30,860 research outputs found

    Drug-therapy networks and the predictions of novel drug targets

    Get PDF
    Recently, a number of drug-therapy, disease, drug, and drug-target networks have been introduced. Here we suggest novel methods for network-based prediction of novel drug targets and for improvement of drug efficiency by analysing the effects of drugs on the robustness of cellular networks.Comment: This is an extended version of the Journal of Biology paper containing 2 Figures, 1 Table and 44 reference

    Personalized medicine : the impact on chemistry

    Get PDF
    An effective strategy for personalized medicine requires a major conceptual change in the development and application of therapeutics. In this article, we argue that further advances in this field should be made with reference to another conceptual shift, that of network pharmacology. We examine the intersection of personalized medicine and network pharmacology to identify strategies for the development of personalized therapies that are fully informed by network pharmacology concepts. This provides a framework for discussion of the impact personalized medicine will have on chemistry in terms of drug discovery, formulation and delivery, the adaptations and changes in ideology required and the contribution chemistry is already making. New ways of conceptualizing chemistry’s relationship with medicine will lead to new approaches to drug discovery and hold promise of delivering safer and more effective therapies

    Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems

    Get PDF
    A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions.Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions

    Protein-protein interactions: network analysis and applications in drug discovery

    Get PDF
    Physical interactions among proteins constitute the backbone of cellular function, making them an attractive source of therapeutic targets. Although the challenges associated with targeting protein-protein interactions (PPIs) -in particular with small molecules are considerable, a growing number of functional PPI modulators is being reported and clinically evaluated. An essential starting point for PPI inhibitor screening or design projects is the generation of a detailed map of the human interactome and the interactions between human and pathogen proteins. Different routes to produce these biological networks are being combined, including literature curation and computational methods. Experimental approaches to map PPIs mainly rely on the yeast two-hybrid (Y2H) technology, which have recently shown to produce reliable protein networks. However, other genetic and biochemical methods will be essential to increase both coverage and resolution of current protein networks in order to increase their utility towards the identification of novel disease-related proteins and PPIs, and their potential use as therapeutic targets

    Reverse engineering of drug induced DNA damage response signalling pathway reveals dual outcomes of ATM kinase inhibition

    Get PDF
    The DNA Damage Response (DDR) pathway represents a signalling mechanism that is activated in eukaryotic cells following DNA damage and comprises of proteins involved in DNA damage detection, DNA repair, cell cycle arrest and apoptosis. This pathway consists of an intricate network of signalling interactions driving the cellular ability to recognise DNA damage and recruit specialised proteins to take decisions between DNA repair or apoptosis. ATM and ATR are central components of the DDR pathway. The activities of these kinases are vital in DNA damage induced phosphorylational induction of DDR substrates. Here, firstly we have experimentally determined DDR signalling network surrounding the ATM/ATR pathway induced following double stranded DNA damage by monitoring and quantifying time dependent inductions of their phosphorylated forms and their key substrates. We next involved an automated inference of unsupervised predictive models of time series data to generate in silico (molecular) interaction maps. We characterized the complex signalling network through system analysis and gradual utilisation of small time series measurements of key substrates through a novel network inference algorithm. Furthermore, we demonstrate an application of an assumption-free reverse engineering of the intricate signalling network of the activated ATM/ATR pathway. We next studied the consequences of such drug induced inductions as well as of time dependent ATM kinase inhibition on cell survival through further biological experiments. Intermediate and temporal modelling outcomes revealed the distinct signaling profile associated with ATM kinase activity and inhibition and explained the underlying signalling mechanism for dual ATM functionality in cytotoxic and cytoprotective pathways
    • 

    corecore