8,202 research outputs found

    The social brain: neural basis of social knowledge

    Get PDF
    Social cognition in humans is distinguished by psychological processes that allow us to make inferences about what is going on inside other people—their intentions, feelings, and thoughts. Some of these processes likely account for aspects of human social behavior that are unique, such as our culture and civilization. Most schemes divide social information processing into those processes that are relatively automatic and driven by the stimuli, versus those that are more deliberative and controlled, and sensitive to context and strategy. These distinctions are reflected in the neural structures that underlie social cognition, where there is a recent wealth of data primarily from functional neuroimaging. Here I provide a broad survey of the key abilities, processes, and ways in which to relate these to data from cognitive neuroscience

    2008 Progress Report on Brain Research

    Get PDF
    Highlights new research on various disorders, nervous system injuries, neuroethics, neuroimmunology, pain, sense and body function, stem cells and neurogenesis, and thought and memory. Includes essays on arts and cognition and on deep brain stimulation

    Facial expression of pain: an evolutionary account.

    Get PDF
    This paper proposes that human expression of pain in the presence or absence of caregivers, and the detection of pain by observers, arises from evolved propensities. The function of pain is to demand attention and prioritise escape, recovery, and healing; where others can help achieve these goals, effective communication of pain is required. Evidence is reviewed of a distinct and specific facial expression of pain from infancy to old age, consistent across stimuli, and recognizable as pain by observers. Voluntary control over amplitude is incomplete, and observers can better detect pain that the individual attempts to suppress rather than amplify or simulate. In many clinical and experimental settings, the facial expression of pain is incorporated with verbal and nonverbal vocal activity, posture, and movement in an overall category of pain behaviour. This is assumed by clinicians to be under operant control of social contingencies such as sympathy, caregiving, and practical help; thus, strong facial expression is presumed to constitute and attempt to manipulate these contingencies by amplification of the normal expression. Operant formulations support skepticism about the presence or extent of pain, judgments of malingering, and sometimes the withholding of caregiving and help. To the extent that pain expression is influenced by environmental contingencies, however, "amplification" could equally plausibly constitute the release of suppression according to evolved contingent propensities that guide behaviour. Pain has been largely neglected in the evolutionary literature and the literature on expression of emotion, but an evolutionary account can generate improved assessment of pain and reactions to it

    The Use of Intermittent Normobaric Hypoxia in Children's Neurology (Review)

    Get PDF
    The present review summarizes the data about the use of intermittent normobaric hypoxia (INH) in the treatment and prevention of both acute and chronic diseases of the nervous system in children. The INH method is used in pregnant women with fetoplacental insufficiency, anemia and for mental disorders correction. The INH efficiency in relation to such pathology as cerebral palsy, epilepsy, enuresis, sleep disturbances, autonomic dysfunction is proved. The age dependence of bioelectric activity of the brain in practically healthy persons (age from 8 to 21 years) on hypoxic factor and the most sensitive period of age from 13 to 16 years is shown. The results the own studies have shown that the children which are born and live in radioactive contaminated areas (RCA), the course of INH sessions led to the restoration of somatovegetative status: activation of higher vegetative centers, optimization of sympathetic and parasympathetic links; positive influence on the activity of the cardiovascular system; ventilatory capacity of lungs; blood parameters

    Artificial restoration of the linkage between laminin and dystroglycan ameliorates the disease progression of MDC1A muscular dystrophy at all stages

    Get PDF
    Laminin-α2 deficient congenital muscular dystrophy, classified as MDC1A, is a severe progressive muscle-wasting disease that leads to death in early childhood. MDC1A is caused by mutations in lama2, the gene encoding the laminin-α2 chain being part of laminin-2, the main laminin isoform present in the extracellular matrix of muscles and peripheral nerves. Via selfpolymerization, laminin-2 forms the primary laminin scaffold and binds with high affinity to α- dystroglycan on the cell surface, providing a connection to the cytoskeleton via the transmembranous protein β-dystroglycan. Deficiency in laminin-α2 leads to absence of laminin-2 and to upregulation of laminin-8, a laminin isoform that cannot self-polymerize and does not bind to α-dystroglycan. Therefore, in laminin α2-deficient muscle the chain of proteins linking the intracellular contractile apparatus via the plasma membrane to the extracellular matrix is interrupted. Consequently, muscle fibers loose their stability and degenerate what finally leads to a progressive muscle wasting. In previous studies, we have shown that a miniaturized form of the extracellular matrix protein agrin, which is not related to the disease-causing lama2 gene and was designed to contain highaffinity binding sites for the laminins and for α-dystroglycan, was sufficient to markedly improve muscle function and overall health in the dyW-/- mouse model of MDC1A. In a follow-up study we provided additional evidence that mini-agrin, both increases the tolerance to mechanical load but also improves the regeneration capacity of the dystrophic muscle. We now report on our progress towards further testing the use of this approach for the treatment of MDC1A. To test whether mini-agrin application after onset of the disease would still ameliorate the dystrophic symptoms, we have established the inducible tetracycline-regulated “tet-off” expression system in dyW-/- mice to temporally control mini-agrin expression in skeletal muscles. We show that mini-agrin slows down the progression of the dystrophy when applied at birth or in advanced stages of the disease. However, the extent of the amelioration depends on the dystrophic condition of the muscle at the time of mini-agrin application. Thus, the earlier miniagrin is applied, the higher is the profit of its beneficial properties. In addition to gene therapeutical approaches, the increase of endogenous agrin expression levels in skeletal muscles by pharmacologically active compounds would be a safe and promising strategy for the treatment of MDC1A. To evaluate the potential and pave the way to further expand on the development of such a treatment, we determined whether full-length agrin ameliorates the dystrophic phenotype to a comparable extent as it was observed by application of mini-agrin. We provide evidence that constitutive overexpression of chick full-length agrin in dyW-/- muscle ameliorates the dystrophic phenotype, although not as pronounced as mini-agrin does. In conclusion, our results are conceptual proof that linkage of laminin to the muscle fiber membrane is a means to treat MDC1A at any stage of the disease. Our findings definitely encourage to further expanding on this therapeutic concept, especially in combination with treatment using functionally different approaches. Moreover, these experiments set the basis for further developing clinically feasible and relevant application methods such as gene therapy4 and/or the screening of small molecules able to upregulate production of agrin in muscle

    Models of atypical development must also be models of normal development

    Get PDF
    Functional magnetic resonance imaging studies of developmental disorders and normal cognition that include children are becoming increasingly common and represent part of a newly expanding field of developmental cognitive neuroscience. These studies have illustrated the importance of the process of development in understanding brain mechanisms underlying cognition and including children ill the study of the etiology of developmental disorders

    MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity

    Get PDF
    OBJECTIVES: Injury to the preterm lateral ventricular perimeter (LVP), which contains the neural stem cells responsible for brain development, may contribute to the neurological sequelae of intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus of prematurity (PHH). This study utilizes diffusion MRI (dMRI) to characterize the microstructural effects of IVH/PHH on the LVP and segmented frontal-occipital horn perimeters (FOHP). STUDY DESIGN: Prospective study of 56 full-term infants, 72 very preterm infants without brain injury (VPT), 17 VPT infants with high-grade IVH without hydrocephalus (HG-IVH), and 13 VPT infants with PHH who underwent dMRI at term equivalent. LVP and FOHP dMRI measures and ventricular size-dMRI correlations were assessed. RESULTS: In the LVP, PHH had consistently lower FA and higher MD and RD than FT and VPT (p\u3c.050). However, while PHH FA was lower, and PHH RD was higher than their respective HG-IVH measures (p\u3c.050), the MD and AD values did not differ. In the FOHP, PHH infants had lower FA and higher RD than FT and VPT (p\u3c.010), and a lower FA than the HG-IVH group (p\u3c.001). While the magnitude of AD in both the LVP and FOHP were consistently less in the PHH group on pairwise comparisons to the other groups, the differences were not significant (p\u3e.050). Ventricular size correlated negatively with FA, and positively with MD and RD (p\u3c.001) in both the LVP and FOHP. In the PHH group, FA was lower in the FOHP than in the LVP, which was contrary to the observed findings in the healthy infants (p\u3c.001). Nevertheless, there were no regional differences in AD, MD, and RD in the PHH group. CONCLUSION: HG-IVH and PHH results in aberrant LVP/FOHP microstructure, with prominent abnormalities among the PHH group, most notably in the FOHP. Larger ventricular size was associated with greater magnitude of abnormality. LVP/FOHP dMRI measures may provide valuable biomarkers for future studies directed at improving the management and neurological outcomes of IVH/PHH

    Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling

    Get PDF
    It is often assumed that similar domain-specific behavioural impairments found in cases of adult brain damage and developmental disorders correspond to similar underlying causes, and can serve as convergent evidence for the modular structure of the normal adult cognitive system. We argue that this correspondence is contingent on an unsupported assumption that atypical development can produce selective deficits while the rest of the system develops normally (Residual Normality), and that this assumption tends to bias data collection in the field. Based on a review of connectionist models of acquired and developmental disorders in the domains of reading and past tense, as well as on new simulations, we explore the computational viability of Residual Normality and the potential role of development in producing behavioural deficits. Simulations demonstrate that damage to a developmental model can produce very different effects depending on whether it occurs prior to or following the training process. Because developmental disorders typically involve damage prior to learning, we conclude that the developmental process is a key component of the explanation of endstate impairments in such disorders. Further simulations demonstrate that in simple connectionist learning systems, the assumption of Residual Normality is undermined by processes of compensation or alteration elsewhere in the system. We outline the precise computational conditions required for Residual Normality to hold in development, and suggest that in many cases it is an unlikely hypothesis. We conclude that in developmental disorders, inferences from behavioural deficits to underlying structure crucially depend on developmental conditions, and that the process of ontogenetic development cannot be ignored in constructing models of developmental disorders

    Brain Damage and Visuospatial Impairments: Exploring Early Structure-Function Associations in Children Born Very Preterm

    Get PDF
    Background: To provide insight into early neurosensory development in children born very preterm, we assessed the association between early structural brain damage and functional visuospatial attention and motion processing from one to two years corrected age. Methods: In 112 children born at <32 weeks gestational age, we assessed brain damage and growth with a standardized scoring system on magnetic resonance imaging (MRI; 1.5 Tesla) scans performed at 29 to 35 weeks gestational age. Of the children with an MRI scan, 82 participated in an eye tracking-based assessment of visuospatial attention and motion processing (Tobii T60XL) at one year corrected age and 59 at two years corrected age. Results: MRI scoring showed good intra- and inter-rater reproducibility. At one year, 10% children had delayed attentional reaction times and 23% had delayed motion reaction times. Moderate to severe brain damage significantly correlated with s
    corecore