39 research outputs found

    Full Duplex CMOS Transceiver with On-Chip Self-Interference Cancelation

    Get PDF
    abstract: The demand for the higher data rate in the wireless telecommunication is increasing rapidly. Providing higher data rate in cellular telecommunication systems is limited because of the limited physical resources such as telecommunication frequency channels. Besides, interference with the other users and self-interference signal in the receiver are the other challenges in increasing the bandwidth of the wireless telecommunication system. Full duplex wireless communication transmits and receives at the same time and the same frequency which was assumed impossible in the conventional wireless communication systems. Full duplex wireless communication, compared to the conventional wireless communication, doubles the channel efficiency and bandwidth. In addition, full duplex wireless communication system simplifies the reusing of the radio resources in small cells to eliminate the backhaul problem and simplifies the management of the spectrum. Finally, the full duplex telecommunication system reduces the costs of future wireless communication systems. The main challenge in the full duplex wireless is the self-interference signal at the receiver which is very large compared to the receiver noise floor and it degrades the receiver performance significantly. In this dissertation, different techniques for the antenna interface and self-interference cancellation are proposed for the wireless full duplex transceiver. These techniques are designed and implemented on CMOS technology. The measurement results show that the full duplex wireless is possible for the short range and cellular wireless communication systems.Dissertation/ThesisDoctoral Dissertation Engineering 201

    Achievable Sum Rates of Half- and Full-Duplex Bidirectional OFDM Communication Links

    Full text link
    While full-duplex (FD) transmission has the potential to double the system capacity, its substantial benefit can be offset by the self-interference (SI) and non-ideality of practical transceivers. In this paper, we investigate the achievable sum rates (ASRs) of half-duplex (HD) and FD transmissions with orthogonal frequency division multiplexing (OFDM), where the non-ideality is taken into consideration. Four transmission strategies are considered, namely HD with uniform power allocation (UPA), HD with non-UPA (NUPA), FD with UPA, and FD with NUPA. For each of the four transmission strategies, an optimization problem is formulated to maximize its ASR, and a (suboptimal/optimal) solution with low complexity is accordingly derived. Performance evaluations and comparisons are conducted for three typical channels, namely symmetric frequency-flat/selective and asymmetric frequency-selective channels. Results show that the proposed solutions for both HD and FD transmissions can achieve near optimal performances. For FD transmissions, the optimal solution can be obtained under typical conditions. In addition, several observations are made on the ASR performances of HD and FD transmissions.Comment: To appear in IEEE TVT. This paper solves the problem of sum achievable rate optimization of bidirectional FD OFDM link, where joint time and power allocation is involve

    RF system model for In-band full duplex communications

    Get PDF
    Abstract. In recent years by increasing the demands for communication services various technologies are examined in order to improve the throughput and spectrum efficiency of the wireless communication systems. For improving the performance a communication network, system deficiencies such as transmitter and receiver impairments need to be removed or compensated. One way to improve the network efficiency is to employ full duplex technology. Full duplex technology doubles the network capacity compared to the case when typical frequency division duplexing (FDD) or time division duplexing (TDD) are employed in a transceiver design. Although full duplex (FD) technology has enhanced the performance of the radio communication devices, the main challenge in full duplex communication is the leaking self-interference signal from the transmitter to the receiver. Different methods are employed to suppress the self-interference signal in digital and analog domains which are categorized as passive or active cancellations. These techniques are discussed in this thesis in order to understand from which point in the propagation path, the required signal for cancellation can be taken and how those techniques are employed in digital and analog domains. For having a good self-interference cancellation (SIC) both analog and digital cancellation techniques are needed since typical digital suppression method is low complex and somewhat limited. In this thesis, first we start with discussing about the full duplex technology and the reason why it has become popular in recent years and later full duplex deficiencies are examined. In the following chapters different cancellation methods are introduced and some results are provided in Chapter 5

    On Self-interference Suppression Methods for Low-complexity Full-duplex MIMO

    Get PDF
    Full-duplex wireless communication offers improved spectral efficiency, as well as more efficient relaying and medium access, but requires suppression of self-interference. In this paper we analyze the existing methods for active RF suppression and use the ”Rice architecture” for its low complexity and favorable scaling when applied to multi-antenna systems. We analyze the effects of the different sources of self-interference and quantify the potential for further suppression (genie-aided suppression). Our single-chain implementation using a circulator achieves −48 dB of active RF suppression, but only −66 dB of total suppression in the analog domain. On the other hand, our single-chain implementation using separate antennae reaches −85 dB of total analog suppression, thus reducing the self-interference to the noise floor. Extending these setups, we present a low complexity implementation of a 2 × 2 full-duplex MIMO node, which achieves even higher suppression than the single-chain counterparts

    Digitally-Assisted RF-Analog Self Interference Cancellation for Wideband Full-Duplex Radios

    Get PDF
    The ever-increasing demand for more data from users is pushing the development of alternative wireless technologies to improve upon network capacity. Full-Duplex radios provide an exciting opportunity to theoretically double the available spectral efficiency of wireless networks by simultaneously transmitting and receiving signals in the same frequency band. The main challenge that is presented in the implementation of a full-duplex radio is the high power transmitter leaking to the sensitive receiver chain and masking the desired receive signal to be decoded. This transmitter leakage is referred to as self interference and it is required that this self interference signal be cancelled below the receiver noise floor to achieve the full benefits of a full-duplex radio. Cancellation of the self interference signal is realized through several techniques, categorized as passive suppression, digital cancellation, and analog cancellation. These methods all have their challenges in achieving the full amount of cancellation necessary and therefore all three techniques are typically employed in the system. In this thesis, a novel digitally assisted radio frequency (RF) analog self interference canceller is proposed to suppress the self interference signal before the receiver chain for wide modulation bandwidth signals. This canceller augments minimum complexity RF-analog interference cancellation hardware that uses an RF vector multiplier in combination with a flexible digital rational function finite impulse response filter. The simple topology reduces the number of impairments added to the system through the analog components and identifies the parameters of the proposed filter in a deterministic and single iteration algorithm. The hardware proof-of-concept prototype is built using off-the-shelf RF-analog components and demonstrates excellent cancellation performance. Using four TX test signals with modulation bandwidths of 20~MHz, 40~MHz, 80~MHz, and 120~MHz, the self interference canceller achieves a minimum of 50~dB, 47~dB, 42~dB, and 40~dB of cancellation respectively. This thesis reviews the previously proposed self interference cancellation topologies, system non-idealities that provide challenges for full-duplex implementation, and the realization of the proposed RF-analog self interference canceller

    Analog Self-Interference Cancellation Using Auxiliary Transmitter Considering IQ Imbalance and Amplifier Nonlinearity

    Get PDF
    In-band full-duplex communication, which transmits and receives simultaneously on the same frequency, causes self-interference (SI). In this paper, to cancel SI present in the radio frequency (RF) domain, we propose a novel nonlinear SI cancellation approach using an auxiliary transmitter which is effective in the presence of IQ imbalance and nonlinear distortion. The proposed approach estimates the local transceiver channel by using a time-domain least squares method and creates a signal for SI cancellation based on estimation results and a finite impulse response filter, whose coefficients are derived in this paper. Additionally, we theoretically calculate the SI cancellation limit of the proposed approach. Information about the SI cancellation limit due to phase noise is important for meeting SI cancellation requirements and being able to compare the effects of RF impairments such as IQ imbalance and nonlinear distortion. From simulation results, we show that the proposed approach outperforms the conventional approach and the case of using a general adaptive algorithm for the proposed approach. Furthermore, the SI cancellation limit is improved by adjusting the propagation delay of the SI signal and the canceling signal in addition to sharing one local oscillator in the local transceiver

    Hardware Implementation of Neural Self-Interference Cancellation

    Full text link
    In-band full-duplex systems can transmit and receive information simultaneously on the same frequency band. However, due to the strong self-interference caused by the transmitter to its own receiver, the use of non-linear digital self-interference cancellation is essential. In this work, we describe a hardware architecture for a neural network-based non-linear self-interference (SI) canceller and we compare it with our own hardware implementation of a conventional polynomial based SI canceller. In particular, we present implementation results for a shallow and a deep neural network SI canceller as well as for a polynomial SI canceller. Our results show that the deep neural network canceller achieves a hardware efficiency of up to 312.8312.8 Msamples/s/mm2^2 and an energy efficiency of up to 0.90.9 nJ/sample, which is 2.1×2.1\times and 2×2\times better than the polynomial SI canceller, respectively. These results show that NN-based methods applied to communications are not only useful from a performance perspective, but can also be a very effective means to reduce the implementation complexity.Comment: Accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and System

    In vivo MRI with Concurrent Excitation and Acquisition using Automated Active Analog Cancellation

    Get PDF
    Magnetic resonance imaging (MRI) provides excellent cross-sectional images of the soft tissues in patients. Unfortunately, MRI is intrinsically slow, it exposes patients to severe acoustic noise levels, and is limited in the visualization of certain tissues such as bone. These limitations are partly caused by the timing structure of the MRI exam which first generates the MR signal by a strong radio-frequency excitation and later acquires the weak MRI signal. Concurrent excitation and acquisition (CEA) can overcome these limitations, but is extremely challenging due to the huge intensity difference between transmit and receive signal (up to 100 dB). To suppress the strong transmit signals during signal reception, a fully automated analog cancellation unit was designed. On a 3 Tesla clinical MRI system we achieved an on-resonance analog isolation of 90 dB between the transmit and receive path, so that CEA images of the head and the extremities could be acquired with an acquisition efficiency of higher than 90% at sound pressure levels close to background noise. CEA with analog cancellation might provide new opportunities for MRI in tissues with very short T2 relaxation times, and it offers a silent and time-efficient MRI acquisition
    corecore