1,012 research outputs found

    Canonical Representatives of Morphic Permutations

    Get PDF
    An infinite permutation can be defined as a linear ordering of the set of natural numbers. In particular, an infinite permutation can be constructed with an aperiodic infinite word over {0,…,q−1}\{0,\ldots,q-1\} as the lexicographic order of the shifts of the word. In this paper, we discuss the question if an infinite permutation defined this way admits a canonical representative, that is, can be defined by a sequence of numbers from [0, 1], such that the frequency of its elements in any interval is equal to the length of that interval. We show that a canonical representative exists if and only if the word is uniquely ergodic, and that is why we use the term ergodic permutations. We also discuss ways to construct the canonical representative of a permutation defined by a morphic word and generalize the construction of Makarov, 2009, for the Thue-Morse permutation to a wider class of infinite words.Comment: Springer. WORDS 2015, Sep 2015, Kiel, Germany. Combinatorics on Words: 10th International Conference. arXiv admin note: text overlap with arXiv:1503.0618

    Minimal complexity of equidistributed infinite permutations

    Full text link
    An infinite permutation is a linear ordering of the set of natural numbers. An infinite permutation can be defined by a sequence of real numbers where only the order of elements is taken into account. In the paper we investigate a new class of {\it equidistributed} infinite permutations, that is, infinite permutations which can be defined by equidistributed sequences. Similarly to infinite words, a complexity p(n)p(n) of an infinite permutation is defined as a function counting the number of its subpermutations of length nn. For infinite words, a classical result of Morse and Hedlund, 1938, states that if the complexity of an infinite word satisfies p(n)≤np(n) \leq n for some nn, then the word is ultimately periodic. Hence minimal complexity of aperiodic words is equal to n+1n+1, and words with such complexity are called Sturmian. For infinite permutations this does not hold: There exist aperiodic permutations with complexity functions growing arbitrarily slowly, and hence there are no permutations of minimal complexity. We show that, unlike for permutations in general, the minimal complexity of an equidistributed permutation α\alpha is pα(n)=np_{\alpha}(n)=n. The class of equidistributed permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words.Comment: An old (weaker) version of the paper was presented at DLT 2015. The current version is submitted to a journa

    Graphettes: Constant-time determination of graphlet and orbit identity including (possibly disconnected) graphlets up to size 8.

    Get PDF
    Graphlets are small connected induced subgraphs of a larger graph G. Graphlets are now commonly used to quantify local and global topology of networks in the field. Methods exist to exhaustively enumerate all graphlets (and their orbits) in large networks as efficiently as possible using orbit counting equations. However, the number of graphlets in G is exponential in both the number of nodes and edges in G. Enumerating them all is already unacceptably expensive on existing large networks, and the problem will only get worse as networks continue to grow in size and density. Here we introduce an efficient method designed to aid statistical sampling of graphlets up to size k = 8 from a large network. We define graphettes as the generalization of graphlets allowing for disconnected graphlets. Given a particular (undirected) graphette g, we introduce the idea of the canonical graphette [Formula: see text] as a representative member of the isomorphism group Iso(g) of g. We compute the mapping [Formula: see text], in the form of a lookup table, from all 2k(k - 1)/2 undirected graphettes g of size k ≤ 8 to their canonical representatives [Formula: see text], as well as the permutation that transforms g to [Formula: see text]. We also compute all automorphism orbits for each canonical graphette. Thus, given any k ≤ 8 nodes in a graph G, we can in constant time infer which graphette it is, as well as which orbit each of the k nodes belongs to. Sampling a large number N of such k-sets of nodes provides an approximation of both the distribution of graphlets and orbits across G, and the orbit degree vector at each node

    Morphic words and equidistributed sequences

    Full text link
    The problem we consider is the following: Given an infinite word ww on an ordered alphabet, construct the sequence νw=(ν[n])n\nu_w=(\nu[n])_n, equidistributed on [0,1][0,1] and such that ν[m]<ν[n]\nu[m]<\nu[n] if and only if σm(w)<σn(w)\sigma^m(w)<\sigma^n(w), where σ\sigma is the shift operation, erasing the first symbol of ww. The sequence νw\nu_w exists and is unique for every word with well-defined positive uniform frequencies of every factor, or, in dynamical terms, for every element of a uniquely ergodic subshift. In this paper we describe the construction of νw\nu_w for the case when the subshift of ww is generated by a morphism of a special kind; then we overcome some technical difficulties to extend the result to all binary morphisms. The sequence νw\nu_w in this case is also constructed with a morphism. At last, we introduce a software tool which, given a binary morphism φ\varphi, computes the morphism on extended intervals and first elements of the equidistributed sequences associated with fixed points of φ\varphi

    On non-abelian homomorphic public-key cryptosystems

    Full text link
    An important problem of modern cryptography concerns secret public-key computations in algebraic structures. We construct homomorphic cryptosystems being (secret) epimorphisms f:G --> H, where G, H are (publically known) groups and H is finite. A letter of a message to be encrypted is an element h element of H, while its encryption g element of G is such that f(g)=h. A homomorphic cryptosystem allows one to perform computations (operating in a group G) with encrypted information (without knowing the original message over H). In this paper certain homomorphic cryptosystems are constructed for the first time for non-abelian groups H (earlier, homomorphic cryptosystems were known only in the Abelian case). In fact, we present such a system for any solvable (fixed) group H.Comment: 15 pages, LaTe

    Commutative combinatorial Hopf algebras

    Full text link
    We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures, and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its non-commutative dual is realized in three different ways, in particular as the Grossman-Larson algebra of heap ordered trees. Extensions to endofunctions, parking functions, set compositions, set partitions, planar binary trees and rooted forests are discussed. Finally, we introduce one-parameter families interpolating between different structures constructed on the same combinatorial objects.Comment: 29 pages, LaTEX; expanded and updated version of math.CO/050245

    Determinantal Characterization of Canonical Curves and Combinatorial Theta Identities

    Full text link
    We characterize genus g canonical curves by the vanishing of combinatorial products of g+1 determinants of Brill-Noether matrices. This also implies the characterization of canonical curves in terms of (g-2)(g-3)/2 theta identities. A remarkable mechanism, based on a basis of H^0(K_C) expressed in terms of Szego kernels, reduces such identities to a simple rank condition for matrices whose entries are logarithmic derivatives of theta functions. Such a basis, together with the Fay trisecant identity, also leads to the solution of the question of expressing the determinant of Brill-Noether matrices in terms of theta functions, without using the problematic Klein-Fay section sigma.Comment: 35 pages. New results, presentation improved, clarifications added. Accepted for publication in Math. An
    • …
    corecore