

 
Sheffield et 
al. (2006) 

 
1984-2007 

 
Sheffield et 
al. (2010) 

PT-JPL Modified Priestley-­‐
Taylor 

  0.5° x 0.5° Not required 1984-2006 Fisher et al. 
(2008) 

UDEL Modified 
Thornthwaite water 

budget 

  
  0.5° x 0.5° 

 
GHCN2 

 
1980-2008 

Willmott et 
al. (1985) 

PUB Empirical method 
(TWSA, CRU) 

0.5° x 0.5° GRACE 1982-2009 Zeng et al. 
(2012) 

AWB Water balance 0.5° x 0.5° GPCP 1990-2006 Mueller et al. 
(2011a) 

Group Name Algorithm Spatial 
Resolution 

 Time 
Period 

Citation CLI LUC CO2 NDE ALL OTH 

M
sT

M
IP

 E
T 

 
CLM4 

Modified Penman-
Monteith 

 
0.5° x 0.5° 

 
CRUNCEP 

 
1982-2010 

Lawrence et 
al. (2007); 
Mao et al. 

(2012) 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

 
Y 

DLEM Penman-Monteith 0.5° x 0.5° CRUNCEP 1982-2010 Tian et al. 
(2011, 2012) 

Y Y Y Y Y Y 

BIOME-
BGC 

Penman-Monteith 0.5° x 0.5° CRUNCEP 1982-2010 Thornton et 
al. (2002) 

Y N N N Y Y 

CLASS-
CTEM-N+ 

Modified Penman-
Monteith 

0.5° x 0.5° CRUNCEP 1982-2010 Huang et al. 
(2011); 

Bartlett et al. 
(2006) 

Y Y Y Y Y Y 

CLM4-VIC Modified Penman-
Monteith 

0.5° x 0.5° CRUNCEP 1982-2010 Lei et al. 
(2014a) 

Y Y Y Y Y Y 

ISAM Modified Penman-
Monteith 

0.5° x 0.5° CRUNCEP 1982-2010 Jain et al. 
(1996) 

Y Y Y Y Y Y 

LPJ-WSL Modified Penman-
Monteith 

0.5° x 0.5° CRUNCEP 1982-2010 Sitch et al. 
(2003) 

Y Y Y N Y Y 

ORCHIDE
E-LSCE 

Modified Penman-
Monteith 

0.5° x 0.5° CRUNCEP 1982-2010 Krinner et al. 
(2005) 

Y Y Y N Y Y 

SiB3-JPL Penman-Monteith 0.5° x 0.5° CRUNCEP 1982-2010 Baker et al. 
(2008) 

Y Y Y N Y Y 

SiBCASA Penman-Monteith 0.5° x 0.5° CRUNCEP 1982-2010 Schaefer et 
al. (2008, 

2009) 

Y Y Y N Y Y 

TRIPLEX-
GHG 

Modified Penman-
Monteith 

0.5° x 0.5° CRUNCEP 1982-2010 Peng et al. 
(2011) 

N N Y Y Y N 

VEGAS Bulk Transfer 
Formula 

0.5° x 0.5° CRUNCEP 1982-2010 Zeng (2005) Y Y Y N Y Y 

VISIT Penman-Monteith 0.5° x 0.5° CRUNCEP 1982-2010 Ito and 
Inatomi 
(2012) 

Y Y Y N Y Y 
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and the simulated ET from MsTMIP models. Factorial results of the 
MsTMIP multi-model are ALL: the impact from all historical forcing 
factors, CLI: the impact from historical climate only, OTH: all 
anthropogenic impacts, CO2: the historical CO2 impact only, NDE: the 
historical nitrogen deposition impact only, LUC: the historical land use/land 
cover change impact only, Y: the availability of ET simulation for the 
particular impact, and N: the non-availability of ET simulation for the 
particular impact.  
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Table 4.2. Trend statistics in ET median values for the observation-based estimates (DIA) 

 Regions ET and ET apartments DIA ALL CLI OTH CO2 NDE LUC 

North America 

ET 1.332 0.528 0.682 0.003 -0.065 0.009 0.019 

T -- 0.165 0.282 -0.113 -0.083 0.02 -0.032 

ET-T -- 0.154 0.248 0.04 -0.007 -0.007 0.047 

South America 

ET 2.056 1.297 1.372 -0.336 -0.289 0.062 0.005 

T -- 0.971 0.753 -0.266 -0.286 0.13 -0.157 

ET-T -- 1.364 1.966 -0.016 0.01 -0.003 -0.068 

Europe 

ET 1.378 0.789 0.649 0.01 -0.057 0.014 0.066 

T -- 0.317 0.483 -0.074 -0.074 0.033 -0.134 

ET-T -- 0.334 0.348 0.033 -0.014 -0.031 -0.005 

Africa 

ET 1.326 1.911 2.003 -0.039 -0.083 0.074 -0.045 

T -- 1.496 1.032 0.018 -0.05 0.124 -0.037 

ET-T -- 0.957 1.103 -0.004 -0.017 -0.022 -0.017 

Asia 

ET 0.564 0.372 0.475 -0.08 -0.086 0.018 -0.004 

T -- 0.253 0.206 -0.077 -0.078 0.032 -0.044 

ET-T -- 0.305 0.448 0.017 -0.016 -0.013 0.041 

Australia 

ET 0.861 1.261 1.2 0.061 -0.001 0.0004 0.0052 

T -- 0.069 -0.011 0.013 0.022 0.018 -0.001 

ET-T -- 0.744 0.71 -0.04 -0.029 -0.003 -0.053 

Global Land 

ET 1.182 0.858 0.926 -0.127 -0.101 0.043 0.003 

T -- 0.324 0.348 -0.067 -0.078 0.077 -0.099 

ET-T -- 0.553 0.604 0.043 -0.005 -0.009 -0.035 

Northern Hemisphere 

ET 1.152 0.664 0.793 -0.144 -0.069 0.044 -0.008 

T -- 0.222 0.454 -0.058 -0.062 0.037 -0.068 

ET-T -- 0.418 0.444 0.025 -0.022 -0.013 -0.046 

Southern Hemisphere 

ET 1.233 1.168 1.218 -0.155 -0.165 0.042 -0.024 

T -- 0.268 0.286 -0.097 -0.097 0.057 -0.17 

ET-T -- 0.889 0.644 0.09 0.0003 -0.0004 -0.013 
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and MsTMIP simulated results over different regions from 1982-2010. The 
DIA only has the ET trends, and MsTMIP simulations have the trends of 
ET, Tr and ET-Tr. The factorial results from the MsTMIP multi-model are 
ALL: the impact from all historical forcing factors, CLI: the impact from 
historical climate only, OTH: all the anthropogenic impact, CO2: the 
historical CO2 impact only, NDE: the historical nitrogen deposition impact 
only, LUC: the historical land use/land cover change impact only, Y: the 
availability of ET simulation for the particular impact, and N: the non-
availability of ET simulation for the particular impact. Values in bold 
indicate statistically significant trend at the 90% level. 
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Figure 4.1. Time series of annual anomalies of growing season ET (mm yr−1) over (a) the 
globe, (b) the NH, and (c) the SH from 1982 to 2010. Solid lines are the 
median values of the merged ET (ET_DIA, black), MsTMIP ET of ALL 
(ET_ALL, red), CLI (ET_CLI, blue), and OTH (ET_OTH, green). Shaded 
areas indicate the ET range of independent MsTMIP models. 



65 
 

 

Figure 4.2. Spatial distribution of the linear trends in ET median values (mm yr−2) for (a) 
ET_DIA, (b) ET_ALL, (c) ET_CLI, (d) ET_OTH, (e) CO2 (ET_CO2), (f) 
NDE (ET_NDE), and (g) LUC (ET_LUC) from 1982 to 2010. The stippled 
areas represent the trends are statistically significant (P < 0.05), and the 
insets show the frequency distribution of the corresponding change. 
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Figure 4.3. Spatial distribution of the dominant drivers for the ET, Tr and ET–Tr changes 
for the period 1982–2010. (a)–(c) Dominant drivers for the ET, Tr and ET–
Tr trends of the ALL results, and (d)–(f) dominant drivers for the ET, Tr and 
ET–Tr trends of the OTH results. 
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Figure 4.4. Spatial distribution of trends in (a) precipitation (PRE, mm yr−2), (b) nitrogen 
deposition (NDE, mg N m−2 yr−2), (c) fractional tree coverage (TREE, 
%/yr2), and (d) fractional crop coverage (CROP, % yr−2) over the period 
1982–2010, and spatial distribution of dominant climatic variable 
(precipitation, temperature (TEM) and incident solar radiation (RAD)) 
responsible for (e) ET variability, and (f) both variability and trend. For (e), 
the dominance was derived by comparing the R2 of the partial correlations 
between detrended ET and individual climatic factor. For (f), the dominance 
was derived by comparing the R2 of the partial correlations between un-
detrended ET and individual climatic factor. Both (e) and (f) share the same 
color legend in (f). 
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Figure 4.5. Time series of annual anomalies of ET (mm yr−1 ) over (a) the globe, (b) the 
NH, and (c) the SH from 1982-2010. Solid lines are the median values of 
the merged ET from this study (ET_DIA, red), and the merged ET (Mueller, 
blue) from Mueller et al (2013). Shaded areas indicate the ±1 s.d. of 
ET_DIA for the overlapped period of the two datasets (1989-2005). 
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Figure 4.6. Trends of global-, NH-, SH- and continental-scale ET (mm yr-2 ) for DIA, 
ALL, CLI, OTH, CO2, NDE and LUC results. *P < 0.05 for the trend in ET 
median values being significantly different from zero. For each category of 
the model results, the color bar represents the trend in ET median values of 
the individual model. The error bars indicate the mean±1 s.d. of ET trend for 
individual model within each category. The pink colors represent the 
positive trends and the blue colors denote the negative changes. 
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Figure 4.7. Spatial distribution of the linear trends in LAI (m2 /m2 /yr) for (a) CO2 result 
(LAI_CO2), and (b) NDE result (LAI_NDE) from 1982-2010. 
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Figure 4.8. Spatial distribution of the linear trends in (a) ALL Tr (ALL_Tr), (b) ALL  
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 ETTr (ET-Tr_ALL), (d) CLI Tr (CLI_Tr), (e) CLI ET-Tr (ET-Tr_CLI), (g) 
OTH Tr (OTH_Tr), (h) OTH ET-Tr (ET-Tr_OTH), (j) CO2 Tr (CO2_Tr), 
(k) CO2 ET-Tr (ETTr_ CO2), (m) NDE Tr (NDE_Tr), (n) NDE ET-Tr (ET-
Tr_NDE), (p) LUC Tr (LUC_Tr), and (q) LUC ET-Tr (ET-Tr_LUC). The 
unit of Tr and ET-Tr trend is mm yr-2 . (c), (f), (i), (l), (o) and (r) show the 
spatial distribution of the dominant component (Tr or ET-Tr) for the ET 
changes of each category. The insets show the frequency distribution of the 
corresponding change.  
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Figure 4.9. Trends of global-, NH-, SH- and continental-scale ET, Tr and ET-Tr (mm yr-2 

). The results of ALL, CLI and OTH are associated with the left y axis, and 
those of CO2, NDE and LUC correspond to the right y axis. For each 
category of the model results, the color bar represents the trend in ET, Tr or 
ET-Tr median values of the individual model. The error bars indicate the 
mean±1 s.d. of ET, Tr or ET-Tr trend for individual model within each 
category. The pink colors represent the positive trends and the blue colors 
denote the negative changes.  

 

 

 

 

mm yr-2 mm yr-2 

ET_CO2 

ET-T_CO2 

T_CO2 

ET_NDE 
T_NDE 
ET-T_NDE 
ET_LUC 
T_LUC 
ET-T_LUC 

ET_ALL 
T_ALL 
ET-T_ALL 
ET_CLI 
T_CLI 
ET-T_CLI 

ET_OTH 
T_OTH 
ET-T_OTH 

ET_CO2 

ET-T_CO2 

T_CO2 

ET_NDE 
T_NDE 
ET-T_NDE 
ET_LUC 
T_LUC 
ET-T_LUC 

ET_ALL 
T_ALL 
ET-T_ALL 
ET_CLI 
T_CLI 
ET-T_CLI 

ET_OTH 
T_OTH 
ET-T_OTH 

ET_CO2 

ET-T_CO2 

T_CO2 

ET_NDE 
T_NDE 
ET-T_NDE 
ET_LUC 
T_LUC 
ET-T_LUC 

ET_ALL 
T_ALL 
ET-T_ALL 
ET_CLI 
T_CLI 
ET-T_CLI 

ET_OTH 
T_OTH 
ET-T_OTH 

North America South America Europe 

Africa 
Asia Australia 

Land Northern Hemisphere 
Southern Hemisphere 

(a) (b) (c) 

(d) 
(e) (f) 

(g) (h) (i) 



74 
 

 
  

Figure 4.10. Trends of global-, NH- and SH- ET (mm yr-2 ) for individual MsMTIP 
model. The results of ALL, CLI and OTH are associated with the left y axis, 
and those of CO2, NDE and LUC correspond to the right y axis. 
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CHAPTER 5: Summary and future work 

5.1. SUMMARY 

This dissertation focused on understanding the response of the biosphere to 

environmental conditions via modeling and analysis of observed data. The seasonal dry 

spell that lasts 1 to 6 months from northwest to southeast of the basin is the first type of 

water stress considered in this thesis. The first two main chapters (Chapters 2 and 3) are 

devoted to incorporating well-known, drought-coping mechanisms of trees into the 

Community Land Model (CLM), which is the land component of NCAR’s Community 

Earth System Model (CESM). We evaluated the performance of the revised model by 

assessing whether the underestimation of dry-season water and energy fluxes can be 

corrected. Then, Chapter 4 focuses on how the El Niño events, which cause wide-spread, 

below-normal precipitation anomalies over large areas across the basin, especially the 

eastern portion, and influence the growth of vegetation on the inter-annual time scale. 

The seasonal difference of ENSO impact has also been studied. 

Chapter 2 focuses on the response of isoprene emissions to environmental 

variables. We examined the separate effects of temperature and the water content of the 

soil on isoprene emissions at the MOFLUX site during two drought events, one in 2011 

and one in 2012. We compared the observed data and the results of the MEGAN model 

simulation coupled with CLM 4.5 in different phases of the development of the drought. 

We found that temperature was a dominant factor under normal conditions without water 

stress. However, during a severe water deficit, exemplified by the peak stress phase, the 

impact of the moisture in the soil on isoprene emissions was more critical than the impact 

of temperature. Model simulations gave reasonably good predictions of isoprene 

emissions when compared to actual observations under non-stress conditions, but they 
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deviated from observations when the moisture in the soil was severely depleted. The 

discrepancies between the results of the models and observations during different drought 

phases suggest that the mechanisms by which moisture in the soil and temperature affect 

isoprene emissions during drought are not well represented in the isoprene emission 

model, which is overly sensitive to temperature variations. A more process-based, time-

dependent algorithm is required to realistically interpret environmental impacts on 

isoprene emissions for different drought intensities and development phases. 

In Chapter 3, the temporal dynamics of vegetation were found to be sensitive to 

the availability of water throughout the region with seasonal profiles. The analysis of the 

lead-lag correlation between precipitation and SIF, EVI, and NDVI indicated that SIF 

accounted for more of the variance in the rainfall. Our results suggested that retrieved 

fluorescence provides information that is independent of red reflectance and that it could 

be used to augment important information about the seasonal dynamics of global 

productivity. We demonstrated for the first time that SIF can be used to investigate the 

response of arid/semi-arid ecoregions to water stress on a seasonal scale. This is possible 

because SIF measures the light emissions that originate from the cores of the 

photosynthetic machinery, while other variables that are related indirectly to plant 

activity, such as the EVI, NDVI, and GPP, cannot detect actual instantaneous and 

dynamic photosynthetic activity.  

The relative contributions of climate and anthropogenic activities to the spatio-

temporal changes in ET were characterized quantitatively with the newly-merged ET and 

the multi-factor ensemble simulations from MsTMIP in Chapter 4. In the LSMs, climate, 

CO2, nitrogen deposition, and land use impacts were separated experimentally to 

determine the variations in ET between 1982 and 2010. Climate was the dominant 
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determinant of the multi-year trends and variability of ET, and this was especially the 

case for precipitation. The overall physiological and structural effects of CO2 induced 

decreasing transpiration in plants and decreased the total ET, especially in areas where 

vegetation was dense. Compared to climate change and the elevated effects of CO2 

effects, the impacts of nitrogen deposition and changes in land use on ET were less 

important and were mainly local. Other detailed explorations are needed, such as the 

implementation of more compelling statistical techniques and fully-coupled modeling 

systems to detect and attribute the natural and anthropogenic effects on ET with more 

certainty. ET-related feedback studies also are required to account for land-atmosphere 

interactions and anthropogenic impacts in the integrated Earth system models and to 

understand future trajectories of droughts. Given that human activities continue to 

increase and intensify in the Anthropocene Epoch, we emphasized the use of multi-

stream datasets and multi-modeling frameworks to better diagnose and project 

anthropogenic influences on terrestrial ET, the hydrologic cycle, and overall climate 

change. 

5.2. FUTURE WORK 

The current modeling scheme for the emission of BVOCs emission is quite 

simplified, and many important aspects are not considered. Our analysis indicated that 

there is an urgent need for better models that can represent and predict the influence of 

moisture in the soil on isoprene emissions. An explicit soil-to-leaf mechanistic basis of 

drought-induced stress might be an optimal solution (Xu et al., 2016, New Phytologist; 

Sperry et al., 1998; Fisher et al., 2006, 2007). Also, increased isoprene emissions have 

been reported to improve the thermotolerance of leaves and to protect photosynthetic 

membranes from permanent damage during stressed conditions (Penuelas et al., 2005; 
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Sharkey and Singsaas, 1995; Velikova and Lereto, 2005; Sharkey et al., 2008), and this 

explains the continuing increase of isoprene emissions as temperature increases even 

after a drought has already started. 

Potosnak et al. (2015) suggested that isoprene emissions should be decoupled 

from photosynthesis rather than sharing a similar water stress factor. Potosnak proposed a 

conceptual algorithm in which low moisture in the soil led to low photosynthesis, which 

increased the temperature of leaves. Isoprene emissions can continue for a period of time 

by using stored carbon, but, as the drought continues, the carbon reserves are depleted, 

and isoprene emissions decrease. In addition, Grote el al. (2016) and Dani et al. (2014) 

demonstrated mechanistic models that partition plant absorbed energy between 

photosynthesis and isoprenoid synthesis. The models can represent the effects of stomatal 

closure on isoprene emissions very well by coupling xxxx with the photosynthetic rate. 

Therefore, to better represent the effect of drought, the physiological variables of leaves 

and soil variables should be incorporated in the models in future work. 

There are many land surface models, and there are even many different versions 

of the same model in some cases. For example, the CLM model we used to demonstrate 

the performance of the drought-coping mechanisms has been updated to the 4.5 version, 

and the 5.0 version is planned to be released in early 2017. Applying these modeling 

schemes to models of other land surfaces also is planned in the future.  

In our study of SIF, we realize that it has great potential for detecting the actual 

activity of plants. In dryland areas with arid and semi-arid plants, we found that SIF can 

rapidly respond to the availability of water, which supports our initial premise. In future 

work, we will continue the seasonal scale study to quantify the beginnings and ends of 

seasons with SIF. The mid-to-high latitude forests will be our study area, because they 
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constitute a large carbon pool globally and are very sensitive to climate change. Also, 

current carbon models are inaccurate in the low temperature regime in the early Spring 

and in late Autumn. Thus, SIF holds great promise for identifying the phonological stage. 

It also can provide new insight into improving model simulations, because it appears to 

strongly constrain the parameters in simulations related to both leaf phenology and 

photosynthetic functioning. 
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