17 research outputs found

    A note on information theoretic characterizations of physical theories

    Get PDF
    Clifton, Bub, and Halvorson [Foundations of Physics 33, 1561 (2003)] have recently argued that quantum theory is characterized by its satisfaction of three information-theoretic axioms. However, it is not difficult to construct apparent counterexamples to the CBH characterization theorem. In this paper, we discuss the limits of the characterization theorem, and we provide some technical tools for checking whether a theory (specified in terms of the convex structure of its state space) falls within these limits.Comment: 16 pages, LaTeX, Contribution to Rob Clifton memorial conferenc

    Quantum mechanics is about quantum information

    Full text link
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive -- just as, following Einstein's special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.Comment: 17 pages, forthcoming in Foundations of Physics Festschrift issue for James Cushing. Revised version: some paragraphs have been added to the final section clarifying the argument, and various minor clarifying remarks have been added throughout the tex

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    In defense of the epistemic view of quantum states: a toy theory

    Full text link
    We present a toy theory that is based on a simple principle: the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge. A wide variety of quantum phenomena are found to have analogues within this toy theory. Such phenomena include: the noncommutativity of measurements, interference, the multiplicity of convex decompositions of a mixed state, the impossibility of discriminating nonorthogonal states, the impossibility of a universal state inverter, the distinction between bi-partite and tri-partite entanglement, the monogamy of pure entanglement, no cloning, no broadcasting, remote steering, teleportation, dense coding, mutually unbiased bases, and many others. The diversity and quality of these analogies is taken as evidence for the view that quantum states are states of incomplete knowledge rather than states of reality. A consideration of the phenomena that the toy theory fails to reproduce, notably, violations of Bell inequalities and the existence of a Kochen-Specker theorem, provides clues for how to proceed with this research program.Comment: 32 pages, REVTEX, based on a talk given at the Rob Clifton Memorial Conference, College Park, May 2003; v2: minor modifications throughout, updated reference

    Quantum Cryptography: Key Distribution and Beyond

    Get PDF
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Quanta 2017; 6: 1–47
    corecore