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Abstract

Appropriate data modelling and feature selection are important steps to produce reliable predictive
models that can focus on relevant predictive variables. This work presents a study of the Maximum
Search Limitations - Evolutionary Particle Swarm Optimization (MS-EPSO) when applied to
the Feature Selection (FS) problem. MS-EPSO is used to select features of 5 distinct datasets
composed by a real-world scenario to predict cardiac pathology in children and teenagers and
4 validated benchmarks found at the Machine Learning (ML) literature. Feature selection
is combined with ML models and its performance is compared by applying 13 optimization
algorithms and 4 distinct traditional FS strategies. A custom and simple ML pipeline is performed
in order to, respectively, construct the final model to predict cardiac pathology and evaluate
the collection of algorithms for the FS problem. Results and analysis of each experiment show
that the FS approach implemented by MS-EPSO can improve prediction quality over other FS
methods when using the same machine learning models.
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Resumo

Modelagem de dados e seleção de variáveis são importantes etapas para produzir modelos
confiáveis que conseguem focar em variáveis com relevância preditiva. Este trabalho apresenta um
estudo do Maximum Search Limitations - Evolutionary Particle Swarm Optimization (MS-EPSO)
quando aplicado ao problema de seleção de variáveis (FS). MS-EPSO é utilizado para selecionar
variáveis de 5 distintos conjuntos de dados compostos por um cenário do mundo-real para prever
patologia cardíaca em crianças e adolescentes e 4 conjuntos de dados validados encontrados na
literatura de Aprendizado de Máquina (ML). A seleção de variáveis é combinada com modelos
de ML e sua performance é comparada pela aplicação de 13 algoritmos de otimização e 4
distintas estratégias de FS. Um procedimento customizado e um simples de ML é aplicado para,
respectivamente, construir o modelo final para prever patologia cardíaca e avaliar a coleção de
algoritmos para o problema de FS. Os resultados e analises de cada experimento mostram que a
abordagem de FS implementada no MS-EPSO podem melhorar a qualidade das predições em
relação a outros métodos de FS quando utilizando os mesmos modelos de ML.
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Chapter 1

Introduction

Studies on the medical area regarding Cardiac Pathology (CP) are constantly present in the
literature. In 1850 [1], heart disease researches were conducted through a medical-patient follow-
up, analyzing during months the behavior of a specific disease. After more than a century,
according to [2], the state of art of cardiac pathology was advanced due to a new technique
named endomyocardial biopsy, allowing a better understanding of the disease behavior and later,
with the advance of the technology, this technique was enhanced, where the doctor was able
to visualize a real-time procedure using a monitor. In the last decades, systems were created
to store records about patients and diseases, leading to better diagnostics [3]. In the present,
even more sophisticated methods are employed to circumvent distinct problems, for instance:
statistical analysis of age and genre to verify the influence of cardiac pathology in patients with
marfan syndrome; and the applications of deep learning methods to classify heart pathology’s
based on the heart murmur [4].

Computational research at cardiac pathology domain is performed through data, where it
can be acquired from distinct sources and shapes for instance: images; videos; time series and
clinical data [5]. In this study, clinical data was acquired from a cardiovascular hospital, where
the study performed by Ferreira et al. [6] show that feature selection can provide significant
improvements to machine learning models in order to predict the pathology.

Feature Selection (FS) is a well known optimization problem used to discover the best subset
of features in a dataset [7]. To solve this problem, statistical methods or ML algorithms are
commonly used to gather information, regarding the dataset and feature’s importance’s, to
further select the subsets. In a counterpart, some of these methods are not capable to find
relevant data information or require thresholds limitations to the number of selected featured.
Since feature selection is applied to capture the best subset of features, it is not straightforward
to determine how many features will be allocated to it. Therefore, optimization algorithms are
usually applied, where Swarm Intelligence (SI) algorithms emerges a viable strategies to overcome
feature selection strategies issues [8].

Swarm Intelligence is a field of Artificial Intelligence (AI) that employs bio-inspired algorithms

1



2 Chapter 1. Introduction

to solve diversified problems [9]. Between SI algorithms, the Particle Swarm Optimization (PSO)
is a classic algorithm presented as a good approach to solve problems in distinct research fields,
including data mining [10]. Despite the great overall performance of PSO, other algorithms were
devised to deal with bottlenecks found in the canonical algorithm. One popular approach is the
Evolutionary Particle Swarm Optimization (EPSO) [11], which is used in many optimization
competitions [12] and was used as basis for the Maximum Search Limitations - EPSO (MS-EPSO)
[13].

MS-EPSO is an algorithm devised to enhance the initial stage of EPSO optimization process,
results presented in [13] show that the algorithm present a significant convergence boost at
the initial stage and can be competitive against other optimization techniques. In this work,
the intersection of MS-EPSO and ML models is applied to solve the FS problem and predict
cardiac pathology in children and teenagers. The experiment is performed through a data mining
pipeline, extending the idea of Ferreira et al. [6], applying a more sophisticated algorithm to the
feature selection task, verifying the capabilities of MS-EPSO to be a rival for FS strategies.

In the proposed pipeline, data pre-processing and feature engineering tasks are performed,
leading to feature selection performed by MS-EPSO, whose main goal is to predict the cardiac
disease in children and teenagers. Also, a benchmark experiment is applied to evaluated the
performance of MS-EPSO. In both experiments, a comparison with 17 state-of-the-art SI,
Evolutionary Algorithms (EA) and FS strategies to select the best subset of features. After
feature selection evaluation, the best feature subset obtained in the cardiac pathology dataset is
propagated to four popular ML models, where each were assessed with tuned hyperparameters,
completing the pipeline and verifying the following:

• Feature engineering may be more relevant than maintaining multiple features in the dataset;

• Performance of SI, EA and standard techniques for Cardiac Pathology FS;

• Performance of MS-EPSO exclusive strategies when applied to a binary problem;

• Impact of feature selection to predict cardiac pathology;

This dissertation is organized as follows:

• Chapter 2: describes fundamental concepts of cardiac pathology, machine learning, feature
selection and swarm intelligence that are going to be used in subsequent chapters;

• Chapter 3: presents the state of the art of SI in to solve feature selection and cardiac
pathology; the attempts to solve cardiac pathology; and indicating where this work modifies
the standards.

• Chapter 4: describes the characteristics of MS-EPSO, regarding its differences when
compared to EPSO and PSO and the goal of inserting rules and normal distributed search
for strategy selection in the optimization process;
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• Chapter 5: points out the applied pipeline to predict cardiac pathology and also describes
the experiment with benchmarks to evaluate general feature selection of MS-EPSO;

• Chapter 6: show the statistical results obtained during the experiment and denotes
whether MS-EPSO had a significant performance;

• Chapter 7: outlines the conclusion of the work, suggesting when the application of the
algorithm is significant and pointing out future works for MS-EPSO and cardiac pathology.





Chapter 2

Background

This chapter describes fundamental concepts that support the remainder of this dissertation.
Section 2.1 details the concepts of Swarm Intelligence, its standard mechanisms and analogy
behind PSO and EPSO. Section 2.2 details the concepts related with Cardiac Pathology and the
importance of features to detect the problem. Section 2.3 describes the classic machine learning
pipeline used for problem solving. Finally, Section 2.4 describes the theory behind the feature
selection problem.

2.1 Swarm Intelligence

Swarm Intelligence (SI) is a branch of Artificial Intelligence (AI) which encompasses bio-inspired
algorithms to solve diversified optimization problems [14]. In this category, each algorithm
simulates the collective intelligence of species that can be found in real world, for instance, the
bees foraging behavior, the movement of flocking birds, the ant colony system, etc. Prominent
algorithms that are commonly used in the literature are: Artificial Bee Colony (ABC) [15]; Ant
Colony Optimization (ACO) [16]; and Particle Swarm Optimization (PSO).

Besides the theoretical environment of SI algorithms, the No Free Lunch theorem [17]
corroborates the fact that there is not an algorithm capable of solving all problems, being one
of the reasons to focus in algorithms for a specific area. For instance: ACO algorithm is a well
known strategy to solve the traveling salesman problem and job scheduling; ABC is an algorithm
to be applied in continuous domain [15]; PSO presented good results on distinct optimization
domains [18].

Regarding SI’s applications, surveys [15, 18] have presented a huge variety of them in
economics, engineering, computer science, etc. In the data mining area, it is shown by [10] that
ACO and PSO are the most used algorithms, where the approaches may be the parameter tuning
or training of a Machine Learning (ML) model or the feature selection to identify important
features among others for a specific problem.
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6 Chapter 2. Background

Along the years, many modifications of these algorithms were presented, creating a novel
strategy for a specific problem or general purpose. Among these modifications, the Evolutionary
Particle Swarm Optimization (EPSO) devised by Miranda and Fonseca [11] was used as basis
in many competitions with discrete, continuous and mixed variables domain. Even with the
differences between EPSO and PSO, there is a standard mechanism applied before the customized
optimization process, where the basic operators are described in the next subsections.

2.1.1 Base Swarm Intelligence Algorithm

The standard mechanism is applied to each algorithm based on the swarm intelligence. The
basic structure is represented by a 2-Dimensional matrix of shape Number of Solutions (NS)
x Problem Dimension (D) and a vector of shape NP. Each row of the matrix is the candidate
solution of a specific problem, which is evaluated by a function f subject to constraints g.

The main structure is generated in a common phase named Initialization phase, where the
initial values of the matrix are generated according to 2.1,

xt=0
ij = lj + φ ∗ (uj − lj), (2.1)

where x0
ij is the j-th problem variable of the i-th particle in the swarm, φ is a random number

sampled from a uniform distribution and set into a range between [0, 1], uj and lj are respectively
the upper and lower bounds of the problem for the j-th variable. With the initialized matrix,
each solution will have its respective fitness value calculated (xif ), finishing the initialization
phase that leads to the individual mechanism performed by the SI algorithm until a stopping
criteria is reached. The stopping criteria is usually the number of Function Evaluations (FE’s)
which stands by the number of times a solution was evaluated by the objective function.

2.1.2 PSO

Introduced by Eberhart and Kennedy [19], the Particle Swarm Optimization (PSO) is an SI
algorithm based on the movement of flocking birds, the algorithm refers to the candidate solutions
and the population as, respectively, particles and swarm, where each particle is composed by the
following attributes: velocity (v); position (x); a fitness (xf ) value associated to the position; a
local best position (x̂); and a local best fitness (x̂f ). At each generation t, the position is updated
according to the movement rule (2.2),

xt+1
i = xti + vt+1

i , (2.2)

where the i-th particle of the swarm is moved according to the new velocity given by (2.3)
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Figure 2.1: Depiction of PSO movement

vt+1
i = w × vti + φ1 × c1 × (x̂it − xti) + φ2 × c2 × (xtg − xti), (2.3)

where w, c1 and c2 are control parameters to adjust the particle movement of distinct components
of the formula, while φ1 and φ2 are random numbers sampled from a uniform distribution between
range [0, 1]. After moving a particle, the fitness value is calculated according to an objective
function. If the new position xt+1

i has a better fitness value when compared to xti, the local best
position is replaced and it is compared with the position of the global best particle in the swarm
xg.

The movement equation of PSO is divided into three terms: inertia; memory; and cooperation.
An example of PSO movement is presented in Figure 2.1, where the inertia term is the capability
of the particle to keep moving in the same direction, the memory is a movement towards the
best trajectory ever visited by the particle, and lastly, the cooperation guides the particle to the
best particle direction. The pseudocode of PSO is show in Algorithm 1.

2.1.3 EPSO

Along the years, PSO has been criticized regarding its optimization mechanism. The works
developed by Miranda and Fonseca [11], and Zeng and Cui [20], show that, at each iteration,
when the i-th particle is the current global best, the last term weighted by c2 would be excluded,
resulting in a movement performed only with the first and second terms. Also, when a particle
replaces its local best at generation t, t+1 generation would have its second term excluded, since
the current position is the same as the local best position. Besides the criticisms related to the
movement rule, there is a deep discussion about the correct values for each control parameter,
requiring a parameter tuning for each distinct application. As an approach to circumvent issues
found on classic PSO, Miranda and Fonseca [11] developed a novel algorithm named Evolutionary
PSO (EPSO), which combines strategies found on the AI literature to enhance the algorithm
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Algorithm 1: PSO pseudocode
Input: Objective function f(x), D, LB, UB, NP, NFE, c1, c2, w
Output: Best solution found Pg = {x1, x2, x3, ..., xD}
// After each function evaluation:
// 1) Increment FEs counter;
// 2) Check for a possible new global best;
// 3) Check the stopping criteria.

1 FEs← 0
2 MaxV ← abs(UB − LB)
3 MinV ←MaxV ∗ −1
// Initialization phase

4 for i← 0 to to NP do
5 Initialize particle (xi) between [LB, UB]
6 Initialize velocity (vi) between [MinV, MaxV]
7 xif ← f(xi)
8 end
9 Save all local best information (x̂i, x̂if , x̂iµ, x̂iσ)

10 Save global best information (xg, xgf , xgµ, xgσ)
// Optimization process

11 repeat
12 for i← 0 to to NP do
13 vi ← MoveParticle(xi, vi, x̂i, xg, c1, c2, w)
14 xi ← UpdatePosition(xi, vi)
15 x̂i, x̂if ← Compare(xi, x̂i)
16 xg, xgf ← Compare(x̂i, xg)
17 end
18 until FEs == NFE

optimization process.

The merge of evolution strategies with PSO introduces: 4 dynamic weights wi for the particle
movement; replicas; and reproduction components, into the basic algorithm. In EPSO, the
dynamic weights replace the static weights, e.g. movement formula control parameters, found in
PSO and also each particle has its own collection of weights, which differs from PSO that has
weights for the whole population. Regarding the optimization process, EPSO starts by generating
replicas, each replica will copy the particle information and their weights are mutated according
to Equation (2.4),

wtrk = wtik + τN(0, 1), (2.4)

where τ is the mutation rate and N(0, 1) is a sample drawn from a Gaussian distribution of
mean 0 and standard deviation and wtik is the k-th weight of the i-th particle. With this new
collection of weights, each of the NR replicas and the original particle are moved with the new
movement formula (2.5),

vt+1
i = wti1 × vti + wti2 × (x̂ti − xti) + wti3 × P [(xtg∗ − xti)], (2.5)
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where P stands for a communication factor, e.g. a binary mask filled with ones with probability
cp. Furthermore, Equation (2.5) introduces a perturbation in the global best as xg∗ :

xg∗ = xg × (1 + wi4 ×N(0, 1)). (2.6)

In the end, a tournament between all replicas and the original particle is performed. The
winner is assigned as the new i-th particle and, in case of the winner is a replica, the weights are
also replaced. Finally, the current particle is compared with the local and global best particles
as it happens in PSO. EPSO pseudocode is presented in Algorithm 2.

Algorithm 2: EPSO pseudocode
Input: Objective function f(x), D, LB, UB, NP, NFE, τ , CP, NR, MLL
Output: Best solution found Pg = {x1, x2, x3, ..., xD}
// After each function evaluation:
// 1) Increment FEs counter;
// 2) Check for a possible new global best;
// 3) Check the stopping criteria.

1 FEs← 0
2 MaxV ← abs(UB − LB)
3 MinV ←MaxV ∗ −1
// Initialization phase

4 for i← 0 to to NP do
5 Initialize particle (xi) between [LB, UB]
6 Initialize velocity (vi) between [MinV, MaxV]
7 Initialize strategic weights (w∗i1, w∗i2, w∗i3, w∗i4) between [0, 1]
8 xif ← f(xi)
9 end

10 Save all local best information (x̂i, x̂if , x̂iµ, x̂iσ)
11 Save global best information (xg, xgf , xgµ, xgσ)

// Optimization process
12 repeat
13 for i← 0 to to NP do
14 bestreplica ← GenerateReplicas(NR,w∗i , τ)
15 bestreplicaf ← f(bestreplica)
16 xnew ← MoveParticle(xi, vi, x̂i, xg, CP )
17 xnewf ← f(xnew)
18 xi, xif , vi, w

∗
i ← Compare(xnew, bestreplica)

19 x̂i, x̂if ← Compare(xi, x̂i)
20 xg, xgf ← Compare(x̂i, xg)
21 end
22 until FEs == NFE

2.2 Cardiac Pathology

Cardiac Pathology (CP) is a general term for heart or blood vessels diseases, which are a major
cause of morbidity and mortality [21]. According to [22], CP is divided in 4 branches:
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• Congenital: acquired in the birth, is a defect on the heart or great vessel structure;

• Ischemic: reduction of the blood flow in the coronary arteries;

• Valvular: damage or defect in one of the four heart valves;

• Myocardium: occurs when blood flow decreases or stops to a part of the heart, causing
damage to the heart muscle.

The same author indicates that pericardial diseases and cardiac tumors can be included as heart
diseases, but representing a small subset of conditions affecting the heart. As a preliminary warn
to a heart disease, common found symptoms are: dyspnea; fatigue; breathlessness; palpation;
syncope; and edema [22, 23].

In clinical evaluation approaches, there are two important variables that indicate a possible
pathology [22, 24]:

• Heart sound: divided in two categories, the S1 sound is caused by closing of the mitral
and tricuspid valves, and the S2 sound is caused by closing of the aortic and pulmonary
valves;

• Heart murmur: commonly present in children but often the first sign of cardiac pathology,
the challenge is to detect where the murmur is normal or abnormal. Murmur is present
when the blood is whirling as it passes through the heart.

Besides them, there is other information that may be used to validate the diagnosis [6]:

• Heart rate: heartbeat measured by the number of contractions (beats) of the heart per
minute (bpm);

• Blood pressure: is the pressure of circulating blood on the walls of blood vessels. It is
measured by systolic and diastolic blood pressures, which are parts of the cardiac cycle.
Respectively, it is a measure when some chambers of the heart muscle contract after refilling
with blood and the pressure in the arteries when the heart rests between beats;

• Pulse rate: allows a professional to accurately measure the heart rate.

For a better analysis of each component described, concerning the hospital process, doctors are
required to perform a diagnosis. In the primary care, a doctor or nurse may collect data about
the patient and later indicate his/her health state that would indicate preliminary symptoms of
a cardiac pathology, being the major reason to develop a system to assist the primary care.
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Figure 2.2: Machine Learning pipeline

Source: Adapted from [25]

2.3 Machine Learning

Machine Learning (ML) is a sub field of Artificial Intelligence (AI) which explores the capability
of a computer to adapt to new circumstances, detect patterns and predict new data [26]. These
capabilities are usually performed by a model, which is one or more algorithms combined, after
its construction during a four-stage ML pipeline, presented in Figure 2.2. Before moving towards
the pipeline, the problem should be established, where, according to [26], can be divided into:

• Supervised learning problem: both the inputs and outputs of a component can be
perceived;

• Unsupervised learning problem: when there is no hint at all about the correct outputs;

• Reinforcement learning problem: an agent receives an evaluation of its actions (e.g.
a robot cleaning the correct spot in a living room).

and also can be a:

• Classification problem: task of approximating a mapping function from input variables
to discrete output variables;

• Regression problem: task of approximating a mapping function from input variables to
continuous output variables.

Since the goal of this dissertation is to predict cardiac pathology and the output variable is
binary, the subsequent theory of ML will be focused on a supervised learning and classification
problem.
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2.3.1 Input/Output

Initially, it is assumed that a dataset D is acquired and preprocessed, resulting in a 2D dataset
with N instances (rows) and M features (columns). The same dataset is divided according to
the objective of the problem, for example: Table 2.1 represents an artificial dataset where X1

and X2 represent the grades of each student and y means if the student was approved (A) or not
(R). In this example, there are 2 features and 6 instances, where all features are continuous and
the target variable (e.g. output) is categorical. It is worth mentioning that the ID column does
not represent useful information for the model, being excluded from the inputs [27].

ID X1 X2 y

1 7.0 7.2 A
2 9.0 2.5 R
3 8.0 8.2 A
4 4.5 4.5 R
5 6.5 7.5 A
6 9.5 7.5 A

Table 2.1: Artificial student grades dataset

At the current state of the dataset presented in 2.1, the X variables are ready to be used,
which differ from the y that are represented as letters. ML models are usually prepared for
learning numerical variables, requiring an encoding process to prepare the data for the subsequent
phases. The encoding is performed according to the classification task that can be divided in
[28, 29]:

• Binary: an output variable represented by two classes as shown in Table 2.1;

• Multiclass: when a variable has more than two classes, e.g. a monkey and an elephant
are represented as an animal and not individually;

• Multilabel: assigns to each sample a set of target labels;

• Multioutput-multiclass: a single model has to handle several joint classification tasks.

In this work, multiclass and binary classes are used for, respectively, the cardiac pathology
dataset and some of the selected benchmarks. For binary data, the standard encoding method
was used, where a number is assigned to an specific class, e.g. for Table 2.1, A and R would
be respectively 0 and 1. To handle the multiclass, depending of the classifier that was assigned
to solve the problem, the One vs All (OvALL) strategy or the one-hot-encoding (OHE) should
be used. OvALL strategy will be detailed in subsection 2.3.4.5, while OHE consists in creating
a binary vector with size equal the number of distinct classes, and assigning the index of the
standard label encode to this position as can be see in Table 2.2. With the processed dataset, it
is possible to advance in the pipeline.
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y yohe1 yohe2 yohe3

A 1 0 0
B 0 1 0
C 0 0 1
B 0 1 0
A 1 0 0
C 0 0 1

Table 2.2: One-hot-encoding for a 3 classes (A, B, C)
dataset

2.3.2 Validation

The training and testing phases on ML are, respectively, where the model acquires knowledge
from the preprocessed data and validates it [26, 27]. These two phases represent the last three
stages of the pipeline presented in Figure 2.2. As mentioned in the previous section, a dataset
is required to fit the learning model. With the acquisition of this model and the dataset, the
process can be summarized as presented in Figure 2.3.

Figure 2.3: Summary of the train and test phases

2.3.2.1 Train

Initially, the dataset is divided in four sets: Xtrain; Xtest; ytrain; ytest, both train splits are used
in the train phase, while the test remains untouched until the end of the training. The model will
receive the Xtrain and apply its own learning mechanism, generating a ŷ dataset that is compared
with the ytrain. Finally, the comparison is evaluated through a metric that will estimate its
performance on this set of data.

Besides this simple evaluation, there are other strategies to estimate the risk of a learner
or to perform model selection, for example: the cross-validation (CV) [30]. In CV, the most
popular strategy is the k-Fold cross-validation (k-CV) that applies the following steps [31]:
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1. Shuffle the dataset;

2. Split the data in k folds of the same length (same number of instances);

3. Create and evaluate a model for each fold;

4. Calculate the cross validation score.

When handling unbalanced datasets, the Stratified k-Fold Cross Validation (Sk-CV) is used
to rearrange the data, ensuring that each fold is a good representative of the whole [31]. As
mentioned in [32] for both SK-CV or K-CV, the parameter k is not straightforward, being usually
5 or 10. As suggested in [31], when k increases, the variance reduces but it increases the bias,
the opposite happens when the k-CV has a low k value.

Finally, the CV score can be calculated using the mean of each fold or the summation of
TP, TN, FN, TN. According to Forman and Scholz [33], when performing cross-validation, the
best way of obtaining scores is by summing up correct and incorrect classifications per class and
calculating the final score. This process is used to estimate the predictive capabilities of a ML
model in unseen data and the general model’s performance [26]. When the user is satisfied with
the score achieved in the k-CV, the learning model is maintained to be used in the test phase.

2.3.2.2 Test

The testing phase represents the validation stage of the ML pipeline. As mentioned in the
previous section, the original data is divided into 4 subsets and, in this stage, the test data that
was not used on the training (unseen data) is used. When evaluating the testing score, it means
that the model predictive capabilities are being analyzed. Similar to the the training phase, each
model has its own procedure to give these predictions, returning a ŷ dataset that is compared
with ytest and evaluated by a metric.

In addition to the testing analysis, the fit should be analyzed. As stated in [34], fit refers to
how well the function is being approximate. This concept is applied to machine learning in the
following characteristics:

• Overfitting: the model acquires knowledge for a specific set of data and may not be able
to generalize;

• Underfitting: the model is not able to generalize the training data and have a poor
predictive performance;

• Good fit: a mid term between over and underfitting.

To circumvent these issues, the cross-validation strategy mentioned in this chapter can be used.
Also, there are other techniques applied during the process of the algorithms that allow to
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perform a good fit, which will be detailed when discussing the algorithms in the subsequent
sections.

2.3.3 Evaluation Metrics

This section discusses the Accuracy, F-Score and Receiver Operating Characteristic (ROC)
metrics for supervised learning classification problems since they are commonly used in the
literature. According to Sokolova et al. [35], binary classification is usually represented by a
confusion matrix represented in Table 2.3, where: TP are True Positive; FP - False Positive; TN
- True Negative; FN - False Negative. Accounting the results obtained by the model, each metric
will calculate the score using the confusion matrix, but using a different mathematical model. It
is worth mentioning that these metrics share the same goal, a maximization problem that has an
optimal value in 1.0 and the worst value at 0.0.

Class x Prediction Positive Negative

Positive TP FN
Negative FP TN

Table 2.3: Confusion matrix for binary classification

2.3.3.1 Accuracy

Being the most popular metric used in the literature [35, 36], accuracy is defined by Equation
2.7,

accuracy = TP + TN

TP + FP + FN + FP
. (2.7)

Regarding the mathematical model, accuracy has been criticized since it may lead to a biased
score. An example described by [37], it assumes an unbalanced dataset where, for each positive
class, there are 100 negative classes. The same author indicates that a model with a good fit
would produce an 99% accuracy, classifying correctly each negative class since its majority, while
misclassifying all positive cases.

2.3.3.2 Receiver Operating Characteristic

ROC is described as a comprehensive function to evaluate the performance of a model [35]. The
mathematical model can be described by Equation 2.8:

ROC = P (x|positive)
P (x|negative) , (2.8)
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where P (x|C) denotes the conditional probability that a data entry has the class label C. As
mentioned by [35], ROC results deals with the most positive to the most negative classification,
being a metric that can be easily analyzed and one of the favorite ones to deal with unbalanced
datasets. Regarding an unbalanced datasets, it is has been proven that metrics based on precision
and recall may return a more realistic result [38].

2.3.3.3 F-score

F-score is a precision-recall based metric, therefore, it is required to understand the mathematical
model of both metrics to understand the main goal. Initially, recall or sensitivity, is calculated
by 2.9:

recall = TP

TP + FN
, (2.9)

while precision is given by 2.10:

precision = TP

TP + FP
, (2.10)

where both metrics are used to calculate the F-score, presented in 2.11:

F-score = 2 ∗ recall ∗ precision
precision+ recall

. (2.11)

Recall may be defined as the model capability to predict positive results and precision is
the proportion of positive results that are truly positive. The f-score would be the harmonic
mean between these metrics and also can be used to achieve more realistic results for unbalanced
datasets.

2.3.4 Algorithms

This subsection describes popular machine learning algorithms that are commonly used in distinct
knowledge areas. The group of algorithms that will be mentioned here had great results along
the years, classifying data that vary between raw, images, audio, videos, etc [26, 27].

2.3.4.1 Logistic Regression

The Logistic Regression (LR) is a linear statistical model that uses a logistic or sigmoid function
to build and optimize a problem that has binary dependent data. This technique can also be
extended to classify more than two values using distinct strategies [39]. Regarding its standard
model, it can be seen as the probabilities of having the labeled data as 1 or 0.
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Figure 2.4: Logistic/Sigmoid function

Source: [40]

The model is based on the logistic function represented by Equation 2.12,

f(z) = 1
1 + e−z

, (2.12)

which describes the input probability of being positive (1) or negative (0). Since that the
probability between infinite numbers are verified, the function output has a range between 0 and
1 as it is possible to visualize in Figure 2.4. The logistic model z is represented in Equation 2.13,

z = α+
∑

BiXi, (2.13)

where Bi are the learning parameters of the model, Xi are the dataset inputs and α a constant
to weight the summation. The final cost function of the LR model is given by Equation 2.14 [41]:

P (X) = 1
1 + e−(α+

∑
BiXi)

. (2.14)

In order to minimize the cost function, the LR model tries to optimize the learning parameters
(Bi). Since the sigmoid derivative function can be easily calculated, these parameters are usually
optimized using derivative methods, instead of general purpose optimization algorithms. With
the best collection of learning parameters, the model is evaluated through the ML metric system
presented in the previous section.

2.3.4.2 K-Nearest Neighbors

The Nearest Neighbors algorithm is a distance based algorithm used to cluster different instances
in one same group [42]. What differs nearest neighbors from other classifiers is that the model
does not requires the data output (y) to be labeled [43]. As an extension for that model, the
K-Nearest Neighbors (KNN) can be used when the data is labeled, being controlled by the
parameter k, which determines the number of neighbors to be considered during the model
optimization stage.
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The KNN algorithm starts with a data point with unknown classification. The following steps
are applied for each instance found in the dataset: 1) the distance will be calculated between the
new and known points and, if they are near, this known data point will be added as a nearest
neighbor; 2) As next step, the algorithm will count the most frequent class among K neighbors
examples based on the amount of nearest neighbors; 3) the frequency is used to label the new
data point. This mechanism is applied to give the predictions that are further evaluated by the
ML metric system [43].

Regarding the distance system, the Minkowski distance (Equation 2.15) can be used,

d(x, y) =
(

n∑
i=1
|xi − yi|p

)1/p

(2.15)

where x and y are two instances of data. This metric is a generalized form for the following
distances[44]:

• Euclidean: when p is equal to 2, it will calculate the shortest path between two points if
they are continuously linear;

• Manhattan: when p is equal to 1, this metric assumes that the data has no linear
dependence. When dealing with categorical variables, the distance can be analyzed as the
amount of steps required to reach the other point.

Besides these metrics that are commonly used in the KNN algorithm, any metric can be used in
order to calculate the distance when searching for nearest neighbors, where the major dependence
is selecting the best metric for a specific type of data.

2.3.4.3 Neural Networks

Neural Networks or Artificial Neural Network (ANN) is a non-linear classifier that tries to mimic
the behavior of neurons in a human brain. Regarding the math behind the model, the training
phase of an ANN is based on the propagation of the data through its architecture [26]. The
architecture shown in Figure 2.5, is the standard format, where it is represented by a group of
layers where each may have distinct or equal number of neurons.

In this type of knowledge representation, the number of neurons in the input layer is the
same of the number of inputs in the dataset, for example, in the artificial dataset 2.1, it would
have 2 neurons. When propagating the data to the next layer, the neuron mathematical model
can be described as:

yi = f(
n∑
j=1

wjxj + b), (2.16)



2.3. Machine Learning 19

Figure 2.5: ANN architecture

Source: [45]

where wj is the corresponding weight that connects the previous to the next layer, xj is the
propagated data from previous layer and f is a non-linear function, usually the sigmoid 2.12 for
machine learning approaches, and b is a bias that can also be a learning parameter during the
model optimization [45].

After propagating the data, the network output (ŷ) is compared with the original output (y)
and the model training is evaluated through an error metric [45]. For classification problems
with both multiclass or binary, this function is usually the Log loss/Categorical Cross-Entropy
given by:

LogLoss = − 1
n

n∑
i=1

[yi ∗ loge(ŷi) + (1− yi) ∗ loge(1− ŷi)], (2.17)

where n stands for the number of predictions given for each data instance. The objective is to
minimize the network error by updating its weights and, like the LR model, the derivative of these
metrics can be easily computed, allowing this training phase to be performed by gradient based
algorithms. Finally, when the weights are optimized and the training is finished, to compare the
ANN model with other ML algorithms, the ML metric system is used in order to verify which
algorithm had the best overall performance.

2.3.4.4 Random Forest

Random Forest (RF) is a term for ensemble methods composed by tree-type classifiers [46]. Each
tree classifier is fitted on various sub-samples of the dataset to improve the predictive score and
reduce the overfit [47].
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According to [46, 47], The training phase of a RF model train multiple trees with distinct
samples obtained from the original data, acquiring knowledge of a randomly selected subset of
features and instances that will determine this data split. The number of features used on the
training session is the control parameter defined by the user, where the model will randomly
select the subset of features. When applying this model for a classification problem, the model
output is given by the majority vote of each tree, where later this outputs are compared with
the original outputs, and its results analyzed through ML metrics.

Regarding the model parameters, with a low number of variables is expected that the
correlation between trees and the required processing time are minimized and also the following
advantages: with a limited number of features, it would increase the predictive power; creates
a model less sensitive when handling outliers; few hyperparameters; feature importance and
accuracy are automatically generated [48]. The other main parameter is the tree-type classifier,
where the commonly used is the Decision Tree.

Decision Tree (DT) is a supervised classification model represented by a upside down real-
world tree [49]. In Figure 2.6, the DT basic structure is shown, where according to [48], it starts
from the root (root node) and move downwards until a terminal leaf node is reached. The internal
nodes are representations of a specific characteristics while the branches are a range of values for
them [48].

Figure 2.6: Decision Tree structure

Source: Adapted from [48]

The training phase propagates the data from the root until it reaches one terminal left node,
passing through internal nodes which will try to optimize the best split for each feature. The best
split would increase the model predictive capabilities of searching for the correct classification
when going downwards on the tree architecture [48]. With the collection of DT models, it is
possible to build the RF model and apply its process for problem solving. Also, like other ML
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algorithms, in the end of this training task, it will be evaluated through the ML metric system
to be compared against other algorithms.

2.3.4.5 One vs All

In Table 2.4, each classifier used in this work is summarized regarding its capabilities of handling
multiclass problems and how they are capable to predict/classify data. If one of the algorithms
does not support multiclass problems, the One vs All (OvALL) strategy was used in order to
extend the model for this task.

Model Multiclass support Learning mechanism

Logistic Regression N Optimizing the learning parameters
K-Nearest Neighbors Y Similarity between instances
Artificial Neural Network Y Optimizing the weights and/or bias
Random Forest Y Multiple instances of a tree-type classifier

Table 2.4: Summary of the ML methods used in this work

The OvALL can be described as the application of many classifiers of the same type, where
each would try to predict the probability of being one specific class. Using the LR model as basis
and a dataset with 10 different classes, Figure 2.7 describe the process to perform the training
and perform the predictions ŷ. This process will perform the training steps of the model for each
class and then the one with highest probability of being this specific class would be selected as
output [50].

2.4 Feature Selection

Feature Selection (FS) is an optimization problem that emerges from a dataset, where the
objective is to select the best subset of features that can be found on it. Between the benefits of
FS, it is possible to cite:

• Faster training phase - less features would require less computational and also a machine
learning algorithm with less complexity;

• Reduces overfitting - redundant features are excluded from the entire set;

• Improve the score - less misleading data would increase the obtained score by the algorithm.

while the cons are: FS does not guarantee that the score will be improved, therefore, if the
algorithm requires a considerable time to perform FS and it fails to increase the ML algorithm
performance, the FS step would require more time when compared to applying the algorithm to
the entire dataset, leading to an unnecessary process.
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Figure 2.7: OvALL strategy for multiclass classification

Regarding the optimization task, FS is a bi-objective problem which requires a solution that
would increase the model score at the same time it decreases the number of features. Prior the
FS evaluation function, it is necessary to declare the solution, which is given by a binary array
with size equal to the number of features in the dataset, where the i-th variable on it represents
whether or not the i-th feature of the dataset should be used in the subset. FS evaluation
function allows the comparison between distinct techniques to solve the problem. As suggested
by Al-Tashi et al. [51], the objective function needs to penalize the number of features and the
score, leading to the objective function in Equation 2.18

f(x) = αScore(Xtrain, ytrain) + β
|S|
|T |

, (2.18)

where: the score stands for an ML metric acquired from the training stage of an ML model
with the X input with selected features and y the target variable; S stands for the selected
subset of features; T is the full set of features; α is a real number between [0, 1] range and β is
given by (1 - α). The goal for Equation 2.18 is to penalize the learning algorithm score with
the number of selected features, minimizing the score while minimizing features, where both
score and features are weighted by two distinct parameters. However, in order to apply the same
strategy for classification problems, a slightly modification should be performed, modifying the
plus sign to minus, resulting in Equation 2.19:

f(x) = αScore(Xtrain, ytrain)− β |S|
|T |

. (2.19)



2.4. Feature Selection 23

The modification would maximize the score while it still minimizes the number of features,
allowing the algorithms to be compared regarding the obtained score applying the classification
metrics as basis. With the definitions of a solution and the cost function to evaluate it, according
to Guyon and Elisseeff [52], this problem is usually solved by three distinct approaches that will
be explained on subsequent subsections: Filter; Wrapper and Embedded.

2.4.1 Filter

Filter strategies are commonly applied as part of the preprocessing phase where the main
objective is to identify important features before creating any model that would require a higher
computational time. According to Chandrashekar and Sahin [7], these methods are capable to
create a ordered feature rank that would indicate the most prominent features in the dataset.
Popular strategies of filter FS are the correlation criteria and mutual information.

2.4.1.1 Correlation Criteria

The correlation detects linear dependencies between the features and target variable. The simple
correlation model is the Pearson correlation coefficient which is defined in Equation 2.20,

R(Xi) = cov(Xi, y)√
var(xi) ∗ var(y)

(2.20)

where cov is the covariance and var is the variance. Since correlation can achieve values between
range [-1, 1], the absolute value of the result is used to select the most relevant features for
the subset. Also, a percentage of features should be set in order to indicate how many features
should be included.

2.4.1.2 Mutual Information

The Mutual Information (MI) measure the dependency between two variables. As defined in [7],
MI uses the Shannon entropy as basis represented here by Equation 2.21,

H(y) = −
∑
x

p(y)log(p(y)), (2.21)

which stands for the information content in the target variable. When observing the X variable
in relation to the target, the conditional entropy is defined as:

H(y|X) = −
∑
x

∑
y

p(X, y)log(p(y|x)). (2.22)
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Equation 2.22 implies that by observing a variable X, the uncertainty in the output Y is reduced
[7]. The decrease in uncertainty is given as:

MI(y,X) = H(y)−H(y|X). (2.23)

Equation 2.23 gives the mutual information between X variable and target. If these two
variables are independent, the MI score will be zero, otherwise the result will be greater than
zero. Since the results range from zero to ∞, the result can be normalized in order to select the
features with highest importance according to MI.

2.4.2 Wrapper and Embedded

These strategies were grouped due the similarity between them. Wrapper presents feature
selection based on a learning algorithm and a recursive approach, while Embedded tries to
minimize the complexity between them.

2.4.2.1 Wrapper

Wrapper is a strategy that uses the base predictor to create the best subset of features [7]. The
strategy is given by reapplying the learning algorithm, where at each iteration, the less significant
subset of features is removed. Applying a ML model with this kind of strategy requires the
model to be fit at each iteration. With the fitted model, the feature importance is acquired
from the learning mechanism (weights, bias, etc.) and a new subset of features is generated
according to the feature exclude percentage parameter. The new subset is used to fit the model
and this process is reapplied until a stopping criteria is reached, where this parameter is usually
the number of iterations, therefore, the control parameters for this type of strategies are: 1) the
learning algorithm parameters; 2) number of iterations; 3) percentage of features to be excluded.

The pro for this strategy is related to the number of distinct subsets that can be acquired
during the process. The balance between the number of iterations and percentage of features
can generate many distinct subsets that can search for the best subset for the specific learning
algorithm. In a counterpart, when the problem have a high number of features, the model will
have exponential performance, since the model is fitted at each iteration with the new generated
subset. Also, the strategy parameters are problem dependent, consequently, having no rule to
determine them. Since these parameters may lead to the best possible solution, a parameter
tuning may circumvent that issue, but it increases even more the computational time.

2.4.2.2 Embedded

With the purpose to reduce the complexity time found in Wrapper strategy, the Embedded
strategy try to insert the feature selection in the training process of the algorithm [7]. This is
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done by selecting an objective function that will evaluate the process, e.g. will rank the selected
features in order to increase the quality of the predictions. This strategy is usually applied
with the feature importance acquired by the learning algorithm, as an example: the information
acquired in the decision tree or optimized weights of a neural network or logistic regression.
As another approach to perform this feature selection, it is also possible to use the mutual
information (Eq. 2.23) or correlation (Eq. 2.20) functions to discriminate the best feature subset.

2.4.3 Swarm Intelligence

Swarm intelligence algorithms are applied as a slightly modification of wrapper methods, which
instead of removing recursively, will insert or remove features according to the algorithm rules.
Applying an SI algorithm to FS can usually enhance the results when compared to other strategies,
since its procedure will evaluate distinct solutions along the optimization process. Applying SI
algorithms to FS problem requires two distinct components to be defined: the type of solution
and the fitness function.

2.4.3.1 Solution

Since the FS problem requires an indication of whether or not the features should be included on
the feature subset, the solutions are represented as a binary vector with size equal to the number
of features in the dataset. If the j-th variable of the particle position has value 1, it indicates
that the j-th feature on the dataset should be included in the feature subset S, while 0 values
indicate the features associated with those positions should not be included.

2.4.3.2 Fitness Function

Along the years many approaches were described in order to apply any metaheuristic to the FS
problem. Concerning the behavior of the FS problem, it is expected that the problem formulation
would handle the capabilities of the algorithms to search for the best feature subset that would
increase the classifier score while decreasing the number of features. The fitness function can
be multi or single objective according to the capabilities of the selected algorithm. In case of
MS-EPSO and other SI algorithms applied in this work, the single objective cost function, shown
in Equation 2.24, is applied:

f(x) = α× Score(Xtrain, ytrain)− β |S|
|T |

, (2.24)

where: the score stands for an ML metric acquired from the training stage of an ML model with
the X input with selected features and y the target variable; S stands for the selected subset of
features; T is the full set of features; α is a real number between [0, 1] and β is given by (1 -
α). The goal for Equation 2.24 is to penalize the learning algorithm score with the number of
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selected features, maximizing the score while minimizing features, where both score and features
are weighted by two distinct parameters.

2.4.4 Filter vs Wrapper vs Embedded vs SI

As show in this section, FS is a problem that can be solved with different strategies that can
be performed by many distinct algorithms. The benefits of applying each strategy may vary in
time complexity and predictive accuracy, where each strategy can be the best depending on the
application goal. This subsection summarize the comparison between strategies ranking them
based on these two benefits.

2.4.4.1 Time Complexity

Regarding time complexity, it is expected that Filters strategies would have the best performance.
Filters does not compress model fitting on it, requiring only one fit - selected subset - during the
training phase, which differs from the others. Embedded strategy would be the second faster
strategy, since it requires two fits: 1) model fitting with all features; 2) model fitting with the
selected subset. Following this rank, Wrapper and SI share the position of the slower strategy,
where it is dependent on the number of generations for the SI and the balance between number
of features to remove and iterations for wrapper.

2.4.4.2 Predictive Accuracy

Each strategy has a vast group of algorithms that can be applied for the feature selection purpose,
therefore, the predictive accuracy of each is data dependent [7]. According to Guyon and Elisseeff
[52], in a complex scenario with a huge amount of features, Filter methods tend to have the worst
performance, since correlations or data information is not always the main discriminating factor .
Wrapper strategy may find the best possible subset of features, depending on the balance of the
parameters used and the excluded subset of features. The performance of wrapper is justified
by the model, where the strategy will exclude information that is not significant for the specific
model. Meanwhile for Embedded strategy, as an alternative for wrapper, it is expected that
Embedded performance would perform worse than wrapper in a complex scenario, therefore
regarding the predictive accuracy, the performance would be data dependent (data statistics and
number of features). Finally, for SI algorithms, the feature selection is based on the algorithm
rules, many works in the literature [8, 10] suggests SI techniques as a powerful strategy for FS,
however, SI algorithms does not have any guarantee to find the optimum, sharing the same rank
with wrapper in the predictive accuracy.

Summarizing the presented characteristics, the application of feature selection is dependent
on data. Large scale datasets would require more computational time in order to select features
and may have lower accuracy when compared to small or medium size datasets. Also, each
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strategy may be appropriate concerning the application goal. Conflict or danger situations in
real-world scenarios may require a fast learning strategy since the results are instantly required,
however, for the cardiac pathology, a accurate model is desired in order to reduce the number of
false negatives, which are the worst case scenario concerning the disease.





Chapter 3

State of the Art

This chapter presents the state of the art of distinct computer science areas applied during the
development of this work. The chapter is divided in two sections, where the first section outlines
the feature selection state of the art, mentioning algorithms and strategies that can be applied,
creating a relation with what was presented in the previous chapter, while the second section
outlines the role of Artificial Intelligence at Cardiac Pathology, pointing out other approaches to
assist the medical area on handling cardiac pathology.

3.1 Feature Selection

Along the years multiple Feature Selection (FS) strategies were developed, each based on a
distinct objective function described in 2. This section will focus on single objective with penalty
for features, which can be handled by MS-EPSO and many other optimization algorithms.

Some of those FS strategies do not return a solution based on an ML model, instead, these
strategies are applied during the preprocessing stage, which is the case of Filter strategies. In
this category, statistical tests are applied to obtain a subset based on the test criteria. Pearson
Correlation and Mutual Information (mentioned in Chapter 2) are the most used strategies to
quickly identify data patterns[7]. These methods are applied to capture data information and
can be evaluated using many objective functions, however they are not necessarily optimizing
the problem solution.

Since Wrapper and Embedded strategies share the same inspiration with distinct procedures,
the state of the art for both techniques is represented by ML models. The feature importance of
many ML models may be acquired from their learning parameters, for example, the weights and
bias of a neural network, coefficients of a logistic regression, etc. The importance acts as the
principal factor since it is the relevant information that wants to be captured by these strategies,
however, it is not straightforward to define ML state of the art, since applications are data
dependent. In this work, clinical data is used, therefore, the group of ML models presented in
the previous chapter are the ones constantly referenced as algorithms that may have a reasonable
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performance when applied to any problem, including the medical area as presented in [53–55].

Like ML models, the state of the art of swarm intelligence is relative to the application area.
Also, as mentioned in 2.4, the feature selection problem can be applied with distinct objective
functions, which changes the algorithm strategy to solve the problem, therefore, the SI state
of the art mentioned here regards algorithms that can be applied to solve single objective cost
function.

3.1.1 Particle Swarm Optimization and Variants

As presented in [7] and [8] an extensive list of SI algorithms were applied to the feature selection
problem. Among these algorithms, it is possible to visualize that classic algorithms are presented
as viable algorithms while their variations have the challenge to overcome issues. In Brezočnik
et al. [8], more than 40 algorithms were analyzed, among them: Ant Colony Optimization (ACO),
Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), and Grey Wolf Optimization
(GWO). However, more detailed analysis show that most used algorithms for feature selection
are (in order): PSO, ACO, Bat Algorithm (BA), ABC and GWO. The research shows that PSO
is used in almost 47% of all cases, while the four most frequently used algorithms cover more
than three quarters of cases (79%).

Concerning PSO popularity for feature selection, the algorithm also had a huge number
of enhancements or modifications, creating novel algorithms/modifications to handle general
optimization problems. As PSO successful variants, its worth mentioning the Competitive Swarm
Optimizer (CSO), which applies a mechanism based on tournament selection to select weights
for the PSO movement equation. CSO also had attention for feature selection as shown in [56].
The algorithm, as a continuous optimizer, rounds the value to the nearest based on a parameter
λ. Other PSO variation which received attention, not as recent as CSO, was Improved Binary
Particle Swarm Optimization (IBPSO). The premise of IBPSO is to reset the global best particle,
which will modify the last term of the PSO movement equation, therefore, this would remove
solutions trapped in the local best. The algorithm was applied to a large scale dataset and
enhanced PSO performance in 2.85% when selecting gene expression features.

Besides relevant PSO modifications for feature selection, other versions had outstanding
performance on general optimization problems, especially, the EPSO algorithm mentioned in
the previous chapter. The algorithm was capable to generate great solutions for optimization
problems with both discrete and/or continuous variables, including being the base algorithm
used by the top five algorithms on the World Congress of Computational Intelligence (WCCI)
2018 competitions. As an enhancement for EPSO, with modifications on the movement formula,
the Differential Evolution EPSO (DEEPSO) [11] emerges with the insertion of two new memory
components to store global and local best positions along iterations. DEEPSO is presented as
a successful approach concerning EPSO applications, since the obtained results had statistical
performance when compared to EPSO, however, Marcelino et al. [57] shows that EPSO has the
potential to bypass local traps and generate better solutions when compared to DEEPSO, which
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is the algorithm created by the authors named CE+EPSO, an algorithm that applies the Cross
Entropy method to initialize candidate solutions.

3.2 Cardiac Pathology and Artificial Intelligence

As shown in Johnson et al. [5], the computers are playing an important role in the medical area.
Regarding cardiovascular medicine, Figure 3.1 points out AI role as part of medical workflow,
where in most cases, AI strategies act as a decision making assistant for specialized employees
of medical area. The applied pipeline on medical area is presented in Figure 3.2, where data
can be acquired from different sources, leading to multiple feature engineering techniques that
can be applied in order to prepare a clean dataset which is propagated to ML models. Among a
group of models, the presented image corroborates information given in previous section, which
points out favorite ML models and their pros and cons for cardiovascular applications, that were
detailed in the previous chapter of this work.

Figure 3.1: Role of artificial intelligence in cardiovascular medicine

Source: Johnson et al. [5]

With this overall pipeline review of machine learning for cardiovascular, to fit the dissertation
purpose and create a comparison for both pipeline and algorithms perspective, this section will
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Figure 3.2: Machine learning pipeline for cardiovascular applications

Source: Johnson et al. [5]

cover most relevant computational attempts focusing in decision making assistants to handle
cardiac pathology, highlighting swarm intelligence or feature selection applications in this medical
domain.

3.2.1 Machine learning attempts to handle Cardiac Pathology

Cardiac pathology data sources are usually found as images, time series or clinical data, therefore,
most of machine learning applications are developed based on the data domain available. As
time series approaches, heart sound is commonly analyzed and classified by different techniques,
being neural networks based approaches the most relevant ones as shown in [58, 59]. As well
as time series, image recognition cardiovascular problems have been solved by neural networks
approaches, especially by deep learning algorithms such as LSTM, CNN and auto encoders
as pointed out in [59, 60]. At this stage, it is possible to visualize that neural networks have
been widely applied to assist cardiac pathology, however, clinical approaches may have a higher
diversity regarding strategies to circumvent the problem.
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Moving forward to clinical approaches, which is related to the application developed in this
work, steps from Figure 3.2 are mentioned in [61], where the general pipeline is once more
stated as a viable choice for cardiovascular applications. According to Shameer et al. [61], Weng
et al. [62], ML models are capable to improve predictive quality while increasing the counter of
true positive and reducing false negative predictions. Especially in the work developed by [62],
algorithms like random forest and logistic regression achieved a significant performance with
accuracy over than 80%, being similar or better when compared to neural networks, increasing
the candidate pool of ML models for this area. In fact, the ML core pipeline applied to cardiac
pathology shown in Figure 3.2 can be used to model distinct applications on the area. Besides
each research objective, what makes the pipelines different is the amount of processing performed
at each stage and how they are applied, which is the case of the work developed by Ferreira
et al. [6] whose focus was predicting pathology from clinical data, where statistical methods were
applied as Filter strategies, and, even with limited scope, has shown that FS is important even
for datasets with small or medium number of features.





Chapter 4

MS-EPSO

Despite its relative success in solving continuous optimization problems, PSO displays several
documented performance issues [63]. To address these issues and at the same improve the
robustness of the algorithm, a hybrid approach that combines Evolutionary Strategies (ES)
with the classic PSO was proposed by Miranda and Fonseca [11]. The algorithm - Evolutionary
Particle Swarm Optimization (EPSO) was able to overcome a crucial issue found in the PSO by
introducing genetic operators of the ES: if the particle local best is the same as the global best,
the cooperation term would be zero, resulting in a movement provided only by the inertia and
memory. However, at the same time, it failed to address another problem: if a particle moves to
a new local best position at generation t, its memory term in consecutive iterations will be zero.
When a term is zero, the update rule (2.5) does not perform proper local search.

Obviously, a desirable outcome would be to intensify the local search in the region of said
particle instead of halting it by having the memory term set to zero. Taking that into account, the
Maximum Search Limitations - Evolutionary Particle Swarm Optimization (MS-EPSO) regulates
the behavior of the EPSO movement rule by detecting convergence of solutions to accumulation
points.

MS-EPSO1 is an algorithm devised by the author of this thesis in [13]. The algorithm
encompasses three distinct rules in one procedure, allowing the algorithm to spread the particles
around the neighborhood of a specific particle, while removing solutions from possible local
optima that can be found in the environment. Initially, the algorithm performs the following steps:
calculate the position-wise statistical metrics mean (xiµ) and standard deviation (xiσ); initialize
the Exploration mode (EXPi) of each particle with value 1; and initialize the Particle Local
Limit (PLLi) of each particle with value 0. Both EXP and PLL are binary control parameters
automatically adjusted according to each rule.

During the optimization process of the algorithm, whenever a particle (including its replicas)
fails to move into a better position when compared to its local best position, the PLL value is
increased by 1. Combined with the Maximum Local Limit (MLL), the PLL plays an important

1The MS-EPSO code is available in https://github.com/MtrsN/MS-EPSO
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role in MS-EPSO, since these two parameters are the ones that will establish the access of a
specific particle into a specific rule. These rules are described on subsequent sections.

4.1 Rule 1

The first rule is the exploration stage of MS-EPSO. This strategy triggers when the following
condition is satisfied:

PLLi < MLL ∧ EXPi (4.1)

This rule will verify if the local limit has surpassed the maximum local limit and if the exploration
mode is turned on. In this rule, one particle is sampled from a normal distribution with mean
and standard deviation calculated from the global best position, e.g. N (xgµ, xgσ). After it, this
particle is evaluated and R replicas are generated. It is worth mentioning that each replica
will still use Equation 2.4 to mutate the weights and Equation 2.3 to move in the environment.
Also, this procedure changes the order of EPSO mechanism, where replicas are moved prior the
particle.

4.2 Rule 2

Rule 2 is the exploitation stage of MS-EPSO. This rule is satisfied according to the following
condition:

PLLi < MLL ∧ ¬EXPi (4.2)

The particle that performs this rule will apply the standard mechanisms of EPSO, giving priority
to the replicas and then moving the particle with standard Equation 2.5.

4.3 Rule 3

This corresponds to the restart mechanism of MS-EPSO and is satisfied with:

PLLi ≥MLL (4.3)

This would indicate that, compared to its local best position, the particle was not able to move
to a better position. Initially, the particle PLL is set to 0 and, if it is the first time visiting this
rule, its exploration mode is turned off. Next, one particle is sampled from a normal distribution
using the mean and standard deviation of its local best position, e.g. N(x̂iµ, x̂iσ). The new



4.4. EPSO vs MS-EPSO 37

particle is evaluated and R replicas are created from it. Finally, the collection of weights of the
current particle are reset, being generated using a uniform distribution between range [0, 1].

4.4 EPSO vs MS-EPSO

The neighborhood exploration performed by sampling a particle from the normal distribution will
spread solutions around the global best particle environment, increasing the diversity in a local
area not in the global. When applying this process in Rule 1, the replicas are capable to exploit
the area with a distinct collection of weights, since each replica applies the weight mutation
process. If the particle is not able to reach a prominent position, in the next generation, the
Rule 3 would reallocate it on the same area of its local best solution. Assuming that EPSO has
a great potential on exploitation, when combining the limitations with the movement equation
for replicas and its canonical process in Rule 2, it is expected that MS-EPSO would achieve a
faster convergence due to the exploration boost, while reaching the same or better position when
compared to EPSO. The first comparison made in [13], MS-EPSO was applied to unconstrained
benchmarks and constrained engineering design problems, where the presented results shows
that MS-EPSO can challenge EPSO and other optimization algorithms.

Algorithm 3 presents the pseudo code of MS-EPSO following the same baselines of PSO
and EPSO algorithms. It is possible to visualize that MS-EPSO insert rules that increases the
number of functions to be implemented when compared to EPSO and PSO, however, only one
rule is applied by each particle at each generation. When analyzing the operations performed
inside each rule, Rule 2 is equal to EPSO procedure, while 1 and 3 are basically sampling from
distributions, therefore, the operation in Rule 1 and 3 are faster than EPSO procedure, increasing
the effort required but minimizing or at least maintaining the processing time.

4.5 Contribution

Besides relevant PSO variants applied to feature selection instances, other versions were reported
to show outstanding performance in other families of continuous optimization problems. One
such that we emphasize is EPSO. The algorithm reached good solution quality for continuous and
integer optimization problems. Notwithstanding, EPSO is the base algorithm used by the top
five algorithms in the World Congress of Computational Intelligence (WCCI) 2018 competitions.
As an enhancement for EPSO, MS-EPSO emerges with the premise to initialize a better initial
population. Since MS-EPSO had significant results in other instances and some state of the
art PSO algorithms to the FS problem still have continuous variable encoding, this work allows
to investigate: the performance of both EPSO and MS-EPSO to feature selection and their
capabilities of assisting ML models to solve real-world problems; the performance of the unique
normal distribution movement found in MS-EPSO and its behavior when dealing with a integer
optimization problem; point out relevant features that may be used in clinical data approaches;
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finally, compare the results 13 distinct metaheuristics, 4 feature selection strategies and literature
results for cardiac pathology.

Algorithm 3: MS-EPSO pseudocode
Input: Objective function f(x), D, LB, UB, NP, NFE, τ , CP, NR, MLL
Output: Best solution found Pg = {x1, x2, x3, ..., xD}
// After each function evaluation:
// 1) Increment FEs counter;
// 2) Check for a possible new global best;
// 3) Check the stopping criteria.

1 FEs← 0
2 MaxV ← abs(UB − LB)
3 MinV ←MaxV ∗ −1
// Initialization phase

4 for i← 0 to to NP do
5 Initialize particle (xi) between [LB, UB]
6 Initialize velocity (vi) between [MinV, MaxV]
7 Initialize strategic weights (w∗

i1, w∗
i2, w∗

i3, w∗
i4) between [0, 1]

8 Initialize local limit (PLLi) ← 0
9 Initialize exploration mode (EXPi) ← 1

10 xiµ ← µ(xi)
11 xiσ ← σ(xi)
12 xif ← f(xi)
13 end
14 Save all local best information (x̂i, x̂if , x̂iµ, x̂iσ)
15 Save global best information (xg, xgf , xgµ, xgσ)

// Optimization process
16 repeat
17 for i← 0 to to NP do
18 Rule1 ← PLLi < MLL ∧ EXPi ? 1 : 0
19 Rule2 ← PLLi < MLL ∧ ¬EXPi ? 1 : 0
20 Rule3 ← PLLi ≥MLL ? 1 : 0
21 if Rule1 then
22 xnew ← DrawFromGaussianDistribution(xgµ, xgσ, D) // D samples
23 xnewf ← f(xnew)
24 bestreplica ← GenerateReplicas(NR,w∗

i , τ) // EPSO strategy
25 bestreplicaf ← f(bestreplica)
26 end
27 if Rule2 then
28 bestreplica ← GenerateReplicas(NR,w∗

i , τ) // EPSO strategy
29 bestreplicaf ← f(bestreplica)
30 xnew ← MoveParticle(xi, vi, x̂i, xg, CP ) // EPSO Movement
31 xnewf ← f(xnew)
32 end
33 if Rule3 then
34 xnew ← DrawFromGaussianDistribution(x̂iµ, x̂iσ, D) // D samples
35 xnewf ← f(xnew)
36 bestreplica ← GenerateReplicas(NR,w∗

i , τ) // EPSO strategy
37 bestreplicaf ← f(bestreplica)
38 PLLi ← 0
39 EXPi ← 0
40 end
41 xi, xif , vi, w

∗
i ← Compare(xnew, bestreplica)

42 x̂i, x̂if , NewLocalBest?← Compare(xi, x̂i)
43 if NewLocalBest then
44 x̂iµ ← µ(x̂i)
45 x̂iσ ← σ(x̂i)
46 else
47 PLLi ← PPLi + 1
48 end
49 end
50 until FEs == NFE



Chapter 5

Experiment

This chapter details the experiment performed to apply a collection of techniques/algorithms
to feature selection and predict cardiac pathology in children and teenagers. All experiments
were performed under a Python 3 environment where each FS algorithm were implemented and
integrated to select features for the Scikit-learn ML algorithms.

The chapter is divided as follows: the first section describes the applied pipeline to achieve
the predictions; the second section presents the applied algorithms and respective parameters; the
third section outlines the cardiac pathology data acquired and exploratory analysis performed;
finally, the last section presents other datasets (benchmarks) used to further evaluate the
algorithms.

5.1 Experiment pipeline

The pipeline performed in this study is presented in Figure 5.1. This is divided into three stages:
1) Preprocessing - outside of rectangles; 2) Standard machine learning - yellow rectangle; 3)
Feature selection and tuning - purple rectangle. Each stage will be detailed in the subsequent
subsections.

5.1.1 Stage 1: Preprocessing

The pipeline is initialized by applying preprocessing techniques in order to prepare the dataset
for the models. With the final dataset, the same is divided once into Xtrain, ytrain, Xtest, ytest
sets where 33% of the data is allocated to the test set, therefore, 77% is used in the training
phase. The same train and test sets are used by all algorithms and strategies in order to perform
a correct comparison.
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Figure 5.1: Adopted pipeline on this study

5.1.2 Stage 2: Machine Learning Training

In this stage, 5 distinct machine learning models that are commonly used in the literature:
Logistic Regression (LR) [39]; K-Nearest Neighbors (KNN) [42]; Artificial Neural Networks
(ANN) [45]; Random Forest (RF) [46]; and Support Vector Machine (SVM) [64], are applied.

The models are trained with train sets and their predictive capabilities are evaluated with
test sets, where it is measured through the weighted accuracy. The results are compared by
applying the Mann-Whitney U (MWU) test to verify the statistical significance between models.
It is worth mentioning that all training sessions of ML models are performed under a Sk-cv with
10 folds, where this number was selected due to the properties of Sk-cv with 10 folds that would
reduce bias and variance of the model [31]. The most relevant algorithm that yields the best
model is used as basis for selecting the best subset of features.

5.1.3 Stage 3: Feature Selection and Tuning

The major contribution of the work is performed at this stage, where MS-EPSO is compared
against state of the art techniques to select features for cardiac pathology. The best model
acquired in Stage 2 is used with Wrapper (W), Embedded (E) and SI strategies, allowing the
feature selection phase to be deeply explored. The collection of algorithms, described in the
next section, is applied with the best model to capture the best subset of features. The feature
selection is performed with the train sets, generating a model trained with the best subset. As
last step, the model performs predictions for the feature subset of test set, where results are
evaluated through the balanced accuracy. Finally, the other models are trained and evaluated
with the best feature subset with their parameters tuned by a simple Grid Search approach and
results are compared.
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5.2 Algorithms and parameters

Table 5.1 presents all algorithms applied on this approach with their parameters and categories.
The comparison includes SI algorithms, Evolutionary Algorithms (EA) and feature selection
strategies, where population based algorithms also share a total of 20 solutions and 200 function
evaluations. It is worth mentioning that values marked with a star in the table indicate that the
algorithm has the base version parameters and its own, for instance: ABC + ES will have ABC
parameters and its own parameters. The parameters were selected based on past approaches and
suggestion of the authors that devised the algorithm.

Table 5.1: Algorithms and FS techniques used to predict cardiac pathology

Category Algorithm Initials Parameters

SI Artificial Bee Colony ABC [65] MaxLimit= 65
SI ABC + Evolution Strategies* ABC + ES [66] Replicas= 1; τ = 0.2; τ ′ = 0.02
SI ABC-X ABC-X-M1 [67] MaxLimit= 140
SI Ant Colony Optimization ACO [16] α= 1; β= 5
SI Binary PSO PSO w= 0.6; c1, c2= 1.8
SI Competitive Swarm Optimizer CSO [68] φ = 0.2
SI Cross Entropy + EPSO* CE + EPSO [57] σ= 0.8; β= 0.1
SI EPSO EPSO τ= 0.8; cp= 0.9; Replicas= 1
SI IBPSO IBPSO [69] Experiment parameters
SI MS-EPSO* MS-EPSO MaxLocalLimit= 25
SI Social Interaction ACO* SIACO [70] R= 3; S= 0; T= 5; P= 1
SI Quantum PSO with Delta QPSO [71] g= 0.96
EA Genetic Algorithm GA cr= 0.9; mr= 0.05;
W Best model with Wrapper W-Model Exclude worst 10% features
E Best model with Embedded E-Model Features with importance ≥ than median
F Pearson Correlation PC 40% of features
F Mutual Information MI 40% of features

5.3 Cardiac Pathology Data

The data for CP used in this work was collected in a cardiovascular hospital located at the
northeastern part of Brazil. It contains 20 features of 17,874 anonymous patients. The dataset
is pseudonymised, where patients personal information is modified by an artificial identifier
which can be one way to comply both with the European Union’s and Brazilian’s new General
Data Protection Regulation demands for secure data storage of personal information. In the
subsequent pages, Table 5.3 describes statistical information found in continuous features of the
dataset, while Table 5.2 outlines statistical information found in categorical features.
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Table 5.2: Continuous features in the initial dataset

Attribute Range Average ± Std. Missing

Age (cm) 2-19 8.6 ± 3.7 0
Height (cm) 51-198 130.2 ± 21.5 0
Weight (kg) 3.5-101.0 32.7 ± 15.0 0
Body Mass Index 12.0-33.6 18.4 ± 3.6 0
Heart Rate (bpm) 46-160 85.5 ± 11.0 310
Systolic Pressure 70-170 101.0 ± 10.7 20
Diastolic Pressure 35-120 62.1 ± 8.5 20
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Table 5.3: Discrete features in the initial dataset

Attribute Values Quantity (%) Missing Has pathology (%)

Gender
Male 59

0
14.21

Female 41 20.61

Age Range

Pre-School (2-6) 38.3

0

16.08
School (6-10) 25.2 8.83
Pre-teen (10-14) 28.3 7.95
Teenager (14-19) 8.2 1.94

Body Mass Index Percentile

Low Weight 4.5

0

2.05
Normal 48.7 16.98
Overweight 17.1 6.18
Obese 29.6 9.59

Systolic Blood Pressure (SBP)
Normal 91.6

20
31.21

Limit 3.1 1.21
Hypertense 5.3 2.39

Systolic Blood Pressure (SBP)
Normal 90.0

20
31.11

Limit 6.6 2.07
Hypertense 4.3 1.62

Blood Pressure Result (SBP/DPB)
Normal 86.2

20
29.43

Limit 6.6 2.43
Hypertense 7.2 2.95

Murmur

Low Weight 69.5

0

5.61
Normal 30.4 29.07
Overweight 0.1 0.06
Obese 0.1 0.06

Second Heart Sound (S2)

Normal 69.5

54

5.61
Fixed Split 30.4 29.07
Unique 0.1 0.06
Hyperphonetic 0.1 0.06

Pulses
Normal 99.8

17
34.61

Limit 0.1 0.009
Hypertense 0.1 0.002

Disease History 1

Asymptomatic 72.3

1789

27.72
Cyanosis 1.0 0.40
Precordial pain 9.7 3.25
Dyspnea 6.1 2.49
Palpitation 5.3 1.44
Faint/Dizziness 3.2 0.68
Weight gain 2.4 0.92

Disease History 2

Cyanosis 8.4

6889

4.87
Precordial pain 18.1 5.51
Dyspnea 22.9 8.11
Palpitation 29.7 8.76
Faint/Dizziness 12.9 4.22
Weight gain 8.1 3.24

Visit Reason

Cardiopathy 5.7

1846

3.61
Routine check-up 7.2 1.66
Others 2.5 0.93
Cardiology Screening 53.1 13.41
Possible Cardiopathy 31.5 15.15
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5.4 Benchmark Experiment

The benchmark experiment is an extension to the application of MS-EPSO to feature selection.
The purpose of this experiment is to verify the performance of MS-EPSO when applied to other
types of data, including only discrete, only real, and mixed (Discrete and Real) types of features,
distinct number of features and classes. Following the idea of the cardiac pathology experiment,
this experiment the steps of this experiment can be visualized in Figure 5.2.

Figure 5.2: Benchmark experiment pipeline

The pipeline starts at the train/test split, where the dataset is once divided into Xtrain, ytrain,
Xtest, ytest sets where 33% of the data is allocated to the test set, therefore, 77% is used in the
training phase, same percentage applied at the cardiac pathology. The train set is used at the
feature selection phase, where the best subset for the benchmark will be selected according to
the algorithm criteria. In case of algorithms that are dependent on ML models to perform this
task, the algorithm that yield the best model at the second phase of CP experiment is used, also,
it will apply the same 10-fold Sk-CV strategy. At model evaluation phase, the best model make
predictions for the test set, where these predictions are evaluated through the balanced accuracy
metric.

The results obtained by the algorithms are compared regarding train and test phases, where
MWU test is applied to measure statistical significance between them. The list of datasets used
in this experiment are described in Table 5.4, where they vary in number of instances, features,
classes and feature type. Also, it is worth mentioning that the same group of 17 algorithms with
the same parameters as previous experiment are applied. The complete list of algorithms and
parameters can be visualized in 5.1.

Table 5.4: Benchmark datasets used to evaluate the FS algorithms

Dataset Attributes Features Classes Instances

Breast Cancer Wisconsin Mixed 32 2 569
UCI Digits Discrete 64 10 5,620
Olivetti Faces Real 4,096 40 400
MNIST Discrete 784 10 70,000
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Results

This chapter presents the results obtained from the carried out experiment, and it is divided into
three main sections: Section 6.1 shows results of the preprocessing step, highlighting the main
findings of the exploratory analysis for the cardiac pathology data; Section 6.2 shows results of
the conducted pipeline presented in Figure 5.1; Finally, Section 6.3 presents a comparison of the
collection of algorithms and techniques to the FS problem when applied to benchmarks found in
the literature.

6.1 Preprocessing

The processed dataset was analyzed through bivariate and multivariate analysis in order to
explore patterns that could be found in the data. With the premise to create features with
richer information and make ease the predictions, these patterns were used in feature engineering,
allowing to generate novel features: the Body-Mass-Index (BMI) and the History based Emergency
Level (HEL) that represents a relation between the S2 sound state, patient history of disease

Figure 6.1: History based emergency level relation with cardiac pathology
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and the target variable (if the patient had or not cardiac pathology). With the relation captured
under the multivariate analysis, it was possible to generate a green, yellow or red state for
the patient. Figure 6.1 shows the probabilities emergency levels related to cardiac pathology,
while Figures 6.2 and 6.3 present, respectively, the pairwise Pearson correlation and normalized
mutual information, which allow to confirm that the created features have significant information
regarding other dataset features, fitting the premise of the feature engineering.

The final dataset used on this study has 14 features: Weight; Height; BMI; Age; Pulse rate;
PPA - result of systolic blood pressure divided by diastolic blood pressure; Presence or absence
of CP; type of the S2; murmur type; cardiac frequency; history of disease; reason for being
forwarded to the cardiology clinic; HEL; BMI. Regarding the description of the dataset, Table 6.1
presents the statistical summary of the continuous features while Table 6.2 presents the categorical
variables. Preprocessing was performed in order to follow medical domain standards (e.g. age
ranges, pressure rangers, etc) applying: data transformation; cleaning; normalization; removal
of irrelevant features, like ID and features with more than 95% of missing values; and patients
that had more than 10 features with missing values, ending in a dataset with a population of
9,484 (53% of the original dataset) and 12 features. It is worth mentioning that 6,144 individuals
(64.96%) were healthy and 3,340 (35.31%) had CP.

Table 6.1: Continuous features of the final dataset

Attribute Range Average ± Std.

Weight (kg) 4.2 - 118.0 34.52 ± 4.08
Height (m) 0.23 - 1.7 0.48 ± 1.98
Body Mass Index 4.08 - 19.04 15.0 ± 39.79

The final dataset can provide an insight about the feature selection with filter strategy, as an
example: Pearson correlation as feature selection strategy would select features related to the
patient and murmur to be inserted into the best subset, while other strategies would prioritize
features that would increase the cost function score. The data now have 0 missing values and
the correct shape to be propagated to ML models, therefore, the training phase was performed
and its results are given in next section.
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Table 6.2: Categorical features of the final dataset

Attribute Values Quantity (%) Pathology probability (%)

Age Range
Pre-school (2-6) 40.85 41.32
School (7-12) 35.39 31.45
Teenager (12-19) 23.76 26.03

Disease History

Asymptomatic 55.70 37.96
Faint/Dizziness 24.15 22.87
Precordial pain 9.04 34.11
Palpitation 3.42 23.93
Dyspnea 4.67 40.43
Weight gain 2.13 37.67
Cyanosis 0.84 37.93

Gender
Male 60.52 33.60
Female 39.48 33.74

Heart Rate
Normal 60.52 33.60
Abnormal (Above/Under for age limit) 39.47 33.74

Heart Murmur
Normal 70.44 7.88
Abnormal (Limit/Hypertense) 29.56 95.09

History based Emergency Level
Green level 97.49 32.30
Yellow level 0.23 75.00
Red level 2.27 87.74

PPA
Normal 59.71 35.28
Abnormal (Limit/Hypertense) 40.29 31.24

Reason of visit
Had heart disease 5.56 62.10
Routine Check-up 7.29 23.49
Heart evaluation 52.43 24.51
Suspicious heart disease 31.24 46.06
Others 3.45 36.01

Second Heart Sound (S2)
Normal 97.50 32.30
Abnormal (Limit/Hypertense) 2.50 86.54

Wrist State
Normal 99.45 33.43
Abnormal (Diminished femoral/Ample) 0.54 75.67
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Figure 6.2: Pairwise correlations of the final dataset features
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Figure 6.3: Pairwise normalized mutual information of the final dataset features
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6.2 Cardiac Pathology

In the second stage of the adopted pipeline, five ML algorithms are applied to the CP dataset
with the complete set of features. The results obtained by each algorithm are presented in Figure
6.4, which shows the mean of the Sk-cv and the obtained scores in the test set. This figure
shows that the LR model achieved the best balanced accuracy with 86.03% on the mean of the
stratified k-fold cross validation and 85.13% on the separated test set. When comparing logistic
regression with the neural network, MWU indicates that both populations were acquired from
different distributions, therefore, the LR model had statistical significance when compared to
ANN (p = 0.0369; p ≤ 0.05).

Since the LR model achieved the best score when applying all features in stage 1, we decided
to use the LR algorithm as basis for the feature selection training. Table 6.3 presents: the mean
and standard deviation obtained from the stratified k-fold cross validation; the test score obtained
from the separated dataset; number of selected variables; algorithm rank when comparing the
test score.

The results show that, regarding the objective function, ABC-X-M1 obtained the best score
followed by ABC + ES and CE + EPSO. When comparing both algorithms using MWU test, the
result indicates that these are not statistically significant (p ≥ 0.05). MS-EPSO and PSO are the
algorithms with subsequent best score, however, when comparing them against the ABC-X-M1,
ABC + ES, IBPSO and CE + EPSO, these algorithms have statistical significance (p ≤ 0.05).
This significance may appear due to the low standard deviation acquired by all algorithms when
performing their optimization process. Looking deeply at the obtained scores, it is clear that
QPSO, Embedded-logistic regression (E-LR) and mutual information (MI) were not capable of
finding relevant features.

Figure 6.4: Mean of stratified k-cross validation and test set results of stage 2
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After the feature selection, each subset was evaluated with the test set given by the train/test
split performed in phase 1. The results show that MS-EPSO found a subset of features capable
of generalizing the whole dataset, followed by CE+EPSO which also had a significant score,
ABC + ES and ABC-X-M1. The difference on test score may be due to the number of selected
features that would make ease discovering a pattern in the data. MS-EPSO selected the following
features: Age; PPA; B2 state; heart murmur; and disease history, while ABC selected HEI instead
of disease history. CE + EPSO selected the same as MS-EPSO but including the wrist state.
ABC-X-M1 also selected the same as MS-EPSO but including HEI and wrist state. Finally,
algorithms that had poor performance did not include any relevant feature concerning the medical
concepts of cardiac pathology (the selected features were related to the patient age, height, BMI,
gender and disease history).

The results of refitting the ML models were 0.9233% of balanced accuracy for the ANN,
KNN, RF and SVM models, while the LR model achieved the 0.9267% shown in Table 6.3 based
on MS-EPSO FS. The parameter tuning of the LR was performed to tune the optimization
solver, regularization strength (C ) and a decision variable to introduce bias in the cost function.
The parameter tuning was able to enhance the training score, however, the test score was not
changed. Final parameters of the LR model were: 100 iterations; C is 1.0; LBFGS solver with L2
penalty; and adding the bias to the LR cost function, where these parameters obtained: 0.9304%
in the Sk-cv score; and 0.9267% in the test set.

Table 6.3: Feature selection of cardiac pathology dataset results

Algorithm Sk-cv score Test score Variables Rank

ABC 0.9277 ± 0.0013 0.9064 5 2
ABC + ES 0.9309 ± 0.3640 0.9065 9 3
ABC-X-M1 0.9477 ± 0.1074 0.9065 8 3
ACO 0.9277 ± 0.0013 0.9064 5 4
EPSO 0.9277 ± 0.0013 0.9064 5 4
CE + EPSO 0.9300 ± 0.0009 0.9206 7 2
CWO 0.9277 ± 0.0013 0.9064 5 4
IBPSO 0.9477 ± 0.1074 0.9065 8 3
MS-EPSO 0.9286 ± 0.0101 0.9267 6 1
PSO 0.9277 ± 0.0013 0.9064 5 4
SIACO 0.9277 ± 0.0013 0.9064 5 4
QPSO 0.5089 ± 0.0202 0.5000 5 6
GA 0.9277 ± 0.0013 0.9064 5 4
W-LR 0.9277 ± 0.0013 0.9064 5 4
E-LR 0.5089 ± 0.0202 0.5000 5 6
PC 0.8504 ± 0.1345 0.8509 5 5
MI 0.5089 ± 0.0202 0.5000 5 6
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6.2.1 CP Results discussion

Applying feature selection is in fact relevant to predict CP with this dataset. When comparing
the best score of 18 algorithms/strategies for feature selection plus ML models with all features
plus ML models, a logistic regression model behaved approximately 7.5% better. Also, the KNN
algorithm had a poor performance when using all features. With the FS, the model was able to
have a competitive score when compared to others used in this work.

Regarding the feature selection stage, most of the SI/EA strategies outperformed the embedded
and filters techniques, while the wrapper had competitive results. The SI approaches have a
slightly better performance when compared to the wrapper strategy, however, the SI strategies
require more computational time since they have to fit the model many times. Given that the
best SI result is approximately 2% better and slower, the wrapper strategy has some advantage.
But since we are dealing with a medical dataset where priority should be given to the reduction
of false negatives, SI algorithms would be the best strategy to circumvent that issue.

The parameter tuning performed on the models was able to enhance in less than 1% the Sk-cv
score, which is not significant, therefore, the parameter tuning could be avoided or combined
with the feature selection to reduce the time required to complete the pipeline.

As the last comparison for the approach, another attempt was performed with feature selection
for cardiac pathology from raw data. The complete experiment is described in [6]. The approach
applied had focus on a preprocessing and elimination of features based on a few filter strategies.
The best score obtained was close to 90% accuracy. Comparing our results with this, we achieved
a 2 points improvement, also reducing the number of false negatives, yielding SI algorithms, but
mainly MS-EPSO, as a viable alternative for feature selection in the medical domain.

To further implement this model at the hospital environment, the final model (Logistic
Regression algorithm and its final weights optimized during the feature selection stage) needs to
be encapsulated under a program interface. Through the interface, the doctor or nurse can insert
the collected data, propagating it to the model which will receive the information and return a
probability of being a positive case of cardiac pathology. The outcome will be analyzed by the
doctor, assisting his decision making process regarding the presence or absence of the pathology.

6.3 Benchmark Results

The results obtained with the benchmark experiment are shown in Table 6.4. When evaluating the
algorithm performance on Breast Cancer benchmark, all algorithms had the same performance on
the test set, however, analyzing the objective function of the feature selection problem (training
phase), ABC-X-M1 and IBPSO had the best performance among the methods, followed by
canonical ABC, ABC + ES, ACO, GA and QPSO, while PSO was the third place. MS-EPSO
had the same performance of CE + EPSO and CWO which was slightly better when compared
to EPSO algorithm. Regarding the p-values, for the Breast Cancer dataset, the MWU test
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shows that each rank has significance when compared to subsequent rank, e.g. algorithms with
rank 1 are statistically significant (p ≤ 0.05) when compared to algorithms in rank 2, rank 2 is
significant when compared to rank 3, until rank 7 which had the worst performance. However,
looking forward to the number of selected features and score obtained in the test set, E-LR
selected only 3 features, while other strategies have selected more than 12, which would set a
priority for this method, followed by other non SI algorithms and EPSO.

MS-EPSO and CWO had the best performance on Digits dataset. Both algorithms were
capable to produce the solution that achieved the best train and test score, which was statistically
significant (p < 0.05) when compared to E-LR. E-LR had the second best performance followed
by PSO and IBPSO, where these algorithms had a similar performance, which fail to reject
the hypothesis of MWU test, therefore, there is not significance (p ≥ 0.05) between them.
When comparing E-LR and PSO to W-LR, the results were statistically significant (p < 0.05),
presenting the top 3 algorithms for the Digits dataset. It is important to notice that W-LR and
PC methods had a higher performance on test set instead of training set, which may indicate
underfitting, however, since the values does not have a huge difference, it would require other
kinds of analysis to further verify this issue. Other algorithms had a significant performance
regarding the ML metric analysis, however, they were not significant when comparing to the top
3 ranked algorithms.

The Olivetti Faces dataset had the best subset selected by MS-EPSO, followed by EPSO
and then W-LR, SIACO and CE + EPSO. Comparing these algorithms, MS-EPSO did not
achieved statistical significance (p ≥ 0.05) when compared to EPSO, however both algorithms
had significance (p < 0.05) when compared to all other algorithms. The train score achieved by
them, except ABC’s and QPSO, was significant analyzing the ML metric. In a counterpart, the
test score achieved by all algorithms was an average result, where only the top 4 achieved scores
higher than 0.8.

The feature selection performed by the algorithms for the MNIST dataset achieved a great
overall performance. All algorithms had more than 0.8913 balanced accuracy in the train phase
and more than 0.8711 in the test phase. Regarding the optimization process, MS-EPSO achieved
rank number 8, however, regarding the train phase, it is possible to order the algorithms by
significance where the first group is: SIACO, ACO, EPSO, CE + EPSO, MS-EPSO, PSO, ABC,
W-LR and E-LR; the second group is ABC + ES, ABC-X-M1 GA, CWO, QPSO and IBPSO;
finally, the third group is PC and MI methods. These groups are statistically ranked as follows:
Group 1 6= Group 2 6= Group 3, where the difference is given by MWU test with p < 0.05.



54 Chapter 6. Results

Table 6.4: Feature selection of benchmark datasets results

Dataset Algorithm Sk-cv score Test score Variables Rank

Breast Cancer

ABC 0.8253 ± 0.1245 0.8169 20 2
ABC + ES 0.8253 ± 0.2945 0.8169 20 2
ABC-X-M1 0.8377 ± 0.3274 0.8169 18 1
ACO 0.8253 ± 0.1245 0.8169 20 2
BPSO 0.8250 ± 0.2201 0.8169 19 3
CWO 0.8240 ± 0.1987 0.8169 16 4
CE + EPSO 0.8240 ± 0.1987 0.8169 16 4
EPSO 0.8227 ± 0.0013 0.8169 12 5
IBPSO 0.8377 ± 0.3274 0.8169 18 1
MS-EPSO 0.8240 ± 0.1987 0.8169 16 4
SIACO 0.8240 ± 0.1987 0.8169 16 4
QPSO 0.8253 ± 0.1245 0.8169 20 2
GA 0.8253 ± 0.1245 0.8169 20 2
W-LR 0.8083 ± 0.1551 0.8169 12 7
E-LR 0.8053 ± 0.2002 0.8169 3 7
PC 0.8083 ± 0.1551 0.8169 12 6
MI 0.8083 ± 0.1551 0.8169 12 6

Digits

ABC 0.9492 ± 0.0042 0.9464 36 7
ABC + ES 0.9646 ± 0.0024 0.9065 45 13
ABC-X-M1 0.9648 ± 0.0018 0.9471 37 5
ACO 0.9569 ± 0.0042 0.9468 41 6
BPSO 0.9681 ± 0.0016 0.9601 38 3
CWO 0.9762 ± 0.0027 0.9733 56 1
CE + EPSO 0.9653 ± 0.0025 0.9206 42 11
EPSO 0.9519 ± 0.0011 0.9064 37 14
IBPSO 0.9681 ± 0.0016 0.9601 38 3
MS-EPSO 0.9762 ± 0.0027 0.9733 56 1
SIACO 0.9464 ± 0.0008 0.9554 25 4
QPSO 0.9422 ± 0.0008 0.9374 25 9
GA 0.9689 ± 0.0013 0.9352 42 10
W-LR 0.9464 ± 0.0008 0.9554 25 4
E-LR 0.9683 ± 0.0008 0.9704 36 2
PC 0.9044 ± 0.0010 0.9082 25 12
MI 0.9422 ± 0.0008 0.9374 25 8

Olivetti Faces

ABC 0.7801 ± 0.0273 0.7887 2051 10
ABC + ES 0.7906 ± 0.0453 0.7929 2096 8
ABC-X-M1 0.7801 ± 0.0150 0.7887 2051 10
ACO 0.7884 ± 0.0249 0.7916 2019 9
BPSO 0.9768 ± 0.0133 0.7766 2006 11
CWO 0.7906 ± 0.0453 0.7929 2096 8
CE + EPSO 0.9745 ± 0.0141 0.8059 1672 4
EPSO 0.9831 ± 0.0139 0.8103 812 2
IBPSO 0.9564 ± 0.0122 0.7994 1748 5
MS-EPSO 0.9801 ± 0.0141 0.8170 1552 1
SIACO 0.7801 ± 0.0150 0.7887 2051 10
QPSO 0.7945 ± 0.0133 0.7987 1982 6
GA 0.8882 ± 0.0322 0.7929 1959 7
W-LR 0.9589 ± 0.0149 0.8102 1638 3
E-LR 0.9564 ± 0.0122 0.7994 1748 5
PC 0.8222 ± 0.0743 0.6213 1638 13
MI 0.9523 ± 0.0071 0.7747 1638 12

MNIST

ABC 0.9289 ± 0.0003 0.9128 482 4
ABC + ES 0.9254 ± 0.0001 0.9102 455 5
ABC-X-M1 0.9221 ± 0.0001 0.9139 406 3
ACO 0.9311 ± 0.0002 0.9166 713 2
BPSO 0.9353 ± 0.0004 0.9008 404 15
CWO 0.9342 ± 0.0053 0.9042 494 10
CE + EPSO 0.9353 ± 0.0005 0.9022 579 14
EPSO 0.9348 ± 0.0005 0.9053 395 7
IBPSO 0.9302 ± 0.0149 0.9034 852 13
MS-EPSO 0.9348 ± 0.0004 0.9052 587 8
SIACO 0.9323 ± 0.0002 0.9196 713 1
QPSO 0.9121 ± 0.0002 0.9039 409 11
GA 0.9194 ± 0.0007 0.9050 517 9
W-LR 0.9308 ± 0.0008 0.9056 313 6
E-LR 0.9339 ± 0.0004 0.9035 433 12
PC 0.8913 ± 0.0003 0.8711 313 17
MI 0.9242 ± 0.0005 0.8997 313 16
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6.3.1 Benchmark result discussion

Since this experiment was to deeply analyze the MS-EPSO feature selection capabilities, four
standard ml benchmarks were selected. The comparison was performed against many other FS
strategies and swarm intelligence algorithms were the average rank of all algorithms is presented
in table 6.5.

Algorithm Avg. Rank Final Rank

MS-EPSO 3.50 1
ABC-X-M1 4.75 2
ACO 4.75 2
SIACO 4.75 2
W-LR 5.00 3
IBPSO 5.50 4
ABC 5.75 5
CWO 5.75 5
E-LR 6.50 6
EPSO 7.00 7
QPSO 7.00 7
GA 7.00 7
ABC+ES 7.00 7
BPSO 8.00 8
CE+EPSO 8.25 9
MI 10.50 10
PC 12.00 11

Table 6.5: Feature selection rank for all algorithms/strategies

It is possible to visualize that MS-EPSO had the lower average position rank when compared
to all other strategies, therefore, MS-EPSO can be a viable solution to assist a ML model on
the predictive capability. Besides MS-EPSO performance, it is also possible to notice that other
swarm intelligence algorithms can useful to enhance to predictive capability of the model. When
comparing SI category against filters, filter algorithms had the worst feature selection scenario,
which can be explained by the difficulty to find the best percentage of features to be selected by
these methods. Concerning Wrapper and Embedded strategies, results show that both achieved
overall good performance when compared to other SI methods and that the parameters can be
selected easily selected when compared to filter strategies.

When applying the logistic regression model to these datasets with the Sk-cv with 10 folds,
the standard deviation obtained was expected ue to the number of folds, which decreases bias
that can be introduced by applying a low number of folds. Independent on the number of selected
features, the score behavior was the same for all datasets, low standard deviation and good
results due to the natural predictive capabilities when training a LR with one vs all strategy. The
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train/test scores may be improved if any of these tasks is performed: 1) the number of iterations,
for all algorithms, is increased; a parameter tuning can be performed to tune the feature selection
algorithms, although the computational complexity would increase, requiring a huge processing
time to perform all the proposed pipeline; or tuning the parameters of the LR with the selected
features, however, since the purpose of this experiment is to evaluate feature selection and not
ML models, this strategy was not applied, which differs from the cardiac pathology experiment.



Chapter 7

Conclusion

This dissertation presented a recent algorithm named Maximum Search Limitations - Evolutionary
Particle Swarm Optimization (MS-EPSO) devised by the author and its application to the
feature selection problem. The algorithm was applied to select the best feature subset for cardiac
pathology in children and teenagers of a real-world scenario and 4 distinct benchmarks found
in the machine learning literature. Applied preprocessing assisted to prepare the dataset in
order to be used by machine learning algorithms that were used as basis for feature selection of
most strategies. The experiment was compared using 17 techniques including state of the art
swarm intelligence algorithms and feature selection techniques. Results for that MS-EPSO can
be competitive to other algorithms since it achieved the best results in the cardiac pathology
experiment and the lower average rank in the benchmark experiment. For the CP dataset, in
particular, the methods applied here allowed a reduction in the number of false negatives, which
is very important in the medical domain.

Even with the competitive results, swarm intelligence approaches have the limitation of
being computationally expensive due to the fitness evaluation process. Future works involves
the insertion of MS-EPSO and fitness evaluation process under the General Purpose Graphics
Processing Unit (GPGPU) architecture to mitigate this problem. For MS-EPSO specifically, the
author is conducting experiments with large scale problems to analyze distinct application areas
that can be fit by the algorithm. Concerning the optimization process, other mechanism found
in other optimization methods that were applied in the dissertation can be inserted into the core
algorithm to verify if these components can enhance the local or global search performed by the
algorithm during the iterations. Concerning the cardiac pathology problem, in order to enhance
the primary care for a faster and accurate process, other approaches are being analyzed to
deeply investigate the pathology. For feature selection approaches with MS-ESPO, the author is
studying the possibilities to extend MS-EPSO approach to multi-objective fitness evaluation and
the possibilities of combining the parameter tuning and feature selection, solving two problems in
one step performed by MS-EPSO. Finally, with the combination of all future works, it possible
to insert the algorithm into a auto-machine learning framework that would perform a series of
approaches including it to solve distinct machine learning or even deep learning problems.
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