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Figure 1: We demonstrate how electroencephalography can be used to evaluate human-computer interaction. For example, a keyboard (left) can be
compared with a touch interface (middle) using a continuous measure of mental workload (right, here participant 4).

ABSTRACT
Measuring brain activity with electroencephalography (EEG)
is mature enough to assess mental states. Combined with
existing methods, such tool can be used to strengthen the
understanding of user experience. We contribute a set of
methods to estimate continuously the user’s mental workload,
attention and recognition of interaction errors during different
interaction tasks. We validate these measures on a controlled
virtual environment and show how they can be used to compare
different interaction techniques or devices, by comparing here
a keyboard and a touch-based interface. Thanks to such a
framework, EEG becomes a promising method to improve the
overall usability of complex computer systems.
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INTRODUCTION
In practice, a tool is only as good as one’s ability to assess
it. For instance, evaluations in Human-Computer Interaction
(HCI) usually rely on inquiries – e.g., questionnaires or think
aloud protocols – or on users’ behavior during the interaction–
e.g., reaction time or error rate. However, while both types of
methods have been used successfully for decades, they suffer
from some limitations. Inquiries are prone to be contaminated
by ambiguities [23] or may be affected by social pressure
[26]. It is also very difficult to gain real-time insights without
disrupting the interaction. Indeed, think aloud protocol dis-
tracts users and questionnaires can be given only at specific
time points, usually at the end of a session – which leads to
a bias due to participants’ memory limitations [17]. On the
other hand, metrics inferred from behavioral measures can be
computed in real-time, but are mostly quantitative. They do
not provide much information about users’ mental states. For
example, a high reaction time can be caused either by a low
concentration level or by a difficult task [1, 14].

Recently, is has been suggested that portable brain imaging
techniques – such as electroencephalography (EEG) and func-
tional near infrared spectroscopy (fNIRS) – have the potential
to address these limitations [8, 27, 11]. fNIRS has been studied
to assess users’ workload, for example to evaluate user inter-
faces [15] or different data visualizations [25]. However, most
of these works are evaluating passive tasks or very basic in-
teractions that are not ecological, especially as user interfaces
and interactions are getting more complex.



In this paper, not only do we detail a framework for HCI
designers to gain further insights about user experience using
brain signals – here from EEG – but we also validate this
framework on an actual and realistic task. We show that they
can be used to compare different HCI, in an environment that
provides many simulations and where participants are engaged
in rich interactions.

In the following sections, we describe the virtual environment
that we developed, specifically aimed at validating the use
of EEG as an evaluation method for HCI. We validated the
workload induced by our environment in a first study, with
NASA-TLX questionnaires [14]. Then, we detail how EEG
can be used to assess 3 different constructs: workload, atten-
tion and error recognition. Finally, during the main study we
employ EEG recordings to measure continuously such work-
load, altogether with the attention level of participants toward
external stimuli and the number of interaction errors they per-
ceived, while they interact with our virtual environment. We
took the opportunity of these EEG-based measures to compare
a keyboard input to a touch screen input.

To summarize, our main contributions are:

1. To validate the use of EEG as a continuous HCI evaluation
method thanks to controlled and realistic interaction tasks
we designed.

2. To demonstrate how such tool can assess which of the tested
interaction technique is better suited for a particular envi-
ronment.

3. To propose a framework that can be easily replicated to
improve existing interfaces with little or no modifications.

Related work
Since a few years, brain imaging has been used in HCI to
deepen the understanding of users, thanks notably to the spread
of affordable and lightweight devices. For instance, EEG and
fNIRS are particularly well suited for mobile brain imaging
[20, 6]. These techniques can be employed to study the spatial
focus of attention [32] or to identify system errors [33, 29].

EEG and fNIRS are opportunities to assess the overall us-
ability of a system and improve the ergonomics of HCI. In
a recent work we showed preliminary results regarding the
evaluation of mental workload during a 3D manipulation task
[35]. After being processed, EEG signals highlighted which
parts of the interaction induced a higher mental workload. In
the present paper we go much beyond, exploring a continuous
index of workload as well as two others constructs, namely
attention and error recognition. We also rigorously validate
such indexes, and study them in light of behavioral measures
(performances and reaction times) and inquiries (NASA TLX
questionnaire).

Attention refers to the ability to focus cognitive resources on a
particular stimulus [17]. In HCI, measuring the attention level
could help to estimate how much information users perceive.
In the present work the measure of attention relates to inat-
tentional blindness; i.e. it concerns participants’ capacity to
process stimuli irrelevant to the task [4].

Error recognition relates to the detection by users of an out-
come different from what is expected [22]. We focused on
interaction errors [9], which arise when a system reacts in
an unexpected way, for example if a touch gesture is badly
recognized. Interaction errors enable to assess how intuitive
a UI is, and they are hardly measurable by another physio-
logical signal than EEG. The combined measure of workload,
attention and error recognition constitutes a powerful comple-
mentary evaluation tool for people who design new interaction
techniques.

Even though commercial solutions, such as the B-Alert sys-
tem1, are already pointing this direction, they are validated
in the literature with lab tasks only [1]. Our work, on the
other hand, is closer to the field. More importantly, as opposed
to proprietary software, our methodology is transparent and
our multidimensional index of user experience can be easily
replicated.

VIRTUAL 3D MAZE
The 3D virtual environment that we built uses gamification [7]
to increase users’ engagement and ensure better physiological
recordings [10]. Such a virtual environment also enables us to
assess workload, attention and error recognition during eco-
logical and realistic interaction tasks. Indeed, such constructs
are traditionally evaluated during controlled lab experiments
based on protocols from psychology that are vastly different
from an actual interaction task, see, e.g., [12].

Overall description
The virtual environment takes the form a maze where players
have to learn and reproduce a path by triggering directions at
regular intervals (see Figure 2). A character displayed with a
third person perspective moves by itself at a predefined speed
inside orthogonal tunnels. Soon after the character enters a
new tunnel, symbols appear on-screen. Those symbols are
basic 2D shapes, such as squares, circles, triangles, diamonds
or stars, and their positions (bottom, top, left or right) indi-
cate which directions are “opened”. Players must select one
of these symbols before the character reaches the end of an
intersection, either by pressing a key or touching the screen.
If users respond too early, i.e., before symbols appeared, too
late, or if they select a direction that does not exist, they loose
points and the character “dies” by smashing against a wall,
respawning soon after at the beginning of the current tunnel.

The main element of the gameplay consists in selecting the
directions in the correct order. Indeed, one level comprised
two phases. During the “learning” phase a particular sequence
of symbols is highlighted; at each symbols’ appearance one
of them is bouncing to indicate the correct direction. Another
cue takes the form of a “breadcrumb trail”, a beam of light that
precedes the character and points to the right direction (see
Figure 2b). Selecting an available but incorrect direction does
not result in the character’s “death” but leads to a loss of points.
A visual feedback is given to users when they select a direction:
the corresponding symbol turns green if the choice is correct
and red otherwise. When the end of the maze is reached, the
character loops over the entire path so that players have another
1http://www.advancedbrainmonitoring.com/



(a) (b) (c)
Figure 2: The virtual environment, where players control a character that moves by itself inside a 3D maze. A: Symbols appear in each tunnel to
indicate the possible directions for the next turn; players have to select a particular sequence of symbols/directions. B: During the “learning” phase, the
correct direction is highlighted by a breadcrumb trail and the associated symbol bounces (here the disc on top). C: Controls depend on the position of
the character. If the character is on the right side, players have to press right in order to go up.

opportunity to learn the sequence. When the training phase
ends, the “recall” phase follows. The symbols are identical
but the cues are no more displayed; players have to remember
by themselves the right path. Symbols position in each tunnel
and symbols sequence are randomly drawn when a new level
starts.

Beside learning a sequence, the principal challenge comes
from how the directions are selected. The third-person view
fulfills a purpose: the input device that users are controlling
– i.e. keyboard or touch screen – is mapped to the character
position. Since the character is a futuristic surfer that defies
the law of gravity, it slides by itself from the bottom of the
tunnel to one of the walls or to the ceiling from time to time.
In this latter situation, when the character is upside down,
commands are inverted compared to what players are used to,
even though symbols remain in the same positions. This game
mechanism stresses spatial cognition abilities; users have to
constantly remain aware of two different frames of reference.
For example, if “up” and “left” directions are open in a given
tunnel and if the character’s position – controlled by the appli-
cation – is on the right wall, as illustrated in Figure 2c, users
have to press right to go up. This discrepancy between input
and output is a reminder of the problematic often observed
with 3D user interfaces, where most users manipulate a device
with 2 degrees of freedom (DOF), such as a mouse, to interact
with a 6 DOF environment.

The combination of the game design and game mechanisms
herein described offers a wide variety of elements that we put
in use so as to investigate users’ mental states. In particular, we
detail below how we tuned the game elements to manipulate
the user’s workload and attention in controlled ways as well
as to trigger interaction errors. Knowing which constructs
value (e.g. high or low workload) to expect, we can validate
whether our EEG-based estimates during interaction match
these expectations, and thus whether they are reliable.

Manipulating workload
Our virtual environment possesses several characteristics that
could be used to induce different levels of mental workload.
We can notably adjust 4 parameters:

• Maze depth: the number of tunnels players have to cross
before reaching the end of the maze, hence the length of the

symbols sequence they have to learn. More symbols to be
held in the working memory increases workload [12, 31].

• Number of directions: at each intersection, up to 4 directions
are “opened” in the maze; the complexity of the symbols
sequence grows as this number increases.

• Game speed: the pace of the game can be adjusted to in-
crease temporal pressure. When the speed increases sym-
bols appear sooner and users must respond quicker, thus
increasing overall stress [14, 19]. In the easiest level the
character spends 6s in a tunnel and players must respond
within 3s after symbols appearance; in the hardest level a
tunnel lasts 2s and players have 1s to choose a symbol.

• Spatial orientation: in order to keep selecting the correct
directions, users have to perform a mental rotation if the
character they control jumps from the floor to the walls or
to the ceiling. Furthermore, they need to update their frame
of reference as often as the character shifts from one side
to another. Depending on the spatial ability of users, this
mechanism can cause an important cognitive load [28].

We used those mechanisms and dimensions to create 4 dif-
ferent difficulty levels for the game: “EASY”, “MEDIUM”,
“HARD” and “ULTRA” (see Table 1). These levels affect
mostly (symbolic) memory load and time pressure. Indeed,
the 3D maze is more about remembering a sequence of sym-
bols or directions rather than spatial navigation per se. Because
randomization could create loops in the maze topography and
since there were no landmarks, it is unlikely that participants
were able to adopt an allocentric strategy.

While the EASY level is designed to be completed with very
little effort, the ULTRA level, on the other hand, is designed
to sustain a very high level of workload, up to the point that it
is barely possible to complete it with no error. While during
EASY levels there is no need to perform mental rotations and
players have to memorize only 2 symbols that are constrained
to either left and right directions, in ULTRA levels the frame
of reference changes between each selection and the sequence
reaches 5 symbols that could appear in all 4 directions, and
players have to react thrice as fast. No matter the level, players
had 3 “loops” to learn the maze and another set of 3 loops to
reproduce the path.



Difficulty Depth Directions Resp. time Orientation

EASY 2 2 3s 0%
MEDIUM 4 3 2.5s 30%
HARD 5 4 2s 60%
ULTRA 5 4 1s 100%

Table 1: Four difficulty levels are created by leveraging on game mech-
anisms. Depth: number of directions/symbols players have to learn. Di-
rections: number of possible directions at each intersection. Response
time: how much time players have to respond after symbols appearance.
Orientation: percentage chance that the controlled character changes its
orientation.

Assessing attention
We relied on stimuli not congruent to the main task in or-
der to probe for inattentional blindness, using the “oddball”
paradigm. The oddball paradigm is often employed with EEG
as the appearance of rare (i.e. “odd”) stimuli among a stream
of frequent stimuli (i.e. distractors) triggers a particular event-
related potential (ERP) within EEG signals [5]. ERP are
“peaks” and “valleys” in EEG recordings, and the amplitude of
some of them decreases as users are less attentive to stimuli.

Our protocol uses audio stimuli. It is based on [3], which
studied the immersion of video game players. In our virtual
environment, while users’ characters were navigating in the
maze, sounds were played at regular intervals, serving as a
background “soundtrack” that was consistent with the user
experience. 20% of these sounds had a high pitch (odd event)
and the remaining 80% had a low pitch (distracting events) –
this proportion is on par with the literature [3, 9].

Our hypothesis is that the attention level of participants toward
sounds – as measured with the oddball paradigm – should
decrease as the workload increase, since most of their cognitive
resources will be allocated to the main task during the most
demanding levels.

Assessing error recognition
EEG could be used to measure interaction errors, i.e. errors
originating from an incorrect response of the user interface,
that differs from what users were expecting [9]. Interaction
errors are of particular interest for HCI evaluation since they
could account for how intuitive an interface is [11]. In order to
test the feasibility of such measure, we decided to implement
two different interaction techniques. Both of them use discrete
events – i.e. symbols’ selection – so that we could more easily
synchronize EEG recordings with in-game events later on.

The first technique uses indirect interactions by the mean of a
keyboard (Figure 1, left). In due time, left, right, up or down
arrow keys are used to send the character in the tunnel that
is situated to its left, right, top or bottom. Indeed, we have
seen previously that in our virtual environment players have to
orientate themselves depending of the position of the character.
If the character is moving on the sides, players have to perform
a mental rotation of 90°, if it is on the ceiling then the angle is
180°, i.e. commands are inverted.

The second technique uses direct interaction by the mean of a
touch screen (Figure 1, middle). Usually, with touch screen,

pointing is co-located with software events, since users can
directly indicate where they want to interact. However, in
our case, we decided to mimic exactly the behavior of the
keyboard interface. That is to say that with the touch screen
as well players have to orientate themselves depending on the
position of the character. Hence, if the character is positioned
on the left, players have to touch the right fringe of the screen
in order to go up. This is mostly counter-intuitive since players
have to inhibit the urge to point to the actual direction they
want to go; there is a cognitive dissonance.

Since in our experimental design the use of the direct (touch-
based) interaction is counter-intuitive, we hypothesize that
it will lead to an overall higher number of interaction errors
compared to the indirect interface (keyboard).

PILOT STUDY: VALIDATION OF THE INDUCED WORK-
LOAD LEVEL
We designed our virtual environment as a test-bench aimed at
inducing several mental states within users, notably, different
workload levels. Thus, we had to formally validate the mental
workload that each game level seeks to induce. As such, we
conducted a pilot study – separate from the main study to
alleviate the protocol of the latter –, with no physiological
recordings but using the NASA-TLX questionnaire [14], a
well established questionnaire that accounts for workload.

Protocol
15 participants took part in this study (4 females), mean age
24.53 (SD: 3.00). We used a within-subject design; all partici-
pants answered for all 4 difficulty levels. The gaming session
used the keyboard and started with 2 “training levels”, that
introduced participants to the game mechanisms. In the first
training level, players learned the objective of the game. In
the second training level, they discovered how the character
could change its orientation by itself. After this training phase,
participants continued with the main phase of the experiment.

During the main phase of the experiment, participants played
once each of the four levels (EASY, MEDIUM, HARD or
ULTRA), in a random order. Immediately after the end of
a level, participants were given a NASA-TLX questionnaire
to inquire about their mental workload. The questionnaire
took the form of a 9-points Likert scale. As in the original
questionnaire [14], it comprised 6 items, that assessed mental
demand, physical demand, temporal demand, performance,
effort and frustration. The experiment lasted approximately
25 minutes and finished once participants played all 4 levels
and filled the corresponding NASA-TLX questionnaire.

Results
For each participant and each level of difficulty, we averaged
the 6 items of the NASA-TLX questionnaire and normalized
the scales from [1;9] to [0;1] – except for the “performance”
item, that was normalized from [1;9] to [1;0] because its scale
is in reverse order compared to the other items (“1” for “good”
and “9” for “poor”).

The resulting averaged scores are: EASY: 0.11 (SD: 0.09);
MEDIUM: 0.32 (SD: 0.17); HARD: 0.43 (SD: 0.13); ULTRA:
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Figure 3: NASA-TLX scores obtained during the pilot study. Each diffi-
culty level differs significantly from the others (p < 0.01).

0.65 (SD: 0.13) – see Figure 3. A repeated measures analy-
sis of variance (ANOVA) showed a significant effect of the
difficulty factor over the NASA-TLX scores and a post-hoc
pairwise Student’s t-test with false discovery rate (FDR) cor-
rection showed that each levels differed significantly from the
others (p < 0.01).

Discussion
In this pilot study, we demonstrated through questionnaires
that each difficulty level presented in Table 1 induces a differ-
ent workload level. Hence, we can use our virtual environment
as a baseline to assess the reliability of analogous EEG mea-
sures and put into perspective this new evaluation method.

EEG IN PRACTICE
EEG measures the brain activity under the form of electrical
currents [21]. To identify mental states from EEG, 3 types of
information can be used:

• Frequency domain: oscillations that occur when large
groups of neurons fire altogether at a similar frequency

• Temporal information: ERPs possess temporal features;
positive and negative “peaks” with varying amplitudes and
delays.

• Spatial domain: position of the electrodes that record a
specific brain activity.

However, there is an important variability between people’s
EEG signals, and many external factors that could influence
EEG recordings (amplifier’s specifications, electrodes exact
location, and so on). As such, it is difficult to identify a univer-
sal set of features to estimate a given mental state, for different
sessions and participants. This is why machine learning is
typically used in EEG studies [2]. With this approach, a cal-
ibration phase occurs so that the system could learn which
features are associated to a specific individual, during a task
that is known to induce the studied construct. Once the calibra-
tion is completed, the machine could then use this knowledge
to gain insights about an unknown context, for example a new
interaction technique that one would want to evaluate.

To calibrate workload and attention, we chose to use standard
calibration tasks, validated by the literature, so that our find-
ings could be easily reproduced. Moreover, as shown later
in this paper, using a single of these tasks to calibrate each
construct estimator was enough to obtain reliable estimations

of such constructs during different and complex interaction
tasks.

Concerning attention, we did not develop a dedicated task per
se for its calibration. Since the audio probes were already inte-
grated to our virtual environment, we simply used a specific
level of our game.

Calibration of workload
We used the protocol known as the N-back task to induce 2
different workload levels and calibrate our workload estimator.
The N-back task is a well-known task to induce workload by
playing on memory load [24]. It showed promising results in
[35] where it could be used to transfer calibration results to a
3D context.

In the N-back task, users watch a sequence of letters on screen,
the letters being displayed one by one. For each letter the user
had to indicate whether the displayed letter was identical or
different to the letter displayed N letters before, using a left or
right mouse click respectively. Hence, users have to remember
n items at all times.

We implemented a version similar to [12], removing vowels to
prevent chunking strategies based on phonemes. We used the
same time constraint as in [35], i.e. letters appeared for 0.5s,
with an inter-stimulus interval of 1.5s. Each user alternated
between “easy” blocks with the 0-back task (the user had to
identify whether the current letter was a randomly chosen
target letter, e.g. ‘X’) and “difficult” blocks with the 2-back
task (the user had to identify whether the current letter was the
same letter as the one displayed 2 letters before), see Figure 4.

Figure 4: Workload calibration task. Top: difficult task (2-back task),
the target letter is the one that appeared two steps earlier, users have to
select trials 4 and 5. Bottom: easy task (0-back task), the target letter
“S” is randomly chosen, users have to select trials 2 and 5.

Each block contained 60 letters presentations. 4 letters were
drawn at the beginning of a block so that the number of tar-
get letters accounted for 25% of the trials. Each participant
completed 6 blocks, 3 blocks for each workload level (0-back
vs 2-back). Therefore, 360 calibration trials (i.e. one trial be-
ing one letter presentation) were collected for each user, with
180 trials for each workload level (“low” vs “high”). This
calibration phase takes approximately 12 minutes.

Calibration of error recognition
We replicated the standard protocol described in [9] to calibrate
the system regarding error recognition. The task simulates
a scenario in which users control the movements of a robot.
The robot appears on screen and has to reach a target. At



each turn users command the robot to go right or left in order
to reach the target as fast as possible (with the least steps).
However, the robot may understand badly the given command.
This is simulated by some trials during which the command
is (on purpose) erroneously interpreted; hence an interaction
error happens. The ERP that can be seen in EEG following
an interaction error is known as an “error related potential”,
ErrP [9]. The calibration task is a simplified version of this
scenario: the robot is pictured by a blue rectangle on screen
that users control with the arrow keys, the target is represented
by a blue outline. The robot is constrained to the X axis and
along this axis there are only 7 different positions both for the
robot and the target (see Figure 5).
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Figure 5: Error recognition calibration task. Users control a blue filled
rectangle. They have to move it to an outlined target by pressing the left
or right arrow key. 20% of the time, the rectangle goes in the opposite
direction, thus causing an interaction error.

We choose a ratio for the occurrence of interaction errors
that is consistent with the literature. 80% of the movements
matched the actual key pressed and for the other 20% the
“robot” moved in the opposite direction. It was necessary not
to balance both events as too frequent errors may not be per-
ceived as unexpected anymore, and thus may not lead to an
ErrP. A timer was set to prevent the appearance of artifacts,
such as muscle movements, within EEG recordings (see the
Discussion section for further consideration for artifacts). The
rectangle moves 1s after a key was pressed, and after move-
ment completion users have to wait another 1s before they
could press a key again. The rectangle turned yellow to tell
users they could not control it during that second.

A trial is completed once the robot reaches the target. A trial
fails if after 10 attempts the robot is not yet on target. At
the beginning of each trial, the screen is reinitialized with a
random new position for the robot and the target. The last trial
occurred after 350 interactions were performed. On average
this calibration phase lasted 15 minutes.

Calibration of attention
The calibration of attention occurred within a simplified ver-
sion of the virtual environment. Users did not have to control
the character during this special level, it was moving by itself
through the maze. They were asked to watch the character
and count in their head how many times they heard the “odd”
sound, i.e., a high pitched bell lasting 200ms. The distractor

was a low pitched beat of 70ms – we did not use pure tones to
improve users experience. The pace of the game was adjusted
so that a sound (target or distractor) was played every second.
Since the probes for attention relies to the oddball paradigm,
we chose a 20% likelihood of appearance for the target event.
The calibration lasted about 7 minutes, after 350 sounds were
played. Note that participants were instructed to count the
“odd” events only during the calibration phase, and not during
the completion of the 3D maze.

MAIN STUDY: EEG AS AN EVALUATION METHOD
The main study consisted in the evaluation of the game environ-
ment with two different types of interfaces using EEG record-
ings. As such we created a 4 (difficulty: EASY, MEDIUM,
HARD, ULTRA) × 2 (interaction: KEYBOARD vs TOUCH)
within-subject experimental plan. Our hypotheses are:

1. The workload index measured by EEG is higher in TOUCH
and increases with the difficulty, reflecting NASA-TLX
scores obtained during the pilot study.

2. The attentional resources that participants assign to the
sounds decrease as the difficulty increases.

3. The TOUCH condition induces a higher number of interac-
tion errors compared to the KEYBOARD condition.

The gaming phase was split into two sequences, one for each
interaction technique. To avoid a too tedious experiment, par-
ticipants alternated between game sessions and the 3 calibra-
tion tasks (workload, attention and error recognition). Since
the analysis were performed offline, there was no need to
cluster all the calibrations at the beginning of the experiment.

The order of the gaming sessions and calibration phases was
counter-balanced between participants following a latin square
(see Figure 6). After the experiment, the signals gathered
from the calibration tasks were processed in order to evaluate
both the virtual environment (difficulty levels) and the chosen
interaction techniques.

Figure 6: The order of the 3 calibration tasks and 2 interaction tech-
niques was counter-balanced between the 12 participants to improve en-
gagement.

Apparatus
EEG signals were acquired at 512Hz with 2 g.tec g.USBamp
amplifiers. We used 32 electrodes placed at the AF3, AFz,
AF4, F7, F3, Fz, F4, F8, FC3, FCz, FC4, C5, C3, C1, Cz, C2,



C4, C6, CP3, CPz, CP4, P7, P3, Pz, P4, P8, PO7, POz, PO8,
O1, Oz and O2 sites.

12 participants took part in this study (3 females), mean age
26.25 (SD: 3.70). All of them reported a daily use of tactile
interfaces. The experiment occurred in a quiet environment,
isolated from the outside. There were two experimenters in
the room and the procedure comprised the following steps:

1. Participants entered the room, read and signed an informed
consent form and filled a demographic questionnaire.

2. While one of the experimenter installed an EEG cap onto
participants’ heads, the other experimenter introduced par-
ticipants to the virtual environment. They played 2 training
levels and the 4 main levels in an increasing order of dif-
ficulty. They could redo some levels if they did not feel
confident enough.

3. One of the 3 calibration tasks occurred (workload, attention
or error recognition).

4. Participants played the game using one of the 2 interaction
techniques (KEYBOARD or TOUCH). The four levels of
difficulty (EASY, MEDIUM, HARD, ULTRA) appeared
twice during the session, in a random order. For TOUCH,
a dedicated training session occurred beforehand so that
participant could get used to this interaction technique.

5. Another calibration task occurred, different from step 3.
6. Participants tested the second interaction technique. As in

step 4, TOUCH was preceded by a training session, that
lasted until participants felt confident enough to proceed to
the main task.

7. Participants performed the last remaining calibration task.

A game session (steps 4 and 6) took approximately 20 minutes
and the whole experiment lasted 2 hours.

EEG Analyses
The calibration tasks were used to train a classifier specific
to each of the studied construct. Classifiers were calibrated
separately for each participant which ensured maximal EEG
classification performances. We used EEGLAB 13.4.4b2 and
Matlab R2014a to process EEG signals offline. EEG features
associated to workload relate to the frequency domain while
the features associated to attention and error recognition relate
to temporal information, as detailed below.

Processing workload
From the signals collected during the N-back tasks, we ex-
tracted EEG features from each 2s time window following a
letter presentation. We used each of these time windows as
an example to calibrate our classifier, whose objective was to
learn whether these features represented a low workload level
(induced by the 0-back task) or a high workload level (induced
by the 2-back task). Once calibrated, this classifier can be
used to estimate workload levels on new data, here while our
users were interacting with the virtual environment.

As in [35], we filtered EEG signals in the delta (1-3 Hz), theta
(4-6 Hz), alpha (7-13 Hz), beta (14-25 Hz) and gamma (26-
40 Hz) bands. To reduce features dimensionality, we used

2http://sccn.ucsd.edu/eeglab/

for each band a set of Common Spatial Patterns (CSP) spa-
tial filters. That way, we reduced the 32 original channels
down to 6 “virtual” channels that maximize the differences
between the two workload levels [30]. Since the calibration
(N-back task) and use contexts (virtual environment) differs
substantially, we used a regularized version of these filters
called stationary subspace CSP (SSCSP) [35]. SSCSP filters
are more robust to changes between contexts since they take
into account the distributions of the EEG signals recorded
during both the calibration and the use contexts (in an unsu-
pervised way, i.e. without considering the expected workload
levels) to estimate spatial filters whose resulting signals are
stable across contexts (see [35] for details). Finally, for each
frequency band and spatial filter, we used the average band
power of the filtered EEG signals as feature. This resulted in
30 EEG features (5 bands × 6 spatial filters per band).

Processing attention and error recognition
Since both attention and error recognition can be measured in
ERPs, they share the same signal processing. We selected time
windows of 1s, starting at the event of interest (i.e. sounds for
attention, rectangle’s movements for error recognition). In
order to utilize temporal information, feature extraction relied
on regularized Eigen Fisher spatial filters (REFSF) method
[16]. Thanks to this spatial filter, specifically designed for
ERPs classification, the 32 EEG channels were reduced to a
set of 5 channels. We then decimated the signal by a factor 32.
The “decimate” function of Matlab, that applies a low-pass
filter before decimation to prevent aliasing, was used. As a
result, there was 80 features by epoch (5 channels × 512Hz ×
1s / 32).

Classification
We used a shrinkage LDA (linear discriminant analysis) as a
classifier since it is more efficient than the regular LDA with a
high number of features [18].

For each construct there was two steps: first we used the data
collected during the calibration tasks to estimate the perfor-
mance of the classifiers. Second, we studied the output of the
different classifiers to evaluate the virtual environment.

To assess the classifiers’ performance on the calibration data,
we used 4-fold cross-validation (CV). More precisely, we split
the collected data into 4 parts of equal size, selecting trials
randomly, used 3 parts to calibrate the classifiers and tested the
resulting classifiers on the unseen data from the remaining part.
This process occurred 3 more times so that in the end, each part
was used once as test data. Finally, we averaged the obtained
classification performances. The performance was measured
using the area under the receiver-operating characteristic curve
(AUROCC). The AUROCC is a metric that is robust against
unbalanced classes, as it is the case with attention and error
recognition (20% of targets, 80% of distractors). A score of
“1” means a perfect classification, a score of “0.5” is chance.

Once the classifiers were trained thanks to the calibrations
tasks, we could use them on the EEG signals acquired while
participants were interacting with the virtual environment, to
estimate the different constructs values.



For workload, we used 2s long sliding time windows that were
overlapping by 1s, to extract signals and feed the classifier.
From the outputs that was produced by the LDA classifier
for each participant (i.e., the distance to the separating hy-
perplane), we first removed outliers by iteratively removing
one outlier at a time using a Grubb’s test with p = 0.05, until
no more outlier was detected [13]. We then normalized the
outlier-free scores between -1 and +1. As such, for all par-
ticipants a workload index close to +1 represents the highest
mental workload they had to endure while they were playing.
It should come close to the 2-back condition of the calibration
phase. On the opposite, a workload index close to -1 denotes
the lowest workload, similar to the 0-back condition.

The process was similar for attention, but we only extracted
epochs that corresponded to the target stimuli onset, i.e. when
the high pitch sound was played. Note that contrary to [3],
that studied the amplitudes of ERPs and did not use the data
gathered during the calibration phase, here we kept the ma-
chine learning approach. As such, the resulting scores can be
seen as a confidence index of the LDA classifier about whether
participants noticed odd events while they were playing.

As for the classifier dedicated to error recognition, the process-
ing differs. Indeed, we could not assume which interaction
yielded or not an interaction error, i.e. if and when participants
perceived a discrepancy between what they intended to do
and what occurred. Consequently, we simply counted over an
entire game session the number of times the classifier labelled
an interaction as being erroneous in the eye of the participants.

Results
Unless otherwise noted, we tested for significance using re-
peated measures ANOVA. For significant main effects, we
used post-hoc pairwise Student’s t-test with FDR correction.

Workload
On average, the classifier AUROCC score during the training
task was 0.92 (SD: 0.06) – see Table 2. Over the test set there
were on average 2171 data points per subject across all condi-
tion (time windows). The statistical analysis of the classifier
output during the game session showed a significant effect of
the difficulty factor (p < 0.01); the workload index increasing
along the difficulty of the levels (Figure 7a). The post-hoc
analysis showed that all difficulty levels significantly differs
one from the other with p < 0.01; except for the MEDIUM
level, which differs from EASY with p < 0.05 and with HARD
only by a margin (p = 0.11). There was a significant effect of
the interaction factor as well (p < 0.01), the workload being
higher on average during the TOUCH condition. There was
no interaction between difficulty and interaction factors.

Attention
On average, the classifier AUROCC score during the training
task was 0.86 (SD: 0.05) – see Table 2. Over the test set there
were on average 497 data points per subject across all con-
ditions (odd events). The statistical analysis of the classifier
output during the game session showed a significant effect
of the difficulty factor (p < 0.01) but not of the interaction
factor. The attention index decreases as the difficulty increases
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Figure 7: EEG measures. a: The workload index significantly differs
across difficulties and between interaction techniques. b: The attention
index significantly differs across difficulties. c: The number of interac-
tion errors differs by a tendency between KEYBOARD and TOUCH.

(Figure 7b). The post-hoc analysis showed that the ULTRA
level significantly differs from the others (p < 0.05).

Error recognition
On average, the classifier AUROCC score during the training
task was 0.82 (SD: 0.10) – see Table 2. Over the test set there
were on average 388 data points per subject across all condi-
tions (interactions). Due to the nature of the data (numbers
of interaction errors across entire game sessions), we used a
one-tailed Wilcoxon Signed Rank Test to stress our hypothesis.
The number of interaction errors differs by a tendency (p =
0.08) between the KEYBOARD and the TOUCH conditions.
19% of the interactions (SD: 9%) were labelled as interaction
errors by the classifier for KEYBOARD vs 22% (SD: 9%) for
TOUCH (Figure 7c).

Behavioral measures
Besides EEG metrics, we had the opportunity to study partic-
ipants’ reaction time and performance so as to get a clearer
picture of their user experience.

Reaction time
There was a significant effect of both the difficulty and inter-
action factors, as well as an interaction effect between them
(p < 0.01). Post-hoc tests showed that all difficulty levels
differ from one another (p < 0.01), except for MEDIUM and



Construct P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Average

Workload 0.85 0.93 0.98 0.95 0.97 0.97 0.79 0.87 0.87 0.98 0.95 0.94 0.92
Attention 0.83 0.82 0.96 0.81 0.85 0.90 0.82 0.82 0.86 0.92 0.88 0.83 0.86
Error recognition 0.88 0.57 0.90 0.90 0.86 0.90 0.78 0.80 0.88 0.78 0.85 0.74 0.82

Table 2: Classification accuracy during the calibration tasks for the 3 measured constructs (AUROCC scores).
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Figure 8: Behavioral measures: reaction time in seconds (left) and per-
formance (proportion of correctly selected directions – right) signifi-
cantly differs between difficulty levels and interactions. E: EASY, M:
MEDIUM, H: HARD, U: ULTRA.

HARD, which do not differ significantly (p = 0.91). The mean
reaction times were respectively for EASY, MEDIUM, HARD
and ULTRA: 0.78s (SD: 0.14), 0.97s (0.18), 0.98s (0.15) and
0.69s (0.06). The mean reaction time was 0.78 (0.12) for KEY-
BOARD and 0.93 (0.13) for TOUCH. See Figure 8a. Note that
users had less time to respond during higher difficulty levels.

Performance
The performance was computed as the ratio between the num-
ber of correct selections and the total number of interactions.
There was a significant effect of both the difficulty and inter-
action factors, as well as an interaction effect between them
(p < 0.01). Post-hoc tests showed that all difficulty levels
differ from one another (p < 0.01). The mean performance
was respectively for EASY, MEDIUM, HARD and ULTRA:
98% (SD: 3), 89% (12), 83% (17) and 55% (21). The Mean
performance was 85% (13) for KEYBOARD and 77% (13)
for TOUCH. See Figure 8b.

Discussion
Most of the main hypotheses are verified. The workload in-
dex as computed with EEG showed significant differences
that match the intended design of the difficulty levels. It was
also shown that in the highest difficulty the attention level of
participants toward external stimuli was significantly lower –
i.e. inattentional blindness increased. Concerning the interac-
tion techniques, the number of interaction errors as measured
by EEG was higher with the TOUCH condition, but this is
a tendency and not a significant effect. The workload index,
on the other hand, was significantly higher in the TOUCH
condition compared to the KEYBOARD condition.

Thanks to the ground truth obtained during the pilot study
with the NASA-TLX questionnaire, these results validate the
use of a workload index measured by EEG for HCI evaluation
and set the path for two other constructs: attention and error
recognition. Beside the evaluation of the content (i.e. difficulty
levels) we were able to compare two interaction techniques.

These are promising results for those who seek to assess how
intuitive a UI is with exocentric measures [11].

In this study, we chose to use the particularity of the touch
screen to make the task more difficult. Indeed, while we used
a touch screen for its possibility of direct manipulation, we
kept the character as a frame of reference, resulting in input
commands that were (patently) not co-localized with output
directions. Besides results denoting the differences between
the conditions, participants also spontaneously reported how
non intuitive this condition was. We wanted to investigate our
evaluation method on a salient difference at first. Then our
framework could well be employed to go further; for example
seeking physiological differences between direct and indirect
manipulation interfaces in more traditional tasks.

It is interesting to note how those EEG measures could be
combined with existing methods to broaden the overall com-
prehension of the user experience. For instance, while we
did show significant differences across difficulty levels and
between interaction techniques with behavioral measures (re-
action time and performance index), EEG measures could help
to understand the underlying mechanisms. Because we have
a more direct access to brain activity, we can make assump-
tions about the cause of observed behaviors. For example
participants’ worse performance with TOUCH than with KEY-
BOARD could be due to the fact that they anticipate less the
outcomes of their actions (more interaction errors); the higher
reaction time may not only be caused by the interaction tech-
nique per se, but by a higher workload. And while participants
manage to cope with the fast pace of the ULTRA level (the
smallest reaction times), the increase in perceptual load lower
their awareness to task-irrelevant stimuli.

Additionally, we can observe that the performances obtained at
the EASY, MEDIUM and HARD levels are very similar with
the keyboard and the touch screen (see Figure 8b). However,
EEG analyses revealed that the workload was significantly
higher in the TOUCH condition, meaning that users had to
allocate significantly more cognitive resources to reach the
same performance. This further highlights that EEG-based
measures do bring additional information that can complement
traditional evaluations such a behavioral measures.

Measuring users’ cognitive processes such as workload and
attention may prove particularly useful to assess 3D user in-
terfaces (3DUI), since they are known to be more cognitively
demanding. They require users to perform 3D mental rota-
tion tasks to successfully manipulate objects or to orientate
themselves in the 3D environment. Moreover, the usual need
for a mapping between the user inputs (with limited degrees-
of-freedom – e.g., only 2 for a mouse) and the corresponding
actions on 3D objects (with typically 6 degrees-of-freedom),



makes 3DUI usually difficult to assess and design. We repro-
duced part of this problematic with our game environment and
obtained coherent results from EEG measures.
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Figure 9: Workload index over time for participant 3 – 60s smoothing
window. Left: KEYBOARD condition, right: TOUCH condition. Back-
ground color represents the corresponding difficulty level.

Above all, an evaluation method based on EEG enables a
continuous monitoring of users. The intended use case of
our framework is to enroll dedicated testers that would wear
the EEG equipment and perform well during the calibration
tasks. As a matter of fact, the best performer during workload
calibration (participant 3 in Table 2) shows patterns that clearly
meet the expectations concerning both difficulty levels and
interactions, as pictured in Figure 9.

LIMITATIONS AND FUTURE CHALLENGES
Although using EEG measures as an evaluation method for
HCI was proven conclusive regarding workload – we obtained
a continuous index on par with a ground truth based on tra-
ditional questionnaires – the two other constructs we studied
could benefit from further improvements.

Despite the direct interaction (TOUCH) being more disorient-
ing for users than the indirect one (KEYBOARD), the recog-
nition of interaction errors differed only by a tendency. This
could be explained by the fact that the calibration task was too
dissimilar to the virtual environment. Notably, while there was
few and slow paced events during the calibration, users were
confronted to many stimuli while they were playing, hence
overlapping ERPs must have appeared within EEG, which
may have disturbed the classifier. A calibration task closer to
real-life scenarios than the one described in [9] should be envi-
sioned. Such task should remain generic in order to facilitate
the dissemination of EEG as an evaluation method for HCI.

Signal processing could also facilitate the transfer of the classi-
fication between a standard task and the evaluated HCI. Indeed,
if our results demonstrate that the EEG classification of work-
load could be transferred from the N-back tasks to a dissimilar
virtual environment and user interface, we benefited from
spatial filters that specifically take into account the variance
between calibration contexts and use contexts – the stationary
subspace CSP [35]. Since ERPs may also slightly differ in
amplitudes and delays between calibration and use contexts,
in the future, it would be worth designing similar approaches
to optimize temporal or spatial filters for ERPs as well.

The reliability of mental states measures is strongly correlated
to the quality of EEG signals. Interestingly enough, partic-
ipants’ mindset during the recordings is one of the factors
influencing EEG signals. Their awareness and involvement
toward the tasks improve system accuracy. The form of the cal-
ibration tasks could be enhanced to engage more users, for ex-
ample through gamification [10] – and our virtual environment
proved to be suitable to do so. Whereas our participants were
volunteers enrolled among students, in the end the outcome of
an evaluation method based on EEG should be strengthened
by recruiting dedicated testers, using as selection criteria how
reliably the different constructs could be estimated from their
EEG signals during calibration tasks.

Finally, one should acknowledge that when it comes to record-
ings as sensitive as EEG, artifacts such as the ones induced by
muscular activity are of major concern. The way we prevented
the appearance of such bias in the present study is threefold.
1) The hardware we used – active electrodes with Ag/AgCl
coating – is robust to cable movements, see e.g., [34]. 2) The
classifiers were trained on features not related to motion arti-
facts or motor cortex activation. 3) The position of the screen
during the “touch” condition minimized participants’ motion,
and gestures occurred mostly before the time window used for
detecting interaction errors. These precautions are important
for the technology to be correctly apprehended.

To further control for any bias in our protocol, we ran a batch
of simulations where the labels of the calibration tasks had
been randomly shuffled, similarly to the verification process
described in [35]. Should artifacts bias our classifiers, differ-
ences would have appeared between the KEYBOARD and
TOUCH conditions even with such random training. Among
the 20 simulations that ran for each of the 3 constructs (work-
load, attention, error recognition), none yielded significant
differences.

CONCLUSION
In this paper, we demonstrated how brain signals – recorded
by means of electroencephalography – could be put into prac-
tice in order to obtain a continuous evaluation of different
interaction techniques, for assessing their ergonomic pros and
cons. In particular, we validated an EEG-based workload esti-
mator that does not necessitate to modify the existing software.
Furthermore, we showed how users’ attention level could be
evaluated using background stimuli, such as sounds. Finally,
we investigated how the recognition of interaction errors could
help to determine the best user interface.

Being able to estimate these three constructs – workload, atten-
tion and error recognition – continuously during realistic and
complex interaction tasks opened new possibilities. Notably,
it enabled us to obtain additional and more objective metrics
of user experience, based on the users’ cognitive processes. It
also provided us with additional insights that traditional mea-
sures (e.g., behavioral measures) could not reveal. To sum up,
this suggests that combined with existing evaluation methods,
EEG-based evaluation tools such as the ones proposed here
can help to understand better the overall user experience. We
hope that the increasing availability of EEG devices will foster
such approaches and benefit the HCI field.
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