201 research outputs found

    Feature selection from colon cancer dataset for cancer classification using Artificial Neural Network

    Get PDF
    In the fast-growing field of medicine and its dynamic demand in research, a study that proves significant improvement to healthcare seems imperative especially when it is on cancer research. This research paved way to such significant findings by the inclusion of feature selection as one of its major components. Feature selection has become a vital task to apply data mining algorithms effectively in the real-world problems for classification. Feature selection has been the focus of interest for quite some time and much completed work related to it. Although much research conducted on the field, a study that proved a nearly perfect accuracy seems limited; hence, more scientifically driven results should be produced. Using various research on feature selection as basis for the choices in this study, the method was product of careful selection and planning. Specifically, this study used feature selection for improving classification accuracy on cancerous dataset. This study proposed Artificial Neural Network (ANN) for cancer classification with feature selection on colon cancer dataset. The study used best first search method in weka tools for feature selection. Through the process, a promising result has been achieved. The result of the experiment achieved 98.4 % accuracy for cancer classification after feature selection by using proposed algorithm. The result displayed that feature selection improved the classification accuracy based on the experiment conducted on the colon cancer dataset. The result of this experiment was comparable with the other studies on colon cancer research. It  showed another significant improvement and can be considered promising for more future applications

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Nature Inspired Evolutionary Swarm Optimizers for Biomedical Image and Signal Processing -- A Systematic Review

    Full text link
    The challenge of finding a global optimum in a solution search space with limited resources and higher accuracy has given rise to several optimization algorithms. Generally, the gradient-based optimizers converge to the global solution very accurately, but they often require a large number of iterations to find the solution. Researchers took inspiration from different natural phenomena and behaviours of many living organisms to develop algorithms that can solve optimization problems much quicker with high accuracy. These algorithms are called nature-inspired meta-heuristic optimization algorithms. These can be used for denoising signals, updating weights in a deep neural network, and many other cases. In the state-of-the-art, there are no systematic reviews available that have discussed the applications of nature-inspired algorithms on biomedical signal processing. The paper solves that gap by discussing the applications of such algorithms in biomedical signal processing and also provides an updated survey of the application of these algorithms in biomedical image processing. The paper reviews 28 latest peer-reviewed relevant articles and 26 nature-inspired algorithms and segregates them into thoroughly explored, lesser explored and unexplored categories intending to help readers understand the reliability and exploration stage of each of these algorithms

    Investigation of diagnostic value of artificial intelligence systems in the diagnosis of breast cancer based on histopathological images using Meta-MUMS DTA tool

    Get PDF
    ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2020, Volume 17, Number 2Investigation of diagnostic value of artificial intelligence systems in the diagnosis of breast cancer based on histopathological images using Meta-MUMS DTA toolInvestigation of diagnostic value of artificialintelligence systems in the diagnosis of breastcancer based on histopathological imagesusing Meta-MUMS DTA toolABSTRACTBackground: Various artificial intelligence systems are available for diagnosing breast cancer based onhistopathological images. Assessing the performance of existing methodologies for breast cancer diagnosis is vital.Methods: The SCOPUS database has been searched for studies up to December 15, 2018. We extracted the data,including "true positive," "true negative," "false positive," and "false negative". The pooled sensitivity, pooled specificity,positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, area under the curve of summary receiveroperating characteristic curve were useful in assessing the diagnostic accuracy. Egger's test, Deeks' funnel plot, SVE(Smoothed Variance regression model based on Egger’s test), SVT (Smoothed Variance regression model based onThompson’s method), and trim and fill methodologies were essential tests for publication bias identification.Results: Three studies with eight approaches from thirty-seven articles were found eligible for further analysis. Asensitivity of 0.95, a specificity of 0.78, a PLR of 7525, an NLR of 0.06, a DOR of 88.15, and an AUC of 0.953showed high significant heterogeneity; however, the reason was not the threshold effect. The publication bias wasdetected by SVE, SVT, and trim and fill analysis.Conclusion: The artificial intelligent (AI) systems play a pivotal role in the diagnosis of breast cancer usinghistopathological cell images and are important decision-makers for pathologists. The analyses revealed that theoverall accuracy of AI systems is promising for breast cancer; however, the pooled specificity is lower than pooledsensitivity. Moreover, the approval of the results awaits conducting randomized clinical trials with sufficient dat

    Improved Reptile Search Optimization Algorithm using Chaotic map and Simulated Annealing for Feature Selection in Medical Filed

    Get PDF
    The increased volume of medical datasets has produced high dimensional features, negatively affecting machine learning (ML) classifiers. In ML, the feature selection process is fundamental for selecting the most relevant features and reducing redundant and irrelevant ones. The optimization algorithms demonstrate its capability to solve feature selection problems. Reptile Search Algorithm (RSA) is a new nature-inspired optimization algorithm that stimulates Crocodiles’ encircling and hunting behavior. The unique search of the RSA algorithm obtains promising results compared to other optimization algorithms. However, when applied to high-dimensional feature selection problems, RSA suffers from population diversity and local optima limitations. An improved metaheuristic optimizer, namely the Improved Reptile Search Algorithm (IRSA), is proposed to overcome these limitations and adapt the RSA to solve the feature selection problem. Two main improvements adding value to the standard RSA; the first improvement is to apply the chaos theory at the initialization phase of RSA to enhance its exploration capabilities in the search space. The second improvement is to combine the Simulated Annealing (SA) algorithm with the exploitation search to avoid the local optima problem. The IRSA performance was evaluated over 20 medical benchmark datasets from the UCI machine learning repository. Also, IRSA is compared with the standard RSA and state-of-the-art optimization algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grasshopper Optimization algorithm (GOA) and Slime Mould Optimization (SMO). The evaluation metrics include the number of selected features, classification accuracy, fitness value, Wilcoxon statistical test (p-value), and convergence curve. Based on the results obtained, IRSA confirmed its superiority over the original RSA algorithm and other optimized algorithms on the majority of the medical datasets

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results
    • …
    corecore