14,723 research outputs found

    Teegi: Tangible EEG Interface

    Get PDF
    We introduce Teegi, a Tangible ElectroEncephaloGraphy (EEG) Interface that enables novice users to get to know more about something as complex as brain signals, in an easy, en- gaging and informative way. To this end, we have designed a new system based on a unique combination of spatial aug- mented reality, tangible interaction and real-time neurotech- nologies. With Teegi, a user can visualize and analyze his or her own brain activity in real-time, on a tangible character that can be easily manipulated, and with which it is possible to interact. An exploration study has shown that interacting with Teegi seems to be easy, motivating, reliable and infor- mative. Overall, this suggests that Teegi is a promising and relevant training and mediation tool for the general public.Comment: to appear in UIST-ACM User Interface Software and Technology Symposium, Oct 2014, Honolulu, United State

    Computers in Support of Musical Expression

    Get PDF

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    Framework for Electroencephalography-based Evaluation of User Experience

    Get PDF
    Measuring brain activity with electroencephalography (EEG) is mature enough to assess mental states. Combined with existing methods, such tool can be used to strengthen the understanding of user experience. We contribute a set of methods to estimate continuously the user's mental workload, attention and recognition of interaction errors during different interaction tasks. We validate these measures on a controlled virtual environment and show how they can be used to compare different interaction techniques or devices, by comparing here a keyboard and a touch-based interface. Thanks to such a framework, EEG becomes a promising method to improve the overall usability of complex computer systems.Comment: in ACM. CHI '16 - SIGCHI Conference on Human Factors in Computing System, May 2016, San Jose, United State

    Approximated and User Steerable tSNE for Progressive Visual Analytics

    Full text link
    Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited technique for the visualization of several high-dimensional data. tSNE can create meaningful intermediate results but suffers from a slow initialization that constrains its application in Progressive Visual Analytics. We introduce a controllable tSNE approximation (A-tSNE), which trades off speed and accuracy, to enable interactive data exploration. We offer real-time visualization techniques, including a density-based solution and a Magic Lens to inspect the degree of approximation. With this feedback, the user can decide on local refinements and steer the approximation level during the analysis. We demonstrate our technique with several datasets, in a real-world research scenario and for the real-time analysis of high-dimensional streams to illustrate its effectiveness for interactive data analysis

    A Framework for Mouse Emulation that Uses a Minimally Invasive Tongue Palate Control Device utilizing Resistopalatography

    Get PDF
    The ability to interface fluently with a robust Human Input Device is a major challenge facing patients with severe levels of disability. This paper describes a new method of computer interaction utilizing Force Sensitive Resistor Array Technology, embedded into an Intra-Oral device (Resistopalatography), to emulate a USB Human Interface Device using standard Drivers. The system is based around the patient using their tongue to manipulate these sensors in order to give a position and force measurement; these can then be analyzed to generate the necessary metrics to control a mouse for computer input

    A Classical Probabilistic Computer Model of Consciousness

    Get PDF
    We show that human consciousness can be modeled as a classical (not quantum) probabilistic computer. A quantum computer representation does not appear to be indicated because no known feature of consciousness depends on Planck's constant h, the telltale sign of quantum phenomena. It is argued that the facets of consciousness are describable by an object-oriented design with dynamically defined classes and objects. A comparison to economic theory is also made. We argue consciousness may also have redundant, protective mechanisms

    Layout of Multiple Views for Volume Visualization: A User Study

    Get PDF
    Abstract. Volume visualizations can have drastically different appearances when viewed using a variety of transfer functions. A problem then occurs in trying to organize many different views on one screen. We conducted a user study of four layout techniques for these multiple views. We timed participants as they separated different aspects of volume data for both time-invariant and time-variant data using one of four different layout schemes. The layout technique had no impact on performance when used with time-invariant data. With time-variant data, however, the multiple view layouts all resulted in better times than did a single view interface. Surprisingly, different layout techniques for multiple views resulted in no noticeable difference in user performance. In this paper, we describe our study and present the results, which could be used in the design of future volume visualization software to improve the productivity of the scientists who use it

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore