122 research outputs found

    Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT

    Full text link
    Pretrained contextual representation models (Peters et al., 2018; Devlin et al., 2018) have pushed forward the state-of-the-art on many NLP tasks. A new release of BERT (Devlin, 2018) includes a model simultaneously pretrained on 104 languages with impressive performance for zero-shot cross-lingual transfer on a natural language inference task. This paper explores the broader cross-lingual potential of mBERT (multilingual) as a zero shot language transfer model on 5 NLP tasks covering a total of 39 languages from various language families: NLI, document classification, NER, POS tagging, and dependency parsing. We compare mBERT with the best-published methods for zero-shot cross-lingual transfer and find mBERT competitive on each task. Additionally, we investigate the most effective strategy for utilizing mBERT in this manner, determine to what extent mBERT generalizes away from language specific features, and measure factors that influence cross-lingual transfer.Comment: EMNLP 2019 Camera Read

    Delving Deeper into Cross-lingual Visual Question Answering

    Full text link
    Visual question answering (VQA) is one of the crucial vision-and-language tasks. Yet, existing VQA research has mostly focused on the English language, due to a lack of suitable evaluation resources. Previous work on cross-lingual VQA has reported poor zero-shot transfer performance of current multilingual multimodal Transformers with large gaps to monolingual performance, without any deeper analysis. In this work, we delve deeper into the different aspects of cross-lingual VQA, aiming to understand the impact of 1) modeling methods and choices, including architecture, inductive bias, fine-tuning; 2) learning biases: including question types and modality biases in cross-lingual setups. The key results of our analysis are: 1) We show that simple modifications to the standard training setup can substantially reduce the transfer gap to monolingual English performance, yielding +10 accuracy points over existing methods. 2) We analyze cross-lingual VQA across different question types of varying complexity for different multilingual multimodal Transformers, and identify question types that are the most difficult to improve on. 3) We provide an analysis of modality biases present in training data and models, revealing why zero-shot performance gaps remain for certain question types and languages.Comment: Findings of EACL 202

    Distributed representations for multilingual language processing

    Get PDF
    Distributed representations are a central element in natural language processing. Units of text such as words, ngrams, or characters are mapped to real-valued vectors so that they can be processed by computational models. Representations trained on large amounts of text, called static word embeddings, have been found to work well across a variety of tasks such as sentiment analysis or named entity recognition. More recently, pretrained language models are used as contextualized representations that have been found to yield even better task performances. Multilingual representations that are invariant with respect to languages are useful for multiple reasons. Models using those representations would only require training data in one language and still generalize across multiple languages. This is especially useful for languages that exhibit data sparsity. Further, machine translation models can benefit from source and target representations in the same space. Last, knowledge extraction models could not only access English data, but data in any natural language and thus exploit a richer source of knowledge. Given that several thousand languages exist in the world, the need for multilingual language processing seems evident. However, it is not immediately clear, which properties multilingual embeddings should exhibit, how current multilingual representations work and how they could be improved. This thesis investigates some of these questions. In the first publication, we explore the boundaries of multilingual representation learning by creating an embedding space across more than one thousand languages. We analyze existing methods and propose concept based embedding learning methods. The second paper investigates differences between creating representations for one thousand languages with little data versus considering few languages with abundant data. In the third publication, we refine a method to obtain interpretable subspaces of embeddings. This method can be used to investigate the workings of multilingual representations. The fourth publication finds that multilingual pretrained language models exhibit a high degree of multilinguality in the sense that high quality word alignments can be easily extracted. The fifth paper investigates reasons why multilingual pretrained language models are multilingual despite lacking any kind of crosslingual supervision during training. Based on our findings we propose a training scheme that leads to improved multilinguality. Last, the sixth paper investigates the use of multilingual pretrained language models as multilingual knowledge bases

    How Do Multilingual Encoders Learn Cross-lingual Representation?

    Get PDF
    NLP systems typically require support for more than one language. As different languages have different amounts of supervision, cross-lingual transfer benefits languages with little to no training data by transferring from other languages. From an engineering perspective, multilingual NLP benefits development and maintenance by serving multiple languages with a single system. Both cross-lingual transfer and multilingual NLP rely on cross-lingual representations serving as the foundation. As BERT revolutionized representation learning and NLP, it also revolutionized cross-lingual representations and cross-lingual transfer. Multilingual BERT was released as a replacement for single-language BERT, trained with Wikipedia data in 104 languages. Surprisingly, without any explicit cross-lingual signal, multilingual BERT learns cross-lingual representations in addition to representations for individual languages. This thesis first shows such surprising cross-lingual effectiveness compared against prior art on various tasks. Naturally, it raises a set of questions, most notably how do these multilingual encoders learn cross-lingual representations. In exploring these questions, this thesis will analyze the behavior of multilingual models in a variety of settings on high and low resource languages. We also look at how to inject different cross-lingual signals into multilingual encoders, and the optimization behavior of cross-lingual transfer with these models. Together, they provide a better understanding of multilingual encoders on cross-lingual transfer. Our findings will lead us to suggested improvements to multilingual encoders and cross-lingual transfer

    Development of an Automated Scoring Model Using SentenceTransformers for Discussion Forums in Online Learning Environments

    Get PDF
    Due to the limitations of public datasets, research on automatic essay scoring in Indonesian has been restrained and resulted in suboptimal accuracy. In general, the main goal of the essay scoring system is to improve execution time, which is usually done manually with human judgment. This study uses a discussion forum in online learning to generate an assessment between the responses and the lecturer\u27s rubric in the automated essay scoring. A SentenceTransformers pre-trained model that can construct the highest vector embedding was proposed to identify the semantic meaning between the responses and the lecturer\u27s rubric. The effectiveness of monolingual and multilingual models was compared. This research aims to determine the model\u27s effectiveness and the appropriate model for the Automated Essay Scoring (AES) used in paired sentence Natural Language Processing tasks. The distiluse-base-multilingual-cased-v1 model, which employed the Pearson correlation method, obtained the highest performance. Specifically, it obtained a correlation value of 0.63 and a mean absolute error (MAE) score of 0.70. It indicates that the overall prediction result is enhanced when compared to the earlier regression task research

    Leveraging Multi-lingual Positive Instances in Contrastive Learning to Improve Sentence Embedding

    Full text link
    Learning multi-lingual sentence embeddings is a fundamental and significant task in natural language processing. Recent trends of learning both mono-lingual and multi-lingual sentence embeddings are mainly based on contrastive learning (CL) with an anchor, one positive, and multiple negative instances. In this work, we argue that leveraging multiple positives should be considered for multi-lingual sentence embeddings because (1) positives in a diverse set of languages can benefit cross-lingual learning, and (2) transitive similarity across multiple positives can provide reliable structural information to learn. In order to investigate the impact of CL with multiple positives, we propose a novel approach MPCL to effectively utilize multiple positive instances to improve learning multi-lingual sentence embeddings. Our experimental results on various backbone models and downstream tasks support that compared with conventional CL, MPCL leads to better retrieval, semantic similarity, and classification performances. We also observe that on unseen languages, sentence embedding models trained on multiple positives have better cross-lingual transferring performance than models trained on a single positive instance.Comment: 14 pages, 4 figure

    Improving Spoken Language Identification with Map-Mix

    Full text link
    The pre-trained multi-lingual XLSR model generalizes well for language identification after fine-tuning on unseen languages. However, the performance significantly degrades when the languages are not very distinct from each other, for example, in the case of dialects. Low resource dialect classification remains a challenging problem to solve. We present a new data augmentation method that leverages model training dynamics of individual data points to improve sampling for latent mixup. The method works well in low-resource settings where generalization is paramount. Our datamaps-based mixup technique, which we call Map-Mix improves weighted F1 scores by 2% compared to the random mixup baseline and results in a significantly well-calibrated model. The code for our method is open sourced on https://github.com/skit-ai/Map-Mix.Comment: Accepted at ICASSP 202
    • …
    corecore