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unerlaubte Beihilfe angefertigt ist.

München, den 9. Dezember 2020

Philipp Dufter

3



Abstract
Distributed representations are a central element in natural language processing.
Units of text such as words, ngrams, or characters are mapped to real-valued
vectors so that they can be processed by computational models. Representations
trained on large amounts of text, called static word embeddings, have been found
to work well across a variety of tasks such as sentiment analysis or named entity
recognition. More recently, pretrained language models are used as contextualized
representations that have been found to yield even better task performances.

Multilingual representations that are invariant with respect to languages are
useful for multiple reasons. Models using those representations would only re-
quire training data in one language and still generalize across multiple languages.
This is especially useful for languages that exhibit data sparsity. Further, machine
translation models can benefit from source and target representations in the same
space. Last, knowledge extraction models could not only access English data, but
data in any natural language and thus exploit a richer source of knowledge.

Given that several thousand languages exist in the world, the need for multi-
lingual language processing seems evident. However, it is not immediately clear,
which properties multilingual embeddings should exhibit, how current multilin-
gual representations work and how they could be improved.

This thesis investigates some of these questions. In the first publication, we
explore the boundaries of multilingual representation learning by creating an em-
bedding space across more than one thousand languages. We analyze existing
methods and propose concept based embedding learning methods. The second
paper investigates differences between creating representations for one thousand
languages with little data versus considering few languages with abundant data.
In the third publication, we refine a method to obtain interpretable subspaces of
embeddings. This method can be used to investigate the workings of multilingual
representations. The fourth publication finds that multilingual pretrained language
models exhibit a high degree of multilinguality in the sense that high quality word
alignments can be easily extracted. The fifth paper investigates reasons why mul-
tilingual pretrained language models are multilingual despite lacking any kind
of crosslingual supervision during training. Based on our findings we propose
a training scheme that leads to improved multilinguality. Last, the sixth paper
investigates the use of multilingual pretrained language models as multilingual
knowledge bases.

4



Zusammenfassung
Verteilte Repräsentationen sind ein zentrales Element in der automatischen Ver-
arbeitung natürlicher Sprachen. Funktionen weisen Texteinheiten wie Wörtern,
N-Grammen oder Buchstaben reellwertige Vektoren zu, sodass diese von Com-
putern mit Rechenmodellen verarbeitet werden können. Sogenannte statische
Wortrepräsentationen, die auf großen Mengen von Text gelernt werden, sind nütz-
lich für Aufgaben wie Sentimentanalyse oder Entitätenerkennung. Kürzlich wur-
den kontextualisierte Repräsentationen entwickelt. Diese können die genannten
Aufgaben noch effektiver lösen.

Multilinguale Repräsentationen, also Repräsentationen, die invariant bezüglich
eines Sprachwechsels sind, sind aus mehreren Gründen nützlich. Zum einen
müssen Modelle, die eine bestimme Aufgabe wie Entitätenerkennung lösen und
diese Repräsentationen verwenden, nur mit Trainingsdaten in einer Sprache trai-
niert werden. Es ist also ausreichend, dass annotierte Daten in einer Sprache
vorliegen. Trotzdem können die Modelle mit Hilfe der multilingualen Repräsen-
tationen Daten, die in einer anderen Sprache vorliegen, verarbeiten. Sprachen, bei
denen wenig Textdaten verfügbar sind, können davon besonders profitieren. Zum
anderen kann maschinelle Übersetzung mit Hilfe von multilingualen Repräsenta-
tionen verbessert werden. Nicht zuletzt können auch Informationsextraktionsmo-
delle mit Hilfe der Repräsentationen nicht nur englische Daten, sondern Daten in
verschiedenen Sprachen verarbeiten und so insgesamt mehr Informationsquellen
berücksichtigen.

Da es mehrere tausend Sprachen auf der Welt gibt, ist es vielversprechend,
multilinguale Modelle zu entwickeln. Dabei muss spezifiziert werden, welche
Eigenschaften multilinguale Modelle haben sollen, wie diese im Detail funktio-
nieren und wie diese verbessert werden können.

Das Ziel der vorliegenden Arbeit ist es, einige dieser Fragen zu untersuchen.
In der ersten Veröffentlichung analysieren wir die Grenzen multilingualer Mo-
delle indem wir Repräsentationen für tausende Sprachen erstellen. Wir unter-
suchen existierende Methoden und entwickeln konzeptbasierte Algorithmen. Das
zweite Papier ergründet Unterschiede zwischen dem Lernen von Repräsentationen
für mehr als tausend Sprachen mit wenig Daten und für wenige Sprachen mit
vielen Daten. In der dritten Veröffentlichung verbessern wir eine Methode, um
Repräsentationen interpretierbar zu machen. Das kann nützlich sein, um mul-
tilinguale Repräsentationen besser zu verstehen. Wir planen, diese Methode in
zukünftigen Arbeiten einzusetzen. Die vierte Arbeit zeigt, dass qualitativ hoch-
wertige Wortalignierungen mit Hilfe von vortrainierten Repräsentationen erstellt
werden können. In einer fünften Veröffentlichung untersuchen wir, warum kon-
textualisierte Wortrepräsentationen multilingual sind, trotz fehlender Anreize wäh-
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rend des Lernprozesses. Darauf basierend stellen wir eine Trainingsmethode vor,
die zu einem höheren Grad an Multilingualität führt. Im letzten Papier unter-
suchen wir, ob multilinguale kontextualisierte Repräsentationen Wissen über En-
titäten enthalten.
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Chapter 1

Introduction

1.1 Motivation
Natural languages are central to human communication. Similarly, language is
an intuitive way for humans to interact with computers. Therefore, processing,
understanding, and generating natural language text with computational models
has been a central part of computer science research since its inception. Some
early milestones include the Georgetown experiment from 1954 as described in
(Hutchins, 2004), which presented a rule-based machine translation system; a few
years before, in 1950, Alan Turing used natural language understanding as a cri-
terion to assess the intelligence of a machine in the Turing test (Turing, 1950).

Processing text with computational models requires a numerical representa-
tion. As text data is inherently sequential and potentially arbitrarily long, it is
useful to divide a sequence of text into smaller units, such as sentences, words, or
characters. While a binary (or symbolic) representation for a unit is easy to define,
distributed representations are the preferred way of representing text units: mean-
ing can be encoded implicitly through a similarity metric (Hinton et al., 1990;
Schütze, 1992b) and distributed representations have been found to interleave well
with statistical models such as logistic regression or neural networks (Hinton et al.,
1986; Bengio et al., 2003; Collobert et al., 2011). However, it is not clear how
to define meaningful distributed representations for textual units. Creating those
is the objective of representation learning. Factorizations of the co-occurrence
matrices (Schütze, 1992a) have been found to yield meaningful distributed rep-
resentations in the sense that for example cosine similarity correlates well with
semantic similarity. Used as the first layer in neural networks they yield good
performance on downstream tasks such as named entity recognition or sentiment
analysis (Collobert et al., 2011). More recently, pretrained language models are
the preferred way of creating contextualized unit representations.
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1.1 Motivation

Processing a single natural language has obvious limitations. The European
Union has 24 official languages, India lists 22 languages and overall there are
more than 7000 diverse languages in the world (Eberhard et al., 2020). While one
could create separate language processing systems and separate distributed repre-
sentations for each language, there are several arguments for creating multilingual
representations:

i) Multilingual models require less data, both written text and annotated train-
ing data, as they generalize across multiple languages. This is especially
useful for languages that exhibit data sparsity and saves annotation resources.

ii) Machine translation can benefit from source and target representations in
the same numerical space in terms of improved quality.

iii) Knowledge extraction models could not only access English data but could
read any natural language and thus exploit a richer source of knowledge.

iv) From an engineering perspective it is easier to maintain a single multilingual
model rather than a large number of monolingual models.

v) Through developing models in different languages one can work against
their digital extinction.

On an abstract level, one can argue that natural languages serve similar purposes,
namely the communication between humans and the description and interpretation
of the physical world and abstract thoughts. This fact lends itself to representing
and processing multiple languages in a single system. Note that sometimes in the
literature the terms multilingual and crosslingual are used with different mean-
ings: multilingual refers to systems that can process multiple languages without
any cross-language interaction, whereas crosslingual refers to systems that exhibit
meaningful connections between languages. In this work, we always refer to the
latter and use both terms interchangeably.

1.1.1 Approach
In this work we approach the goal of multilingual processing by researching mul-
tilingual distributed representations. There are two reasons for this choice: nu-
merical representations are an integral part of almost every computational model
and through reusing pretrained representations large amounts of text data can be
leveraged.

We pursue a language agnostic approach in the sense that we apply the same
processing pipeline to all languages and omit language specific rules. One can
argue that this fails to address the diversity of languages: languages exhibit a
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law

suit

dresswalk

judgeGesetz Klage

AnzugKleidgehen
geht

Richter

Figure 1.1 – Example of expectations on multilingual embeddings. Semanti-
cally similar words across and within languages are close to each other.

very different degree of using morphology, e.g., ranging from agglutinative to an-
alytical languages, there are different word order schemes, writing systems and
a range of additional linguistic properties. However, we aim at processing hun-
dreds or thousands of languages and language specific processing rules are hard to
scale. Thus we focus on researching a single processing pipeline for all considered
languages.

1.1.2 Research Questions
Having presented the need for multilingual distributed representations there is a
range of open questions.

i) Properties: It is unclear which properties multilingual representations should
exhibit. Figure 1.1 shows an example of how one could imagine multilin-
gual representations. The actual term multilingual representations needs to
be defined and measures that evaluate the quality of those representations
quantitatively are required.

ii) Limits: The feasibility and limits of such representations need to be in-
vestigated. Natural questions are whether two different languages can be
represented in the same numerical space in a meaningful way and whether
there is a limit to how many languages can be modeled in the same space.

iii) Analysis: The quality and mechanics of existing algorithms need to be un-
derstood.

iv) Improvements: Insights from the above research questions are used to create
representation learners that exhibit a higher degree of multilinguality.

The objective of this work is to address some of these questions.
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1.1 Motivation

1.1.3 Outline
We start by introducing the basics of monolingual and multilingual representation
learning in Chapter 1. After defining static and contextualized embeddings, we
present some popular representation learning algorithms and show how represen-
tations can be evaluated. In the first two research papers, which can be found in
Chapter 2 and 3, we investigate the limits of multilingual representations by in-
vestigating embedding spaces in more than a thousand languages. We derive new
embedding learners adapted specifically to this massively multilingual setting. In
the third publication in Chapter 4 we improve a method for interpreting distributed
representations. We deem this useful for analyzing multilingual representations,
which we plan to do in future work. The fourth publication in Chapter 5 ana-
lyzes existing multilingual representations and shows that word alignments can
be easily obtained from them. In Chapter 6, we analyze the reasons for the mul-
tilinguality of an existing model, mBERT, and propose a modification that leads
to increased multilinguality. The last paper in Chapter 7 investigates the use of
multilingual pretrained language models as multilingual knowledge bases.

By and large, Chapter 2 and 3 address research question ii) by exploring the
limits of multilingual representations and research question iv) by proposing con-
cept based embedding learning. Chapter 4 and Chapter 5 contribute to question
iii), understanding the quality and mechanics of current algorithms. Chapter 6
targets research question iii) by analyzing multilingual models and iv) by trying
to improve multilingual algorithms and in the last article in Chapter 7 we create a
resource that can be loosely categorized into research question i).
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1.2 Foundations

1.2 Foundations

1.2.1 Notation

Scalar values are lowercase letters x ∈ R, vectors are boldface lowercase x ∈ Rd,
and matrices boldface uppercase letters X ∈ Rt×d, for positive integers d, t ∈ N+.
Vectors and matrices can be indexed (xi)i=1,2...,d = x, (Xij)i=1,2...,t,j=1,2,...d = X.
The i-th row of X is denoted as Xi ∈ Rd. When we index a matrix with a
textual unit instead of an index we refer to the vector that corresponds to this unit,
i.e., Xsun refers to the vector that corresponds to “sun” based on some underlying
bijective function that assigns each textual unit a unique integer. The same holds
for vectors that are indexed in such a way. The cardinality of a set A is denoted by
|A|. The power set of A is P(A). The euclidean norm of a vector x is ‖x‖. xᵀ and
Xᵀ are the transposed vector (row-vector) and matrix. For two vectors x,y we
denote the cosine similarity as cos-sim(x,y) := cos(θ) = xᵀy/(‖x‖ ‖y‖). The
n-dimensional identity matrix is denoted by In. The indicator function 1{A} is 1
if and only if the statement A is true and 0 else.

1.2.2 Distributed Representations
We can assume that natural text has a reading direction and can thus be inter-
preted as sequential data. Therefore, we denote text data as (u1, u2, . . . , ut) where
ui is some unit of text. We call the set of distinct units the vocabulary V =
{v1, v2, . . . , vn}. Common choices for units are shown in Figure 1.2. Two units
are identical if they consist of an identical sequence of unicode code points. In
order to process units of text computationally, they need to be represented numer-
ically. An example of an embedding function is a map e : V → E that assigns
each unit in the vocabulary a numerical representation.

A trivial choice for an embedding function is to choose E = {0, 1}n and as-
sign each element vi ∈ V the i-th unit vector in E. This requires one computing
element, one integer, for each element vi and is called a local representation (Hin-
ton et al., 1990). In contrast, distributed representations use multiple computing
elements to represent vi. An example is to chooseE as a d-dimensional Euclidean
space with d� n.

We give an example for a local and distributed representation. Consider a
vocabulary containing n elements V = {“go”, “went”, “explain”, “explained”,
“explanation”, . . . }. A local representation is to assign e(“go“) = (1, 0, . . . ),
e(“went“) = (0, 1, . . . ), etc. An alternative distributed representation is to con-
sider d dimensional vectors where d is the number of distinct characters across all
elements in V . Subsequently we assign e(vi)j = 1{cj ∈ vi}where (c1, c2, . . . , cd)
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Saturday began. The sun is shining.Corpus

Saturday began. The sun is shining.Sentences

Saturday began began . . The The sun ...Overlapping word ngrams

Saturday began . The ...Words

Satur day beg an ...Subwords

Sat atu tur urd ...Overlapping character ngrams

S a t u ...Characters

83 97 116 117 ...Bytes

Figure 1.2 – Common ways to split text data into units. The byte representa-
tion depends on the choice of encoding for unicode points (e.g., utf-8).

is a tuple of all characters. That is, the j-th component of e(vi) indicates whether
unit vi contains the character cj .

Some advantages of distributed representations become clear immediately.
For the local representation, all vectors are orthogonal and it is impossible to in-
troduce a meaningful similarity metric. For our distributed representation, cosine
similarity yields a meaningful metric: the similarity between “explain” and “ex-
plained” is higher than between “explain” and “went” as the former share more
characters. Adding new elements to distributed representations is easier. For local
representation, a new dimension must be added, whereas for distributed represen-
tation one can assign a new vector. Local representations are high dimensional
and sparse, whereas distributed representations are typically lower dimensional,
dense vectors. Empirically, distributed representations have been found to work
well with computational models such as logistic regression or neural networks
(Hinton et al., 1986; Bengio et al., 2003; Collobert et al., 2011).

However, a major drawback is the difficulty of defining distributed representa-
tions. The task of finding a meaningful mapping e is called representation learn-
ing. Note that it is not clear how to assess whether a mapping is meaningful. Two
common ways to judge usefulness are whether the embedding function increases
the performance of downstream tasks such as sentiment classification or named
entity recognition, or whether similarity measures such as cosine similarity corre-
late well with semantic or syntactic similarity.
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rich

poor

gold

silver

society

debt

mortgage

θ

Cgold,rich = 186
Cgold,poor = 34
Cdebt,rich = 10
Cdebt,poor = 120
Csilver,rich = 135
Csilver,poor = 45
. . .

cos(θ) ∼ semantic similarity

Figure 1.3 – Example how co-occurrences with other words yield meaningful
vector representations. Out of n dimensions we only show the two dimensions
corresponding to the units “rich” and “poor”.

1.3 Learning Static Representations
Given a vocabulary V with size n we define a static embedding function as

e : V → Rd,

for some dimensionality d ∈ N. A central idea to most representation learning
algorithms is the hypothesis by Firth (1957) that “you shall know a word by the
company it keeps”. Loosely speaking, one can infer the meaning of a word by
considering all the contexts in which a word appears. Therefore, two words that
can occur in similar contexts are likely to have a similar meaning.

It is not immediately clear what it means that two words occur in similar con-
texts. Given a corpus U = (u1, u2, . . . , ut) ∈ V t that is a sequence of text units
we need to introduce a notion of context. A unit ui occurs in the context of uj
if |i − j| ≤ k where k is the size of the context window, i.e., ui appears in the
context of uj and the units ui and uj “co-occur”. Note that it is common to seg-
ment the corpus U into smaller parts such as sentences. Then, ui co-occurs with
uj only if ui is in uj’s context window and both units appear in the same sentence.
The co-occurrence matrix for the vocabulary V is given by C ∈ Nn×n where Cij

indicates how often the units vi and vj co-occur in the corpus U .
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1.3.1 Monolingual Representations
A straightforward embedding function is to define e(vi) := Ci. Figure 1.3 shows
an example. That is, the embedding for the unit vi is the n-dimensional vector
that indicates how often vi co-occurs with every other unit. The advantage of this
function is that the cosine similarity of e(vi) and e(vj) is high if vi and vj occur
in similar contexts. Thus, this representation is in line with Firth’s hypothesis.
A disadvantage is that the dimensionality of e(vi) is equal to vocabulary size n.
As n can be very large this can lead to expensive computations and deteriorated
performance when using these embeddings as input to computational models.

Schütze (1992a) proposed to consider matrix factorization, more specifically
the singular value decomposition of C. With increasing usage of neural networks
in natural language processing, e.g., Collobert et al. (2011), lower dimensional
representations became more prevalent and matrix factorizations of C became
more popular, e.g., Levy and Goldberg (2014); Pennington et al. (2014). Mikolov
et al. (2013a) presented an alternative way to compute embeddings with shallow
neural networks that is widely used now. In the following, we present two popular
embedding algorithms, that are relevant to this work, in more detail.

Skip-gram with Negative Sampling

Mikolov et al. (2013a) introduced two methods to estimate word vectors. One
method is skip-gram with negative sampling. The underlying idea is to predict,
given a unit ui, whether another unit uj is likely to appear in the context window of
ui. The computational model is as follows. Consider two matrices E,F ∈ Rn×d

where Eui is the word embedding of ui and Fui its context embedding. Further,
denote as c(ui) ⊂ V the set of tokens that are in the context window of ui and
let cn(ui) ⊂ V be a set of m negative samples, i.e., a set of randomly sampled
words that do not occur in the context of ui. Skip-gram with negative sampling
minimizes the following objective

L(E,F) = −
n∑

i=1

∑

w∈c(ui)
log
(
σ(Eᵀ

ui
Fw)

)
−

∑

w∈cn(ui)
log
(
σ(−Eᵀ

ui
Fw)

)
, (1.1)

where σ : R → R is the sigmoid function σ(x) = 1/(1 + e−x). Intuitively,
the dot product Eᵀ

ui
Fw should be large when w occurs in the context of ui and

small else. In the actual implementation additional tricks such as down-sampling
frequent words or ignoring words that only occur a few times are applied. Eq. 1.1
can then be optimized using stochastic gradient descent. The embedding function
is then e(v) := Ev and the matrix F is usually ignored. Mikolov et al. (2013a)
provided an efficient implementation, and its name, word2vec, is sometimes used
as synonym for skip-gram with negative sampling.
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Query Nearest Neighbors
Skip-gram Skip-gram with subword information

build develop, construct, create, rebuild re-build, rebuild, develop, built
wrote writes, penned, authored, co-wrote cowrote, handwrote, hand-wrote, wrote

dish dishes, cuisine, dessert, recipe dishes, side-dish, hotdish, one-dish
happy happier, unhappy, glad, contented happpy, happy-, happy-happy, unhappy

Table 1.1 – Four nearest neighbors for a selection of queries obtained from
embeddings computed on the English Wikipedia. Clearly, incorporating sub-
word information increases similarity of units that consist of similar ngrams.

Incorporating Subword Information

A disadvantage of skip-gram is that it only considers the context of each unit and
ignores its internal structure. For example the units building and buildings have
separate vectors that are learned independently of each other. Thus, Bojanowski
et al. (2017) propose a learning algorithm that incorporates subword information.
They provide an implementation of the algorithm in the library fastText, which
is why fastText became a synonym for this algorithm. Let Ck be the set of all
possible combinations of k characters and Gk : V → P(Ck) be the ngram func-
tion that assigns a unit the set of all k-grams that are contained in the unit. For
example, G2(day) = {<d, da, ay, y>}. Hyperparameters are the minimum and
maximum length of ngrams to consider, denoted by k and k. An additional matrix
Gl×d is introduced, where l is the number of all k- to k-grams. Finally, subword
information is incorporated in Eq. 1.1 by replacing Eui with

Eui +
k∑

k=k

∑

g∈Gk(ui)
Gg.

That is instead of simply considering a vector for each unit, the representation of
a unit is its vector plus the sum (sometimes the average) of the vectors of all its
ngrams. Table 1.1 shows the effect of incorporating subword information.

Matrix Factorizations

At first sight, skip-gram does not seem to be related to matrix factorizations of C.
Levy and Goldberg (2014) investigated whether skip-gram can be interpreted as
matrix factorization of co-occurrences. They identified a relation between skip-
gram and the factorization of a shifted pointwise mutual information matrix. That
is, the embedding and context matrices E and F are a decomposition of a matrix
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M ∈ Rn×n. More specifically,

EFᵀ = M, with Mij = log

(
Cij

∑n
i=1

∑n
j=1 Cij∑n

l=1 Cil

∑n
l=1 Clj

)
− log(m).

m is the number of negative samples that is sampled for cn. While this finding tries
to unify matrix factorization approaches with the approach to learn embeddings
with shallow neural networks, the statement only holds in a restricted setting,
e.g., only for high dimensional embeddings (Arora et al., 2016). In experiments
Levy and Goldberg (2014) found, as expected, that skip-gram performs better
empirically. One method that combines global matrix factorizations with the local
context window approach of skip-gram is GloVe (Pennington et al., 2014).

1.3.2 Multilingual Representations
Having described two monolingual representation learning algorithms, we now
turn to creating multilingual static embedding spaces. Consider two languages e,
f with vocabularies V (e), V (f) of size n(e), n(f) and static embedding spaces E(e),
E(f) with dimensions d(e), d(f). For the sake of simplicity assume d(e) = d(f) =: d.

As with monolingual embedding spaces, it is unclear which properties a mul-
tilingual embedding space should exhibit. Intuitively, high quality spaces should
enable model transfer, i.e., a computational model trained on embeddings E(e)

should be able to process E(f) without significant performance decrease, or some
measure of similarity like cosine similarity should correlate well with semantic
similarity. When both embedding spaces, say in English and German, are learned
individually there is no relation between the embeddings. That is E

(e)
walk and E

(f)
gehen

are two separate embeddings with a random cosine similarity. In a multilingual
space cos-sim(E

(e)
walk,E

(f)
gehen) should be close to 1 as both units have a similar se-

mantic meaning.

Mapping Approaches

One approach to create multilingual embedding spaces is to learn representations
E(e), E(f) for each language separately, and subsequently learn some mapping
w : Rd → Rd such that the mapped space Ē(f) with Ē

(f)
i := w(E

(f)
i ) and E(e) are

a multilingual space. Figure 1.4 shows this process conceptually. The underly-
ing assumption is that the monolingual spaces have a similar structure. Research
has shown that this assumption might only hold for similar languages when the
embeddings spaces are trained on comparable training data (Vulić et al., 2020).
Assume that we have access to a bilingual dictionary

D := {(u(e)1 , u
(f)
1 ), (u

(e)
2 , u

(f)
2 ), . . . , (u(e)m , u(f)m )},
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law

suit

dresswalk

judge

Gesetz

Klage

Anzug
Kleid

gehen
ging

Richter

Gesetz Klage

AnzugKleidgehen
ging

Richter

law

suit

dresswalk

judge

W

Figure 1.4 – Mapping a German monolingual embedding space into English
embeddings using a rotation matrix W.

that consists of tuples of translation pairs of units across both languages. Consider
the modified embedding matrices Ẽ(e), Ẽ(f) that consist only of embeddings from
the dictionary D. A natural approach of creating a multilingual embedding space
is to parameterize the function w(x) = Wᵀx with W ∈ Rd×d, and to minimize
the objective function

L(W) =
1

2

m∑

i=1

∥∥∥Ẽ(e)
i W − Ẽ

(f)
i

∥∥∥
2

=
1

2

∥∥∥Ẽ(e)W − Ẽ(f)
∥∥∥
2

F
, (1.2)

where ‖·‖F denotes the Frobenius norm. This is an unconstrained quadratic mini-
mization problem, sometimes referred to as the Procrustes Problem, with gradient
∇L(W) = (Ẽ(e))ᵀ(Ẽ(e)W−Ẽ(f)). The closed form solution for the unique global
optimum is obtained by setting the gradient to 0, which yields

W∗ =
(
(Ẽ(e))ᵀẼ(e)

)−1
(Ẽ(e))ᵀẼ(f).

Mikolov et al. (2013b) investigate mapped multilingual spaces and found them
to perform well for word translation. An extension is to constrain the matrix W
to be orthonormal, i.e., WᵀW = Id, as introduced in (Xing et al., 2015). This
is desirable as an orthonormal transformation does not modify the structure of
an embedding space in the sense that it is a norm-preserving transformation: the
commonly used euclidean distance and the cosine distance are not affected by the
transformation. With this constraint, Eq. 1.2 becomes the Orthogonal Procrustes
Problem (Schönemann, 1966). A solution is given by computing the singular
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value decomposition of the matrix (Ẽ(f))ᵀẼ(e) that is (Ẽ(f))ᵀẼ(e) = UΣVᵀ. The
transformation is then given by W∗ = VUᵀ.

While these approaches are simple and effective they require a dictionary D.
This is not always easy to obtain and sometimes not even clear how to create
(e.g., a dictionary of ngrams). Thus, unsupervised embedding alignment is con-
sidered. While unsupervised manifold alignment has been researched for a while
in machine learning and computer vision (Wang and Mahadevan, 2009; Cui et al.,
2014) its application to word embedding spaces gained popularity with Lample
et al. (2018). They propose a method using generative adversarial learning as
proposed by Goodfellow et al. (2014). To this end consider some computational
model, e.g., a neural network, fθD : Rd → (0, 1) that takes an embedding vector
as input. They then consider two objective functions

LD(θD|W) = − 1

n(f)

n(f)∑

i=1

log
(
fθD(WE

(f)
i )
)
− 1

n(e)

n(e)∑

i=1

log
(
1− fθD(E(e)

i )
)

LG(W|θD) = −
1

n(f)

n(f)∑

i=1

log
(
1− fθD(WE

(f)
i )
)
− 1

n(e)

n(e)∑

i=1

log
(
fθD(E

(e)
i )
)
.

The first loss is the loss of a so called discriminator. The discriminator tries to
detect whether a vector comes from language f or e. Minimizing this loss means
that the model tries to set fθD(x) close to one if the vector is a transformed vector
from language f and close to zero if it is a vector from language e. The generator,
which is simply the function fW(x) = Wx, tries to fool the discriminator and has
the opposite objective. Both loss functions are optimized alternatingly with gra-
dient descent. For details on the optimization algorithm see (Lample et al., 2018).
The resulting multilingual embedding space have been observed to be of low qual-
ity. Thus, there is usually a refinement procedure that identifies well-aligned units
and uses them as a noisy dictionary D̃. To get the final transformation W∗ the
Procrustes problem is then solved with the noisy dictionary D̃.

The generator-discriminator setup has been found to be unstable and success-
ful optimization fails frequently (Artetxe et al., 2018). Thus, Artetxe et al. (2018)
proposed a fully unsupervised method in their framework VecMap. They propose
a pipeline of optimization problems and heuristics that results in more robust per-
formance.

Joint Learning

Mapping approaches assume that the embedding spaces E(e), E(f) have been
learned independently of each other and are subsequently mapped into a common
space. Another line of work aims at modifying embedding learning algorithms
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EN

The judge said:
It is the law.
...

Der Richter sagte:
Das ist das Gesetz.
...

DE

judge sagte Der Richter The said : :
Gesetz is Das . the It ist law . das
...

Mixed-BoW

sid1 de:Der
sid1 de:Richter
sid1 de:sagte
sid1 de::
sid1 en:The
sid1 en:judge
sid1 en:said
sid1 en::
sid2 de:Das
...

S-ID

Figure 1.5 – Transforming parallel corpora for joint learning. Shown are
two sentences in a parallel corpus. “Mixed” simply considers the sentences
as bags of words. “S-ID” in addition transforms the corpus into tuples of
sentence IDs and tokens prefixed with a language identifier. Standard learners
such as skip-gram can then be trained on the transformed corpora.

such that the resulting embeddings E(e), E(f) are already multilingual. All of the
described methods do also apply to a multilingual and not only a bilingual setting.

First, assume that we have access to a sentence-parallel corpus in two lan-
guages. That is we have two corpora in two languages consisting of m sen-
tences U (e) = (s

(e)
1 , s

(e)
2 , . . . , s

(e)
m ), U (f) = (s

(f)
1 , s

(f)
2 , . . . , s

(f)
m ) where s

(e)
i =

(u
(e)
1 , . . . , u

(e)

t
(e)
i

) and s
(f)
i = (u

(f)
1 , . . . , u

(f)

t
(f)
i

) are translations that consist of t(e)i

and t(f)i units. Two examples of a sentence parallel corpus are the Proceedings
of the European Parliament (Koehn, 2005) and the Parallel Bible Corpus (Mayer
and Cysouw, 2014). Both are multi-parallel in the sense that translations of the
same sentence exist in multiple languages, in the case of the Bible in thousands of
languages.

A simple approach of joint learning proposed by Vulić and Moens (2015) is to
create pseudo-bilingual sentences, a method that we call Mixed-BoW. That is, the
sentences s(e)i and s(f)i are concatenated and randomly shuffled. For example, with
two sentences Du sprichst and You are speaking a sentence like
sprichst You speaking are Du might be created. Subsequently, a learning algo-
rithm like skip-gram is trained on such a corpus. The underlying intuition is that
whole sentences are treated as context for learning word vectors. By creating
pseudo-bilingual sentences the tokens sprichst and speaking occur in similar con-
texts and thus should result in similar vector representations.

Le and Mikolov (2014) and Dai et al. (2015) found that dense learned repre-
sentations cannot only represent words but also larger units such as paragraphs.
They called this paragraph vectors. The underlying idea is to have a classifier
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that is able to classify which words are likely to appear in a given paragraph vec-
tor. Levy et al. (2017) used the idea of paragraph vectors to propose an algorithm
based on sentence IDs which we call S-ID. The intuition of S-ID is similar to
pseudo-bilingual sentences: units across languages that occur in similar sentences
in a parallel corpus are likely to have a similar meaning. Instead of using the
individual words as context, S-ID introduces one vector that represents whole
sentences, similar to paragraph vectors. More specifically a modified corpus as
depicted in Figure 1.5 is created and subsequently, skip-gram is trained on such a
corpus. Levy et al. (2017) found that this is a strong baseline for learning multi-
lingual embeddings.

Other approaches for joint learning modify the objective function of skip-gram
to incorporate crosslingual signals such as a dictionary during training, e.g., Mul-
tiskip or Multicluster by Ammar et al. (2016).

1.4 Learning Contextualized Representations

Static representations are a mapping e : V → Rd, thus each unit in the vocab-
ulary is assigned a single vector. More specifically the unit break has the same
representation, whether it refers to taking a break or to break the silence. It is not
immediately clear whether conflating multiple meanings of an ambiguous unit in
a single vector is harmful.

Contextualized representations take the context, in which a unit appears, ex-
plicitly into account. We define a contextualized embedding function as

e : V tmax → Rtmax×d,

where tmax is the maximum number of units that the function can process at once.
Thus, the contextualized embedding of the unit ui in a sentence (u1, . . . , ui, . . . ut)
depends on all other units in the sentence, and the representations for the unit
break in the above examples differ.

1.4.1 Monolingual Representations
In this section, we present several methods to obtain contextualized monolingual
representations.

Pretrained Language Models

Among the first approaches to learn contextualized embeddings are (Peters et al.,
2017; McCann et al., 2017). The central idea is to learn a neural language model
and use the hidden states of the model as contextualized embeddings.
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A language model models the probability that a sequence of units occurs, i.e.,
it models the probability P (u1, u2, . . . , ut). Usually the sequential nature of text
is taken into account and common factorizations of the probability are obtained by
applying the chain rule of probabilities. A forward and backward language model
is given by

P (u0, u1, u2, . . . , ut, ut+1) = P (u0)
t∏

i=0

P (ui+1|u0, . . . , ui)

P (u0, u1, u2, . . . , ut, ut+1) = P (ut+1)
t∏

i=0

P (ui|ut+1, . . . , ui+1),

where u0 and ut+1 are tokens added that indicate the start and end of the sequence.
A statistical model Pθ(ui+1|u0, . . . , ui) can then be for example parameterized

with a recurrent neural network (RNN). A RNN is a model that is recursively
computed as

h(i) = σh(W
(u)e(i) + W(h)h(i−1) + b(h))

y(i+1) = σy(W
(y)h(i) + b(y))

for i = 1, . . . , t, where Pθ(ui+1|u0, . . . , ui) = ŷ
(i+1)
ui+1 is the probability for the unit

occurring at ui+1,

θ = (W(u),W(h) ∈ Rd×d;h(0),b(h) ∈ Rd;E,W(y) ∈ Rn×d;b(y) ∈ Rn)

are the parameters of the model, e(i) is the an embedding vector for the unit ui,
i.e., e(i) = Eui , and σ : Rm → Rm are activation functions. A common choice
is applying tangens hyperbolicus σh(x)k = tanh(xk) component-wise and the
softmax function σy(x)k = exk/

∑n
i=1 e

xi . Usually, as objective function the
negative cross entropy between the ŷ(i+1) and the observed units is used. That is

L(θ, U) = − 1

m

m∑

k=1

tk∑

i=1

log(ŷ(i)
ui
),

where U = (s1, . . . , sm) is a corpus with m sentences with sk = (u1, . . . , utk).
The objective function L is then minimized using for example stochastic gradient
descent.

In practice, such plain RNNs are difficult to train because of misbehaved gra-
dients (Bengio et al., 1994). Variants like Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) or Gated Recurrent Unit (GRU) (Cho et al.,
2014b) are more popular and have been shown to perform better for language
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Output Z

Figure 1.6 – Left: Schema of a transformer encoder block (grey block) that
can be repeated for l layers. Right: schematic description of the Self-Attention
computation.

modeling, e.g., (Sundermeyer et al., 2012). Peters et al. (2017) proposed to train a
language model that consists of a forward and backward LSTM. They then consid-
ered the hidden states of the neural network as embeddings and used them together
with static embeddings as input to models that solved a downstream task, such as
named entity recognition. This approach yielded state of the art performance and
was further developed: Peters et al. (2018) introduced deep contextualized embed-
dings called Embeddings from Language Models (ELMo) and outperformed the
state of the art performance across many tasks. In ELMo, bidirectional LSTMs
are trained with the task of language modeling. One novelty is to let the down-
stream task model learn a weighted combination of hidden representations across
different layers in ELMo.

A big advantage is that language models do not need any manually labeled
data and can thus be (pre-)trained on large amounts of text data obtained for ex-
ample from the internet. Subsequently, these models can be used for downstream
tasks. This motivates the name Pretrained Language Models (PLMs).

Transformer Models

Recurrent neural networks have a sequential nature by definition. However, prop-
agating information across long time spans turned empirically out to be difficult,
e.g., analyzed by Cho et al. (2014a) for machine translation. Extensions such as
attention have been added to overcome this issue (Bahdanau et al., 2015). Vaswani
et al. (2017) proposed a machine translation system that uses attention only: it ex-
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hibits superior performance compared to recurrent neural networks. More specif-
ically, they propose to stack Transformer Encoder Blocks as shown in Figure 1.6.
One such block is a function tθ : Rt×d → Rt×d with tθ(X) =: Z that is computed
as follows:

A =

√
1

dh
XW(q)(XW(k))ᵀ

M = SoftMax(A)XW(v)

O = LayerNorm1(M + X)

F = ReLU(OW(f1) + b(f1))W(f2) + b(f2)

Z = LayerNorm2(O + F),

where SoftMax(A)ij = eAij/
∑t

k=1 e
Aik is the softmax function applied row-

wise, LayerNorm(X)i = g � (Xi − µ(Xi))/σ(Xi) + b is layer normaliza-
tion with µ(x), σ(x) returning the mean and standard deviation of a vector, and
ReLU(X) = max(0,X) is the maximum operator applied component-wise. In
this notation we assume broadcasting as implemented in NumPy (Harris et al.,
2020) when for example adding a vector to a matrix. The parameters of such a
block are

θ = (W(q),W(k),W(v) ∈ Rd×d;g(1),g(2),b(1),b(2) ∈ Rd;

W(f1) ∈ Rd×df ;W(f2) ∈ Rdf×d;b(f1) ∈ Rdf ;b(f2) ∈ Rd),

where d is called the hidden dimension, df the intermediate dimension, and t is the
sequence length. Usually, multiple, say h, attention heads are considered, that is
W(q),W(k),W(v) ∈ Rd×dh where d = hdh. The matrices M(h) ∈ Rt×dh are then
concatenated along the second dimension to obtain M. We call a Transformer a
function Tθ : Rt×d → Rt×d that consists of multiple applications of transformer
blocks, i.e., Tθ(X) = tθl ◦ tθl−1 ◦ · · · ◦ tθ1(X). We say that the encoder has l layers.

Consider now how a Transformer is applied to text data, for example the se-
quence U = (u1, u2, . . . , ut). First, unit embeddings U ∈ Rt×d are created by a
lookup in the embedding matrix E ∈ Rn×d where n is the vocabulary size. When
analyzing a Transformer closely one observes that it is invariant with respect to
reorderings of the input. To counteract this effect, positional encodings are added.
That is, a matrix of position embeddings P ∈ Rt×d is created. The final input to
Tθ is then U + P. Both E and P are learnable parameters of the model. Some-
times additional embeddings such as segment or language embeddings are added
to the input, as well.

31



1.4 Learning Contextualized Representations

Input Top Predictions

Today is [MASK] weather. good, the, bad, fair, dry
No, this is not [MASK]. true, right, it, happening, possible
The egg fell on the floor and [MASK]. shattered, exploded, disappeared, fell, broke
The capital of France is [MASK]. Paris, Lyon, Toulouse, Lille
Yesterday, he [MASK] me the money. gave, handed, left, offered

Table 1.2 – Top predictions for some masked sentences using the pretrained
BERT model “BERT-base-cased” (Devlin et al., 2019).

Bidirectional Encoder Representations from Transformers

PLMs and the Transformer culminated in the development of Bidirectional En-
coder Representations from Transformers (BERT) (Devlin et al., 2019). BERT is
a Transformer model that is pretrained on a variant of language modeling. The
main innovation is that BERT is not a unidirectional language model, but rather
bidirectional. Instead of only having access to the right or left context of a word,
BERT has access to context words on both sides simultaneously. To this end
they propose to use masked language modeling (MLM). Consider again a corpus
U = (u1, . . . , ut). Further, consider a sequence of independent and identically
distributed (iid) Bernoulli random variables (Bi)i=1,...,t, a sequence of iid random
variables (Ri)i=1,...,t with a uniform distribution on [0, 1] and a sequence of iid
random variables (Wi)i=1,...,t that are uniformly distributed on {1, 2, . . . , n} . A
modified version of the corpus U denoted by U ′ is then created by setting

u′i =





ui if Bi = 0

[MASK] if Bi = 1 ∧Ri ≤ ρ1

vWi
if Bi = 1 ∧ ρ1 < Ri ≤ ρ2

ui if Bi = 1 ∧ ρ2 < Ri,

where vWi
is essentially a randomly sampled unit from the vocabulary and [MASK]

is a special token. A typical value is P (B = 1) = 0.15 and ρ1 = 0.8, ρ2 = 0.9.
The modified corpus is then used as input to a Transformer. When X is a mod-
ified input to the Transformer model, it can be used to predict the original in-
put. To this end the output Tθ(X) is once more transformed to obtain S(X) =
LayerNorm(σ(Tθ(X)W(s)+b(s))) where W(s) ∈ Rd×d, b(s) ∈ Rd are parameters
and σ is some activation function applied component-wise. In order to get token
predictions the token embeddings from the first layer are reused. Thus, the predic-
tion scores are obtained by P (X) = SoftMax(S(X)Eᵀ + bp) where bp ∈ Rn is a
token-specific bias. For each position i, P (X)i can be interpreted as a distribution
over vocabulary units. That is, p̂ui = P (X)i,ui indicates the probability that the
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model predicts the correct unit ui at position i. The objective function is

L(θ, ψ, U, U ′) = −1

t

t∑

i=1

log(p̂ui)1Bi
, (1.3)

where ψ are all parameters from the prediction head as described above. Note that
in practice the input is again split into shorter sequences such as sentences. BERT
is then trained by minimizing the objective function in Eq. 1.3. Table 1.2 shows
some predictions by a pretrained model.

There are additional technical aspects. BERT uses a wordpiece tokenizer
(Schuster and Nakajima, 2012) to split text into subword units. This is advan-
tageous as it reduces the memory requirements of the embedding matrix E while
enabling the model to cover a large variety of text sequences. Further, the Adam
optimizer (Kingma and Ba, 2015) is used and regularization methods such as
dropout (Srivastava et al., 2014) are integrated into the model. The original BERT
model has a second loss term that deals with the task of next sentence prediction.
However, it has been found that this term does not contribute to the performance
of the model (Liu et al., 2019). Thus, this term is mostly omitted and we do not
describe it here.

The principle of using BERT for downstream tasks is then similar to standard
static embeddings. For sequence labeling tasks the output probabilities per token
are usually obtained by adding a feed forward layer, called a prediction head, on
top of the pretrained transformer, that is P (X) = SoftMax(T (X)Wp+bp), where
Wp ∈ Rd×nl and bp ∈ Rnl for nl possible labels in the task. All parameters,
from this new task-specific prediction head, which we denote again by ψ and the
parameters θ from the pretrained Transformer model, are then jointly trained by
optimizing a loss function that is suitable for the downstream task (e.g., categorical
cross-entropy). This process is called fine-tuning. For sequence classification
typically only the first output vector of a sequence, the one corresponding to the
start-of-sequence token is used.

Alternative Pretrained Language Models

ELMo and BERT initiated the development of a huge variety of pretrained lan-
guage models. Since then pretrained models with different sizes, model architec-
tures, and trained on different data have been released. We mention some of the
most important models here. The Transformer decoder based GPT-family (Rad-
ford et al., 2019; Brown et al., 2020) is well suited for text generation. They
have been shown to solve tasks with very few training examples. With ALBERT,
Lan et al. (2020) propose weight sharing across layers, factorizing the embedding
lookup matrix, and using a more challenging alternative to the next sequence pre-
diction task. A different approach is pursued by ELECTRA (Clark et al., 2020b),
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a model that consists of a generator and discriminator part. The generator per-
forms the mask language modeling task whereas the discriminator needs to predict
which tokens are from the original text data. Other interesting models are BART
(Lewis et al., 2020), that is trained by corrupting the input text with multiple trans-
formations, or T5 (Raffel et al., 2020) focused on transfer learning. Throughout
this work, we mostly focus on BERT.

1.4.2 Multilingual Representations
With BERT there is an effective method for learning high quality contextualized
representations. We are now interested in multilingual contextualized representa-
tions.

Joint Training

A multilingual BERT (mBERT) version has been presented in the context of
(Devlin et al., 2019). The underlying idea is simple: consider Wikipedia data
across multiple languages (in the case of mBERT, 104 languages) denoted by
Ul1 , Ul2 , . . . . A shared vocabulary across these corpora is learned, that is, in-
dividual tokens can appear in multiple languages (e.g., end can appear both in
the English word ending and the German word enden). Subsequently, the data
from all Wikipedias is concatenated and shuffled and a standard BERT model is
trained. There is no crosslingual supervision in terms of parallel data or a dictio-
nary. Also, the loss function does not exhibit any term that encourages the model
to become multilingual. Technical details include for example up- and downsam-
pling of the training corpus to achieve better performance for languages with small
Wikipedias. This model has been found to yield good multilingual representations
when evaluating them with methods described in Section 1.5.

Alternative Approaches

There is a range of work that tries to improve the multilinguality of mBERT.
Translation language modeling proposed by Conneau and Lample (2019) uses
parallel sentences. The input to a Transformer model can look like “The sun
shines. - Die [MASK] scheint.” The model can now use the English context to
predict the unit “Sonne” in the German sentence. Intuitively, this should increase
the multilinguality of the model. Related to this, Cao et al. (2020) introduce a reg-
ularization term that encourages the model to get similar representations for words
that are aligned in a parallel corpus. In the case of the example, the representations
of “sun” and “Sonne” are encouraged to have a high cosine similarity. Conneau
et al. (2020a) do crosslingual learning at scale: they use more data, a larger shared
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vocabulary, and omit the next sequence prediction term. Similar to monolingual
mapping approaches Conneau et al. (2020b) showed that monolingual contextual-
ized embeddings can be mapped into a common multilingual model using linear
transformations. Throughout this thesis, we mostly focus on mBERT.

1.5 Evaluating Multilingual Representations
So far we have discussed how to obtain static and contextualized representations
both monolingually and multilingually. The actual objectives, however, have been
vague: (a) how to evaluate the quality of representations, (b) what is a language,
(c) and when are representations multilingual?

(a) In the monolingual case, the quality of static embeddings is typically as-
sessed using intrinsic and extrinsic evaluation. Intrinsic evaluation assesses prop-
erties of the embeddings using tasks like word similarity, e.g., (Bruni et al., 2014;
Hill et al., 2015; Gerz et al., 2016), word analogy, e.g., (Mikolov et al., 2013c;
Gladkova et al., 2016) or correlation with linguistic features, e.g., QVEC by
Tsvetkov et al. (2015). With extrinsic evaluation, embeddings are used as input to
a model that solves a downstream task, like part-of-speech tagging or named en-
tity recognition. Monolingual contextualized embeddings can be evaluated using
perplexity in language modeling. More commonly used, however, is a range of
extrinsic tasks for which the model is finetuned, e.g., the GLUE or SuperGLUE
benchmarks (Wang et al., 2018, 2019) for natural understanding or again tasks
like named entity recognition.

(b) The decision whether text is written in different languages is not as clear as
it seems at first sight. Edge cases are for example heavily code-mixed text (i.e., a
mix of two languages), dialects (e.g., Bavarian), and specialized domain language
(e.g., a contract vs. a tweet). For the sake of simplicity, in this thesis, we say that
data is from two different languages if it has been assigned different ISO-639-3
codes.

(c) For evaluating the multilingual representations consider the following use
cases for which they are most likely useful. (i) Translation. If representations of
units (e.g., words, phrases or sentences), that are semantically similar, are close to
each other across languages, they can be used e.g., for word translation using sim-
ple similarity search in a numerical space. Other applications include crosslingual
sentence retrieval or word alignment. (ii) Zero-shot transfer. Consider multilin-
gual representations, a model that uses these representations and is only trained
on English data for a specific downstream task such as named entity recognition.
If the multilingual representations now allow the model not only to recognize en-
tities in English but also in other languages we call this zero-shot transfer across
languages. This is useful in practice as annotated training data for downstream
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tasks involves manual labor: annotating data for 100s or 1000s languages is a te-
dious, expensive, and error-prone process which is why zero-shot transfer is use-
ful for practitioners. (iii) Low-resource processing. Most text data is available
in English. However, there is a large number of languages for which few data is
available, called low-resource languages. Training a multilingual model such that
downstream task performance for low-resource languages is improved is a central
objective of multilingual NLP. (iv) Unified modeling. Last, even in the case of
abundant data in all languages, having a single statistical model that can process
multiple languages is desirable as it is easier to maintain than having hundreds of
monolingual models.

1.5.1 Intrinsic Evaluation
Throughout this section, we assume we have access to static and contextualized
multilingual embeddings.

Word Translation

Consider a bilingual dictionary D = {(v(e)1 , v
(f)
1 ), (v

(e)
2 , v

(f)
2 ), . . . , (v

(e)
m , v

(f)
m )} and

the vocabularies V (e), V (f) for two languages e, f with size ne, nf . Let E(e) ∈
Rne×d,E(f) ∈ Rnf×d be embeddings for each unit in the vocabulary. For contex-
tualized embedding models these can be obtained by feeding each unit without
any context into the model. A translation for a query v

(e)
i is then obtained by

considering the nearest neighbor in the embedding space of language f , i.e.,

v̂
(f)
i = arg max

j=1,...,nf

cos-sim(E
(e)

v
(e)
i

,E
(f)

v
(f)
j

).

Instead of cosine similarity other similarity measures such as cross-domain sim-
ilarity local scaling (Lample et al., 2018) have been found to yield better results.
The evaluation metric is hits at one, which we define as

1

m

m∑

i=1

1{v̂(f)i = v
(f)
i }.

Analogously when not only retrieving the nearest neighbor but the list of k nearest
neighbors one can compute hits at k. Word translation datasets can for example
be found in (Dinu and Baroni, 2015) or (Lample et al., 2018).

Sentence Retrieval

Similar to word translation, one can evaluate representations using sentence re-
trieval. Instead of a dictionary one now considers parallel sentences
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Ski excursions are excellent .

Skiausflüge sind hervorragend .

Figure 1.7 – Example of a word alignment.

U = {(s(e)1 , s
(f)
1 ), (s

(e)
2 , s

(f)
2 ), . . . , (s

(e)
m , s

(f)
m )}. Let E(s

(e)
i ) be the embeddings of

sentence s(e)i = (u1, . . . , uti) that consists of ti units. One can then obtain a sen-
tence representation by simply averaging across unit representation, i.e.,

e
s
(e)
i

=
1

ti

ti∑

j=1

E
(s

(e)
i )

j .

Once sentence representations are obtained the evaluation is identical to word
translation. Popular benchmarks are from the BUCC shared task (Zweigenbaum
et al., 2017) or the Tatoeba test set by Artetxe and Schwenk (2019).

Word Alignment

Word alignment is a task where translations of units in two parallel sentences
should be identified, see Figure 1.7 for an example. Consider the same paral-
lel corpus as for sentence retrieval. For a parallel sentence pair s(e)i , s

(f)
i a word

alignment is a bipartite graph, where the units in s(e)i and s(f)i are the nodes of the
partitions in the graph denoted by V (e)

i , V
(f)
i . Typically, there is a set of sure and

possible edges, Si, Pi ⊂ V
(e)
i ×V (f)

i where Si ⊂ Pi. In an alignment gold standard
the edges are manually created. The task is to predict the edges automatically, i.e.,
create a set of predicted edges Ai. Edge sets without index denote the union of
all edges across all sentences, i.e., S =

⋃m
i=1 Si. Standard evaluation metrics are

then precision, recall, F1 and alignment error rate (AER) (Och and Ney, 2000)
computed by

prec =
|A ∩ P |
|A| , rec =

|A ∩ S|
|S| , F1 =

2 prec rec
prec + rec

,

AER = 1− |A ∩ S|+ |A ∩ P ||A|+ |S| .

In the simplest case, the predicted alignment edges Ai for a sentence can be ob-
tained by performing nearest neighbor search in an embedding space restricted on
the units that occur in the sentences.
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BERT θ

Prediction Head ψ

Input s

Prediction ŷ Label y

Updating
Stage Parameters Data

Pretraining θ U (eng),U (spa),U (zho), . . .

Finetuning ψ, θ D(eng)
train

Evaluation D(eng)
test

Zero-shot D(spa)
test ,D(zho)

test , . . .

Figure 1.8 – Overview of extrinsic evaluation with zero-shot language trans-
fer. U is some text data, e.g., Wikipedia in the corresponding languages and
D is labeled training or test data for a specific task such as natural language
inference or named entity recognition.

1.5.2 Extrinsic Evaluation
In principle, any downstream task can be considered for multilingual evaluation
as long as task data in multiple languages is available. Some popular benchmarks
are: natural language inference (NLI), e.g., XNLI by Conneau et al. (2018). NLI is
a classification task where an ordered sentence pair sp, sh, a premise and a hypoth-
esis, is assigned a label out of {neutral, entailment, contradiction}. The predic-
tions are then evaluated using accuracy. Other tasks are named entity recognition,
e.g., the CoNLL shared task 2003 (Tjong Kim Sang and De Meulder, 2003) or
Wikiann by Pan et al. (2017), or question answering, e.g., TyDi by Clark et al.
(2020a) or XQuAD by Artetxe et al. (2020a). For additional tasks see (Hu et al.,
2020); they present XTREME, a benchmark consisting of nine task.

Zero-shot Transfer

Consider a setup where training data consisting of text sequences and correspond-
ing labels in one language is available,

D(e)
train =

(
(y

(e)
1 , s

(e)
1 ), . . . , (y

(e)
k , s

(e)
k )
)
,

and test data in multiple languages, D(e)
test,D(f)

test ,D(g)
test, . . . . The basic idea now is to

model the probability that a sequence s has labels y, i.e., P (y|s), for all languages
with a function pφ(s) = cψ◦eθ(s). Here, eθ(s) is a pretrained multilingual embed-
ding function such as multilingual BERT. The parameters θ are learned during the
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pretraining stage where unlabeled data U (e),U (f),U (g), . . . is used. In the finetun-
ing stage the parameters φ = (ψ, θ) are learned using D(e)

train, i.e., the parameters
θ are further finetuned. Once the optimal parameters, denoted by a star, are ob-
tained, the model pφ?(s) is evaluated on the test data for all languages. The last
stage is called zero-shot transfer. See Figure 1.8 for an overview.

Low-resource Processing

Again, downstream tasks are considered. Consider unlabeled data U (r) and la-
beled data D(r)

train,D
(r)
test in a low-resource language r (i.e., the datasets have few

instances). One objective of multilingual representation learning is to use data
from another language U (e) together with U (r) to learn multilingual representa-
tions. When these representations are then used for solving the downstream task,
the objective is to increase the performance on D(r)

test.

Unified Modeling

In this setup training and test data is available in all considered languages. The
objective is to model several languages together without performance decrease
compared to an individual model per language.
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1.6 Conclusion
This introductory chapter was meant to describe basic concepts in the field of
multilingual representation learning that are relevant to this thesis. We motivated
multilingual representations and set mathematical and linguistic foundations. Fur-
ther, we have presented existing methods on how to learn static and contextualized
representations for textual units. Multilinguality can be achieved through joint
training or post-hoc mapping, either unsupervised or by using crosslingual sig-
nals. Last, we outlined methods to evaluate the degree of multilinguality of such
representations. Throughout the next chapters, we analyze and use the presented
methods in a series of research papers.

1.6.1 Contributions
In light of our four research questions posed at the beginning we can categorize
and summarize our contributions in this thesis as follows.

i) Properties: We showed that pretrained multilingual language models ex-
hibit a high similarity across languages on the token level in the middle lay-
ers. Further, we created a multilingual dataset to investigate factual knowl-
edge in language models.

ii) Limits: We explored the limits of multilingual representations by creating
embedding spaces that cover 1259 languages. In addition, we showed that
multilinguality research can be feasible in a small and computationally effi-
cient setup.

iii) Analysis: We proposed a closed form solution for interpreting distributed
representations and identified factors that influence the multilinguality of
language models trained without any multilingual supervision.

iv) Improvements: We developed concept based embedding learning tailored
for learning massively multilingual static embeddings. Further, we pro-
posed a masking scheme based on code-switching that achieves a higher
degree of multilinguality in pretrained language models.

1.6.2 Limitations
Naturally, the scope of this work is quite limited and we can only deal with a small
part of the research questions that are outlined in Section 1.1.2. Many important
aspects in the field of multilingual distributed representations have not been ad-
dressed. For example, the definition of language has not been questioned. Further,
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we pursue a language agnostic approach. Investigating and incorporating linguis-
tic properties and similarities across languages is a promising research approach
for future work. Similarly, using non-textual crosslingual signals is an interesting
approach that is beyond the scope of this work. Last, one can ask the question
whether multilingual models are necessary at all or whether it is a more promis-
ing path to machine translate data from all languages into English for automated
processing.

1.6.3 Future Work
For each of the four research questions we describe potential future work and
related literature that addresses these research directions.

i) The objective of multilingual representation learning can be made more spe-
cific. The ultimate goal of multilingual learning is quite broad and specific
objectives are often somewhat vague. For example, it is not completely
clear whether high similarity of semantically similar units and good zero-
shot transfer capabilities describe the same objective. As a consequence the
evaluation setup currently used might not be ideal and could be improved
(Glavaš et al., 2019; Artetxe et al., 2020b). Further, it could be investi-
gated whether multilingual representations can be separated into language-
specific and language-agnostic parts, e.g., along the lines of (Pires et al.,
2019; Libovický et al., 2020), and whether this is beneficial or harmful for
multilingual applications.

ii) Limits of multilingual embedding spaces can be investigated. For example,
it is unclear which units across languages are compatible and can be rep-
resented in a single space. Latin characters in English are somewhat simi-
lar to Cyrillic characters but quite different from Chinese. Thus, one can
hypothesize that English character representations are somewhat incom-
patible with Chinese character representations. Subword representations
in English, however, might be more similar to character representations in
Chinese. Loosely related work in that direction investigates isomorphy of
embeddings across languages (Vulić et al., 2020).

iii) In order to assess the quality and differences of existing algorithms, new
evaluation resources can be created. While there is a recent surge of re-
sources, e.g., (Roy et al., 2020; Clark et al., 2020a; Ponti et al., 2020),
and datasets with good language coverage exist for some tasks like part-
of-speech tagging and named entity recognition (Nivre et al., 2020; Rahimi
et al., 2019), there is room for creating new datasets across a variety of tasks
with an increased language coverage and language diversity.
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iv) Last, a higher degree of multilinguality can be achieved by using existing
crosslingual resources more effectively. That is, to use readily available
word dictionaries and parallel sentences rather than focusing on the some-
what artificial scenario of unsupervised multilingual representation learning
(Vulić et al., 2019). Similarly, zero-shot transfer is, albeit being interest-
ing from an academic perspective, somewhat artificial in reality as it seems
feasible to obtain at least a few annotated training samples per language.
Few-shot training, i.e., using a small number of annotated samples for each
language generally yields improved performance (Lauscher et al., 2020).
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Chapter 2

Embedding Learning Through
Multilingual Concept Induction

43



Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1520–1530
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

1520

Embedding Learning Through Multilingual Concept Induction

Philipp Dufter1, Mengjie Zhao2, Martin Schmitt1, Alexander Fraser1, Hinrich Schütze1

1 Center for Information and Language Processing (CIS) LMU Munich, Germany
2 École Polytechnique Fédérale de Lausanne, Switzerland

{philipp,martin,fraser}@cis.lmu.de, mengjie.zhao@epfl.ch

Abstract

We present a new method for estimat-
ing vector space representations of words:
embedding learning by concept induction.
We test this method on a highly paral-
lel corpus and learn semantic representa-
tions of words in 1259 different languages
in a single common space. An exten-
sive experimental evaluation on crosslin-
gual word similarity and sentiment analy-
sis indicates that concept-based multilin-
gual embedding learning performs better
than previous approaches.

1 Introduction

Vector space representations of words are widely
used because they improve performance on mono-
lingual tasks. This success has generated inter-
est in multilingual embeddings, shared representa-
tion of words across languages (Klementiev et al.,
2012). Such embeddings can be beneficial in ma-
chine translation in sparse data settings because
multilingual embeddings provide meaning repre-
sentations of source and target in the same space.
Similarly, in transfer learning, models trained in
one language on multilingual embeddings can be
deployed in other languages (Zeman and Resnik,
2008; McDonald et al., 2011; Tsvetkov et al.,
2014). Automatically learned embeddings have
the added advantage of requiring fewer resources
for training (Klementiev et al., 2012; Hermann and
Blunsom, 2014b; Guo et al., 2016). Thus, mas-
sively multilingual word embeddings (i.e., cover-
ing 100s or 1000s of languages) are likely to be
important in NLP.

The basic information many embedding learn-
ers use is word-context information; e.g., the em-
bedding of a word is optimized to predict a rep-
resentation of its context. We instead learn em-

H?m,F�Ø
BmK,m�K

?�F,bȹB

+v�,ivBǶ�

#Bb,rQi�

�DB,`?ďď
�?F,+m^@�?Ê

iTB,r�`�

b�;,M;m

KBQ,M/mi�

Figure 1: Example of a CLIQUE concept: “water”

beddings from word-concept information. As a
first approximation, a concept is a set of seman-
tically similar words. Figure 1 shows an example
concept and also indicates one way we learn con-
cepts: we interpret cliques in the dictionary graph
as concepts. The nodes of the dictionary graph
are words, its edges connect words that are trans-
lations of each other. A dictionary node has the
form prefix:word, e.g., “tpi:wara” (upper left node
in the figure). The prefix is the ISO 639-3 code of
the language; tpi is Tok Pisin.

Our method takes a parallel corpus as input and
induces a dictionary graph from the parallel cor-
pus. Concepts and word-concept pairs are then
induced from the dictionary graph. Finally, em-
beddings are learned from word-concept pairs.

A key application of multilingual embeddings
is transfer learning. Transfer learning is mainly of
interest if the target is resource-poor. We there-
fore select as our dataset 1664 translations in 1259
languages of the New Testament from PBC, the
Parallel Bible Corpus. Since “translation” is an
ambiguous word, we will from now on refer to the
1664 translations as “editions”. PBC is aligned
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English King James Version (KJV) German Elberfelder 1905 Spanish Americas
And he said , Do it the second
time . And they did it the second
time . . .

Und er sprach : Füllet vier Eimer mit Wasser , und gießet es
auf das Brandopfer und auf das Holz . Und er sprach : Tut es
zum zweiten Male ! Und sie taten es zum zweiten Male . . .

Y dijo : Llenad cuatro cántaros de agua y derramadla so-
bre el holocausto y sobre la leña . Después dijo : Hacedlo
por segunda vez ; y lo hicieron por segunda vez . . .

Table 1: Instances of verse 11018034. This multi-sentence verse is an example of verse misalignment.

on the verse level; most verses consist of a single
sentence, but some contain several (see Table 1).
PBC is a good model for resource-poverty; e.g.,
the training set (see below) of KJV contains fewer
than 150,000 tokens in 6458 verses.

We evaluate multilingual embeddings on two
tasks, roundtrip translation (RT) and sentiment
analysis. RT on the word level is – to our knowl-
edge – a novel evaluation method: a query word
w of language L1 is translated to its closest (with
respect to embedding similarity) neighbor v in L2

and then backtranslated to its closest neighbor w′

in L1. RT is successful if w = w′. There are
well-known concerns about RT when it is used in
the context of machine translation. A successful
roundtrip translation does not necessarily imply
that v is of high quality and it is not possible to
decide whether an error occurred in the forward
or backward translations. Despite these concerns
about RT on the sentence level, we show that RT
on the word level is a difficult task and an effective
measure of embedding quality.

Contributions. (i) We introduce a new em-
bedding learning method, multilingual embedding
learning through concept induction. (ii) We show
that this new concept-based method outperforms
previous approaches to multilingual embeddings.
(iii) We propose both word-level and character-
level dictionary induction methods and present
evidence that concepts induced from word-level
dictionaries are better for easily tokenizable lan-
guages and concepts induced from character-level
dictionaries are better for difficult-to-tokenize lan-
guages. (iv) We evaluate our methods on a corpus
of 1664 editions in 1259 languages. To the best of
our knowledge, this is the first detailed evaluation,
involving challenging tasks like word translation
and crosslingual sentiment analysis, that has been
done on such a large number of languages.

2 Methods

2.1 Pivot languages

Most of our methods are based on bilingual dic-
tionary graphs. With 1664 editions, it is com-
putationally expensive to consider all editions si-

multaneously (more than 106 dictionaries). Thus
we split the set of editions in 10 pivot and 1654
remaining editions, and do not compute nor use
dictionaries within the 1654 editions. We refer to
the ten pivot editions as pivot languages and give
them a distinct role in concept induction. We refer
to all editions (including pivot editions) as target
editions. Thus, a pivot edition has two roles: as a
pivot language and as a target edition.

We select the pivot languages based on their
sparseness. Sparseness is a challenge in NLP.
In the case of embeddings, it is hard to learn a
high-quality embedding for any infrequent word.
Many of the world’s languages (including many
PBC languages) exhibit a high degree of sparse-
ness. But some languages suffer comparatively
little from sparseness when simple preprocessing
like downcasing and splitting on whitespace is em-
ployed.

A simple measure of sparseness that affects em-
bedding learning is the number of types. Fewer
types is better since their average frequency will
be higher. Table 2 shows the ten languages in PBC
that have the smallest number of types in 5000
randomly selected verses. We randomly sample
5000 verses per edition and compare the number
of types based on this selection because most edi-
tions do not contain a few of the selected 6458
verses.

2.2 Character-level modeling (CHAR)

We will see that tokenization-based models have
poor performance on a subset of the 1259 lan-
guages. To overcome tokenization problems, we
represent a verse of length m bytes, as a sequence
of m − (n − 1) + 2 overlapping byte n-grams.
In this paper, “n-gram” always refers to “byte n-
gram”. We pad the verse with initial and final
space, resulting in two additional n-grams (hence
“+2”). This representation is in the spirit of earlier
byte-level processing, e.g., (Gillick et al., 2016).
There are several motivations for this. (i) We can
take advantage of byte-level generalizations. (ii)
This is robust if there is noise in the byte encod-
ing. (iii) Characters have different properties in
different languages and encodings, e.g., English
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iso name family; (example) region ty
pe

s

to
ke

ns

lhu Lahu Sino-Tibetan; Thailand 1452 268
ahk Akha Sino-Tibetan; China 1550 315
hak Hakka Chinese Chinese; China 1596 242
ium Iu Mien Hmong-Mien; Laos 1779 191
tpi Tok Pisin Creole; PNG 1815 177
mio Pinotepa Mixtec Oto-Manguean; Oaxaca 1828 208
cya Highland Chatino Oto-Manguean; Oaxaca 1868 231
bis Bislama Creole; Vanuatu 1872 226
aji Ajië Austronesian; Houaı̈lou 1876 194
sag Sango Creole; Central Africa 1895 192

Table 2: Our ten pivot languages, the languages in
PBC with the lowest number of types. Tokens in
1000s. Tok Pisin and Bislama are English-based
and Sango is a Ngbandi-based creole. PNG =
Papua New Guinea

UTF-8 has properties different from Chinese UTF-
8. Thus, universal language processing is easier to
design on the byte level.

We refer to this ngram representation as CHAR
and to standard tokenization as WORD.

2.3 Dictionary induction

Alignment-based dictionary. We use fastalign
(Dyer et al., 2013) to compute word alignments
and use GDFA for symmetrization. All align-
ment edges that occurred at least twice are added
to the dictionary graph. Initial experiments indi-
cated that alignment-based dictionaries have poor
quality for CHAR, probably due to the fact that
overlapping ngram representations of sentences
have properties quite different from the tokenized
sentences that aligners are optimized for. Thus
we use this dictionary induction method only for
WORD and developed the following alternative
for CHAR.

Correlation-based dictionary (χ2). χ2 is a
greedy algorithm, shown in Figure 2, that selects,
in each iteration, the pair of units that has the high-
est χ2 score for cooccurrence in verses. Each se-
lected pair is added to the dictionary and removed
from the corpus. Low-frequency units are se-
lected first and high-frequency units last; this pre-
vents errors due to spurious association of high-
frequency units with low-frequency units. We per-
form dmax = 5 passes; in each pass, the maximum
degree of a dictionary node is 1 ≤ d ≤ dmax. So
if the node has reached degree d, it is ineligible
for additional edges during this pass. Again, this
avoids errors due to spurious association of high-
frequency units that already participate in many

Algorithm 1 χ2-based dictionary induction
1: procedure DICTIONARYGRAPH(C)
2: A = all-edges(C), E = []
3: for d ∈ [1, 2, . . . , dmax] do
4: fmax = 2
5: while fmax ≤ |C| do
6: fmin = max(min(5, fmax), 1

10
fmax)

7: (χ2, s, t) = max-χ2-edge(A, fmin, fmax, d)
8: if χ2 < χmin then
9: fmax = fmax + 1; continue

10: end if
11: T = extend-ngram(A, fmin, fmax, d, s, t)
12: append(E, s, T )
13: remove-edges(A, s, T )
14: end while
15: end for
16: return dictionary-graph = (nodes(E), E)
17: end procedure

Figure 2: χ2-based dictionary induction. C is a
sentence-aligned corpus. A is initialized to con-
tain all edges, i.e., the fully connected bipartite
graph for each parallel verse. E collects the se-
lected dictionary edges. d is the edge degree: in
each pass through the loop only edges are consid-
ered whose participating units have a degree less
than d. fmax is the maximum frequency during this
pass. |C| is the number of sentences in the cor-
pus. extend-ngram extends a target ngram to left
/ right; e.g., if s = “jisas” is aligned with ngram
t = “Jesu” in English, then “esus” is added to T . t
is always a member of T . remove-edges removes
edges in A between s and a member of T .

edges with low-frequency units. Recall that this
method is only applied for CHAR.

Intra-pivot dictionary. We assume that pivot
languages are easily tokenizable. Thus we only
consider alignment-based dictionaries (in total 45)
within the set of pivot languages.

Pivot-to-target dictionary. We compute an
alignment-based and a χ2-based dictionary be-
tween each pivot language and each target edition,
yielding a total of 10*1664 dictionaries per dictio-
nary type. (Note that this implies that, for χ2, the
WORD version of the pivot language is aligned
with its CHAR version.)

2.4 Concepts

A concept is defined as a set of units that has two
subsets: (i) a defining set of words from the ten
pivot languages and (ii) a set of target units (words
or n-grams) that are linked, via dictionary edges,
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Algorithm 2 CLIQUE concept induction

1: procedure CONCEPTS(I ∈ Rn×n, θ, ν)
2: G = ([n], {(i, j) ∈ [n]× [n] | Iij > θ})
3: cliques = get-cliques(G, 3)
4: Gc := (Vc, Ec) = (∅, ∅)
5: for c1, c2 ∈ cliques× cliques do
6: if |c1 ∩ c2| ≥ νmin{|c1|, |c2|} then
7: Vc = Vc ∪ {c1, c2}, Ec = Ec ∪ {(c1, c2)}
8: end if
9: end for

10: metacliques = get cliques(Gc, 1)
11: concepts = {flatten(c) | c ∈ metacliques}
12: return concepts
13: end procedure

Figure 3: CLIQUE concept induction. I
is a normalized adjacency matrix of a dictio-
nary graph (i.e., relative frequency of alignment
edges with respect to possible alignment edges).
get-cliques(G,n) returns all cliques in G of size
greater or equal to n. flatten(A) flattens a set of
sets. [n] denotes {1, 2, . . . , n}. θ = 0.4, ν = 0.6.

to the pivot subset. We selected the ten “easiest” of
the 1664 editions as pivot languages. Our premise
is that semantic information is encoded in a simply
accessible form in the pivot languages and so they
should offer a good basis for learning concepts.

We induce concepts from the dictionary graph, a
multipartite graph consisting of ten pivot language
node/word sets and all target edition node/unit sets
(where units are words or n-grams). Edges either
connect pivot nodes with other pivot nodes or pivot
nodes with target units.

2.4.1 CLIQUE concept induction
If concepts corresponded to each other in the
overtly coding pivot languages, if words were not
ambiguous and if alignments were perfect, then
concepts would be cliques in the pivot part of
the dictionary graph. These conditions are too
strict for natural languages, so we relax them in
our CLIQUE concept induction algorithm (Fig-
ure 3). The algorithm identifies maximal multilin-
gual cliques (size ≥ 3) within the dictionary graph
of the pivot languages and then merges two cliques
if they share enough common words. The merging
lets us identify clique-based concepts even if, e.g.,
a dictionary edge between two words is missing. It
also accommodates the situation where more than
one word of a pivot language should be part of a
concept. The merging step can also be interpreted
as metaconcept induction.

Once we have identified the cliques, we project

N(t) ={bis:Jorim, ium:yo-lim, sag:Yorim, tpi:Jorim}

t∈T={ac0:Yorim,atg0:iJorimu,bav0:Jorim,bom0:Yorim,
dik0:Jorim, dtp0:Yorim, duo0:Jorim, eng1:Jorim,
engb:Jorim, fij2:Lorima, fij3:Jorima,
gor0:Yorim, hvn0:Yorim, ibo0:Jorim, iri0:Jorri,
kmr0:Yorı̂m, ksd0:Iorim, kwd0:Jorim, lia0:Yorimi,
loz0:Jorimi, mbd0:Hurim, mfh0:Yorim, min0:Yorim,
mrw0:Yorim,mse0:Jorimma,naq0:Jorimmi, smo1:Iorimo,
srn1:Yorim, tsn2:Jorime, yor2:Jórı́mù}

Figure 4: Target neighborhood concept example:
N(t) ∪ T . N(t) is the target neighborhood for
each of the target words in T .

them to the target editions: a target-unit is added to
a clique if it is connected to a proportion ν = 0.6
of its member words (to allow for missing edges).
This identifies around 150k clique concepts that
cover around 8k of the total vocabulary of 24k En-
glish words (WORD).

As an alternative to cliques, Ammar et al.
(2016) use connected components (CCs). The
reachability relation (induced by CC) is the tran-
sitive closure of the edge relation. This results
in semantically unrelated words being in the same
concept for very low levels of noise. In contrast,
cliques are more “strict”: only node subsets are
considered whose corresponding edge relation is
already transitive (or almost so for ν = 0.6).
Transitivity across languages often does not hold
in alignments or dictionaries; see, e.g., Simard
(1999). This is why we only consider cliques
(which reflect already existent transitivity) rather
than CCs, which impose transitivity where it does
not hold naturally.

2.4.2 N(t) (target neighborhood) concept
induction

Let N(t) be the neighborhood of target node t in
the multipartite dictionary graph, i.e., the set of
pivot words that are linked to t. We refer to N(t)
as target neighborhood. Figure 4 shows an exam-
ple of such a target neighborhood, the set N(t)
consisting of four words.1 A target neighborhood
concept consists of a set T of pivot words and all
target words t for which T = N(t) holds.

Motivation. Suppose N(t) = N(u) for tar-
get nodes t and u from two different languages
and |N(t)| covers several pivot languages, e.g.,
|N(t)| = |N(u)| = 4 as in the figure. Again,
if units closely corresponded to concepts, if there
were no ambiguity, if the dictionary were perfect,

1We use numbers and lowercase letters at the fourth posi-
tion of the prefix to distinguish different editions in the same
language, e.g., “0”, “3” and “e” in “ace0”, “fij3”, “enge”.
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then we could safely conclude that the meanings
of t and u are similar; if the meanings of t and u
were unrelated, it is unlikely that they would be
aligned to the exact same words in four different
languages. In reality, there is no exact meaning-
form correspondence, there is ambiguity and the
dictionary is not perfect. Still, we will see be-
low that defining concepts as target neighborhoods
works well.

2.4.3 Filtering target neighborhood concepts

In contrast to CLIQUE, we do not put any con-
straint on the pivot-to-pivot connections within
target neighborhoods; e.g., in Figure 4, we do
not require that “bis:Jorim” and “sag:Yorim” are
connected by an edge. We evaluate three post-
filtering steps of target neighborhoods to increase
their quality: restricting target neighborhoods to
those that are cliques in N(t)-CLIQUE; to those
that are connected components in N(t)-CC; and
to those of size two that are valid edges in the
dictionary in N(t)-EDGE. For N(t)-EDGE, we
found that taking all edges performs well, so we
also consider edges that are proper subsets of tar-
get neighborhoods.

2.5 Embedding learning

We adopt the framework of embedding learning
algorithms that define contexts and then sample
pairs of an input word (more generally, an input
unit) and a context word (more generally, a con-
text unit) from each context. The only difference
is that our contexts are concepts. For simplicity,
we use word2vec (Mikolov et al., 2013a) as the
implementation of this model.2

2.6 Baselines

Baselines for multilingual embedding learning.
One baseline is inspired by (Vulić and Moens,
2015). We consider words of one aligned verse
in the pivot languages and one target language as
a bag of words (BOW) and consider this bag as a
context.3

Levy et al. (2017) show that sentence ID fea-
tures (interpretable as an abstract representation of
the word’s context) are effective. We use a corpus
with lines consisting of pairs of an identifier of a

2We use code.google.com/archive/p/word2vec
3The actual implementation slightly differs to avoid very

long lines. It does only consider two pivot languages at a
time, but writes each verse multiple times.

verse and a unit extracted from that verse as input
to word2vec and call this baseline S-ID.

Lardilleux and Lepage (2009) propose a sim-
ple and efficient baseline: sample-based concept
induction. Words that strictly occur in the same
verses are assigned to the same concept. To in-
crease coverage, they propose to sample many dif-
ferent subcorpora.4 We induce concepts using this
method and project them analogous to CLIQUE.
We call this baseline SAMPLE.

One novel contribution of this paper is
roundtrip evaluation of embeddings. We learn
embeddings based on a dictionary. The question
arises: are the embeddings simply reproducing the
information already in the dictionary or are they
improving the performance of roundtrip search?

As a baseline, we perform RTSIMPLE, a sim-
ple dictionary-based roundtrip translation method.
Retrieve the pivot word p in pivot language Lp
(i.e., p ∈ Lp) that is closest to the query q ∈ Lq.
Retrieve the target unit t ∈ Lt that is closest to p.
Retrieve the pivot word p′ ∈ Lp that is closest to
t. Retrieve the unit q′ ∈ Lq that is closest to p′. If
q = q′, this is an exact hit. We run this experiment
for all pivot and target languages.

Note that roundtrip evaluation tests the capabil-
ity of a system to go from any language to any
other language. In an embedding space, this re-
quires two hops. In a highly multilingual dataset
of n languages in which not all O(n2) bilingual
dictionaries exist, this requires four hops.

3 Experiments and results

3.1 Data

We use PBC (Mayer and Cysouw, 2014). The
version we pulled on 2017-12-11 contains 1664
Bible editions in 1259 languages (based on ISO
639-3 codes) after we discarded editions that have
low coverage of the New Testament. We use 7958
verses that have good coverage in these 1664 edi-
tions. The data is verse aligned; a verse of the New
Testament can consist of multiple sentences. We
randomly split verses 6458/1500 into train/test.

3.2 Evaluation

For sentiment analysis, we represent a verse as
the IDF-weighted sum of its embeddings. Senti-
ment classifiers (linear SVMs) are trained on the
training set of the World English Bible edition

4We use this implementation: anymalign.limsi.fr
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for the two decision problems positive vs. non-
positive and negative vs. non-negative. We create
a silver standard by labeling verses in English edi-
tions with the NLTK (Bird et al., 2009) sentiment
classifier.

A positive vs. negative classification is not rea-
sonable for the New Testament because a large
number of verses is mixed, e.g., “Now is come
salvation . . . the power of his Christ: for the ac-
cuser . . . cast down, which accused them before
our God . . . ” Note that this verse also cannot be
said to be neutral. Splitting the sentiment anal-
ysis into two subtasks (“contains positive senti-
ment: yes/no” and “contains negative sentiment:
yes/no”) is an effective solution for this paper.

The two trained models are then applied to the
test set of all 1664 editions. All embeddings in
this paper are learned on the training set only. So
no test information was used for learning the em-
beddings.

Roundtrip translation. There are no gold stan-
dards for the genre of our corpus (the New Tes-
tament); for only a few languages out-of-domain
gold standards are available. Roundtrip evalua-
tion is an evaluation method for multilingual em-
beddings that can be applied if no resources are
available for a language. Loosely speaking, for a
query q in a query language Lq (in our case En-
glish) and a target language Lt, roundtrip transla-
tion finds the unit wt in Lt that is closest to q and
then the English unit we that is closest to wt. If the
semantics of q and we are identical (resp. are unre-
lated), this is deemed evidence for (resp. counter-
evidence against) the quality of the embeddings.
We work on the level of Bible edition, i.e., two
editions in the same language are considered dif-
ferent “languages”.

For a query q, we denote the set of its kI near-
est neighbors in the target edition e by Ie(q) =
{u1, u2, . . . , ukI}. For each intermediate entry we
then consider its kT nearest neighbors in English.
Overall we get a set Te(q) with kIkT predictions
for each intermediate Bible edition e. See Figure 5
for an example.

We evaluate the predictions Te(q) using two sets
Gs(q) (strict) and Gr(q) (relaxed) of ground-truth
semantic equivalences in English. Precision for a
query q is defined as
pi(q) := 1/|E|∑e∈E min{1, |Te(q)∩Gi(q)|}

where E is the set of all Bible editions and i ∈
{s, r}. We report the mean and median across a

inter-
query mediate predictions
woman ⇒ mujer ⇒ wife woman women widows daughters

daughter marry married
⇒ esposa ⇒ marry wife woman married marriage

virgin daughters bridegroom

Figure 5: Roundtrip translation example for KJV
and Americas Bible (Spanish). In this example
min{1, |Te(q) ∩ Gi(q)|} equals 0 for S1 and R1,
and 1 for S4 and S16.

connu(3), connais(3), connaissent(3), savez(2),
sachant(2), sait(2), sachiez(2), savoir,
sçai, ignorez, connaissiez, sache connaissez,
connaissais, savent, savaient, connoissez,
connue, reconnaı̂trez, sais, connaissant,
savons, connaissait, savait

Figure 6: Intermediates aggregated over 17 French
editions. q=“know”, N(t) embeddings, S16.
Intermediates are correct with two possible ex-
ceptions: “ignorez” ‘you do not know’; “re-
connaı̂trez” ‘you recognize’.

set of 70 queries selected from Swadesh (1946)’s
list of 100 universal linguistic concepts.

We create Gs and Gr as follows. For WORD,
we define Gs(q) = {q} and Gr(q) = L(q)
where L(q) is the set of words with the same
lemma and POS as q. For CHAR, we need to
find ngrams that correspond uniquely to the query
q. Given a candidate ngram g we consider cqg :=
1/c(g)

∑
q′∈L(q),substring(g,q′) c(q

′) where c(x) is
the count of character sequence x across all edi-
tions in the query language. We add g to Gi(q) if
cqg > σi where σs = .75 and σr = .5. We only
consider queries where Gs(q) is non-empty.

We vary the evaluation parameters (i, kI , kT ) as
follows: “S1” represents (s, 1, 1), “S4” (s, 2, 2),
“S16” (s, 2, 8), and “R1” (r, 1, 1).

3.3 Corpus generation and hyperparameters

We train with the skipgram model and set vector
dimensionality to 200; word2vec default parame-
ters are used otherwise. Each concept – the union
of a set of pivot words and a set of target units
linked to the pivot words – is written out as a line
or (if the set is large) as a sequence of shorter lines.
Training corpus size is approximately 50 GB for
all experiments. We write several copies of each
line (shuffling randomly to ensure lines are differ-
ent) where the multiplication factor is chosen to
result in an overall corpus size of approximately
50 GB.

There are two exceptions. For BOW, we did not
find a good way of reducing the corpus size, so this
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roundtrip translation sentiment analysis
WORD CHAR WORD CHAR

S1 R1 S4 S16 S1 R1 S4 S16
µ Md µ Md µ Md µ Md N µ Md µ Md µ Md µ Md N pos neg pos neg

1 RTSIMPLE 33 24 37 36 67 24 13 32 21 70
2 BOW 7 5 8 7 13 12 26 28 69 3 2 3 2 5 4 10 11 70 33 81 13 83
3 S-ID 46 46 52 55 63 76 79 91 65 9 5 9 5 14 9 25 22 70 79 88 65 86
4 SAMPLE 33 23 43 42 54 59 82 96 65 53 59 59 72 67 85 79 99 58 82 89 77 89
5 CLIQUE 43 36 59 63 67 77 93 99 69 42 46 48 55 60 76 73 98 53 84 89 69 88
6 N(t) 54 59 61 69 80 87 94 100 69 50 53 54 59 73 82 90 99 66 82 89 87 90
7 N(t)-CLIQUE 11 0 11 0 16 0 22 0 18 39 45 41 47 58 74 76 94 56 22 84 61 84
8 N(t)-CC 3 0 3 0 5 0 7 0 5 11 0 11 0 16 0 25 0 21 4 84 40 83
9 N(t)-EDGE 35 30 43 36 56 55 87 94 69 39 29 49 52 64 78 88 100 63 84 90 84 89

Table 3: Roundtrip translation (mean/median accuracy) and sentiment analysis (F1) results for word-
based (WORD) and character-based (CHAR) multilingual embeddings. N (coverage): # queries con-
tained in the embedding space. The best result across WORD and CHAR is set in bold.

corpus is 10 times larger than the others. For S-
ID, we use Levy et al. (2017)’s hyperparameters;
in particular, we trained for 100 iterations and we
wrote each verse-unit pair to the corpus only once,
resulting in a corpus of about 4 GB.

We set the n parameter of n-grams to n = 4
for Bible editions with ρ < 2, n = 8 for Bible
editions with 2 ≤ ρ < 3 and n = 12 for Bible
editions with ρ ≥ 3 where ρ is the ratio between
size in bytes of the edition and median size of the
1664 editions. In χ2 dictionary induction, we set
χmin = 100. In the concept induction algorithm
we set θ = 0.4 and ν = 0.6. Except for SAMPLE
and CLIQUE, we filter out hapax legomena.

3.4 Results

Table 3 presents evaluation results for roundtrip
translation and sentiment analysis.

Validity of roundtrip (RT) evaluation results.
RTSIMPLE (line 1) is not competitive; e.g., its ac-
curacy is lower by almost half compared to N(t).
We also see that RT is an excellent differentiator
of poor multilingual embeddings (e.g., BOW) vs.
higher-quality ones like S-ID and N(t). This indi-
cates that RT translation can serve as an effective
evaluation measure.

The concept-based multilingual embedding
learning algorithms CLIQUE andN(t) (lines 5-6)
consistently (except S1 WORD) outperform BOW
and S-ID (lines 2-3) that are not based on con-
cepts. BOW performs poorly in our low-resource
setting; this is not surprising since BOW methods
rely on large datasets and are therefore expected
to fail in the face of severe sparseness. S-ID per-
forms reasonably well for WORD, but even in that
case it is outperformed by N(t), in some cases by
a large margin, e.g., µ of 63 for S-ID vs. 80 for

N(t) for S4. For CHAR, S-ID results are poor.
On sentiment classification,N(t) also consistently
outperforms S-ID.

While S-ID provides a clearer signal to the em-
bedding learner than BOW, it is still relatively
crude to represent a word as – essentially – its bi-
nary vector of verse occurrence. Concept-based
methods perform better because they can exploit
the more informative dictionary graph.

Comparison of graph-theoretic definitions of
concepts: N(t)-CLIQUE, N(t)-CC. N(t) (line
6) has the most consistent good performance
across tasks and evaluation measures. Postfilter-
ing target neighborhoods down to cliques (line 7)
and CCs (line 8) does not work. The reason is that
the resulting number of concepts is too small; see,
e.g., low coverages of N = 18 (N(t)-CLIQUE)
and N = 5 (N(t)-CC) for WORD and N = 21
(N(t)-CC) for CHAR. N(t)-CLIQUE results are
highly increased for CHAR, but still poorer by a
large margin than the best methods. We can inter-
pret this result as an instance of a precision-recall
tradeoff: presumably the quality of the concepts
found by N(t)-CLIQUE and N(t)-CC is better
(higher precision), but there are too few of them
(low recall) to get good evaluation numbers.

Comparison of graph-theoretic definitions of
concepts: CLIQUE. CLIQUE has strong perfor-
mance for a subset of measures, e.g., ranks consis-
tently second for RT (except S1 WORD) and sen-
timent analysis in WORD. Although CLIQUE is
perhaps the most intuitive way of inducing a con-
cept from a dictionary graph, it may suffer in rela-
tively high-noise settings like ours.

Comparison of graph-theoretic definitions of
concepts: N(t) vs. N(t)-EDGE. Recall that
N(t)-EDGE postfilters target neighborhoods by
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Page 1 of 1

extokenise 07/05/2018, 16:31

[ksw] ဒ"#တ◌"ကမၣ◌်လၢအပာ်လၢယလိၤခဲကနံၣ◌်အံၤ⋆,
      ⋆ထu#ပ(◌ၤအ3 ၣ◌်အသးတန့"ဘၣ◌်⋆.
[cso] Hi³⋆sa³jun³⋆lɨ́¹³⋆ma³tson²⋆tsú²⋆
      lɨ³ua³⋆cáun²⋆tso³⋆ñí¹⋆hná¹⋆nɨ́²⋆.
[eng] Neither⋆can⋆they⋆prove⋆the⋆things⋆
      whereof⋆they⋆now⋆accuse⋆me⋆.

Figure 7: Verse 44024013. “*” = tokenization
boundary. S’gaw Karen (ksw) is difficult to to-
kenize and CHAR > WORD for N(t). Chinan-
teco de Sochiapan (cso) has few types, similar to a
pivot language, and CHAR < WORD for N(t).

N(t) S-ID SAMPLE CLIQUE
[CHAR] [WORD] [WORD] [WORD]

iso ∆ iso ∆ iso ∆ iso ∆
arb1 54 pua0 61 jpn1 42 mya2 38
arz0 53 sun2 54 khm2 40 jpn1 36
cop3 49 jpn1 53 cap2 40 khm3 34
srp0 44 khm3 53 khm3 40 bsn0 28
cop2 44 khm2 50 mya2 39 khm2 27
. . . . . . . . . . . . . . . . . . . . . . . .
pis0 -23 vie7 -24 eng8 -7 haw0 -22
pcm0 -23 kri0 -25 enm1 -9 eng4 -23
ksw0 -24 tdt0 -27 lzh2 -9 enm2 -26
lzh2 -41 eng2 -27 eng4 -12 enm1 -26
lzh1 -51 vie6 -29 lzh1 -13 engj -28

Table 4: Comparison of N(t)[WORD] with four
other methods. Difference in mean performance
(across queries) in R1 per edition. Positive number
means better performance of N(t)[WORD].

only considering pairs of pivot words that are
linked by a dictionary edge. This “quality” filter
does seem to work in some cases, e.g., best perfor-
mance S16 Md for CHAR. But results for WORD
are much poorer.

SAMPLE performs best for CHAR: best results
in five out of eight cases. However, its coverage is
low: N = 58. This is also the reason that it does
not perform well on sentiment analysis for CHAR
(F1 = 77 for pos).

Target neighborhoods N(t). The overall best
method is N(t). It is the best method more of-
ten than any other method and in the other cases,
it ranks second. This result suggests that the as-
sumption that two target units are semantically
similar if they have dictionary edges with exactly
the same set of pivot words is a reasonable approx-
imation of reality. Postfiltering by putting con-
straints on eligible sets of pivot words (i.e., the
pivot words themselves must have a certain dictio-
nary link structure) does not consistently improve
upon target neighborhoods.

WORD vs. CHAR. For roundtrip, WORD is
a better representation than CHAR if we just
count the bold winners: seven (WORD) vs. three
(CHAR), with two ties. For sentiment, the more
difficult task is pos and for this task, CHAR is
better by 3 points than WORD (F1 = 87, line
6, vs. F1 = 84, lines 9/5). However, Table 4
shows that CHAR<WORD for one subset of edi-
tions (exemplified by cso in Figure 7) and CHAR
> WORD for a different subset (exemplified by
ksw). So there are big differences between CHAR
and WORD in both directions, depending on the
language. For some languages, WORD performs
a lot better, for others, CHAR performs a lot better.

We designed RT evaluation as a word-based
evaluation that disfavors CHAR in some cases.
The fourgram “ady@” in the World English Bible
occurs in “already” (32 times), “ready” (31 times)
and “lady” (9 times). Our RT evaluation thus dis-
qualifies “ady@” as a strict match for “ready”. But
all 17 aligned occurrences of “ady@” are part of
“ready” – all others were not aligned. So in the χ2-
alignment interpretation, P (ready|ady@) = 1.0.
In contrast to RT, we only used aligned ngrams in
the sentiment evaluation. This discrepancy may
explain why the best method for sentiment is a
CHAR method whereas the best method for RT
is a WORD method.

First NLP task evaluation on more than 1000
languages. Table 3 presents results for 1664 edi-
tions in 1259 languages. To the best of our knowl-
edge, this is the first detailed evaluation, involv-
ing two challenging NLP tasks, that has been done
on such a large number of languages. For sev-
eral methods, the results are above baseline for all
1664 editions; e.g., S1 measures are above 20%
for all 1664 editions for N(t) on CHAR.

4 Related Work

Following Upadhyay et al. (2016), we group mul-
tilingual embedding methods into classes A, B,
C, D.

Group A trains monolingual embedding spaces
and subsequently uses a transformation to create
a unified space. Mikolov et al. (2013b) find the
transformation by minimizing the Euclidean dis-
tance between word pairs. Similarly, Zou et al.
(2013), Xiao and Guo (2014) and Faruqui and
Dyer (2014) use different data sources for iden-
tifying word pairs and creating the transformation
(e.g., by CCA). Duong et al. (2017) is also simi-
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lar. These approaches need large datasets to obtain
high quality monolingual embedding spaces and
are thus inappropriate for a low-resource setting
of 150,000 tokens per language.

Group B starts from the premise that repre-
sentation of aligned sentences should be similar.
Neural network approaches include (Hermann and
Blunsom, 2014a) (BiCVM) and (Sarath Chandar
et al., 2014) (autoencoders). Again, we have not
enough data for training neural networks of this
size. Søgaard et al. (2015) learn an interlingual
space by using Wikipedia articles as concepts and
applying inverted indexing. Levy et al. (2017)
show that what we call S-ID is a strongly perform-
ing embedding learning method. We use S-ID as a
baseline.

Group C combines mono- and multilingual in-
formation in the embedding learning objective.
Klementiev et al. (2012) add a word-alignment
based term in the objective. Luong et al. (2015)
extend Mikolov et al. (2013a)’s skipgram model
to a bilingual model. Gouws et al. (2015) intro-
duce a crosslingual term in the objective, which
does not rely on any word-pair or alignment infor-
mation. For n editions, including O(n2) bilingual
terms in the objective function does not scale.

Group D creates pseudocorpora by merging
data from multiple languages into a single corpus.
One such method, due to Vulić and Moens (2015),
is our baseline BOW.

Östling (2014) generates multilingual con-
cepts using a Chinese Restaurant process, a com-
putationally expensive method. Wang et al. (2016)
base their concepts on cliques. We extend their
notion of clique from the bilingual to the multi-
lingual case. Ammar et al. (2016) use connected
components. Our baseline SAMPLE, based on
(Lardilleux and Lepage, 2007, 2009), samples
aligned sentences from a multilingual corpus and
extracts perfect alignments.

Malaviya et al. (2017), Asgari and Schütze
(2017), Östling and Tiedemann (2017) and Tiede-
mann (2018) perform evaluation on the language
level (e.g., typology prediction) for 1000+ lan-
guages or perform experiments on 1000+ lan-
guages without evaluating each language. We
present the first work that evaluates on 1000+ lan-
guages on the sentence level on a difficult task.

Somers (2005) criticizes RT evaluation on the
sentence level; but see Aiken and Park (2010).
We demonstrated that when used on the word/unit

level, it distinguishes weak from strong embed-
dings and correlates well with an independent sen-
timent evaluation.

Any alignment algorithm can be used for dic-
tionary induction. We only used a member of
the IBM class of models (Dyer et al., 2013),
but presumably we could improve results by us-
ing either higher performing albeit slower align-
ers or non-IBM aligners (e.g., (Och and Ney,
2003; Tiedemann, 2003; Melamed, 1997)). Other
alignment algorithms include 2D linking (Kobdani
et al., 2009), sampling based methods (e.g., Vulic
and Moens (2012)) and EFMARAL (Östling and
Tiedemann, 2016). EFMARAL is especially in-
triguing as it is based on IBM1 and Agić et al.
(2016) find IBM2-based models to favor closely
related languages more than models based on
IBM1. However, the challenge is that we need
to compute tens of thousands of alignments, so
speed is of the essence. We ran character-based
and word-based induction separately; combining
them is promising future research; cf. (Heyman
et al., 2017).

There is much work on embedding learning that
does not require parallel corpora, e.g., (Vulić and
Moens, 2012; Ammar et al., 2016). This work is
more generally applicable, but a parallel corpus
provides a clearer signal and is more promising (if
available) for low-resource research.

5 Summary

We presented a new method for estimating vec-
tor space representations of words: embedding
learning by concept induction. We tested this
method on a highly parallel corpus and learned
semantic representations of words in 1259 differ-
ent languages in a single common space. Our
extensive experimental evaluation on crosslingual
word similarity and sentiment analysis indicates
that concept-based multilingual embedding learn-
ing performs better than previous approaches.

The embedding spaces of the 1259 languages
(SAMPLE, CLIQUE and N(t)) are available:
http://cistern.cis.lmu.de/comult/.

We gratefully acknowledge funding from
the European Research Council (grants 740516
& 640550) and through a Zentrum Digital-
isierung.Bayern fellowship awarded to the first au-
thor. We are indebted to Michael Cysouw for mak-
ing PBC available to us.
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Abstract

Word embeddings induced from local con-
text are prevalent in NLP. A simple and ef-
fective context-based multilingual embedding
learner is Levy et al. (2017)’s S-ID (sen-
tence ID) method. Another line of work
induces high-performing multilingual embed-
dings from concepts (Dufter et al., 2018). In
this paper, we propose Co+Co, a simple and
scalable method that combines context-based
and concept-based learning. From a sentence-
aligned corpus, concepts are extracted via
sampling; words are then associated with their
concept ID and sentence ID in embedding
learning. This is the first work that success-
fully combines context-based and concept-
based embedding learning. We show that
Co+Co performs well for two different ap-
plication scenarios: the Parallel Bible Corpus
(1000+ languages, low-resource) and EuroParl
(12 languages, high-resource). Among meth-
ods applicable to both corpora, Co+Co per-
forms best in our evaluation setup of six tasks.

1 Introduction

Multilingual embeddings are useful because they
provide word representations of source and target
language in the same space in machine translation
and because they are a basis for transfer learn-
ing. In contrast to prior multilingual work (Ze-
man and Resnik, 2008; McDonald et al., 2011;
Tsvetkov et al., 2014), automatically learned em-
beddings potentially perform as well but are more
efficient and easier to use (Klementiev et al., 2012;
Hermann and Blunsom, 2014b; Guo et al., 2016).
Thus, multilingual word embedding learning is
important for natural language processing (NLP).

The quality of multilingual embeddings is
driven by the underlying feature set more than the
type of algorithm used for training the embeddings
(Upadhyay et al., 2016; Ruder et al., 2019). Most

embedding learners build on using context infor-
mation as feature. Dufter et al. (2018) showed that
using concept information is effective for multi-
lingual embedding learning, as well. We propose
Co+Co, a method that combines the concept iden-
tification method Anymalign (Lardilleux and Lep-
age, 2009) and the multilingual embedding learn-
ing method sentence ID (S-ID) (Levy et al., 2017)
into a embedding learning method that is based on
both concept and context.

Our aim is to create a method for learning non-
contextualized embeddings that yield strong re-
sults while being scalable and widely applicable.
Thus we work on two parallel corpora: a low-
resource, massively multilingual corpus, the Par-
allel Bible Corpus (PBC), and on a high-resource,
mildly multilingual corpus, EuroParl. Out of 15
embedding learning methods we identify S-ID, the
concept based method N(t) by Dufter et al. (2018)
and Co+Co as the only ones that yield high-quality
word spaces across corpora. Co+Co exhibits the
best and most stable performance.

Our contributions are: i) We show that Co+Co,
i.e., using concepts and contexts jointly, yields
higher quality embeddings than either by itself. ii)
We demonstrate that Co+Co performs well across
very different datasets and scales across a high
number of languages. iii) We find that lower em-
bedding dimensionality is better for word transla-
tion in PBC. In addition, we find that QVEC eval-
uation (Tsvetkov et al., 2015) is highly dependent
on dimensionality.

2 Methods

Our proposed method consists of three steps: 1)
Inducing concepts using Anymalign (Lardilleux
and Lepage, 2009). 2) Generating an artificial cor-
pus using sentence and concept IDs. 3) Training
word2vec on the artificial corpus.
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2.1 Concept Induction

Lardilleux and Lepage (2009) propose Anyma-
lign, an algorithm originally intended for obtain-
ing word alignments. Consider a parallel corpus V
across multiple languages. The central idea is that
words that occur strictly in the same sentences, can
be considered translations. In addition to words,
word ngrams can be considered. We call words or
word ngrams that occur exclusively in the same
sentences perfectly aligned. By this strict defi-
nition, the number of perfect alignments is low.
Coverage can be increased by sampling subcor-
pora. As the number of sentences is smaller in
each sample and there is a high number of sampled
subcorpora, perfect alignments occur more often.

Figure 1 shows Lardilleux and Lepage (2009)’s
Anymalign algorithm on a high level.

There are three relevant hyperparameters in
Anymalign: the minimum number of languages a
perfect alignment should cover (MinLg.) and the
maximum ngram length (MaxNgr.). The size of a
subsample is adjusted automatically to maximize
the probability that each sentence is sampled at
least once. This probability depends on the num-
ber of samples drawn and thus on the runtime (T)
of the algorithm. Thus, T is another hyperparame-
ter. For details see (Lardilleux and Lepage, 2009).

We argue that with small MaxNgr. one can in-
terpret perfect alignments as concepts, i.e., a set of
semantically similar words. For example the En-
glish trigram “mount of olives” and the French tri-
gram “montagne des oliviers” are a perfect align-
ment describing the same concept. Thus we define
a concept as a set of perfectly aligned words and
use Anymalign as concept induction algorithm.
Note that most members of a concept are not per-
fect alignments in V (only in a subsample V ′) and
that a word can be part of multiple concepts. See
Section 5 for comments on concept quality.

2.2 Corpus Creation

We use sentence IDs from the parallel corpus and
concepts to create corpora. Figure 2 shows sam-
ples of the generated corpora to be processed by
the embedding learner.

S-ID. We adopt Levy and Goldberg (2014)’s
framework; it formalizes the basic information
that is passed to the embedding learner as a set
of pairs. In the monolingual case, each pair con-
sists of two words that occur in the same context.
A successful approach to multilingual embedding

Algorithm 1 Anymalign (Lardilleux and Lepage, 2009)

1: procedure GETCONCEPTS(V , MinLg., MaxNgr., T)
2: C = ∅
3: while runtime ≤ T do
4: V ′ = get-subsample(V )
5: A = get-concepts(V ′)
6: A = filter-concepts(A,MinLg.,MaxNgr.)
7: C = C ∪ A
8: end while
9: end procedure

Figure 1: V is a parallel corpus. get-subsample cre-
ates a sentence-aligned parallel subcorpus by sampling
lines from V . get-concepts returns the set of perfect
alignments (concepts). filter-concepts filters the set of
concepts to enforce MinLg. and MaxNgr.

[...]
48001018 enge:fifteen
48001018 enge:,
48001018 enge:years
48001018 deu0:fünfzehn
48001018 deu0:Jahre
48001018 deu0:,

[...]

[...]
C:911 kqc0:Jerusalem
C:911 por5:Jerusalém
C:911 eng7:Jerusalem
C:911 haw0:Ierusalema
C:911 ilb0:Jelusalemu
C:911 fra1:Jérusalem

[...]
[...]

45016016 Salute one another with an holy kiss . The churches of
Christ salute you .

48001018 Then after three years I went up to Jerusalem to see Peter
, and abode with him fifteen days .

[...]

Figure 2: Samples of S-ID (top-left) and C-ID (top-
right) corpora that are input to word2vec. Words are
prefixed by a 3 character ISO 639-3 language identifier
followed by an alphanumeric character to distinguish
editions in the same language (e.g., enge = English
King James Version (James-Ed.)). C:911 is a concept
identifier. Bottom: James-Ed. text sample.

learning for parallel corpora is to use pairs of a
word and a sentence ID (Levy et al., 2017). The
sentence ID acts as crosslingual signal. We call
this method S-ID.1

C-ID. We propose to adjust S-ID by replacing
sentence IDs with concept IDs. That is, a line con-
sists of a concept ID and a concept member word.

Co+Co. We combine S-IDs and C-IDs by cre-
ating two corpora with the respective method and
then concatenating their corpora before learning
embeddings. Intuitively, both methods use com-
plementary information: S-ID uses local context
information and C-ID leverages globally aggre-
gated information. Therefore, we expect a higher
performance by combining those.

1Note that we use the name S-ID for the sentence iden-
tifier, for the corpus creation method that is based on these
identifiers, for the embedding learning method based on such
corpora and for the embeddings produced by the method. The
same applies to other method names. Which sense is meant
should be clear from context.
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2.3 Embedding Learning

To obtain embeddings we use use word2vec skip-
gram2 (Mikolov et al., 2013a) on the generated
corpora. We use default hyperparameters, and
investigate three more closely: number of itera-
tions (NIter.), minimum frequency of a word (Min-
Count.) and embedding dimensionality (Dim.).
Throughout the paper we `2-normalize vectors.

3 Application to Parallel Bible Corpus

3.1 Data

We work on PBC, the Parallel Bible Corpus
(Mayer and Cysouw, 2014), a verse-aligned cor-
pus of 1000+ translations of the New Testament.
For the sake of comparability we use the same
1664 Bible editions across 1259 languages (dis-
tinct ISO 639-3 codes) and the same 6458 training
verses as in (Dufter et al., 2018).3 We follow their
terminology and refer to “translations” as “edi-
tions”. PBC is a good model for resource-poverty;
e.g., the training set of the English King James
Version (James-Ed.) contains fewer than 150,000
tokens in 6458 verses. James-Ed. spans a vocab-
ulary of 6162 words and all 32 English editions
together cover 23,772 words. We use the tok-
enization provided in the data, which is erroneous
for some hard-to-tokenize languages (e.g., Khmer,
Japanese), and do not apply further preprocessing.

3.2 Evaluation

Dufter et al. (2018) introduce roundtrip transla-
tion (RTT) as multilingual embedding evaluation
when no gold standard is available. A query word
q in language L1 is translated to its nearest neigh-
bor (by cosine similarity) v in an intermediate lan-
guage L2 and then backtranslated to its closest
neighbor q′ in the query language L1. RTT is suc-
cessful if q = q′. For the roundtrips we consider
kI nearest neighbors in L2 and, for each of these
intermediate neighbor, kT predictions in L1.

Predictions are compared to a ground truth set
Gq. There is a strict ({q}) and a relaxed ({words
with the same lemma and part-of-speech as q})
ground truth. Thus multiple roundtrips of q can
be considered correct (e.g., inflections of a query).
We average binary results (per query) over edi-
tions and report mean (µ) and median (Md.) over
queries. Inspired by the precision@k evaluation

2We use code.google.com/archive/p/word2vec
3 Information downloaded from cistern.cis.lmu.de/comult

for word translation we vary (kI , kT ) as follows:
“S1” (1, 1), “R1” (1, 1), “S4” (2, 2), and “S16”
(2, 8), where S (R) stand for using the strict (re-
laxed) ground truth.

If q is not in the embedding space, we con-
sider the roundtrip as failed. The number of
queries contained in the embedding space is de-
noted byN (“coverage”). We use the same queries
as in (Dufter et al., 2018), which are based on
(Swadesh, 1946)’s 100 universal words. In addi-
tion, we introduce a development set: an earlier
list by Swadesh with 215 words.4 151 queries
remain in the development set after excluding
queries from the test set. Due to this large number
we do not compute the relaxed measure on the de-
velopment set as this requires manual effort on the
ground truth. We work on the level of Bible edi-
tions, i.e., two editions in the same language are
considered different “languages”. We use James-
Ed. as the query edition if James-Ed. contains q.
Else we randomly choose another English edition.

As extrinsic task we perform sentiment analy-
sis following (Dufter et al., 2018). We use their
ground truth and data split into training and test
set. There are two classifications: whether a verse
contains positive (Pos.) or negative (Neg.) senti-
ment. Given the multilingual space, for each task a
linear support vector machine (SVM) is trained on
the English World Edition (World-Ed.) (following
(Dufter et al., 2018)) and subsequently tested on
all other editions. We train SVMs in 5-fold cross-
validation on the training set to optimize the hy-
perparameter C. We report average F1 across edi-
tions.

3.3 Baselines

We compute diverse baselines to pinpoint reasons
for performance changes as much as possible.

Monolingual Embedding Space. In the base-
line MONO we train 1664 monolingual spaces us-
ing word2vec and interpret them as if they were a
shared multilingual embedding space. This serves
as consistency check for our evaluation methods.

Context Based Embedding Space. We use S-
ID to obtain a multilingual space.

Transformation Based Embedding Space.
The baseline LINEAR follows (Duong et al.,
2017). We pick one edition as the “embedding
space defining edition”, in our case the English
Catholic Bible (Cath-Ed.). We did not choose

4concepticon.clld.org/contributions/Swadesh-1950-215
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James-Ed. or World-Ed. to avoid that one single
edition has multiple special roles. We then cre-
ate 1664 bilingual embedding spaces using S-ID;
in each case the two editions covered are Cath-
Ed. and one of the other 1664 languages. We
then use (Mikolov et al., 2013b)’s linear transfor-
mation method to map all embedding spaces to
the Cath-Ed. embedding space. More specifically,
let X ′ ∈ RnX×d, Y ′ ∈ RnY ×d be two embed-
ding spaces, with nX , nY number of words, and d
be the embedding dimension. We then select nT
transformation words that are contained in both
embedding spaces. This yields: X,Y ∈ RnT×d.
The transformation matrix W ∈ Rd×d is then
given by argminW ‖XW−Y ‖F where ‖·‖F is the
Frobenius norm. The closed form solution is given
by W ∗ = X+Y where X+ is the Moore-Penrose
Pseudoinverse (Penrose, 1956). In our case, X
is a bilingual and Y is a monolingual embedding
space, both containing the vocabulary of Cath-Ed.

Bilingual Embedding Spaces. BILING uses
the same bilingual embedding spaces as LINEAR,
but we do not transform the bilingual spaces into a
common space. This baseline shows the effect of
multilingual vs. bilingual embedding spaces. As
we do not have a multilingual space we need to
modify our evaluation methods slightly: we per-
form RTT in each bilingual embedding space sep-
arately. For sentiment analysis, we train one SVM
per embedding space on English, which is then
tested on the other edition.

Unsupervised Embedding Learning. We ap-
ply the recent unsupervised embedding learning
method by Lample et al. (2018) (MUSE).5 Given
unaligned corpora in two languages, MUSE learns
two separate embedding spaces that are subse-
quently unified by a linear transformation. This
transformation is learned using a discriminator
neural network that tries to identify the original
language of a vector. Again, we learn monolingual
embedding spaces by running word2vec on PBC
directly. Subsequently, we transform all spaces
into the word space of Cath-Ed. using MUSE.
Chen and Cardie (2018) extended MUSE multi-
lingually. We include their method MAT+MPSR
as baseline. MAT+MPSR is memory and compu-
tation intensive. Allocating three days of compu-
tation on a standard GPU (GTX 1080 Ti), we were
only able to apply this baseline on a subset of 52
editions.

5We use https://github.com/facebookresearch/MUSE
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1 S-ID 100 5 200 29 21 43 46 56 78 103
2 S-ID 5 14 11 25 22 41 45 103
3 S-ID 10 25 16 38 34 51 60 103
4 S-ID 25 27 20 41 43 53 69 103
5 S-ID 50 27 16 40 40 53 67 103
6 S-ID 150 29 21 43 47 56 79 103
7 S-ID 2 35 31 52 60 66 90 130
8 S-ID 10 24 5 36 17 48 63 85
9 S-ID 100 30 24 45 48 58 83 103
10 S-ID 300 28 19 42 41 54 69 103
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1 C-ID 100 3 10 30 26 46 46 60 71 120
2 C-ID 50 26 21 39 42 56 79 104
3 C-ID 150 22 14 34 28 47 56 94
4 C-ID 500 15 0 25 0 33 0 59
5 C-ID 1 17 0 27 0 38 0 73
6 C-ID 5 28 20 40 35 55 58 122
7 C-ID 5 24 20 36 34 48 52 114
8 C-ID 15 30 26 46 44 61 76 121

Table 1: Hyperparameter selection for word2vec (top)
and Anymalign (bottom) on RTT. Initial parameters in
first row; empty cell: initial parameter from the first
row. For example: to compare the effect of different
dimensionality in word2vec compare lines 1, 9 and 10
in the top table (best dimension is 100). Bold: best
result per column or selected hyperparameter value.

Non-Embedding Baseline. To show that em-
bedding spaces provide some advantages over us-
ing the concepts as is, we introduce C-SIMPLE,
a non-embedding baseline that follows the idea of
RTT. Given a query word q and an intermediate
edition, we consider all words that share a concept
ID with q as possible intermediate words. We then
choose randomly (probability weights according
to number of concepts shared with q) intermedi-
ate words. For back translation we apply the same
procedure.

3.4 Hyperparameter Selection
We select hyperparameters based on the roundtrip
translation task.

Word2vec. We tune word2vec parameters
based on the method S-ID. Since a grid search
for optimal values for the parameters NIter., Min-
Count. and Dim. would take too long, we search
greedily instead: we choose an initial parameter
setting, vary one parameter at a time and select the
value with the best performance. More iterations
yield better performance. NIter. = 100 is a good
efficiency-performance trade-off. For MinCount.
(minimum frequency of a word) the best perfor-
mance is found using 2. This is mainly due to
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Roundtrip Sentiment
S1 R1 S4 S16
µMd µMd µMd µ Md N Pos. Neg.

1 C-SIMPLE 35 33 35 34 49 54 56 56 67
2 MONO 21 18 21 18 39 36 67 68 69 4 74
3 S-ID 48 47 53 59 65 72 83 93 69 71 88
4 C-ID 43 42 46 43 58 60 79 91 67 73 86
5 Co+Co 51 50 56 65 69 80 86 96 69 79 89
6 LINEAR 30 28 31 30 43 46 62 71 69 76 83
7 MUSE 16 13 16 13 33 28 65 64 69 13 73
8 MAT+MPSR 11 10 11 10 20 17 44 42 66 37 72
9 BILING 41 32 42 35 53 55 67 82 69 80 87
10 N(t)* 54 59 61 69 80 87 94 100 69 82 89
11 SAMPLE* 33 23 43 42 54 59 82 96 65 82 89

Table 2: Evaluation results. *: results by (Dufter et al.,
2018). Sentiment analysis not defined for C-Simple.
Bold: best result per column, Underlined: second best.

increased coverage. Surprisingly, smaller embed-
ding dimensions work better to some degree. A
highly multilingual embedding space is expected
to suffer more from ambiguity and that is an ar-
gument for higher dimensionality; cf. Li and Ju-
rafsky (2015). But this effect seems to be coun-
teracted by the low-resource properties of PBC
for which the increased number of parameters of
higher dimensionalities cannot be estimated reli-
ably. We choose embedding size 100.

Anymalign. We tune the hyperparameters for
Anymalign by evaluation embedding spaces cre-
ated with C-ID. We use the above word2vec set-
tings except for MinCount. As argued before,
each word in a concept carries a strong multilin-
gual signal, which is why we do not apply any
frequency filtering for C-ID. Thus we set Min-
Count. to 1 whenever we learn concept based em-
beddings. For Co+Co we apply the different fre-
quency thresholds on the two parts (S-ID and C-ID
parts) of the corpus.

We find the best performance when setting
the minimum number of editions (MinLg.) to
100. As expected coverage worsens when in-
creasing MinLg. MaxNgr. is the maximum ngram
length. We see the best performance when set-
ting MaxNgr. to 3. This is intuitive for languages
like Swedish since compounds can be found. T
is the time in hours, i.e., for how long to sample
(which steers the size and number of sampled sub-
corpora). As expcted higher T yields better perfor-
mance. Given only a slight difference between 10
and 15 we set T to 15 for slightly higher coverage.

3.5 Results

Table 2 presents results on the test set.
Embeddings vs. Concepts. C-Simple works

reasonably well but is outperformed by most em-

bedding spaces. This indicates that learning em-
beddings augments the concept information.

Evaluation Difficulty. MONO is the weakest
baseline and is a good indicator that the RTT task
is challenging, e.g., S1=21 and R1=18. It admits
the weakness of RTT by yielding a non-zero per-
formance despite most of the intermediate neigh-
bours being not related to the query at all. Still it
proves that RTT is a good indicator for the qual-
ity of multilingual word spaces, as truly multilin-
gual word spaces significantly outperform MONO
(especially for the median). The same is true for
sentiment analysis where Pos. is more challenging
than Neg. Thus Pos. is a better indicator of perfor-
mance differences.

Transformation Based Spaces. LINEAR per-
forms similar to C-Simple (but outperforms it for
S16). This supports the hypothesis that PBC of-
fers too little data for training mono-/bilingual em-
beddings. As expected BILING works better than
LINEAR. Keep in mind that this is not a universal
embedding space and has fewer constraints than
other embedding spaces. Thus it is not directly
comparable.

Unsupervised Embedding Learning. MUSE
performs even worse than MONO. MAT+MPSR
performs poorly, as well. This is a strong indi-
cation that PBC offers too little data for learning
high-quality monolingual embeddings. In addi-
tion, we hypothesize that the word spaces them-
selves offer too few data points (i.e., vocabu-
lary size) for neural network based mapping ap-
proaches. We plan to investigate this in the future.
As discussed MAT+MPSR results are for a subset
of 52 editions.

Context vs. Concept Based. N(t) by Dufter
et al. (2018) shows consistently the best perfor-
mance. Later we will see that this method works
well here (massively multilingual PBC setting),
but worse on EuroParl. SAMPLE by Dufter et al.
(2018) is based on sampling like C-ID. However,
it induces concepts only on a small set of pivot
languages, not on all 1664 editions. This does
not only work worse (C-ID beats SAMPLE ex-
cept for S16), but it also requires word alignment
information and is thus computationally more ex-
pensive. As has been observed frequently, S-
ID is highly effective. S-ID ranks third consis-
tently. Representing a word as its binary vector
of verse occurrence provides a clear signal to the
embedding learner. Concept-based methods can
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be considered complementary to this feature set
because they can exploit aggregated information
across languages as well as across verses. C-ID
alone has slightly lower performance than S-ID.

Combining Concept and Context. Co+Co,
the combination, outperforms both C-ID and S-ID
and seems to unite the “best of both worlds”. It
yields consistently the best performance with 3%
to 6% relative performance increase (for µ) com-
pared to S-ID alone and even more compared to
C-ID. Overall Co+Co always ranks second. Thus
combining context and concept is effective in-
deed, but not sufficient to outperform the strong
method N(t) which is tailored for massively mul-
tilingual corpora. In experiments we found that
adding C-ID to N(t) harmed the performance of
N(t) severely, so these two methods seem to be in-
compatible. In short: N(t) is the best method on
this corpus, Co+Co second-best and S-ID is third.

4 Application to a High-Resource Corpus

PBC is a low-resource, highly multilingual sce-
nario. We now provide experimental evidence that
Co+Co is broadly applicable and works in a high-
resource, mildly multilingual scenario. We test the
three best performing methods (based on PBC S1
µ): S-ID, Co+Co, N(t).

4.1 Data

We choose a dataset by Ammar et al. (2016), a par-
allel corpus covering 12 languages6 from the pro-
ceedings of the European Parliament, Wikipedia
titles and news commentary. We refer to this cor-
pus as EuroParl. We do not apply any preprocess-
ing. The dataset is lowercased.

4.2 Evaluation

Ammar et al. (2016) provide an extensive evalu-
ation framework covering two extrinsic and four
intrinsic tasks. The tasks are document classi-
fication, dependency parsing (those models were
not available to us, so we omit this evalua-
tion), word translation, word similarity, QVEC
(Tsvetkov et al., 2015) and QVEC-cca (Ammar
et al., 2016). For all tasks, there is a development
and test set available. For more details on data
and tasks see (Ammar et al., 2016). Due to ob-
vious weaknesses of QVEC (measure not rotation
invariant, for details see (Ammar et al., 2016) and

6Bulgarian, Czech, Danish, English, Finnish, French,
German, Greek, Hungarian, Italian, Spanish, Swedish
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4 17.08 59.33

2 15.88 50.05
6 16.90 62.95

Table 3: Hyperparameter selection on EuroParl. Ini-
tial parameter in first row; empty cell: initial param-
eter from first row. Bold: best result per column or
selected hyperparameter values. Subscript numbers in-
dicate coverage.
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. Word Word QVEC QVEC- Doc.
Trans. Sim. cca Class.

S-ID 10 0.19 23.61 12.10 19.75 53.30
S-ID 25 4.92 42.08 15.74 19.24 74.33
S-ID 50 13.93 54.29 14.85 19.67 83.91
S-ID 100 15.97 53.86 11.73 25.51 86.88
S-ID 300 16.81 56.29 9.29 34.58 90.31
S-ID 500 16.90 55.51 9.01 38.64 90.88

Coverage 43.92 57.58 70.91 70.91 38.89

Table 4: Results of S-ID on the dev set for varying di-
mensionality. There is clear correlations with the em-
bedding dimension. Note that results are slightly differ-
ent to Table 3 due to MinCount. 10 used in this table.

Table 4) we omit QVEC in our final evaluation. In
their word translation task Ammar et al. (2016) re-
duce the word space to contain only words from
the evaluation test set. We are interested in an (un-
restricted) word translation task, where all words
in the word space are possible answers, which is
why we reimplemented this task and report re-
sults (precision@1) only for the unrestricted word
translation task. Obviously this task is more chal-
lenging and thus the performance numbers we re-
port are significantly lower than the numbers re-
ported by Ammar et al. (2016).

To ensure comparability with previous ap-
proaches, we follow Ammar et al. (2016) in eval-
uating only on words that are contained in the em-
bedding space and simultaneously reporting the
coverage (e.g., how many queries of the task are
contained in the embedding space). Only for word
translation we follow the same reasoning as for
PBC and compute accuracy across all queries (i.e.,
queries not in the word space count as errors).

4.3 Hyperparameter Selection

We optimize corpus specific hyperparameters
(e.g., MinLg.) on the development set of the word
translation task. Co+Co: we vary the minimum
number of languages that need to be covered by
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Word Word QVEC- Doc.
Trans. Sim. cca Class.

multiCluster* 11.79 62.30 57.45 73.89 43.34 82.01 92.11 48.16
multiCCA* 11.79 77.16 69.99 77.94 41.52 87.03 92.18 62.81
multiSkip* 11.70 54.41 60.24 67.55 36.34 75.69 90.46 45.73
Invariance* 12.26 41.41 59.13 62.50 46.21 74.78 91.10 31.35

S-ID 19.13 64.53 48.62 75.39 24.58 80.33 86.66 56.45
Co+Co 20.24 65.92 52.75 75.39 24.39 82.76 87.33 57.52

N(t) 15.32 59.42 48.01 71.27 25.92 79.07 84.97 53.17

Table 5: Results on the test set. *: methods by (Am-
mar et al., 2016). We downloaded their embedding
spaces and performed the evaluation using their code.
We can mostly reproduce their results (up to rounding
errors), but word similarity numbers are slightly differ-
ent. Best result across S-ID, Co+Co, N(t) is bold; best
result across all methods is italic.

the concept identification and MinCount. for the
S-ID part of Co+Co. N(t) requires pivot lan-
guages. Following Dufter et al. (2018) we choose
as pivot languages those with the lowest type-
token ratio (these are Greek, Danish, Spanish,
French, Italian, English) and vary the number of
pivot languages (NPiv.) between 2, 4 and 6.

Table 3 gives an overview of our hyperparame-
ter selection. For Co+Co, we choose MinLg. 9 and
MinCount. 2. For S-ID, we find the best perfor-
mance with MinCount. 2. For N(t), the best result
is obtained when using 4 pivot languages.

Further, we show the effect of varying em-
bedding dimensions in Table 4. For most tasks
300 to 500 dimensions are optimal. This con-
firms the findings by Yin and Shen (2018). For
QVEC, extremely low dimensionality is benefi-
cial. Note that QVEC is not rotation invariant:
we hypothesize that the probability of an axis be-
ing highly correlated with linguistic features in a
high-dimensional space is very small compared to
a low-dimensional space. QVEC-cca on the other
hand benefits greatly from higher dimensions and
even choosing 100 dimensions, which is a popular
and reasonable choice, seriously harms the perfor-
mance compared to 300 dimensions: the higher
the dimensionality the more likely, CCA will find
an arbitrary dimension which is highly correlated
with linguistic features. When comparing our re-
sults to (Ammar et al., 2016) we need to be aware
of this effect, as they used an embedding dimen-
sion of 512 vs. 100 used in this work.

4.4 Results

Table 5 provides results on the test set. It imme-
diately becomes clear that different word spaces
have different strengths and weaknesses.

Mean Median Stddev. Min Max

Bible #editions 250 194 160 101 1530
#tokens 259 198 172 102 2163

EuroParl #editions 8 7 1 7 13
#tokens 11 10 4 8 38

#Concepts Cov. Cov. (relev.) Cov. (rare) Cov. (freq.)

Bible 119,026 0.43 0.56 0.19 0.85
EuroParl 6,208,134 0.24 0.66 0.14 0.61

Table 6: Top: Descriptive statistics of concept size.
Bottom: Coverage of concepts. We report the percent-
age of vocabulary in English (James-Ed. for PBC) that
is covered by the concepts. For “relev.” we consider
only words above the MinCount. threshold. To exam-
ine frequent and rare words we report the coverage on
the bottom/top decile based on word frequency.

Among S-ID, Co+Co and N(t), Co+Co per-
forms best, followed by S-ID and N(t) in 3 out
of 4 tasks. Only for QVEC-cca the order is dif-
ferent. However, the differences between methods
are small in this task. Co+Co outperforms N(t) in
“doc. class.”, the only extrinsic task. Compared to
S-ID, Co+Co yields consistent improvements (ex-
cept for QVEC-cca). Co+Co provides higher cov-
erage throughout all tasks.

The methods by (Ammar et al., 2016) perform
well for “doc. class.”, word similarity and QVEC-
cca (the latter mostly because of increased dimen-
sionality) and much worse for word translation.
There are strong indications that neither of the
four methods are applicable to highly multilingual
corpora like PBC. “Invariance” considers the full
cooccurrence matrix across all languages, a matrix
in the size of terabytes. In addition, word align-
ment matrices would need to be stored. Both mul-
tiCluster and multiCCA rely on bilingual dictio-
naries, which are not feasible to process in the case
of PBC. multiSkip requires addingO(n2) terms in
the objective function, which does not scale either.

In short: Among the methods that are applicable
to both PBC and Europarl, Co+Co performs best,
followed by S-ID and N(t).

5 Concept Quality

Table 6 reports the size of a typical concept and
concept coverage with respect to the vocabulary
(English). The largest concept contains 2163 to-
kens across 1530 editions describing the 2-gram
“Simon Peter”. Frequent words tend to be bet-
ter covered. However, almost 20% of really rare
words (i.e., hapax legomena) are contained in con-
cepts. In Figure 3 we show five randomly sampled
concepts from EuroParl.
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hun:történelem fin:historian gre:ιστορία 
spa:historia fra:histoire ita:storia eng:history

swe:heavenly swe:sword spa:heavenly spa:sword fra:heavenly 
fra:sword deu:heavenly deu:sword ita:heavenly ita:sword eng:heavenly

swe:kan fin:tarkistuksen spa:enmienda fra:amendement 
ita:emendamento eng:amendment

dan:erhvervet gre:οικολογική fra:filière 
deu:industriezweig ita:coinvolge eng:ecological

swe:vodka fin:vodkaa gre:βότκα spa:vodka 
deu:wodka ita:vodka eng:vodka

Figure 3: Five randomly sampled concepts from Eu-
roParl. Quality is generally high. The second example
is a video game consisting of two words.

6 Related Work

We cluster prior work for multilingual embed-
ding learning for parallel corpora into three
groups. Our focus is on methods which are ap-
plicable to both PBC and EuroParl. 1) follows
the basic idea of projecting monolingual spaces
into a unified multilingual space using (linear)
transformations. We use (Mikolov et al., 2013b)
together with (Duong et al., 2017) in our base-
line LINEAR. Zou et al. (2013), Xiao and Guo
(2014) and Faruqui and Dyer (2014) use similar
approaches (e.g., by computing the transforma-
tion using CCA). It has been shown that comput-
ing the transformation using discriminator neural
networks works well, even in a completely un-
supervised setting. See, e.g., (Vulić and Moens,
2012; Lample et al., 2018; Chen and Cardie, 2018;
Artetxe et al., 2018). We used (Lample et al.,
2018) as the baseline MUSE. 2) is true multilin-
gual embedding learning: it integrates multilin-
gual information in the objective of embedding
learning. Klementiev et al. (2012) and Gouws
et al. (2015) add a word alignment based term. Lu-
ong et al. (2015) introduce BiSkip as a bilingual
extension of word2vec. For n editions, including
O(n2) bilingual terms does not scale. Thus this
line of work is not applicable to PBC. A slightly
different objective function expresses that repre-
sentation of aligned sentences should be similar.
Approaches based on neural networks are (Her-
mann and Blunsom, 2014a) (BiCVM), (Sarath
Chandar et al., 2014) (autoencoders) and (Soyer
et al., 2014). Again, we argue that neural net-
work based approaches do not work for the low-
resource setting of PBC. 3) creates multilingual
corpora and uses monolingual embedding learn-
ers. A successful approach is (Levy et al., 2017)’s
sentence ID (S-ID). Vulić and Moens (2015) cre-
ate pseudocorpora by merging words from multi-
ple languages into a single corpus. Dufter et al.

PBC EuroParl
Doc. Word QVEC Word Mean Mean

RTT Sent. Class. Sim. -cca Trans. Rank Perf.
S-ID 3 3 2 2 2 2 2.33 53.91
N(t) 1 1 3 3 1 3 2.00 55.87

Co+Co 2 2 1 1 3 1 1.67 56.31

Table 7: Performance overview: we show the rank
among N(t), S-ID and Co+Co across all tasks. For RTT
and Sent. the overall performance is the mean over all
task versions (S1, R1, S4, S16 and Pos., Neg.).

(2018) found this method to perform poorly on
PBC. Søgaard et al. (2015) learn a space by fac-
torizing an interlingual matrix based on Wikipedia
concepts. word2vec is roughly equivalent to ma-
trix factorization (Levy and Goldberg, 2014), so
this work fits this group.

With the raise of pretrained language models,
methods to obtain multilingual contextual rep-
resentations have been proposed (Conneau and
Lample, 2019). We focus on creating static word
embedings which are computationally much more
efficient at the cost of lower performance.

Much research has been dedicated to identi-
fying multilingual concepts. BabelNet (Nav-
igli and Ponzetto, 2012) leverages existing re-
sources (mostly manual annotations), including
Wikipedia, using information extraction methods.
BabelNet could be used to learn concept based
embeddings, but it covers only 284 languages
and thus cannot be applied to all PBC languages.
Other work induces concepts within a dictionary
graph (Ammar et al., 2016; Dufter et al., 2018),
with alignment algorithms (Östling, 2014), or by
means of sampling (Lardilleux and Lepage, 2009).
We used sampling based concept induction in this
work, as it scales easily for 1000+ languages.

7 Summary

We proposed Co+Co, to the best of our knowledge
the first method that learns embeddings jointly
from concept and context information. We showed
that Co+Co performs well across two very differ-
ent corpora and a wide range of tasks. Among the
three high-performing methods applicable to both
PBC and EuroParl Co+Co performs best (see Ta-
ble 7). Two other advantages of Co+Co are that
it is a simple method (compared to more complex
methods like MUSE) and scalable to 1000s of lan-
guages. In summary, Co+Co is a simple, strong
and scalable method that is well suited for a wide
range of application scenarios.

We gratefully acknowledge funding for this

63



work by the European Research Council (ERC
#740516) and by Zentrum Digitalisierung.Bayern
(ZD.B), the digital technology initiative of the
State of Bavaria.

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 789–798.

Xilun Chen and Claire Cardie. 2018. Unsupervised
multilingual word embeddings. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7057–7067.

Philipp Dufter, Mengjie Zhao, Martin Schmitt, Alexan-
der Fraser, and Hinrich Schütze. 2018. Embedding
learning through multilingual concept induction. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics.

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven
Bird, and Trevor Cohn. 2017. Multilingual training
of crosslingual word embeddings. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. Bilbowa: fast bilingual distributed represen-
tations without word alignments. In Proceedings of
the 32nd International Conference on International
Conference on Machine Learning.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representation learn-
ing framework for multi-source transfer parsing. In
Proceedings of the 30th AAAI Conference on Artifi-
cial Intelligence.

Karl Moritz Hermann and Phil Blunsom. 2014a. Mul-
tilingual distributed representations without word
alignment. In Proceedings of the 2014 International
Conference on Learning Representations.

Karl Moritz Hermann and Phil Blunsom. 2014b. Mul-
tilingual models for compositional distributed se-
mantics. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed repre-
sentations of words. In Proceedings of the 24th In-
ternational Conference on Computational Linguis-
tics.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
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Robert Östling. 2014. Bayesian word alignment for
massively parallel texts. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Roger Penrose. 1956. On best approximate solutions of
linear matrix equations. In Mathematical Proceed-
ings of the Cambridge Philosophical Society.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
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Abstract

Word embeddings are useful for a wide vari-
ety of tasks, but they lack interpretability. By
rotating word spaces, interpretable dimensions
can be identified while preserving the informa-
tion contained in the embeddings without any
loss. In this work, we investigate three meth-
ods for making word spaces interpretable by
rotation: Densifier (Rothe et al., 2016), linear
SVMs and DensRay, a new method we pro-
pose. In contrast to Densifier, DensRay can be
computed in closed form, is hyperparameter-
free and thus more robust than Densifier. We
evaluate the three methods on lexicon induc-
tion and set-based word analogy. In addition
we provide qualitative insights as to how inter-
pretable word spaces can be used for removing
gender bias from embeddings.

1 Introduction

Distributed representations for words have been of
interest in natural language processing for many
years. Word embeddings have been particularly
effective and successful. On the downside, em-
beddings are generally not interpretable. But in-
terpretability is desirable for several reasons. i)
Semantically or syntactically similar words can
be extracted: e.g., for lexicon induction. ii)
Interpretable dimensions can be used to evaluate
word spaces by examining which information is
covered by the embeddings. iii) Computational
advantage: for a high-quality sentiment classifier
only a couple of dimensions of a high-dimensional
word space are relevant. iv) By removing inter-
pretable dimensions one can remove unwanted in-
formation (e.g., gender bias). v) Most importantly,
interpretable embeddings support the goal of inter-
pretable deep learning models.

Orthogonal transformations have been of par-
ticular interest in the literature. The reason is
twofold: under the assumption that existing word

embeddings are of high-quality one would like to
preserve the original embedding structure by using
orthogonal transformations (i.e., preserving orig-
inal distances). Park et al. (2017) provide evi-
dence that rotating existing dense word embed-
dings achieves the best performance across a range
of interpretability tasks.

In this work we modify the objective function
of Densifier (Rothe et al., 2016) such that a closed
form solution becomes available. We call this
method DensRay. Following Amir et al. (2015)
we compute simple linear SVMs, which we find
to perform surprisingly well. We compare these
methods on the task of lexicon induction.

Further, we show how interpretable word spaces
can be applied to other tasks: first we use inter-
pretable word spaces for debiasing embeddings.
Second we show how they can be used for solv-
ing the set-based word analogy task. To this end,
we introduce the set-based method IntCos, which
is closely related to LRCos introduced by Drozd
et al. (2016). We find IntCos to perform compa-
rable to LRCos, but to be preferable for analogies
which are hard to solve.

Our contributions are: i) We modify Densifier’s
objective function and derive an analytical solu-
tion for computing interpretable embeddings. ii)
We show that the analytical solution performs as
well as Densifier but is more robust. iii) We pro-
vide evidence that simple linear SVMs are best
suited for the task of lexicon induction. iv) We
demonstrate how interpretable embedding spaces
can be used for debiasing embeddings and solving
the set-based word analogy task. The source code
of our experiments is available.1

1https://github.com/pdufter/densray
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2 Methods

2.1 Notation
We consider a vocabulary V := {v1, v2, ..., vn}
together with an embedding matrix E ∈ Rn×d
where d is the embedding dimension. The ith row
of E is the vector ei.2 We require an annotation
for a specific linguistic feature (e.g., sentiment)
and denote this annotation by l : V → {−1, 1}.
The objective is to find an orthogonal matrix Q ∈
Rd×d such that EQ is interpretable, i.e., the val-
ues of the first k dimensions correlate well with
the linguistic feature. We refer to the first k di-
mensions as interpretable ultradense word space.
We interpret x ∈ Rn as a column vector and xᵀ

as a row vector. Further, we normalize all word
embeddings with respect to the euclidean norm.

2.2 DensRay
Throughout this section k = 1. Given a lin-
guistic signal l (e.g., sentiment), consider L= :=
{(v, w) ∈ V × V | l(v) = l(w)}, and analogously
L6=. We call dvw := ev − ew a difference vector.

Densifier (Rothe et al., 2016) solves the follow-
ing optimization problem,

max
q

∑

(v,w)∈L6=

α 6= ‖qᵀdvw‖2−

∑

(v,w)∈L=

α= ‖qᵀdvw‖2 ,

subject to qᵀq = 1 and q ∈ Rd. Further α 6=, α= ∈
[0, 1] are hyperparameters. We now modify the
objective function: we use the squared euclidean
norm instead of the euclidean norm, something
that is frequently done in optimization to simplify
the gradient. The problem becomes then

max
q

∑

(v,w)∈L6=

α 6= ‖qᵀdvw‖22−

∑

(v,w)∈L=

α= ‖qᵀdvw‖22 . (1)

Using ‖x‖22 = xᵀx together with associativity of
the matrix product we can simplify to

max
q

qᵀ
(
α6=

∑

(v,w)∈L6=

dvwd
ᵀ
vw− (2)

α=

∑

(v,w)∈L=

dvwd
ᵀ
vw

)
q

=: max
q

qᵀAq subject to qᵀq = 1.

2We denote the vector corresponding to a word w by ew.

Thus we aim to maximize the Rayleigh quotient
of A and q. Note that A is a real symmetric ma-
trix. Then it is well known that the eigenvector
belonging to the maximal eigenvalue of A solves
the above problem (cf. Horn et al. (1990, Section
4.2)). We call this analytical solution DensRay.

A second dimension that is orthogonal to the
first dimension and encodes the linguistic features
second strongest is given by the eigenvector cor-
responding to the second largest eigenvalue. The
matrix of k eigenvectors of A ordered by the cor-
responding eigenvalues yields the desired matrix
Q (cf. Horn et al. (1990, Section 4.2)) for k > 1.
Due to A being a real symmetric matrix, Q is al-
ways orthogonal.

2.3 Comparison to Densifier

We have shown that DensRay is a closed form so-
lution to our new formalization of Densifier. This
formalization entails differences.

Case k > 1. While both methods – Densi-
fier and DensRay – yield ultradense k dimensional
subspaces. While we show that the spaces are
comparable for k = 1 we leave it to future work to
examine how the subspaces differ for k > 1.

Multiple linguistic signals. Given multiple lin-
guistic features, Densifier can obtain a single or-
thogonal transformation simultaneously for all lin-
guistic features with chosen dimensions reserved
for different features. DensRay can encode mul-
tiple linguistic features in one transformation only
by iterative application.

Optimization. Densifier is based on solving an
optimization problem using stochastic gradient de-
scent with iterative orthogonalization of Q. Den-
sRay, in contrast, is an analytical solution. Thus
we expect DensRay to be more robust, which is
confirmed by our experiments.

2.4 Geometric Interpretation

Assuming we normalize the vectors dvw one can
interpret Eq. 1 as follows: we search for a unit
vector q such that the square of the cosine similar-
ity with dvw is large if (v, w) ∈ L6= and small
if (v, w) ∈ L=. Thus, we identify dimensions
that are parallel/orthogonal to difference vectors
of words belonging to different/same classes. It
seems reasonable to consider the average cosine
similarity. Thus if n=, n 6= is the number of ele-
ments in L=, L6= one can choose α 6= = n−16= and
α= = n−1= .
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3 Lexicon Induction

We show that DensRay and Densifier indeed per-
form comparably using the task of lexicon induc-
tion. We adopt Rothe et al. (2016)’s experimen-
tal setup. We also use Rothe et al. (2016)’s code
for Densifier. Given a word embedding space
and a sentiment/concreteness dictionary (binary
or continuous scores where we binarize continu-
ous scores using the median), we identify a one-
dimensional interpretable subspace. Subsequently
we use the values along this dimension to predict
a score for unseen words and report Kendall’s τ
rank correlation with the gold scores.

To ensure comparability across methods we
have redone all experiments in the same setting:
we deduplicated lexicons, removed a potential
train/test overlap and ignored neutral words in the
lexicons. We set α6= = α= = 0.5 to ensure com-
parability between Densifier and DensRay.

Additionally we report results created by linear
SVM/SVR inspired be their good performance as
demonstrated by Amir et al. (2015). While they
did not use linear kernels, we require linear kernels
to obtain interpretable dimensions. Naturally the
normal vector of the hyperplane in SVMs/SVRs
reflects an interpretable dimension. An orthogonal
transformation can be computed by considering a
random orthogonal basis of the null space of the
interpretable dimension.

Table 1 shows results. As expected the per-
formance of Densifier and DensRay is compa-
rable (macro mean deviation of 0.001). We
explain slight deviations between the results
with the slightly different objective functions of
DensRay and Densifier. In addition, the re-
orthogonalization used in Densifier can result in
an unstable training process. Figure 1 assesses the
stability by reporting mean and standard deviation
for the concreteness task (BWK lexicon). We var-
ied the size of the training lexicon as depicted on
the x-axis and sampled 40 subsets of the lexicon
with the prescribed size. For the sizes 512 and
2048 Densifier shows an increased standard devi-
ation. This is because there is at least one sample
for which the performance significantly drops. Re-
moving the re-orthogonalization in Densifier pre-
vents the drop and restores performance. Recent
work (Zhao and Schütze, 2019) also finds that re-
placing the orthogonalization with a regulariza-
tion is reasonable in certain circumstances. Given
that DensRay and Densifier yield the same perfor-

mance and DensRay is a stable closed form solu-
tion always yielding a orthogonal transformation
we conclude that DensRay is preferable.

Surprisingly, simple linear SVMs perform best
in the task of lexicon induction. SVR is slightly
better when continuous lexica are used for training
(line 8). Note that the eigendecomposition used in
DensRay yields a basis with dimensions ordered
by their correlation with the linguistic feature. An
SVM can achieve this only by iterated application.

Task Emb. Lex. (Train) Lex. (Test) Dens. DensRay SVR SVM
1 sent CZ SubLex SubLex 0.546 0.549 0.585 0.585
2 sent DE GermanPC GermanPC 0.636 0.631 0.674 0.677
3 sent ES fullstrength fullstrength 0.541 0.546 0.571 0.576
4 sent FR FEEL FEEL 0.469 0.471 0.555 0.565
5 sent EN WHM WHM 0.623 0.623 0.627 0.625
6 sent EN(t) WHM SE Trial* 0.624 0.621 0.618 0.637
7 sent EN(t) WHM SE Test* 0.600 0.608 0.619 0.636
8 conc EN BWK* BWK* 0.599 0.602 0.655 0.641
9 Macro Mean 0.580 0.581 0.613 0.618

Table 1: Results on lexicon induction. Numbers are
Kendall τ rank correlation. For details on the resources
see Table 2 and (Rothe et al., 2016). Bold: best result
across methods. ?: continuous lexicon.

Name Description
CZ, DE, ES Czech, German, Spanish embeddings by (Rothe et al., 2016)
FR French frWac embeddings (Fauconnier, 2015)
EN English GoogleNews embeddings (Mikolov et al., 2013)
EN(t) English Twitter Embeddings (Rothe et al., 2016)

Name Description
SubLex Czech sentiment lexicon (Veselovská and Bojar, 2013)
GermanPC German sentiment lexicon (Waltinger, 2010)
fullstrength Spanish sentiment lexicon (Perez-Rosas et al., 2012)
FEEL French sentiment lexicon (Abdaoui et al., 2017)
WHM English sentiment lexicon; combination of MPQA (Wilson et al.,

2005), Opinion Lexicon (Hu and Liu, 2004) and NRC emotion
lexcion (Mohammad and Turney, 2013)

SE Semeval 2015 Task 10E shared task data (Rosenthal et al., 2015)
BWK English concreteness lexicon (Brysbaert et al., 2014)

Table 2: Overview of resources for lexicon induction.
The setup is identical to (Rothe et al., 2016).

4 Removing Gender Bias

Word embeddings are well-known for encoding
prevalent biases and stereotypes (cf. Bolukbasi
et al. (2016)). We demonstrate qualitatively that
by identifying an interpretable gender dimension
and subsequently removing this dimension, one
can remove parts of gender information that poten-
tially could cause biases in downstream process-
ing. Given the original word space E we consider
the interpretable space E′ := EQ, where Q is
computed using DensRay. We denote by E·,−1 ∈
Rn×(d−1) the word space with removed first di-
mension and call it the “complement” space. We
expect E·,−1 to be a word space with less gender
bias.

To examine this approach qualitatively we use
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Figure 1: Mean (top) and standard deviation (bottom)
of the performance across 40 samples of the training
lexicon with varying sizes. Performed on the English
concreteness task (line 8 in Table 1). SVR performs
similar to SVM and is omitted for clarity.

a list of occupation names3 by Bolukbasi et al.
(2016) and examine the cosine similarities of oc-
cupations with the vectors of “man” and “woman”.
Figure 2 shows the similarities in the origi-
nal space E and debiased space E·,−1. One
can see the similarities are closer to the iden-
tity (i.e., same distance to “man” and “woman”)
in the complement space. To identify occupa-
tions with the greatest bias, Table 3 lists occupa-
tions for which sim(ew, eman)−sim(ew, ewoman) is
largest/smallest. One can clearly see a debiasing
effect when considering the complement space.
Extending this qualitative study to a more rigor-
ous quantitative evaluation is part of future work.

Original Space Complement Space
man woman man woman

fe
m

al
e

bi
as actress 0.23 0.46 lawyer 0.16 0.27

businesswoman 0.32 0.53 ambassador 0.07 0.17
registered nurse 0.12 0.33 attorney 0.05 0.15
housewife 0.34 0.55 legislator 0.26 0.36
homemaker 0.22 0.40 minister 0.10 0.20

...

m
al

e
bi

as

hitman 0.41 0.27 captain 0.31 0.24
gangster 0.34 0.20 marksman 0.29 0.21
skipper 0.27 0.11 maestro 0.28 0.20
marksman 0.31 0.14 hitman 0.40 0.32
maestro 0.30 0.12 skipper 0.25 0.17

Table 3: Top 5 occupations that exhibit the greatest bias
(measured by difference in cosine similarity). Numbers
indicate cosine similarity between word vectors.

3
https://github.com/tolga-b/debiaswe/blob/master/data/

professions.json

Figure 2: Similarities of occupation vectors with the
vectors of man and woman. Top shows the original
word space and bottom the word space with removed
gender dimension.

5 Word Analogy

In this section we use interpretable word spaces for
set-based word analogy. Given a list of analogy
pairs [(a, a′), (b, b′), (c, c′), . . . ] the task is to
predict a′ given a. Drozd et al. (2016) provide a
detailed overview over different methods, and find
that their method LRCos performs best.

LRCos assumes two classes: all left elements of
a pair (“left class”) and all right elements (“right
class”). They train a logistic regression (LR) to
differentiate between these two classes. The pre-
dicted score of the LR multiplied by the cosine
similarity in the word space is their final score.
Their prediction for a′ is the word with the highest
final score.

We train the classifier on all analogy pairs ex-
cept for a single pair for which we then obtain
the predicted score. In addition we ensure that no
word belonging to the test analogy is used during
training (splitting the data only on word analogy
pairs is not sufficient).

Inspired by LRCos we use interpretable word
spaces for approaching word analogy: we train
DensRay or an SVM to obtain interpretable em-
beddings E′ = EQ using the class information as
reasoned above. We use a slightly different nota-
tion in this section: for a word w the ith compo-
nent of its embedding is given by Ew,i. Therefore
we denote as E·,1 the first column of E′ (i.e., the
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most interpretable dimension). We min-max nor-
malize E·,1 such that words belonging to the right
class have a high value (i.e., we flip the sign if nec-
essary). For a query word a we now want to iden-
tify the corresponding a′ by solving

â = argmax
v∈V

norm(Ev,1) sim(Ea,·, Ev,·)

where sim computes the cosine similarity.
Given the result from §4 we extend the above

method by computing the cosine similarity in the
orthogonal complement, i.e., sim(Ea,−1, Ev,−1).
We call this method IntCos (INTerpretable,
COSine). Depending on the space used for com-
puting the cosine similarity add the word “Origi-
nal” or “Complement”.

We evaluate this method across two analogy
datasets. These are the Google Analogy Dataset
(GA) (Mikolov et al., 2013) and BATS (Drozd
et al., 2016). As embeddings spaces we use
Google News Embeddings (GN) (Mikolov et al.,
2013) and FastText subword embeddings (FT)
(Bojanowski et al., 2017). We consider the first
80k word embeddings from each space.

Table 4 shows the results. The first observa-
tion is that there is no clear winner. IntCos Orig-
inal performs comparably to LRCos with slight
improvements for GN/BATS: here the classes are
widespread and exhibit low cosine similarity (In-
traR and IntraL), which makes them harder to
solve. IntCos Complement maintains performance
for GN/BATS and is beneficial for Derivational
analogies on GN. For most other analogies it
harms performance.

Within IntCos Original it is favorable to use
DensRay as it gives slight performance improve-
ments. Especially for harder analogies, where in-
terclass similarity is high and intraclass similari-
ties are low (e.g., in GN/BATS), DensRay outper-
forms SVMs. In contrast to SVMs, DensRay con-
siders difference vectors within classes as well –
this seems to be of advantage here.

6 Related Work

Identifying Interpretable Dimensions. Most rel-
evant to our method is a line of work that uses
transformations of existing word spaces to ob-
tain interpretable subspaces. Rothe et al. (2016)
compute an orthogonal transformation using shal-
low neural networks. Park et al. (2017) apply
exploratory factor analysis to embedding spaces

Mean Cosine Sim Precision
IntCos LRCos

complement original
Inter IntraL IntraR DensR. SVM DensR. SVM

FT
/B

A
T

S

Inflectional 0.75 0.48 0.51 0.92 0.93 0.97 0.97 0.97
Derivational 0.63 0.47 0.45 0.74 0.78 0.81 0.80 0.80
Encyclopedia 0.48 0.43 0.55 0.30 0.43 0.41 0.43 0.45
Lexicography 0.62 0.37 0.38 0.17 0.20 0.21 0.22 0.26
Macro Mean 0.62 0.44 0.47 0.53 0.58 0.60 0.60 0.61
Macro Std 0.12 0.06 0.09 0.34 0.33 0.34 0.33 0.32

G
N

/B
A

T
S

Inflectional 0.63 0.22 0.23 0.88 0.87 0.88 0.88 0.88
Derivational 0.44 0.21 0.20 0.55 0.50 0.51 0.48 0.44
Encyclopedia 0.35 0.29 0.42 0.33 0.35 0.35 0.32 0.34
Lexicography 0.45 0.17 0.18 0.19 0.17 0.19 0.17 0.18
Macro Mean 0.46 0.22 0.26 0.48 0.47 0.48 0.46 0.45
Macro Std 0.14 0.07 0.12 0.31 0.31 0.32 0.32 0.32

FT
/G

A Micro Mean 0.73 0.48 0.53 0.88 0.91 0.93 0.92 0.93
Macro Mean 0.71 0.50 0.53 0.87 0.90 0.91 0.90 0.89
Macro Std 0.11 0.05 0.06 0.11 0.08 0.12 0.17 0.23

G
N

/G
A Micro Mean 0.62 0.31 0.36 0.85 0.87 0.89 0.87 0.88

Macro Mean 0.61 0.30 0.35 0.85 0.86 0.88 0.85 0.87
Macro Std 0.10 0.09 0.10 0.08 0.07 0.09 0.11 0.11

Table 4: Left part shows mean cosine similarity. Inter:
mean cosine similarity between pairs. IntraL/R: mean
cosine similarity within the left/right class. Right part
shows precision for word analogy task.

to obtain interpretable dimensions in an unsuper-
vised manner. Their approach relies on solving
complex optimization problems, while we focus
on closed form solutions. Senel et al. (2018)
use SEMCAT categories in combination with the
Bhattacharya distance to identify interpretable di-
rections. Also, oriented PCA (Diamantaras and
Kung, 1996) is closely related to our method.
However, both methods yield non-orthogonal
transformation. Faruqui et al. (2015a) use seman-
tic lexicons to retrofit embedding spaces. Thus
they do not fully maintain the structure of the word
space, which is in contrast to this work.

Interpretable Embedding Algorithms. An-
other line of work modifies embedding algorithms
to yield interpretable dimensions (Koç et al., 2018;
Luo et al., 2015; Shin et al., 2018; Zhao et al.,
2018). There is also much work that generates
sparse embeddings that are claimed to be more in-
terpretable (Murphy et al., 2012; Faruqui et al.,
2015b; Fyshe et al., 2015; Subramanian et al.,
2018). Instead of learning new embeddings, we
aim at making dense embeddings interpretable.

7 Conclusion

We investigated analytical methods for obtaining
interpretable word embedding spaces. Relevant
methods were examined with the tasks of lexicon
induction, word analogy and debiasing.

We gratefully acknowledge funding through
a Zentrum Digitalisierung.Bayern fellowship
awarded to the first author. This work was
supported by the European Research Council (#
740516).
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Supplementary Material to
“Analytical Methods for Interpretable Ultradense Word Embeddings”

Philipp Dufter, Hinrich Schütze
Center for Information and Language Processing (CIS)

LMU Munich, Germany
philipp@cis.lmu.de

1 Code

The code which was used to conduct the exper-
iments in this paper is available at https://
github.com/pdufter/densray.

2 Continuous Lexicon

In case of a continuous lexicon l : V → R one can
extend Equation 2 in the main paper by defining:

A :=
∑

(v,w)∈V×V
−l(v)l(w)dvwdᵀvw

In the case of a binary lexicon Equation 2 from the
main paper is recovered for α 6= = α= = 1.

3 Full Analogy Results

In this section we present the results of the word
analogy task per category. See Table 1 and Ta-
ble 2 for detailed results with the methods IntCos
Complement and Original, respectively. The for-
mat and numbers presented are the same as in the
corresponding table from the main paper.
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FastText Google News
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gy

Mean Cosine Sim Precision
IntCos LRCos

InterIntraL IntraR DensRaySVM

capital-common-countries 0.76 0.53 0.56 1.00 1.00 1.00
capital-world 0.75 0.44 0.51 0.97 0.96 1.00
city-in-state 0.71 0.51 0.63 0.78 0.79 0.85
currency 0.33 0.59 0.48 0.62 0.69 0.08
family 0.84 0.57 0.59 0.91 0.91 0.95
gram1-adjective-to-adverb 0.66 0.50 0.56 0.78 0.84 0.88
gram2-opposite 0.72 0.51 0.54 0.69 0.83 0.76
gram3-comparative 0.75 0.53 0.57 0.84 0.89 0.95
gram4-superlative 0.70 0.53 0.61 0.94 1.00 1.00
gram5-present-participle 0.76 0.43 0.48 1.00 0.94 1.00
gram6-nationality-adjective 0.70 0.55 0.54 0.90 0.90 0.93
gram7-past-tense 0.73 0.49 0.47 0.82 0.90 0.97
gram8-plural 0.80 0.41 0.42 1.00 1.00 1.00
gram9-plural-verbs 0.74 0.43 0.48 0.90 0.97 1.00
Micro Mean 0.73 0.48 0.53 0.88 0.91 0.93
Macro Mean 0.71 0.50 0.53 0.87 0.90 0.89
Macro Std 0.11 0.05 0.06 0.11 0.08 0.23

Mean Cosine Sim Precision
IntCos LRCos

InterIntraL IntraR DensRaySVM

capital-common-countries 0.64 0.37 0.38 0.91 0.96 0.91
capital-world 0.64 0.34 0.36 0.86 0.88 0.90
city-in-state 0.59 0.37 0.49 0.82 0.85 0.87
currency 0.37 0.42 0.44 0.78 0.72 0.56
family 0.74 0.48 0.53 0.83 0.87 0.87
gram1-adjective-to-adverb 0.49 0.21 0.26 0.69 0.75 0.75
gram2-opposite 0.50 0.24 0.31 0.68 0.75 0.71
gram3-comparative 0.60 0.25 0.40 0.92 0.92 0.97
gram4-superlative 0.54 0.26 0.39 0.97 0.91 0.94
gram5-present-participle 0.70 0.20 0.21 0.88 0.88 0.94
gram6-nationality-adjective 0.72 0.41 0.41 0.95 0.95 0.93
gram7-past-tense 0.66 0.21 0.22 0.82 0.82 0.85
gram8-plural 0.73 0.21 0.23 0.92 0.89 0.97
gram9-plural-verbs 0.64 0.22 0.24 0.87 0.90 0.93
Micro Mean 0.62 0.31 0.36 0.85 0.87 0.88
Macro Mean 0.61 0.30 0.35 0.85 0.86 0.87
Macro Std 0.10 0.09 0.10 0.08 0.07 0.11

BA
T

S

Mean Cosine Sim Precision
IntCos LRCos

InterIntraL IntraR DensRaySVM

Derivational 0.63 0.47 0.45 0.74 0.78 0.80
D01 [noun+less-reg] 0.51 0.36 0.45 0.50 0.53 0.60
D02 [un+adj-reg] 0.71 0.46 0.46 0.68 0.72 0.84
D03 [adj+ly-reg] 0.63 0.50 0.52 0.86 0.88 0.90
D04 [over+adj-reg] 0.63 0.45 0.45 0.59 0.69 0.62
D05 [adj+ness-reg] 0.63 0.49 0.51 0.92 1.00 0.92
D06 [re+verb-reg] 0.74 0.52 0.49 0.50 0.62 0.76
D07 [verb+able-reg] 0.57 0.48 0.45 0.71 0.66 0.63
D08 [verb+er-irreg] 0.55 0.48 0.41 0.84 0.88 0.79
D09 [verb+tion-irreg] 0.63 0.46 0.41 0.86 0.88 0.86
D10 [verb+ment-irreg] 0.64 0.46 0.42 0.86 0.88 0.90
Encyclopedia 0.48 0.43 0.55 0.30 0.43 0.45
E01 [country - capital] 0.63 0.47 0.41 0.72 0.96 0.98
E02 [country - language] 0.40 0.43 0.59 0.24 0.35 0.33
E03 [UK-city - county] 0.59 0.49 0.57 0.22 0.36 0.36
E04 [name - nationality] 0.28 0.39 0.64 0.45 0.66 0.60
E05 [name - occupation] 0.44 0.41 0.57 0.42 0.65 0.73
E06 [animal - young] 0.47 0.43 0.44 0.05 0.07 0.15
E07 [animal - sound] 0.37 0.43 0.40 0.15 0.20 0.22
E08 [animal - shelter] 0.44 0.42 0.51 0.00 0.07 0.13
E09 [things - color] 0.44 0.38 0.81 0.04 0.22 0.16
E10 [male - female] 0.73 0.43 0.43 0.68 0.68 0.78
Inflectional 0.75 0.48 0.51 0.92 0.93 0.97
I01 [noun - plural-reg] 0.79 0.39 0.41 0.98 1.00 1.00
I02 [noun - plural-irreg] 0.77 0.40 0.42 0.80 0.80 0.84
I03 [adj - comparative] 0.75 0.50 0.52 0.97 1.00 1.00
I04 [adj - superlative] 0.71 0.51 0.58 0.96 0.96 1.00
I05 [verb-inf - 3pSg] 0.77 0.52 0.53 0.96 0.98 1.00
I06 [verb-inf - Ving] 0.77 0.51 0.51 0.80 0.88 0.96
I07 [verb-inf - Ved] 0.75 0.51 0.55 0.92 0.94 1.00
I08 [verb-Ving - 3pSg] 0.70 0.48 0.51 0.94 0.96 0.98
I09 [verb-Ving - Ved] 0.73 0.50 0.54 0.92 0.88 0.98
I10 [verb-3pSg - Ved] 0.72 0.53 0.55 0.96 0.96 1.00
Lexicography 0.62 0.37 0.38 0.17 0.20 0.26
L01 [hypernyms - animals] 0.58 0.43 0.53 0.02 0.29 0.24
L02 [hypernyms - misc] 0.55 0.35 0.39 0.14 0.11 0.14
L03 [hyponyms - misc] 0.63 0.35 0.31 0.28 0.28 0.28
L04 [meronyms - substance] 0.53 0.36 0.44 0.15 0.21 0.17
L05 [meronyms - member] 0.58 0.36 0.36 0.10 0.10 0.12
L06 [meronyms - part] 0.53 0.31 0.30 0.04 0.09 0.09
L07 [synonyms - intensity] 0.67 0.37 0.37 0.25 0.25 0.36
L08 [synonyms - exact] 0.71 0.33 0.31 0.18 0.16 0.22
L09 [antonyms - gradable] 0.68 0.45 0.43 0.35 0.33 0.55
L10 [antonyms - binary] 0.72 0.40 0.40 0.18 0.18 0.39
Micro Mean 0.62 0.44 0.47 0.52 0.58 0.61
Macro Mean 0.62 0.44 0.47 0.53 0.58 0.61
Macro Std 0.12 0.06 0.09 0.34 0.33 0.32

Mean Cosine Sim Precision
IntCos LRCos

InterIntraL IntraR DensRaySVM

Derivational 0.44 0.21 0.20 0.55 0.50 0.44
D01 [noun+less-reg] 0.26 0.16 0.24 0.14 0.14 0.05
D02 [un+adj-reg] 0.47 0.17 0.20 0.66 0.54 0.58
D03 [adj+ly-reg] 0.48 0.17 0.22 0.70 0.76 0.76
D04 [over+adj-reg] 0.39 0.17 0.21 0.41 0.44 0.30
D05 [adj+ness-reg] 0.47 0.21 0.26 0.75 0.75 0.65
D06 [re+verb-reg] 0.56 0.29 0.28 0.64 0.53 0.58
D07 [verb+able-reg] 0.38 0.25 0.20 0.38 0.28 0.19
D08 [verb+er-irreg] 0.30 0.24 0.17 0.29 0.19 0.07
D09 [verb+tion-irreg] 0.51 0.22 0.15 0.73 0.63 0.51
D10 [verb+ment-irreg] 0.47 0.24 0.15 0.60 0.56 0.44
Encyclopedia 0.35 0.29 0.42 0.33 0.35 0.34
E01 [country - capital] 0.61 0.35 0.32 0.88 0.90 0.90
E02 [country - language] 0.36 0.31 0.45 0.47 0.30 0.36
E03 [UK-city - county] 0.41 0.36 0.52 0.14 0.14 0.14
E04 [name - nationality] 0.20 0.20 0.39 0.33 0.33 0.26
E05 [name - occupation] 0.33 0.21 0.40 0.45 0.62 0.52
E06 [animal - young] 0.34 0.36 0.38 0.06 0.06 0.12
E07 [animal - sound] 0.15 0.31 0.25 0.17 0.03 0.00
E08 [animal - shelter] 0.25 0.29 0.39 0.00 0.16 0.09
E09 [things - color] 0.20 0.23 0.63 0.08 0.15 0.21
E10 [male - female] 0.62 0.28 0.33 0.66 0.68 0.68
Inflectional 0.63 0.22 0.23 0.88 0.87 0.88
I01 [noun - plural-reg] 0.69 0.13 0.16 0.84 0.84 0.88
I02 [noun - plural-irreg] 0.62 0.12 0.16 0.67 0.69 0.75
I03 [adj - comparative] 0.63 0.23 0.37 0.97 0.97 1.00
I04 [adj - superlative] 0.59 0.26 0.39 0.93 0.93 0.97
I05 [verb-inf - 3pSg] 0.65 0.26 0.33 1.00 1.00 1.00
I06 [verb-inf - Ving] 0.67 0.26 0.19 0.84 0.82 0.82
I07 [verb-inf - Ved] 0.66 0.25 0.20 0.92 0.90 0.88
I08 [verb-Ving - 3pSg] 0.56 0.17 0.31 0.90 0.92 0.90
I09 [verb-Ving - Ved] 0.64 0.18 0.19 0.84 0.84 0.82
I10 [verb-3pSg - Ved] 0.62 0.33 0.20 0.90 0.88 0.88
Lexicography 0.45 0.17 0.18 0.19 0.17 0.18
L01 [hypernyms - animals] 0.47 0.32 0.47 0.00 0.05 0.05
L02 [hypernyms - misc] 0.42 0.21 0.21 0.29 0.21 0.10
L03 [hyponyms - misc] 0.52 0.15 0.15 0.19 0.14 0.14
L04 [meronyms - substance] 0.35 0.16 0.24 0.15 0.09 0.11
L05 [meronyms - member] 0.36 0.15 0.15 0.10 0.08 0.08
L06 [meronyms - part] 0.34 0.14 0.12 0.09 0.09 0.02
L07 [synonyms - intensity] 0.51 0.17 0.16 0.24 0.26 0.30
L08 [synonyms - exact] 0.55 0.11 0.11 0.15 0.15 0.22
L09 [antonyms - gradable] 0.45 0.18 0.19 0.41 0.41 0.43
L10 [antonyms - binary] 0.50 0.14 0.15 0.21 0.17 0.31
Micro Mean 0.47 0.22 0.26 0.49 0.48 0.47
Macro Mean 0.46 0.22 0.26 0.48 0.47 0.45
Macro Std 0.14 0.07 0.12 0.31 0.31 0.32

Table 1: Detailed results for all combinations of FastText/Google News embeddings and Google Analogy and
BATS analogies. In this table the cosine similarity is computed in the orthogonal complement. See the main paper

for more details.
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FastText Google News
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Mean Cosine Sim Precision
IntCos LRCos

InterIntraL IntraR DensRaySVM

capital-common-countries 0.76 0.53 0.56 1.00 1.00 1.00
capital-world 0.75 0.44 0.51 0.98 0.98 1.00
city-in-state 0.71 0.51 0.63 0.87 0.85 0.85
currency 0.33 0.59 0.48 0.54 0.31 0.08
family 0.84 0.57 0.59 0.91 0.91 0.95
gram1-adjective-to-adverb 0.66 0.50 0.56 0.88 0.84 0.88
gram2-opposite 0.72 0.51 0.54 0.72 0.83 0.76
gram3-comparative 0.75 0.53 0.57 0.92 0.95 0.95
gram4-superlative 0.70 0.53 0.61 1.00 1.00 1.00
gram5-present-participle 0.76 0.43 0.48 1.00 1.00 1.00
gram6-nationality-adjective 0.70 0.55 0.54 0.93 0.93 0.93
gram7-past-tense 0.73 0.49 0.47 0.95 0.93 0.97
gram8-plural 0.80 0.41 0.42 1.00 1.00 1.00
gram9-plural-verbs 0.74 0.43 0.48 1.00 1.00 1.00
Micro Mean 0.73 0.48 0.53 0.93 0.92 0.93
Macro Mean 0.71 0.50 0.53 0.91 0.90 0.89
Macro Std 0.11 0.05 0.06 0.12 0.17 0.23

Mean Cosine Sim Precision
IntCos LRCos

InterIntraL IntraR DensRaySVM

capital-common-countries 0.64 0.37 0.38 0.91 0.91 0.91
capital-world 0.64 0.34 0.36 0.90 0.90 0.90
city-in-state 0.59 0.37 0.49 0.85 0.88 0.87
currency 0.37 0.42 0.44 0.67 0.50 0.56
family 0.74 0.48 0.53 0.87 0.87 0.87
gram1-adjective-to-adverb 0.49 0.21 0.26 0.78 0.75 0.75
gram2-opposite 0.50 0.24 0.31 0.71 0.75 0.71
gram3-comparative 0.60 0.25 0.40 0.97 0.95 0.97
gram4-superlative 0.54 0.26 0.39 0.94 0.94 0.94
gram5-present-participle 0.70 0.20 0.21 0.94 0.91 0.94
gram6-nationality-adjective 0.72 0.41 0.41 0.93 0.93 0.93
gram7-past-tense 0.66 0.21 0.22 0.88 0.85 0.85
gram8-plural 0.73 0.21 0.23 0.97 0.89 0.97
gram9-plural-verbs 0.64 0.22 0.24 0.93 0.87 0.93
Micro Mean 0.62 0.31 0.36 0.89 0.87 0.88
Macro Mean 0.61 0.30 0.35 0.88 0.85 0.87
Macro Std 0.10 0.09 0.10 0.09 0.11 0.11

BA
T

S

Mean Cosine Sim Precision
IntCos LRCos

InterIntraL IntraR DensRaySVM

Derivational 0.63 0.47 0.45 0.81 0.80 0.80
D01 [noun+less-reg] 0.51 0.36 0.45 0.60 0.60 0.60
D02 [un+adj-reg] 0.71 0.46 0.46 0.80 0.72 0.84
D03 [adj+ly-reg] 0.63 0.50 0.52 0.90 0.90 0.90
D04 [over+adj-reg] 0.63 0.45 0.45 0.66 0.69 0.62
D05 [adj+ness-reg] 0.63 0.49 0.51 1.00 0.96 0.92
D06 [re+verb-reg] 0.74 0.52 0.49 0.59 0.71 0.76
D07 [verb+able-reg] 0.57 0.48 0.45 0.74 0.63 0.63
D08 [verb+er-irreg] 0.55 0.48 0.41 0.91 0.86 0.79
D09 [verb+tion-irreg] 0.63 0.46 0.41 0.91 0.93 0.86
D10 [verb+ment-irreg] 0.64 0.46 0.42 0.92 0.90 0.90
Encyclopedia 0.48 0.43 0.55 0.41 0.43 0.45
E01 [country - capital] 0.63 0.47 0.41 0.96 0.96 0.98
E02 [country - language] 0.40 0.43 0.59 0.33 0.24 0.33
E03 [UK-city - county] 0.59 0.49 0.57 0.30 0.42 0.36
E04 [name - nationality] 0.28 0.39 0.64 0.49 0.51 0.60
E05 [name - occupation] 0.44 0.41 0.57 0.75 0.73 0.73
E06 [animal - young] 0.47 0.43 0.44 0.10 0.15 0.15
E07 [animal - sound] 0.37 0.43 0.40 0.22 0.17 0.22
E08 [animal - shelter] 0.44 0.42 0.51 0.02 0.13 0.13
E09 [things - color] 0.44 0.38 0.81 0.12 0.22 0.16
E10 [male - female] 0.73 0.43 0.43 0.76 0.71 0.78
Inflectional 0.75 0.48 0.51 0.97 0.97 0.97
I01 [noun - plural-reg] 0.79 0.39 0.41 1.00 1.00 1.00
I02 [noun - plural-irreg] 0.77 0.40 0.42 0.84 0.82 0.84
I03 [adj - comparative] 0.75 0.50 0.52 1.00 1.00 1.00
I04 [adj - superlative] 0.71 0.51 0.58 0.96 0.96 1.00
I05 [verb-inf - 3pSg] 0.77 0.52 0.53 1.00 1.00 1.00
I06 [verb-inf - Ving] 0.77 0.51 0.51 0.96 0.96 0.96
I07 [verb-inf - Ved] 0.75 0.51 0.55 1.00 1.00 1.00
I08 [verb-Ving - 3pSg] 0.70 0.48 0.51 0.98 0.98 0.98
I09 [verb-Ving - Ved] 0.73 0.50 0.54 0.98 0.96 0.98
I10 [verb-3pSg - Ved] 0.72 0.53 0.55 1.00 1.00 1.00
Lexicography 0.62 0.37 0.38 0.21 0.22 0.26
L01 [hypernyms - animals] 0.58 0.43 0.53 0.20 0.37 0.24
L02 [hypernyms - misc] 0.55 0.35 0.39 0.23 0.16 0.14
L03 [hyponyms - misc] 0.63 0.35 0.31 0.33 0.28 0.28
L04 [meronyms - substance] 0.53 0.36 0.44 0.10 0.15 0.17
L05 [meronyms - member] 0.58 0.36 0.36 0.12 0.10 0.12
L06 [meronyms - part] 0.53 0.31 0.30 0.04 0.15 0.09
L07 [synonyms - intensity] 0.67 0.37 0.37 0.27 0.32 0.36
L08 [synonyms - exact] 0.71 0.33 0.31 0.18 0.16 0.22
L09 [antonyms - gradable] 0.68 0.45 0.43 0.43 0.37 0.55
L10 [antonyms - binary] 0.72 0.40 0.40 0.18 0.18 0.39
Micro Mean 0.62 0.44 0.47 0.59 0.60 0.61
Macro Mean 0.62 0.44 0.47 0.60 0.60 0.61
Macro Std 0.12 0.06 0.09 0.34 0.33 0.32

Mean Cosine Sim Precision
IntCos LRCos

InterIntraL IntraR DensRaySVM

Derivational 0.44 0.21 0.20 0.51 0.48 0.44
D01 [noun+less-reg] 0.26 0.16 0.24 0.10 0.10 0.05
D02 [un+adj-reg] 0.47 0.17 0.20 0.66 0.58 0.58
D03 [adj+ly-reg] 0.48 0.17 0.22 0.76 0.78 0.76
D04 [over+adj-reg] 0.39 0.17 0.21 0.41 0.41 0.30
D05 [adj+ness-reg] 0.47 0.21 0.26 0.75 0.70 0.65
D06 [re+verb-reg] 0.56 0.29 0.28 0.69 0.61 0.58
D07 [verb+able-reg] 0.38 0.25 0.20 0.28 0.22 0.19
D08 [verb+er-irreg] 0.30 0.24 0.17 0.12 0.10 0.07
D09 [verb+tion-irreg] 0.51 0.22 0.15 0.61 0.61 0.51
D10 [verb+ment-irreg] 0.47 0.24 0.15 0.54 0.50 0.44
Encyclopedia 0.35 0.29 0.42 0.35 0.32 0.34
E01 [country - capital] 0.61 0.35 0.32 0.90 0.90 0.90
E02 [country - language] 0.36 0.31 0.45 0.43 0.21 0.36
E03 [UK-city - county] 0.41 0.36 0.52 0.14 0.12 0.14
E04 [name - nationality] 0.20 0.20 0.39 0.26 0.15 0.26
E05 [name - occupation] 0.33 0.21 0.40 0.60 0.57 0.52
E06 [animal - young] 0.34 0.36 0.38 0.09 0.12 0.12
E07 [animal - sound] 0.15 0.31 0.25 0.08 0.00 0.00
E08 [animal - shelter] 0.25 0.29 0.39 0.07 0.14 0.09
E09 [things - color] 0.20 0.23 0.63 0.19 0.19 0.21
E10 [male - female] 0.62 0.28 0.33 0.68 0.68 0.68
Inflectional 0.63 0.22 0.23 0.88 0.88 0.88
I01 [noun - plural-reg] 0.69 0.13 0.16 0.86 0.84 0.88
I02 [noun - plural-irreg] 0.62 0.12 0.16 0.69 0.71 0.75
I03 [adj - comparative] 0.63 0.23 0.37 0.97 1.00 1.00
I04 [adj - superlative] 0.59 0.26 0.39 0.97 0.97 0.97
I05 [verb-inf - 3pSg] 0.65 0.26 0.33 1.00 1.00 1.00
I06 [verb-inf - Ving] 0.67 0.26 0.19 0.86 0.82 0.82
I07 [verb-inf - Ved] 0.66 0.25 0.20 0.92 0.90 0.88
I08 [verb-Ving - 3pSg] 0.56 0.17 0.31 0.90 0.90 0.90
I09 [verb-Ving - Ved] 0.64 0.18 0.19 0.84 0.82 0.82
I10 [verb-3pSg - Ved] 0.62 0.33 0.20 0.88 0.88 0.88
Lexicography 0.45 0.17 0.18 0.19 0.17 0.18
L01 [hypernyms - animals] 0.47 0.32 0.47 0.08 0.08 0.05
L02 [hypernyms - misc] 0.42 0.21 0.21 0.26 0.26 0.10
L03 [hyponyms - misc] 0.52 0.15 0.15 0.19 0.14 0.14
L04 [meronyms - substance] 0.35 0.16 0.24 0.09 0.09 0.11
L05 [meronyms - member] 0.36 0.15 0.15 0.10 0.06 0.08
L06 [meronyms - part] 0.34 0.14 0.12 0.09 0.09 0.02
L07 [synonyms - intensity] 0.51 0.17 0.16 0.26 0.26 0.30
L08 [synonyms - exact] 0.55 0.11 0.11 0.15 0.15 0.22
L09 [antonyms - gradable] 0.45 0.18 0.19 0.45 0.41 0.43
L10 [antonyms - binary] 0.50 0.14 0.15 0.19 0.17 0.31
Micro Mean 0.47 0.22 0.26 0.49 0.47 0.47
Macro Mean 0.46 0.22 0.26 0.48 0.46 0.45
Macro Std 0.14 0.07 0.12 0.32 0.32 0.32

Table 2: Detailed results for all combinations of FastText/Google News embeddings and Google Analogy and
BATS analogies. In this table the cosine similarity is computed in the original space. See the main paper for more

details.
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Abstract

Word alignments are useful for tasks like sta-
tistical and neural machine translation (NMT)
and cross-lingual annotation projection. Statis-
tical word aligners perform well, as do meth-
ods that extract alignments jointly with trans-
lations in NMT. However, most approaches
require parallel training data, and quality de-
creases as less training data is available. We
propose word alignment methods that require
no parallel data. The key idea is to lever-
age multilingual word embeddings – both
static and contextualized – for word alignment.
Our multilingual embeddings are created from
monolingual data only without relying on any
parallel data or dictionaries. We find that align-
ments created from embeddings are superior
for four and comparable for two language pairs
compared to those produced by traditional sta-
tistical aligners – even with abundant parallel
data; e.g., contextualized embeddings achieve
a word alignment F1 for English-German that
is 5 percentage points higher than eflomal, a
high-quality statistical aligner, trained on 100k
parallel sentences.

1 Introduction

Word alignments are essential for statistical ma-
chine translation and useful in NMT, e.g., for im-
posing priors on attention matrices (Liu et al.,
2016; Chen et al., 2016; Alkhouli and Ney, 2017;
Alkhouli et al., 2018) or for decoding (Alkhouli
et al., 2016; Press and Smith, 2018). Further, word
alignments have been successfully used in a range
of tasks such as typological analysis (Lewis and
Xia, 2008; Östling, 2015b), annotation projection
(Yarowsky et al., 2001; Padó and Lapata, 2009;
Asgari and Schütze, 2017; Huck et al., 2019) and
creating multilingual embeddings (Guo et al., 2016;
Ammar et al., 2016; Dufter et al., 2018).

∗ Equal contribution - random order.

Der Pinguin Nils Olav wurde vom norwegischen König zum Ritter geschlagen

Pingvin Nils Olav Norvegiya qiroli tomonidan ritsar edi

Sir Nils Olav III. ですペンギン knighted by el rey noruego

Nils Olav der Dritte is a penguin nominato cavaliere par un roi norvégien

Figure 1: Our method does not rely on parallel train-
ing data and can align distant language pairs (German-
Uzbek, top) and even mixed sentences (bottom). Exam-
ple sentence is manually created. Algorithm: Itermax.

Statistical word aligners such as the IBM mod-
els (Brown et al., 1993) and their implementations
Giza++ (Och and Ney, 2003), fast-align (Dyer
et al., 2013), as well as newer models such as eflo-
mal (Östling and Tiedemann, 2016) are widely used
for alignment. With the rise of NMT (Bahdanau
et al., 2014), attempts have been made to interpret
attention matrices as soft word alignments (Cohn
et al., 2016; Koehn and Knowles, 2017; Ghader
and Monz, 2017). Several methods create align-
ments from attention matrices (Peter et al., 2017;
Zenkel et al., 2019) or pursue a multitask approach
for alignment and translation (Garg et al., 2019).
However, most systems require parallel data (in suf-
ficient amount to train high quality NMT systems)
and their performance deteriorates when parallel
text is scarce (Tables 1–2 in (Och and Ney, 2003)).

Recent unsupervised multilingual embedding al-
gorithms that use only non-parallel data provide
high quality static (Artetxe et al., 2018; Conneau
et al., 2018) and contextualized embeddings (De-
vlin et al., 2019; Conneau et al., 2020). Our key
idea is to leverage these embeddings for word align-
ments – by extracting alignments from similarity
matrices induced from embeddings – without rely-
ing on parallel data. Requiring no or little paral-
lel data is advantageous, e.g., in the low-resource
case and in domain-specific settings without par-
allel data. A lack of parallel data cannot be easily
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remedied: mining parallel sentences is possible
(Schwenk et al., 2019) but assumes that compara-
ble, monolingual corpora contain parallel sentences.
Further, we find that large amounts of mined par-
allel data do not necessarily improve alignment
quality.

Our main contribution is that we show that
word alignments obtained from multilingual pre-
trained language models are superior for four and
comparable for two language pairs, compared to
strong statistical word aligners like eflomal even
in high resource scenarios. Additionally, (1) we
introduce three new alignment methods based on
the matrix of embedding similarities and two ex-
tensions that handle null words and integrate posi-
tional information. They permit a flexible tradeoff
of recall and precision. (2) We provide evidence
that subword processing is beneficial for aligning
rare words. (3) We bundle the source code of our
methods in a tool called SimAlign, which is avail-
able.1 An interactive online demo is available.2

2 Methods

2.1 Alignments from Similarity Matrices

We propose three methods to obtain alignments
from similarity matrices. Argmax is a simple base-
line, IterMax a novel iterative algorithm, and Match
a graph-theoretical method based on identifying
matchings in a bipartite graph.

Consider parallel sentences s(e), s(f), with
lengths le, lf in languages e, f . Assume we have
access to some embedding function E that maps
each word in a sentence to a d-dimensional vector,
i.e., E(s(k)) ∈ Rlk×d for k ∈ {e, f}. Let E(s(k))i
denote the vector of the i-th word in sentence s(k).
For static embeddings E(s(k))i depends only on the
word i in language k whereas for contextualized
embeddings the vector depends on the full context
s(k). We define the similarity matrix as the matrix
S ∈ [0, 1]le×lf induced by the embeddings where
Sij := sim

(
E(s(e))i, E(s(f))j

)
is some normal-

ized measure of similarity, e.g., cosine-similarity
normalized to be between 0 and 1. We now de-
scribe our methods for extracting alignments from
S, i.e., obtaining a binary matrix A ∈ {0, 1}le×lf .

Argmax. A simple baseline is to align i and
j when s(e)i is the most similar word to s(f)j and

1https://github.com/cisnlp/simalign
2https://simalign.cis.lmu.de/

Algorithm 1 Itermax.
1: procedure ITERMAX(S, nmax , α ∈ [0, 1])
2: A,M = zeros like(S)
3: for n ∈ [1, . . . , nmax ] do
4: ∀i, j :

5: Mij =





1 if max
(∑le

l=0Alj ,
∑lf

l=0Ail

)
= 0

0 if min
(∑le

l=0Alj ,
∑lf

l=0Ail

)
> 0

α otherwise
6: Ato add = get argmax alignments(S �M)
7: A = A+Ato add
8: end for
9: return A

10: end procedure

Figure 2: Description of the Itermax algorithm. ze-
ros like yields a matrix with zeros and with same shape
as the input, get argmax alignments returns alignments
obtained using the Argmax Method, � is elementwise
multiplication.

vice-versa. That is, we set Aij = 1 if

(i = argmax
l
Sl,j) ∧ (j = argmax

l
Si,l)

and Aij = 0 otherwise. In case of ties, which
are unlikely in similarity matrices, we choose the
smaller index. If all entries in a row i or column
j of S are 0 we set Aij = 0 (this case can appear
in Itermax). Similar methods have been applied
to co-occurrences (Melamed, 2000) (“competitive
linking”), Dice coefficients (Och and Ney, 2003)
and attention matrices (Garg et al., 2019).

Itermax. There are many sentences for which
Argmax only identifies few alignment edges be-
cause mutual argmaxes can be rare. As a remedy,
we apply Argmax iteratively. Specifically, we mod-
ify the similarity matrix conditioned on the align-
ment edges found in a previous iteration: if two
words i and j have both been aligned, we zero out
the similarity. Similarly, if neither is aligned we
leave the similarity unchanged. In case only one of
them is aligned, we multiply the similarity with a
discount factor α ∈ [0, 1]. Intuitively, this encour-
ages the model to focus on unaligned word pairs.
However, if the similarity with an already aligned
word is exceptionally high, the model can add an
additional edge. Note that this explicitly allows
one token to be aligned to multiple other tokens.
For details on the algorithm see Figure 2.

Match. Argmax finds a local, not a global opti-
mum and Itermax is a greedy algorithm. To find
global optima, we frame alignment as an assign-
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ment problem: we search for a maximum-weight
maximal matching (e.g., (Kuhn, 1955)) in the bi-
partite weighted graph which is induced by the
similarity matrix. This optimization problem is
defined by

A∗ = argmax
A∈{0,1}le×lf

le∑

i=1

lf∑

j=1

AijSij

subject toA being a matching (i.e., each node has at
most one edge) that is maximal (i.e., no additional
edge can be added). There are known algorithms to
solve the above problem in polynomial time (e.g.,
(Galil, 1986)).

Note that alignments generated with the match
method are inherently bidirectional. None of our
methods require additional symmetrization as post-
processing.

2.2 Distortion and Null Extensions
Distortion Correction [Dist]. Distortion, as intro-
duced in IBM Model 2, is essential for alignments
based on non-contextualized embeddings since the
similarity of two words is solely based on their
surface form, independent of position. To penalize
high distortions, we multiply the similarity matrix
S componentwise with

Pi,j = 1− κ (i/le − j/lf )2 ,

where κ is a hyperparameter to scale the dis-
tortion matrix P between [(1 − κ), 1]. We use
κ = 0.5. See supplementary for different val-
ues. We can interpret this as imposing a locality-
preserving prior: given a choice, a word should
be aligned to a word with a similar relative posi-
tion ((i/le − j/lf )2 close to 0) rather than a more
distant word (large (i/le − j/lf )2).

Null. Null words model untranslated words and
are an important part of alignment models. We
propose to model null words as follows: if a word
is not particularly similar to any of the words in
the target sentence, we do not align it. Specifi-
cally, given an alignment matrix A, we remove
alignment edges when the normalized entropy of
the similarity distribution is above a threshold τ , a
hyperparameter. We use normalized entropy (i.e.,
entropy divided by the log of sentence length) to
account for different sentence lengths; i.e., we set
Aij = 0 if

min(−
∑lf

k=1S
h
iklogS

h
ik

log lf
,−
∑le

k=1S
v
kj logS

v
kj

log le
)>τ,

where Shik := Sik/
∑lf

m=1 Sim, and Svkj :=

Skj/
∑le

m=1 Smj . As the ideal value of τ depends
on the actual similarity scores we set τ to a per-
centile of the entropy values of the similarity dis-
tribution across all aligned edges (we use the 95th
percentile). Different percentiles are in the supple-
mentary.

3 Experiments

3.1 Embedding Learning
Static. We train monolingual embeddings with
fastText (Bojanowski et al., 2017) for each lan-
guage on its Wikipedia. We then use VecMap
(Artetxe et al., 2018) to map the embeddings into
a common multilingual space. Note that this algo-
rithm works without any crosslingual supervision
(e.g., multilingual dictionaries). We use the same
procedure for word and subword levels. We use the
label fastText to refer to these embeddings as well
as the alignments induced by them.

Contextualized. We use the multilingual BERT
model (mBERT).3 It is pretrained on the 104 largest
Wikipedia languages. This model only provides
embeddings at the subword level. To obtain a word
embedding, we simply average the vectors of its
subwords. We consider word representations from
all 12 layers as well as the concatenation of all
layers. Note that the model is not finetuned. We
denote this method as mBERT[i] (when using em-
beddings from the i-th layer, where 0 means using
the non-contextualized initial embedding layer) and
mBERT[conc] (for concatenation).

In addition, we use XLM-RoBERTa base (Con-
neau et al., 2020), which is pretrained on 100 lan-
guages on cleaned CommonCrawl data (Wenzek
et al., 2020). We denote alignments obtained using
the embeddings from the i-th layer by XLM-R[i].

3.2 Word and Subword Alignments
We investigate both alignments between subwords
such as wordpiece (Schuster and Nakajima, 2012)
(which are widely used for contextualized language
models) and words. We refer to computing align-
ment edges between words as word level and be-
tween subwords as subword level. Note that gold
standards are all word-level. In order to evaluate
alignments obtained at the subword level we con-
vert subword to word alignments using the heuristic
“two words are aligned if any of their subwords are

3https://github.com/google-research/
bert/blob/master/multilingual.md
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Subword-emb.

Word-emb.

Embeddings Alignments Gold Standard

Convert by averaging, 
if required

Subword-level

Word-level
Convert using a 
heuristic

Word-level
evaluate

Ski excursions are excellent .

Ski ##ausflüge sind hervor ##ragend .

Ski excursions are excellent .

Skiausflüge sind hervorragend .

Figure 3: Subword alignments are always converted to
word alignments for evaluation.

aligned” (see Figure 3). As a result a single word
can be aligned with multiple other words.

For the word level, we use the NLTK tokenizer
(Bird et al., 2009) (e.g., for tokenizing Wikipedia
in order to train fastText). For the subword level,
we generally use multilingual BERT’s vocabulary3

and BERT’s wordpiece tokenizer. For XLM-R we
use the XLM-R subword vocabulary. Since gold
standards are already tokenized, they do not require
additional tokenization.

3.3 Baselines

We compare to three popular statistical alignment
models that all require parallel training data. fast-
align/IBM2 (Dyer et al., 2013) is an implemen-
tation of an alignment algorithm based on IBM
Model 2. It is popular because of its speed and high
quality. eflomal4 (based on efmaral by Östling
and Tiedemann (2016)), a Bayesian model with
Markov Chain Monte Carlo inference, is claimed
to outperform fast-align on speed and quality. Fur-
ther we use the widely used software package
Giza++/IBM4 (Och and Ney, 2003), which imple-
ments IBM alignment models. We use its standard
settings: 5 iterations each for the HMM model,
IBM Models 1, 3 and 4 with p0 = 0.98.

Symmetrization. Probabilistic word alignment
models create forward and backward alignments
and then symmetrize them (Och and Ney, 2003;
Koehn et al., 2005). We compared the symmetriza-
tion methods grow-diag-final-and (GDFA) and in-
tersection and found them to perform comparably;
see supplementary. We use GDFA throughout the
paper.

4github.com/robertostling/eflomal

3.4 Evaluation Measures

Given a set of predicted alignment edges A and
a set of sure, possible gold standard edges S, P
(where S ⊂ P ), we use the following evaluation
measures:

prec =
|A ∩ P |
|A| , rec =

|A ∩ S|
|S| ,

F1 =
2 prec rec
prec + rec

,

AER = 1− |A ∩ S|+ |A ∩ P ||A|+ |S| ,

where | · | denotes the cardinality of a set. This is
the standard evaluation (Och and Ney, 2003).

3.5 Data

Our test data are a diverse set of 6 language pairs:
Czech, German, Persian, French, Hindi and Roma-
nian, always paired with English. See Table 11 for
corpora and supplementary for URLs.

For our baselines requiring parallel training data
(i.e., eflomal, fast-align and Giza++) we select addi-
tional parallel training data that is consistent with
the target domain where available. See Table 11
for the corpora. Unless indicated otherwise we use
the whole parallel training data. Figure 5 shows the
effect of using more or less training data.

Given the large amount of possible experiments
when considering 6 language pairs we do not have
space to present all numbers for all languages. If
we show results for only one pair, we choose ENG-
DEU as it is an established and well-known dataset
(EuroParl). If we show results for more languages
we fall back to DEU, CES and HIN, to show effects
on a mid-resource morphologically rich language
(CES) and a low-resource language written in a
different script (HIN).

4 Results

4.1 Embedding Layer

Figure 4 shows a parabolic trend across layers of
mBERT and XLM-R. We use layer 8 in this paper
because it has best performance. This is consis-
tent with other work (Hewitt and Manning, 2019;
Tenney et al., 2019): in the first layers the contex-
tualization is too weak for high-quality alignments
while the last layers are too specialized on the pre-
training task (masked language modeling).
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Gold Gold St. Parallel Parallel Wikipedia
Lang. Standard Size |S| |P \ S| Data Data Size Size

ENG-CES (Mareček, 2008) 2500 44292 23132 EuroParl (Koehn, 2005) 646k 8M
ENG-DEU EuroParl-baseda 508 9612 921 EuroParl (Koehn, 2005) 1920k 48M
ENG-FAS (Tavakoli and Faili, 2014) 400 11606 0 TEP (Pilevar et al., 2011) 600k 5M
ENG-FRA WPT2003, (Och and Ney, 2000), 447 4038 13400 Hansards (Germann, 2001) 1130k 32M
ENG-HIN WPT2005b 90 1409 0 Emille (McEnery et al., 2000) 3k 1M
ENG-RON WPT2005b 203 5033 0 Constitution, Newspaperb 50k 3M
a www-i6.informatik.rwth-aachen.de/goldAlignment/
b http://web.eecs.umich.edu/˜mihalcea/wpt05/

Table 1: Overview of datasets. “Lang.” uses ISO 639-3 language codes. “Size” refers to the number of sentences.
“Parallel Data Size” refers to the number of parallel sentences in addition to the gold alignments that is used for
training the baselines. Our sentence tokenized version of the English Wikipedia has 105M sentences.

ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method F1 AER F1 AER F1 AER F1 AER F1 AER F1 AER

Pr
io

rW
or

k

(Östling, 2015a) Bayesian .94 .06 .57 .43 .73 .27
(Östling, 2015a) Giza++ .92 .07 .51 .49 .72 .28
(Legrand et al., 2016) Ensemble Method .81 .16 .71 .10
(Östling and Tiedemann, 2016) efmaral .93 .08 .53 .47 .72 .28
(Östling and Tiedemann, 2016) fast-align .86 .15 .33 .67 .68 .33
(Zenkel et al., 2019) Giza++ .21 .06 .28
(Garg et al., 2019) Multitask .20 .08

B
as

el
in

es W
or

d fast-align/IBM2 .76 .25 .71 .29 .57 .43 .86 .15 .34 .66 .68 .33
Giza++/IBM4 .75 .26 .77 .23 .51 .49 .92 .09 .45 .55 .69 .31
eflomal .85 .15 .77 .23 .61 .39 .93 .08 .51 .49 .71 .29

Su
bw

or
d fast-align/IBM2 .78 .23 .71 .30 .58 .42 .85 .16 .38 .62 .68 .32

Giza++/IBM4 .82 .18 .78 .22 .57 .43 .92 .09 .48 .52 .69 .32
eflomal .84 .17 .76 .24 .63 .37 .91 .09 .52 .48 .72 .28

T
hi

s
W

or
k

W
or

d fastText - Argmax .70 .30 .60 .40 .50 .50 .77 .22 .49 .52 .47 .53
mBERT[8] - Argmax .87 .13 .79 .21 .67 .33 .94 .06 .54 .47 .64 .36
XLM-R[8] - Argmax .87 .13 .79 .21 .70 .30 .93 .06 .59 .41 .70 .30

Su
bw

or
d fastText - Argmax .58 .42 .56 .44 .09 .91 .73 .26 .04 .96 .43 .58

mBERT[8] - Argmax .86 .14 .81 .19 .67 .33 .94 .06 .55 .45 .65 .35
XLM-R[8] - Argmax .87 .13 .81 .19 .71 .29 .93 .07 .61 .39 .71 .29

Table 2: Comparison of our methods, baselines and prior work in unsupervised word alignment. Best result per
column in bold. A detailed version of the table with precision/recall and Itermax/Match results is in supplementary.

0 2 4 6 8 10 12
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Figure 4: Word alignment performance across layers
of mBERT (top) and XLM-R (bottom). Results are F1

with Argmax at the subword level.

4.2 Comparison with Prior Work

Contextual Embeddings. Table 2 shows that
mBERT and XLM-R consistently perform well
with the Argmax method. XLM-R yields mostly
higher values than mBERT. Our three baselines,
eflomal, fast-align and Giza++, are always outper-

formed (except for RON). We outperform all prior
work except for FRA where we match the perfor-
mance and RON. This comparison is not entirely
fair because methods relying on parallel data have
access to the parallel sentences of the test data dur-
ing training whereas our methods do not.

Romanian might be a special case as it exhibits a
large amount of many to one links and further lacks
determiners. How determiners are handled in the
gold standard depends heavily on the annotation
guidelines. Note that one of our settings, XLM-
R[8] with Itermax at the subword level, has an F1
of .72 for ENG-RON, which comes very close to
the performance by (Östling, 2015a) (see Table 3).

In summary, extracting alignments from similar-
ity matrices is a very simple and efficient method
that performs surprisingly strongly. It outperforms
strong statistical baselines and most prior work in
unsupervised word alignment for CES, DEU, FAS
and HIN and is comparable for FRA and RON.
We attribute this to the strong contextualization in
mBERT and XLM-R.
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Figure 5: Learning curves of fast-align/eflomal vs.
embedding-based alignments. Results shown are F1

for ENG-DEU, contrasting subword and word repre-
sentations. Up to 1.9M parallel sentences we use Eu-
roParl. To demonstrate the effect with abundant paral-
lel data we add up to 37M additional parallel sentences
from ParaCrawl (Esplà et al., 2019) (see grey area).

Static Embeddings. fastText shows a solid per-
formance on word level, which is worse but comes
close to fast-align and outperforms it for HIN. We
consider this surprising as fastText did not have
access to parallel data or any multilingual signal.
VecMap can also be used with crosslingual dictio-
naries. We expect this to boost performance and
fastText could then become a viable alternative to
fast-align.

Amount of Parallel Data. Figure 5 shows that
fast-align and eflomal get better with more train-
ing data with eflomal outperforming fast-align, as
expected. However, even with 1.9M parallel sen-
tences mBERT outperforms both baselines. When
adding up to 37M additional parallel sentences
from ParaCrawl (Esplà et al., 2019) performance
for fast-align increases slightly, however, eflomal
decreases (grey area in plot). ParaCrawl contains
mined parallel sentences whose lower quality prob-
ably harms eflomal. fastText (with distortion) is
competitive with eflomal for fewer than 1000 paral-
lel sentences and outperforms fast-align even with
10k sentences. Thus for very small parallel corpora
(<10k sentences) using fastText embeddings is an
alternative to fast-align.

The main takeaway from Figure 5 is that mBERT-
based alignments, a method that does not need any
parallel training data, outperforms state-of-the-art
aligners like eflomal for ENG-DEU, even in the
very high resource case.

ENG- ENG- ENG- ENG- ENG- ENG-
Emb. Method CES DEU FAS FRA HIN RON

mBERT[8]
Argmax .86 .81 .67 .94 .55 .65
Itermax .86 .81 .70 .93 .58 .69
Match .82 .78 .67 .90 .58 .67

XLM-R[8]
Argmax .87 .81 .71 .93 .61 .71
Itermax .86 .80 .72 .92 .62 .72
Match .81 .76 .68 .88 .60 .70

Table 3: Comparison of our three proposed methods
across all languages for the best embeddings from Ta-
ble 2: mBERT[8] and XLM-R[8]. We show F1 at the
subword level. Best result per embedding type in bold.

ENG-DEU ENG-CES ENG-HIN

E
m

b.

nmax α Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

m
B

E
R

T
[8

]

1 - .92 .69 .79 .21 .95 .80 .87 .13 .84 .39 .54 .47

2
.90 .85 .77 .81 .19 .87 .87 .87 .14 .75 .47 .58 .42
.95 .83 .80 .81 .19 .85 .89 .87 .13 .73 .48 .58 .42
1 .77 .79 .78 .22 .80 .86 .83 .17 .63 .46 .53 .47

3
.90 .81 .80 .80 .20 .83 .88 .85 .15 .70 .49 .57 .43
.95 .78 .83 .81 .20 .81 .91 .86 .15 .68 .52 .59 .41
1 .73 .83 .77 .23 .76 .91 .82 .18 .58 .51 .54 .46

fa
st

Te
xt

1 - .81 .48 .60 .40 .86 .59 .70 .30 .75 .36 .49 .52

2
.90 .69 .56 .62 .38 .74 .69 .72 .29 .63 .42 .51 .49
.95 .66 .56 .61 .39 .71 .69 .70 .30 .59 .41 .48 .52
1 .59 .55 .57 .43 .62 .65 .63 .37 .53 .39 .45 .55

3
.90 .63 .59 .61 .39 .67 .72 .70 .31 .57 .43 .49 .51
.95 .59 .59 .59 .41 .63 .73 .68 .33 .53 .44 .48 .52
1 .53 .58 .55 .45 .55 .70 .62 .39 .48 .43 .45 .55

Table 4: Itermax with different number of iterations
(nmax) and different α. Results are at the word level.

4.3 Additional Methods and Extensions

We already showed that Argmax yields alignments
that are competitive with the state of the art. In this
section we compare all our proposed methods and
extensions more closely.

Itermax. Table 4 shows results for Argmax
(i.e., 1 Iteration) as well as Itermax (i.e., 2 or
more iterations of Argmax). As expected, with
more iterations precision drops in favor of recall.
Overall, Itermax achieves higher F1 scores for the
three language pairs (equal for ENG-CES) both for
mBERT[8] and fastText embeddings. For Hindi the
performance increase is the highest. We hypothe-
size that for more distant languages Itermax is more
beneficial as similarity between wordpieces may
be generally lower, thus exhibiting fewer mutual
argmaxes. For the rest of the paper if we use Iter-
max we use 2 Iterations with α = 0.9 as it exhibits
best performance (5 out of 6 wins in Table 4).

Argmax/Itermax/Match. In Table 3 we com-
pare our three proposed methods in terms of F1

across all languages. We chose to show the two
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ENG-DEU ENG-CES ENG-HIN

E
m

b.
Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

fa
st

Te
xt

Argmax .81 .48 .60 .40 .86 .59 .70 .30 .75 .36 .49 .52
+Dist .84 .54 .65 .35 .89 .68 .77 .23 .64 .30 .41 .59
+Null .81 .46 .59 .41 .86 .56 .68 .32 .74 .34 .46 .54

Itermax .69 .56 .62 .38 .74 .69 .72 .29 .63 .42 .51 .49
+Dist .71 .62 .66 .34 .75 .76 .76 .25 .54 .37 .44 .57
+Null .69 .53 .60 .40 .74 .66 .70 .30 .63 .40 .49 .51

Match .60 .58 .59 .41 .65 .71 .68 .32 .55 .43 .48 .52
+Dist .67 .64 .65 .35 .72 .78 .75 .25 .50 .39 .43 .57
+Null .61 .56 .58 .42 .66 .69 .67 .33 .56 .41 .48 .52

m
B

E
R

T
[8

]

Argmax .92 .69 .79 .21 .95 .80 .87 .13 .84 .39 .54 .47
+Dist .91 .67 .77 .23 .93 .79 .85 .15 .68 .29 .41 .59
+Null .93 .67 .78 .22 .95 .77 .85 .15 .85 .38 .53 .47

Itermax .85 .77 .81 .19 .87 .87 .87 .14 .75 .47 .58 .43
+Dist .82 .75 .79 .21 .84 .85 .85 .15 .56 .34 .43 .58
+Null .86 .75 .80 .20 .88 .84 .86 .14 .76 .45 .57 .43

Match .78 .74 .76 .24 .81 .85 .83 .17 .67 .52 .59 .42
+Dist .75 .71 .73 .27 .79 .83 .81 .20 .45 .35 .39 .61
+Null .80 .73 .76 .24 .83 .83 .83 .17 .68 .51 .58 .42

Table 5: Analysis of Null and Distortion Extensions.
All alignments are obtained at word-level. Best result
per embedding type and method in bold.

best performing settings from Table 2: mBERT[8]
and XLM-R[8] at the subword level. Itermax per-
forms slightly better than Argmax with 6 wins, 4
losses and 2 ties. Itermax seems to help more for
more distant languages such as FAS, HIN and RON,
but harms for FRA. Match has the lowest F1, but
generally exhibits a higher recall (see e.g., Table 5).

Null and Distortion Extensions. Table 5 shows
that Argmax and Itermax generally have higher pre-
cision, whereas Match has higher recall. Adding
Null almost always increases precision, but at the
cost of recall, resulting mostly in a lower F1 score.
Adding a distortion prior boosts performance for
static embeddings, e.g., from .70 to .77 for ENG-
CES Argmax F1 and similarly for ENG-DEU. For
Hindi a distortion prior is harmful. Dist has little
and sometimes harmful effects on mBERT indicat-
ing that mBERT’s contextualized representations
already match well across languages.

Summary. Argmax and Itermax exhibit the best
and most stable performance. For most language
pairs Itermax is recommended. If high recall align-
ments are required, Match is the recommended
algorithm. Except for HIN, a distortion prior is
beneficial for static embeddings. Null should be ap-
plied when one wants to push precision even higher
(e.g., for annotation projection).

4.4 Words and Subwords
Table 2 shows that subword processing slightly out-
performs word-level processing for most methods.
Only fastText is harmed by subword processing.

0 <= x < 5
(240)

5 <= x < 25
(331)

25 <= x < 125
(650)

125 <= x
(9312)

Frequency Bin

0.60

0.65

0.70

0.75

0.80

0.85

F 1

mBERT[8](Argmax)
eflomal

word
subword

Figure 6: Results for different frequency bins on ENG-
DEU. An edge in S, P , orA is attributed to exactly one
bin based on the minimum frequency of the involved
words (denoted by x). Number of gold edges in brack-
ets. Eflomal is trained on all 1.9M parallel sentences.
Frequencies are computed on the same corpus.

ADJ ADP ADV AUX NOUN PRON VERB

eflomal Word 0.83 0.69 0.72 0.63 0.85 0.79 0.63
Subword 0.82 0.68 0.71 0.57 0.85 0.77 0.62

mBERT[8] Word 0.79 0.74 0.71 0.71 0.81 0.84 0.69
Subword 0.81 0.75 0.72 0.72 0.87 0.84 0.69

Table 6: Alignment performance (F1) on ENG-DEU
for POS. We use mBERT[8](Argmax) and Eflomal
trained on 1.9M parallel sentences on the word level.

We use VecMap to match (sub)word distributions
across languages. We hypothesize that it is harder
to match subword than word distributions – this
effect is strongest for Persian and Hindi, proba-
bly due to different scripts and thus different sub-
word distributions. Initial experiments showed that
adding supervision in form of a dictionary helps
restore performance. We will investigate this in
future work.

We hypothesize that subword processing is ben-
eficial for aligning rare words. To show this, we
compute our evaluation measures for different fre-
quency bins. More specifically, we only consider
gold standard alignment edges for the computation
where at least one of the member words has a cer-
tain frequency in a reference corpus (in our case all
1.9M lines from the ENG-DEU EuroParl corpus).
That is, we only consider the edge (i, j) in A,S or
P if the minimum of the source and target word
frequency is in [γl, γu) where γl and γu are bin
boundaries.

Figure 6 shows F1 for different frequency bins.
For rare words both eflomal and mBERT show a
severely decreased performance at the word level,
but not at the subword level. Thus, subword pro-
cessing is indeed beneficial for rare words.
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At the same time , Regulation No 2078 of 1992 on 
environmentally compatible agricultural production methods 
adapted to the landscape has also contributed substantially to 
this trend . 

Daneben hat die Verordnung 2078 aus dem Jahr 1992 über
umweltverträgliche und landschaftsgerechte
Produktionsweisen in der Landwirtschaft ebenfalls erheblich
zu dieser Entwicklung beigetragen .

The Commission , for its part , will continue to play an active 
part in the intergovernmental conference .

Die Kommissionwird bei der Regierungskonferenz auch
weiterhin eine aktive Rolle spielen .

Figure 7: Example alignment of auxiliary verbs. Same
setting as in Table 6. Solid lines: mBERT’s alignment,
identical to the gold standard. Dashed lines: eflomal’s
incorrect alignment.

4.5 Part-Of-Speech Analysis

To analyze the performance with respect to differ-
ent part-of-speech (POS) tags, the ENG-DEU gold
standard was tagged with the Stanza toolkit (Qi
et al., 2020). We evaluate the alignment perfor-
mance for each POS tag by only considering the
alignment edges where at least one of their mem-
ber words has this tag. Table 6 shows results for
frequent POS tags. Compared to eflomal, mBERT
aligns auxiliaries, pronouns and verbs better. The
relative position of auxiliaries and verbs in German
can diverge strongly from that in English because
they occur at the end of the sentence (verb-end po-
sition) in many clause types. Positions of pronouns
can also diverge due to a more flexible word or-
der in German. It is difficult for an HMM-based
aligner like eflomal to model such high-distortion
alignments, a property that has been found by prior
work as well (Ho and Yvon, 2019). In contrast,
mBERT(Argmax) does not use distortion informa-
tion, so high distortion is not a problem for it.

Figure 7 gives an example for auxiliaries. The
gold alignment (“has” – “hat”) is correctly identi-
fied by mBERT (solid line). Eflomal generates an
incorrect alignment (“time” – “hat”): the two words
have about the same relative position, indicating
that distortion minimization is the main reason for
this incorrect alignment. Analyzing all auxiliary
alignment edges, the average absolute value of the
distance between aligned words is 2.72 for eflomal
and 3.22 for mBERT. This indicates that eflomal
is more reluctant than mBERT to generate high-
distortion alignments and thus loses accuracy.

5 Related Work

Brown et al. (1993) introduced the IBM models, the
best known statistical word aligners. More recent
aligners, often based on IBM models, include fast-
align (Dyer et al., 2013), Giza++ (Och and Ney,
2003) and eflomal (Östling and Tiedemann, 2016).
(Östling, 2015a) showed that Bayesian Alignment
Models perform well. Neural network based exten-
sions of these models have been considered (Ayan
et al., 2005; Ho and Yvon, 2019). All of these mod-
els are trained on parallel text. Our method instead
aligns based on embeddings that are induced from
monolingual data only. We compare with prior
methods and observe comparable performance.

Prior work on using learned representations for
alignment includes (Smadja et al., 1996; Och and
Ney, 2003) (Dice coefficient), (Jalili Sabet et al.,
2016) (incorporation of embeddings into IBM mod-
els), (Legrand et al., 2016) (neural network align-
ment model) and (Pourdamghani et al., 2018) (em-
beddings are used to encourage words to align to
similar words). Tamura et al. (2014) use recur-
rent neural networks to learn alignments. They use
noise contrastive estimation to avoid supervision.
Yang et al. (2013) train a neural network that uses
pretrained word embeddings in the initial layer. All
of this work requires parallel data. mBERT is used
for word alignments in concurrent work: Libovický
et al. (2019) use the high quality of mBERT align-
ments as evidence for the “language-neutrality” of
mBERT. Nagata et al. (2020) phrase word align-
ment as crosslingual span prediction and finetune
mBERT using gold alignments.

Attention in NMT (Bahdanau et al., 2014) is
related to a notion of soft alignment, but often de-
viates from conventional word alignments (Ghader
and Monz, 2017; Koehn and Knowles, 2017). One
difference is that standard attention does not have
access to the target word. To address this, Pe-
ter et al. (2017) tailor attention matrices to obtain
higher quality alignments. Li et al. (2018)’s and
Zenkel et al. (2019)’s models perform similarly
to and Zenkel et al. (2020) outperform Giza++.
Ding et al. (2019) propose better decoding algo-
rithms to deduce word alignments from NMT pre-
dictions. Chen et al. (2016), Mi et al. (2016) and
Garg et al. (2019) obtain alignments and transla-
tions in a multitask setup. Garg et al. (2019) find
that operating at the subword level can be bene-
ficial for alignment models. Li et al. (2019) pro-
pose two methods to extract alignments from NMT
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models, however they do not outperform fast-align.
Stengel-Eskin et al. (2019) compute similarity ma-
trices of encoder-decoder representations that are
leveraged for word alignments, together with super-
vised learning, which requires manually annotated
alignment. We find our proposed methods to be
competitive with these approaches. In contrast to
our work, they all require parallel data.

6 Conclusion

We presented word aligners based on contextual-
ized embeddings that outperform in four and match
the performance of state-of-the-art aligners in two
language pairs; e.g., for ENG-DEU contextualized
embeddings achieve an alignment F1 that is 5 per-
centage points higher than eflomal trained on 100k
parallel sentences. Further, we showed that align-
ments from static embeddings can be a viable al-
ternative to statistical aligner when few parallel
training data is available. In contrast to all prior
work our methods do not require parallel data for
training at all. With our proposed methods and
extensions such as Match, Itermax and Null it is
easy to obtain higher precision or recall depending
on the use case.

Future work includes modeling fertility explic-
itly and investigating how to incorporate parallel
data into the proposed methods.
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A Additional Non-central Results

A.1 Comparison with Prior Work
A more detailed version of Table 2 from the main
paper that includes precision and recall and results
on Itermax can be found in Table 7.

A.2 Rare Words
Figure 8 shows the same as Figure 6 from the
main paper but now with a reference corpus of
100k/1000k instead of 1920k parallel sentences.
The main takeaways are similar.

A.3 Symmetrization
For asymmetric alignments different symmetriza-
tion methods exist. Dyer et al. (2013) provide an
overview and implementation (fast-align) for these
methods, which we use. We compare intersection
and grow-diag-final-and (GDFA) in Table 9. In
terms of F1, GDFA performs better (Intersection
wins four times, GDFA eleven times, three ties).
As expected, Intersection yields higher precision
while GDFA yields higher recall. Thus intersection
is preferable for tasks like annotation projection,
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ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method Prec.Rec.F1 AER Prec.Rec.F1 AER Prec.Rec.F1 AER Prec.Rec.F1 AER Prec.Rec.F1 AER Prec.Rec.F1 AER

Pr
io

rW
or

k

(Östling, 2015a) Bayesian .96 .92 .94 .06 .85 .43 .57 .43 .91 .61 .73 .27
(Östling, 2015a) Giza++ .98 .87 .92 .07 .63 .44 .51 .49 .85 .63 .72 .28
(Legrand et al., 2016) Ensemble Method .79 .83 .81 .16 .59 .90 .71 .10
(Östling and Tiedemann, 2016) efmaral .93 .08 .53 .47 .72 .28
(Östling and Tiedemann, 2016) fast-align .86 .15 .33 .67 .68 .33
(Zenkel et al., 2019) Giza++ .21 .06 .28
(Garg et al., 2019) Multitask .20 .08

B
as

el
in

es W
or

d fast-align/IBM2 .71 .81 .76 .25 .70 .73 .71 .29 .60 .54 .57 .43 .81 .93 .86 .15 .34 .33 .34 .66 .69 .67 .68 .33
Giza++/IBM4 .71 .79 .75 .26 .79 .75 .77 .23 .55 .48 .51 .49 .90 .95 .92 .09 .47 .43 .45 .55 .74 .64 .69 .31
eflomal .84 .86 .85 .15 .80 .75 .77 .23 .68 .55 .61 .39 .91 .94 .93 .08 .61 .44 .51 .49 .81 .63 .71 .29

Su
bw

or
d fast-align/IBM2 .72 .84 .78 .23 .67 .74 .71 .30 .60 .56 .58 .42 .80 .92 .85 .16 .39 .37 .38 .62 .69 .67 .68 .32

Giza++/IBM4 .79 .86 .82 .18 .78 .78 .78 .22 .58 .56 .57 .43 .89 .95 .92 .09 .52 .44 .48 .52 .74 .64 .69 .32
eflomal .80 .88 .84 .17 .74 .78 .76 .24 .66 .60 .63 .37 .88 .95 .91 .09 .58 .47 .52 .48 .78 .67 .72 .28

T
hi

s
W

or
k

W
or

d

fastText - Itermax .74 .69 .72 .29 .69 .56 .62 .38 .63 .45 .53 .48 .74 .78 .76 .24 .63 .42 .51 .49 .64 .40 .50 .51
mBERT[8] - Itermax .87 .87 .87 .14 .85 .77 .81 .19 .80 .63 .70 .30 .91 .95 .93 .08 .75 .47 .58 .43 .82 .58 .68 .32
XLM-R[8] - Itermax .89 .85 .87 .13 .86 .73 .79 .21 .84 .63 .72 .28 .91 .93 .92 .08 .79 .49 .61 .39 .87 .61 .71 .29
fastText - Argmax .86 .59 .70 .30 .81 .48 .60 .40 .75 .38 .50 .50 .85 .71 .77 .22 .75 .36 .49 .52 .77 .34 .47 .53
mBERT[8] - Argmax .95 .80 .87 .13 .92 .69 .79 .21 .88 .54 .67 .33 .97 .91 .94 .06 .84 .39 .54 .47 .90 .50 .64 .36
XLM-R[8] - Argmax .96 .80 .87 .13 .93 .68 .79 .22 .91 .57 .70 .30 .96 .91 .93 .06 .88 .45 .59 .41 .94 .56 .70 .30

Su
bw

or
d

fastText - Itermax .61 .57 .59 .41 .63 .54 .58 .42 .20 .07 .11 .90 .70 .76 .73 .28 .14 .05 .07 .93 .56 .38 .45 .55
mBERT[8] - Itermax .84 .89 .86 .14 .83 .80 .81 .19 .76 .65 .70 .30 .91 .96 .93 .08 .71 .49 .58 .42 .79 .62 .69 .31
XLM-R[8] - Itermax .84 .89 .86 .14 .83 .78 .80 .20 .79 .67 .72 .28 .89 .94 .92 .09 .75 .52 .62 .39 .83 .64 .72 .28
fastText - Argmax .72 .48 .58 .42 .75 .45 .56 .44 .27 .06 .09 .91 .80 .67 .73 .26 .14 .02 .04 .96 .67 .31 .43 .58
mBERT[8] - Argmax .92 .81 .86 .14 .92 .72 .81 .19 .85 .56 .67 .33 .96 .92 .94 .06 .81 .41 .55 .45 .88 .51 .65 .35
XLM-R[8] - Argmax .92 .83 .87 .13 .92 .72 .81 .19 .87 .59 .71 .30 .95 .91 .93 .07 .86 .47 .61 .39 .91 .59 .71 .29

Table 7: Comparison of word and subword levels. Best overall result per column in bold.

ENG-DEU ENG-CES ENG-HIN
Emb. Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

fa
st

Te
xt

Argmax .75 .45 .56 .44 .72 .48 .58 .42 .14 .02 .04 .96
+Dist .79 .51 .62 .38 .77 .58 .66 .34 .16 .04 .06 .94
+Null .76 .43 .55 .45 .74 .47 .57 .42 .14 .02 .04 .96

Itermax .63 .54 .58 .42 .61 .57 .59 .41 .14 .05 .07 .93
+Dist .67 .60 .64 .36 .63 .66 .65 .36 .15 .07 .09 .91
+Null .64 .52 .57 .43 .62 .56 .59 .41 .14 .04 .07 .93

Match .51 .58 .54 .46 .44 .61 .52 .49 .10 .08 .09 .91
+Dist .59 .66 .62 .38 .54 .71 .61 .39 .10 .09 .09 .91
+Null .52 .57 .54 .46 .46 .60 .52 .48 .10 .08 .09 .91

m
B

E
R

T
[8

]

Argmax .92 .72 .81 .19 .92 .81 .86 .14 .81 .41 .55 .45
+Dist .90 .70 .79 .21 .91 .80 .85 .15 .65 .30 .41 .59
+Null .93 .70 .80 .20 .92 .78 .85 .15 .82 .40 .54 .47

Itermax .83 .80 .81 .19 .84 .89 .86 .14 .71 .49 .58 .42
+Dist .81 .77 .79 .21 .82 .87 .84 .16 .53 .35 .42 .58
+Null .85 .77 .81 .20 .84 .86 .85 .15 .72 .47 .57 .43

Match .75 .80 .78 .23 .76 .90 .82 .18 .64 .52 .58 .43
+Dist .72 .77 .75 .26 .74 .88 .80 .20 .45 .37 .40 .60
+Null .77 .78 .78 .23 .77 .88 .82 .19 .65 .51 .57 .43

Table 8: Comparison of methods for inducing align-
ments from similarity matrices. All results are
subword-level. Best result per embedding type across
columns in bold.

whereas GDFA is typically used in statistical ma-
chine translation.

A.4 Alignment Examples for Different
Methods

We show examples in Figure 10, Figure 11, Fig-
ure 12, and Figure 13. They provide an overview
how the methods actually affect results.
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Figure 8: Results for different frequency bins. An edge
in S, P , or A is attributed to exactly one bin based on
the minimum frequency of the involved words (denoted
by x). Top: Eflomal trained and frequencies computed
on 100k parallel sentences. Bottom: 1000k parallel sen-
tences.

B Hyperparameters

B.1 Overview

We provide a list of customized hyperparameters
used in our computations in Table 10. There are
three options how we came up with the hyperpa-
rameters: a) We simply used default values of 3rd
party software. b) We chose an arbitrary value.
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ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method Symm. Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER

eflomal Inters. .95 .79 .86 .14 .91 .66 .76 .24 .88 .43 .58 .42 .96 .90 .93 .07 .81 .37 .51 .49 .91 .56 .70 .31
GDFA .84 .86 .85 .15 .80 .75 .77 .23 .68 .55 .61 .39 .91 .94 .93 .08 .61 .44 .51 .49 .81 .63 .71 .29

fast-align Inters. .89 .69 .78 .22 .87 .60 .71 .29 .78 .43 .55 .45 .93 .84 .88 .11 .55 .22 .31 .69 .89 .50 .64 .36
GDFA .71 .81 .76 .25 .70 .73 .71 .29 .60 .54 .57 .43 .81 .93 .86 .15 .34 .33 .34 .66 .69 .67 .68 .33

GIZA++ Inters. .95 .60 .74 .26 .92 .62 .74 .26 .89 .26 .40 .60 .97 .89 .93 .06 .82 .25 .38 .62 .95 .47 .63 .37
GDFA .71 .79 .75 .26 .79 .75 .77 .23 .55 .48 .51 .49 .90 .95 .92 .09 .47 .43 .45 .55 .74 .64 .69 .31

Table 9: Comparison of symmetrization methods at the word level. Best result across rows per method in bold.
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Figure 9: Top: F1 for ENG-DEU with fastText at word-
level for different values of κ. Bottom: Performance
for ENG-DEU with mBERT[8] (Match) at word-level
when setting the value of τ to different percentiles. τ
can be used for trading precision against recall. F1 re-
mains stable although it decreases slightly when assign-
ing τ the value of a smaller percentile (e.g., 80).

Usually we fell back to well-established and rather
conventional values (e.g., embedding dimension
300 for static embeddings). c) We defined a reason-
able but arbitrary range, out of which we selected
the best value using grid search. Table 10 lists
the final values we used as well as how we came
up with the specific value. For option c) the corre-
sponding analyses are in Figure 4 and Table 3 in the
main paper as well as in §B.2 in this supplementary
material.

B.2 Null and Distortion Extensions
In Figure 9 we plot the performance for different
values of κ. We observe that introducing distortion
indeed helps (i.e., κ > 0) but the actual value is not
decisive for performance. This is rather intuitive,
as a small adjustment to the similarities is sufficient
while larger adjustments do not necessarily change
the argmax or the optimal point in the matching
algorithm. We choose κ = 0.5.

For τ in null-word extension, we plot precision,
recall and F1 in Figure 9 when assigning τ different
percentile values. Note that values for τ depend
on the similarity distribution of all aligned edges.

As expected, when using the 100th percentile no
edges are removed and thus the performance is
not changed compared to not having a null-word
extension. When decreasing the value of τ the
precision increases and recall goes down, while F1

remains stable. We use the 95th percentile for τ .

C Reproducibility Information

C.1 Computing Infrastructures, Runtimes,
Number of Parameters

We did all computations on up to 48 cores of In-
tel(R) Xeon(R) CPU E7-8857 v2 with 1TB mem-
ory and a single GeForce GTX 1080 GPU with
8GB memory.

Runtimes for aligning 500 parallel sentences on
ENG-DEU are reported in Table 12. mBERT and
XLM-R computations are done on the GPU. Note
that fast-align, GIZA++ and eflomal usually need
to be trained on much more parallel data to achieve
better performance: this increases their runtime.

All our proposed methods are parameter-free.
If we consider the parameters of the pretrained lan-
guage models and pretrained embeddings then fast-
Text has around 1 billion parameters (up to 500k
words per language, 7 languages and embedding
dimension 300), mBERT has 172 million, XLM-R
270 million parameters.

Method Runtime[s]

fast-align 4
GIZA++ 18
eflomal 5
mBERT[8] - Argmax 15
XLM-R[8] - Argmax 22

Table 12: Runtime (average across 5 runs) in seconds
for each method to align 500 parallel sentences.

C.2 Data
Table 11 provides download links to all data used.
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System Parameter Value

fastText

Version 0.9.1
Code URL https://github.com/facebookresearch/fastText/archive/v0.9.1.zip
Downloaded on 11.11.2019
Embedding Dimension 300

mBERT,XLM-R Code: Huggingface Transformer Version 2.3.1
Maximum Sequence Length 128

fastalign
Code URL https://github.com/clab/fast align
Git Hash 7c2bbca3d5d61ba4b0f634f098c4fcf63c1373e1
Flags -d -o -v

eflomal
Code URL https://github.com/robertostling/eflomal
Git Hash 9ef1ace1929c7687a4817ec6f75f47ee684f9aff
Flags –model 3

GIZA++
Code URL http://web.archive.org/web/20100221051856/http://code.google.com/p/giza-pp
Version 1.0.3
Iterations 5 iter. HMM, 5 iter. Model 1, 5 iter. Model3, 5 iter. Model 4 (DEFAULT)
p0 0.98

Vecmap
Code URL https://github.com/artetxem/vecmap.git
Git Hash b82246f6c249633039f67fa6156e51d852bd73a3
Manual Vocabulary Cutoff 500000

Distortion Ext. κ 0.5 (chosen ouf of [0.0, 0.1, . . . , 1.0] by grid search, criterion: F1)

Null Extension τ 95th percentile of similarity distribution of aligned edges (chosen out of [80, 90, 95, 98, 99,
99.5] by grid search, criterion: F1)

Argmax Layer 8 (for mBERT and XLM-R, chosen out of [0, 1, . . . , 12] by grid search, criterion: F1 )

Vecmap α 0.9 (chosen out of [0.9, 0.95, 1] by grid search, criterion: F1)
Iterations nmax 2 (chosen out of [1,2,3] by grid search, criterion: F1)

Table 10: Overview on hyperparameters. We only list parameters where we do not use default values. Shown are
the values which we use unless specifically indicated otherwise.

Lang. Name Description Link

ENG-CES (Mareček, 2008) Gold Alignment http://ufal.mff.cuni.cz/czech-english-manual-word-alignment
ENG-DEU EuroParl-based Gold Alignment www-i6.informatik.rwth-aachen.de/goldAlignment/
ENG-FAS (Tavakoli and Faili, 2014) Gold Alignment http://eceold.ut.ac.ir/en/node/940
ENG-FRA WPT2003, (Och and Ney, 2000), Gold Alignment http://web.eecs.umich.edu/ mihalcea/wpt/
ENG-HIN WPT2005 Gold Alignment http://web.eecs.umich.edu/ mihalcea/wpt05/
ENG-RON WPT2005 (Mihalcea and Pedersen, 2003) Gold Alignment http://web.eecs.umich.edu/ mihalcea/wpt05/

ENG-CES EuroParl (Koehn, 2005) Parallel Data https://www.statmt.org/europarl/
ENG-DEU EuroParl (Koehn, 2005) Parallel Data https://www.statmt.org/europarl/
ENG-DEU ParaCrawl Parallel Data https://paracrawl.eu/
ENG-FAS TEP (Pilevar et al., 2011) Parallel Data http://opus.nlpl.eu/TEP.php
ENG-FRA Hansards (Germann, 2001) Parallel Data https://www.isi.edu/natural-language/download/hansard/index.html
ENG-HIN Emille (McEnery et al., 2000) Parallel Data http://web.eecs.umich.edu/m̃ihalcea/wpt05/
ENG-RON Constitution, Newspaper Parallel Data http://web.eecs.umich.edu/ mihalcea/wpt05/

All langs. Wikipedia (downloaded October 2019) Monolingual Text download.wikimedia.org/[X]wiki/latest/[X]wiki-latest-pages-articles.xml.bz2

Table 11: Overview of datasets. “Lang.” uses ISO 639-3 language codes.
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Figure 10: Comparison of alignment methods.
Dark/light green: sure/possible edges in the gold stan-
dard. Circles are alignments from the first mentioned
method in the subfigure title, boxes alignments from
the second method.
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Figure 11: More examples.
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Figure 12: More examples.

Wir alle sin
d

davo
n

betr
offe

n

.

These

things

concern

all

of

us

.

xx

x

xx

xx

xx

Argmax(circle) vs. Itermax(box)

Wir alle sin
d

davo
n

betr
offe

n

.

These

things

concern

all

of

us

.

x

x

x

xx

x

xx

fastText(circle) vs. fastText+Dist(box)

Wir alle sin
d

davo
n

betr
offe

n

.

These

things

concern

all

of

us

.

x

x

x

xx

x

xx

Match(circle) vs. Match+Null(box)

Figure 13: More examples.
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Abstract

It has been shown that multilingual BERT
(mBERT) yields high quality multilingual rep-
resentations and enables effective zero-shot
transfer. This is surprising given that mBERT
does not use any crosslingual signal during
training. While recent literature has studied
this phenomenon, the reasons for the multilin-
guality are still somewhat obscure. We aim
to identify architectural properties of BERT
and linguistic properties of languages that are
necessary for BERT to become multilingual.
To allow for fast experimentation we propose
an efficient setup with small BERT models
trained on a mix of synthetic and natural data.
Overall, we identify four architectural and two
linguistic elements that influence multilingual-
ity. Based on our insights, we experiment with
a multilingual pretraining setup that modifies
the masking strategy using VecMap, i.e., unsu-
pervised embedding alignment. Experiments
on XNLI with three languages indicate that our
findings transfer from our small setup to larger
scale settings.

1 Introduction

Multilingual models, i.e., models capable of pro-
cessing more than one language with comparable
performance, are central to natural language pro-
cessing. They are useful as fewer models need to be
maintained to serve many languages, resource re-
quirements are reduced, and low- and mid-resource
languages can benefit from crosslingual transfer.
Further, multilingual models are useful in machine
translation, zero-shot task transfer and typological
research. There is a clear need for multilingual
models for the world’s 7000+ languages.

With the rise of static word embeddings, many
multilingual embedding algorithms have been pro-
posed (Mikolov et al., 2013; Hermann and Blun-
som, 2014; Faruqui and Dyer, 2014); for a survey

original (0) modified (8) modified
+overparam (17)

inv-order (3)
0.0
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1.0
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Word Alignment
Sent. Retrieval
Word Translation

Figure 1: Multilinguality in our BERT model (0) is
harmed by three architectural modifications: lang-pos,
shift-special, no-random (8); see §2.3 for definitions.
Together with overparameterization almost no multilin-
guality is left (17). Pairing a language with its inver-
sion (i.e., inverted word order) destroys multilinguality
as well (3). Having parallel training corpora is helpful
for multilinguality (not shown). Results are for embed-
dings from layer 8.

see (Ruder et al., 2019). Pretrained language mod-
els (Peters et al., 2018; Howard and Ruder, 2018;
Devlin et al., 2019) have high performance across
tasks, outperforming static word embeddings. A
simple multilingual model is multilingual BERT1

(mBERT). It is a BERT-Base model (Devlin et al.,
2019) trained on the 104 largest Wikipedias with a
shared subword vocabulary. There is no additional
crosslingual signal. Still, mBERT yields high-
quality multilingual representations (Pires et al.,
2019; Wu and Dredze, 2019; Hu et al., 2020).

The exact reason for mBERT’s multilinguality
is – to the best of our knowledge – still debated. K
et al. (2020) provide an extensive study and con-
clude that a shared vocabulary is not necessary,
but that the model needs to be deep and languages
need to share a similar “structure”. Artetxe et al.
(2020) show that neither a shared vocabulary nor
joint pretraining is required for BERT to be mul-
tilingual. Conneau et al. (2020b) find that BERT
models across languages can be easily aligned and

1https://github.com/google-research/
bert/blob/master/multilingual.md
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that a necessary requirement for achieving multi-
linguality are shared parameters in the top layers.
This work continues this line of research. We find
indications that six elements influence the multilin-
guality of BERT. Figure 1 summarizes our main
findings.

1.1 Contributions
• Training BERT models consumes tremendous

resources. We propose an experimental setup
that allows for fast experimentation.

• We hypothesize that BERT is multilingual be-
cause of a limited number of parameters. By
forcing the model to use its parameters effi-
ciently, it exploits common structures by align-
ing representations across languages. We pro-
vide experimental evidence that the number
of parameters and training duration is inter-
linked with multilinguality and an indication
that generalization and multilinguality might
be conflicting goals.

• We show that shared special tokens, shared
position embeddings and the common mask-
ing strategy to replace masked tokens with
random words contribute to multilinguality.
This is in line with findings from (Conneau
et al., 2020b).

• We show that having identical structure across
languages, but an inverted word order in
one language destroys multilinguality. Simi-
larly having shared position embeddings con-
tributes to multilinguality. We thus hypoth-
esize that word order across languages is an
important ingredient for multilingual models.

• Using these insights we perform initial experi-
ments to create a model with higher degree of
multilinguality.

• We conduct experiments on Wikipedia and
evaluate on XNLI to show that our findings
transfer to larger scale settings.

Our code is publicly available.2

2 Setup and Hypotheses

2.1 Setup
We aim at having a setup that allows for gaining
insights quickly when investigating multilinguality.

2https://github.com/pdufter/minimult

'He ate wild honey. '

[He, ate, wild, hon, ##e, ##y, .]

[195, 1291, 1750, 853, 76, 80, 8] [2243, 3339, 3798, 2901, 2124 ,2128, 2056]

[::He, ::ate, ::wild, ::hon, ::##e, ::##y, ::.]

BERT Model

TOKENIZE

CONVERT TO IDS SHIFT 
IDS

PREFIX FOR DISPLAYING ONLY

Figure 2: Creating a Fake-English sentence by adding
a shift of 2048 to token indices.

Our assumption is that these insights are transfer-
able to a larger scale real world setup. We verify
this assumption in §5.

Languages. K et al. (2020) propose to consider
English and Fake-English, a language that is cre-
ated by shifting unicode points by a large constant.
Fake-English in their case has the exact same lin-
guistic properties as English, but is represented by
different unicode points. We follow a similar ap-
proach, but instead of shifting unicode points we
simply shift token indices after tokenization by a
constant; shifted tokens are prefixed by “::” and
added to the vocabulary. See Figure 2 for an exam-
ple. While shifting indices and unicode code points
have similar effects, we chose shifting indices as
we find it somewhat cleaner.3

Data. For our setup, aimed at supporting fast
experimentation, a small corpus with limited vo-
cabulary is desirable. As training data we use the
English Easy-to-Read version of the Parallel Bible
Corpus (Mayer and Cysouw, 2014) that contains
the New Testament. The corpus is structured into
verses and is word-tokenized. We sentence-split
verses using NLTK (Loper and Bird, 2002). The
final corpus has 17k sentences, 228k words, a vo-
cabulary size of 4449 and 71 distinct characters.
The median sentence length is 12 words. By creat-
ing a Fake-English version of this corpus we get a
shifted replica and thus a sentence-parallel corpus.

As development data we apply the same proce-
dure to the first 10k sentences of the Old Testament
of the English King James Bible. All our evalua-
tions are performed on development data, except
for word translation and when indicated explicitly.

Vocabulary. We create a vocabulary of size
2048 from the Easy-to-Read Bible with the word-
piece tokenizer (Schuster and Nakajima, 2012).4

3For example, the BERT tokenizer treats some punctua-
tion as special symbols (e.g., “dry-cleaning” is tokenized as
[“dry”, “-”, “##cleaning”], not as [“dry”, “##-”, “##clean-
ing”]). When using a unicode shift, tokenizations of English
and Fake-English can differ.

4https://github.com/huggingface/
tokenizers
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Using the same vocabulary for English and Fake-
English yields a final vocabulary size of 4096.

Model. We use the BERT-Base architecture (De-
vlin et al., 2019), modified to achieve a smaller
model: we divide hidden size, intermediate size
of the feed forward layer and number of attention
heads by 12; thus, hidden size is 64 and intermedi-
ate size 256. While this leaves us with a single at-
tention head, K et al. (2020) found that the number
of attention heads is important neither for overall
performance nor for multilinguality. We call this
smaller model BERT-small.

As a consistency check for our experiments we
consider random embeddings in the form of a ran-
domly initialized but untrained BERT model, re-
ferred to as “untrained”.

Training Parameters. We mostly use the orig-
inal training parameters as given in (Devlin et al.,
2019). Learning rate and number of epochs was
chosen to achieve reasonable perplexity on the
training corpus (see supplementary for details). Un-
less indicated differently we use a batch size of 256,
train for 100 epochs with AdamW (Loshchilov and
Hutter, 2019) (learning rate 2e-3, weight decay .01,
epsilon 1e-6), and use 50 warmup steps. We only
use the masked-language-modeling objective, with-
out next-sequence-prediction. With this setup we
can train a single model in under 40 minutes on a
single GPU (GeForce GTX 1080Ti). We run each
experiment with five different seeds, and report
mean and standard deviation.

2.2 Evaluation

We evaluate two properties of our trained language
models: the degree of multilinguality and – as a
consistency check – the overall model fit (i.e., is
the trained language model of reasonable quality).

2.2.1 Multilinguality
We evaluate the degree of multilinguality with three
tasks. Representations from different layers of
BERT can be considered. We use layer 0 (uncon-
textualized) and layer 8 (contextualized). Several
papers have found layer 8 to work well for monolin-
gual and multilingual tasks (Tenney et al., 2019; He-
witt and Manning, 2019; Sabet et al., 2020). Note
that representations from layer 0 include position
and segment embeddings besides the token embed-
dings as well as layer normalization.

Word Alignment. Sabet et al. (2020) find that
mBERT performs well on word alignment. By
construction, we have a sentence-aligned corpus

with English and Fake-English. The gold word
alignment between two sentences is the identity
alignment. We use this automatically created gold-
alignment for evaluation.

To extract word alignments from BERT we use
(Sabet et al., 2020)’s Argmax method. Consider
the parallel sentences s(eng), s(fake), with length
n. We extract d-dimensional wordpiece embed-
dings from the l-th layer of BERT to obtain embed-
dings E(s(k)) ∈ Rn×d for k ∈ {eng, fake}. The
similarity matrix S ∈ [0, 1]n×n is computed by
Sij := cosine-sim

(
E(s(eng))i, E(s(fake))j

)
. Two

wordpieces i and j are aligned if

(i = argmax
l
Sl,j) ∧ (j = argmax

l
Si,l).

The alignments are evaluated using precision,
recall and F1 as follows:

p =
|P ∩G|
|P | , r =

|P ∩G|
|G| , F1 =

2 p r
p + r

,

where P is the set of predicted alignments and G
the set of true alignment edges. We report F1.

Sentence Retrieval is popular for evaluating
crosslingual representations (e.g., (Artetxe and
Schwenk, 2019; Libovickỳ et al., 2019)). We ob-
tain the embeddings E(s(k)) as before and compute
a sentence embedding e(k)s simply by averaging
vectors across all tokens in a sentence (ignoring
CLS and SEP tokens). Computing cosine similari-
ties between English and Fake-English sentences
yields the similarity matrix R ∈ Rm×m where
Rij = cosine-sim(e

(eng)
i , e

(fake)
j ) for m sentences.

Given an English query sentence s(eng)
i , we ob-

tain the retrieved sentences in Fake-English by
ranking them according to similarity. Since we can
do the same with Fake-English as query language,
we report the mean precision of these directions,
computed as

ρ =
1

2m

m∑

i=1

1argmaxlRil=i + 1argmaxlRli=i.

We also evaluate word translation. Again, by
construction we have a ground-truth bilingual dic-
tionary of size 2048. We obtain word vectors by
feeding each word in the vocabulary individually
to BERT, in the form “[CLS] {token} [SEP]”. We
then evaluate word translation like sentence re-
trieval and denote the measure with τ .

Multilinguality Score. For an easier overview
we compute a multilinguality score by averaging
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retrieval and translation results across both layers.
That is µ = 1/4(τ0 + τ8 + ρ0 + ρ8) where τk,ρk
means representations from layer k have been used.
We omit word alignment here as it is not a suitable
measure to compare all models: with shared po-
sition embeddings, the task is almost trivial given
that the gold alignment is the identity alignment.

2.2.2 Model Fit
MLM Perplexity. To verify that BERT was suc-
cessfully trained we evaluate the models on per-
plexity (with base e) for training and development
data. Perplexity is computed on 15% of randomly
selected tokens that are replaced by “[MASK]”.
Given those randomly selected tokens in a text
w1, . . . , wn and probabilities pw1 , . . . , pwn that the
correct token was predicted by the model, perplex-
ity is calculated as exp(−1/n∑n

k=1 log(pwk
)).

2.3 Architectural Properties

Here we formulate hypotheses as to which archi-
tectural components contribute to multilinguality.

Overparameterization: overparam. If BERT
is severely overparameterized the model should
have enough capacity to model each language sep-
arately without creating a multilingual space. Con-
versely, if the number of parameters is small, the
model has a need to use parameters efficiently.
The model is likely to identify common structures
among languages and model them together, thus
creating a multilingual space.

To test this, we train a larger BERT model that
has the same configuration as BERT-base (i.e., hid-
den size: 768, intermediate size: 3072, attention
heads: 12) and is thus much larger than our stan-
dard configuration, BERT-small. Given our small
training corpus and the small number of languages,
we argue that BERT-base is overparameterized. For
the overparameterized model we use learning rate
1e-4 (following (Devlin et al., 2019)).

Shared Special Tokens: shift-special. It has
been found that a shared vocabulary is not essential
for multilinguality (K et al., 2020; Artetxe et al.,
2020; Conneau et al., 2020b). Similar to prior stud-
ies, in our setting each language has its own vo-
cabulary, as we aim at breaking the multilinguality
of BERT. However in prior studies, special tokens
([UNK], [CLS], [SEP], [MASK], [PAD]) are usu-
ally shared across languages. Shared special tokens
may contribute to multilinguality because they are
very frequent and could serve as “anchor points”.
To investigate this, we shift the special tokens with

ENGLISH
195 1291 1750 853 76 80 8

1 2 3 4 5 6 7

0 0 0 0 0 0 0

2243 3339 3798 2901 2124 2128 2056

129 130 131 132 133 134 135

1 1 1 1 1 1 1

FAKE-ENGLISH
Tok.

Pos.

Seg.

Figure 3: lang-pos: input indices to BERT with lan-
guage specific position and segment embeddings.

the same shift as applied to token indices.
Shared Position Embeddings: lang-pos. Posi-

tion and segment embeddings are usually shared
across languages. We investigate their contribution
to multilinguality by using language-specific posi-
tion (lang-pos) and segment embeddings. For an
example see Figure 3.

Random Word Replacement: no-random.
The MLM task as proposed by Devlin et al. (2019)
masks 15% of tokens in a sentence. These tokens
are replaced with “[MASK]” in p[mask] = 80%,
remain unchanged in p[id] = 10% and are re-
placed with a random token of the vocabulary in
p[rand] = 10% of the cases. The randomly sampled
token can come from any language resulting in
Fake-English tokens to appear in English sentences
and vice-versa. We hypothesize that this random re-
placement could contribute to multilinguality. We
experiment with the setting p = (0.8, 0.2, 0.0)
where p denotes the triple (p[mask], p[id], p[rand]).

2.4 Linguistic Properties

Inverted Word Order: inv-order. K et al. (2020)
shuffled word order in sentences randomly and
found that word order has some, but not a se-
vere effect on multilinguality. They conclude that
“structural similarity” across languages is impor-
tant without further specifying this term. We
investigate an extreme case: inversion. We in-
vert each sentence in the Fake-English corpus:
[w1, w2, . . . , wn] → [wn, wn−1, . . . , w1]. Note
that, apart from the reading order, all properties
of the languages are preserved, including ngram
statistics. Thus, the structural similarity of English
and inverted Fake-English is arguably very high.

Comparability of Corpora: no-parallel. We
hypothesize that the similarity of training corpora
contributes to “structural similarity”: if we train
on a parallel corpus we expect the language struc-
tures to be more similar than when we train on two
independent corpora, potentially from different do-
mains. For mBERT, Wikipedias across languages
are in the same domain, share some articles and
thus are comparable, yet not parallel. To test our
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gogovern
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going
gone

gold

::go::govern

::governor

::good

::going::gone
::gold

English
Fake-Englisch

Figure 4: Top: PCA of the token embeddings from
layer 0 of the original model (ID 0). The representa-
tions of the two languages clearly have a similar struc-
ture. Bottom: PCA of a sample of token embeddings.
Corresponding tokens in English and Fake-English are
nearest neighbors of each other or nearly so. This is
quantitatively confirmed in Table 1.

hypothesis, we train on a non-parallel corpus. We
create it by splitting the Bible into two halves, using
one half for English and Fake-English each, thus
avoiding any parallel sentences during training.

3 Results

3.1 Architectural Properties
Table 1 shows results. Each model has an asso-
ciated ID that is consistent with the code. The
original model (ID 0) shows a high degree of
multilinguality. As mentioned, alignment is an
easy task with shared position embeddings yield-
ing F1 = 1.00. Retrieval works better with con-
textualized representations on layer 8 (.97 vs. .16)
whereas word translation works better on layer 0
(.88 vs. .79), as expected. Overall the embeddings
seem to capture the similarity of English and Fake-
English exceptionally well (see Figure 4 for a PCA
of token embeddings). The untrained BERT mod-
els perform poorly (IDs 18, 19), except for word
alignment with shared position embeddings.

When applying our architectural modifica-
tions (lang-pos, shift-special, no-random) individ-
ually we see medium to slight decreases in multi-
linguality (IDs 1, 2, 4). lang-pos has the largest
negative impact. Apparently, applying just a single
modification can be compensated by the model. In-
deed, when using two modifications at a time (5–7)
multilinguality goes down more, only with 7 there
is still a high degree of multilinguality. With all
three modifications (8) the degree of multilingual-
ity is drastically lowered (µ .12 vs. .70).

We see that the language model quality (see
columns MLM-Perpl.) is stable on train and dev
across models (IDs 1–8) and does not deviate from
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Figure 5: Cosine similarity matrices of position embed-
dings. The maximum length after tokenization in our
experiments is 128. Position embedding IDs 0-127 are
used by English, 128-255 by Fake-English.

original BERT (ID 0) by much.5 Thus, we can con-
clude that each of the models has fitted the training
data well and poor results on µ are not due to the
fact that the architectural changes have hobbled
BERT’s language modeling performance.

The overparameterized model (ID 15) exhibits
lower scores for word translation, but higher ones
for retrieval and overall a lower multilinguality
score (.58 vs. .70). However, when we add lang-
pos (16) or apply all three architectural modifi-
cations (17), multilinguality drops to .01 and .00.
This indicates that by decoupling languages with
the proposed modifications (lang-pos, shift-special,
no-random) and greatly increasing the number of
parameters (overparam), it is possible to get a well-

5Perplexities on dev are high because the English of the
King James Bible is quite different from that of the Easy-to-
Read Bible. Our research question is: which modifications
harm BERT’s multilinguality without harming model fit (i.e.,
perplexity). The relative change of perplexities, not their
absolute value is important in this context.
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Mult.- Layer 0 Layer 8 MLM-
score Align. Retr. Trans. Align. Retr. Trans. Perpl.

ID Description µ F1 ρ τ F1 ρ τ train dev

0 original .70 1.00 .00 .16 .02 .88 .02 1.00 .00 .97 .01 .79 .03 9 00.2 217 07.8

1 lang-pos .30 .87 .05 .33 .13 .40 .09 .89 .05 .39 .15 .09 .05 9 00.1 216 09.0
2 shift-special .66 1.00 .00 .15 .02 .88 .01 1.00 .00 .97 .02 .63 .13 9 00.1 227 17.9
4 no-random .68 1.00 .00 .19 .03 .87 .02 1.00 .00 .85 .07 .82 .04 9 00.6 273 07.7
5 lang-pos;shift-special .20 .62 .19 .22 .19 .27 .20 .72 .22 .27 .21 .05 .04 10 00.5 205 07.6
6 lang-pos;no-random .30 .91 .04 .29 .10 .36 .12 .89 .05 .32 .15 .25 .12 10 00.4 271 08.6
7 shift-special;no-random .68 1.00 .00 .21 .03 .85 .01 1.00 .00 .89 .06 .79 .04 8 00.3 259 15.6
8 lang-pos;shift-special;no-random .12 .46 .26 .09 .09 .18 .22 .54 .31 .11 .11 .11 .13 10 00.6 254 15.9

15 overparam .58 1.00 .00 .27 .03 .63 .05 1.00 .00 .97 .01 .47 .06 2 00.1 261 04.5
16 lang-pos;overparam .01 .25 .10 .01 .00 .01 .00 .37 .13 .01 .00 .00 .00 3 00.0 254 04.9
17 lang-pos;shift-special;no-random;overparam .00 .05 .02 .00 .00 .00 .00 .05 .04 .00 .00 .00 .00 1 00.0 307 07.7

3 inv-order .01 .02 .00 .00 .00 .01 .00 .02 .00 .01 .01 .00 .00 11 00.3 209 14.4
9 lang-pos;inv-order;shift-special;no-random .00 .04 .01 .00 .00 .00 .00 .03 .01 .00 .00 .00 .00 10 00.4 270 20.1

18 untrained .00 .97 .01 .00 .00 .00 .00 .96 .01 .00 .00 .00 .00 3484 44.1 4128 42.7
19 untrained;lang-pos .00 .02 .00 .00 .00 .00 .00 .02 .00 .00 .00 .00 .00 3488 41.4 4133 50.3

30 knn-replace .74 1.00 .00 .31 .08 .88 .00 1.00 .00 .97 .01 .81 .01 11 00.3 225 12.4

Table 1: Multilinguality and model fit for our models. Mean and standard deviation (subscript) across 5 different
random seeds is shown. ID is a unique identifier for the model setting. To put perplexities into perspective: the
pretrained mBERT has a perplexity of roughly 46 on train and dev. knn-replace is explained in §4.

Layer 0 Layer 8 Perpl.
ID Description µ F1 ρ τ F1 ρ τ train dev

0 original .70 1.00 .16 .88 1.00 .97 .79 9 217
21 no-parallel .25 .98 .06 .28 .98 .50 .15 14 383

21b lang-pos;no-parallel .07 .60 .10 .07 .73 .11 .02 16 456

Table 2: Results showing the effect of having a parallel
vs. non-parallel training corpus.

performing language model (low perplexity) that
is not multilingual. Conversely, we can conclude
that the four architectural properties together are
necessary for BERT to be multilingual.

3.2 Linguistic Properties

Inverting Fake-English (IDs 3, 9) breaks multi-
linguality almost completely – independently of
any architectural modifications. Having a language
with the exact same structure (same ngram statis-
tics, vocabulary size etc.), only with inverted order,
seems to block BERT from creating a multilingual
space. Note that perplexity is almost the same. We
conclude that having a similar word order struc-
ture is necessary for BERT to create a multilingual
space. The fact that shared position embeddings are
important for multilinguality supports this finding.
Our hypothesis is that the drop in multilinguality
with inverted word order comes from an incom-
patibility between word and position encodings:
BERT needs to learn that the word at position 0
in English is similar to word at position n in Fake-
English. However, n (the sentence length) varies
from sentence to sentence. This suggests that rel-
ative position embeddings – rather than absolute

position embeddings – might be beneficial for mul-
tilinguality across languages with high distortion.

To investigate this effect more, Figure 8 shows
cosine similarities between position embeddings
for models 1, 9. Position IDs 0-127 are for English,
128-255 for Fake-English. Despite language spe-
cific position embeddings, the embeddings exhibit
a similar structure: in the top panel there is a clear
yellow diagonal at the beginning, which weakens
at the end. The bottom shows that for a model with
inverted Fake-English the position embeddings live
in different spaces: no diagonal is visible.

In the range 90–128 (a rare sentence length)
the similarities look random. This indicates that
smaller position embeddings are trained more than
larger ones (which occur less frequently). We sus-
pect that embedding similarity correlates with the
number of gradient updates a single position em-
bedding receives. Positions 0, 1 and 128, 129 re-
ceive a gradient update in every step and can thus
be considered an average of all gradient updates
(up to random initialization). This is potentially
one reason for the diagonal pattern in the top panel.

3.3 Corpus Comparability

So far we have trained on a parallel corpus. Now
we show what happens with a merely comparable
corpus. The first half of the training corpus is used
for English and the other half for Fake-English. To
mitigate the reduced amount of training data we
train for twice as many epochs. Table 2 shows that
multilinguality indeed decreases as the training cor-

101



4429

103 104

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

original (0)

Retr. Trans. Perpl.(train)
Perpl.(dev)

Layer 0
Layer 8

0

100

200

300

400

500

600

Pe
rp

le
xi

ty

103 104

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

overparam (15)

Retr. Trans. Perpl.(train)
Perpl.(dev)

Layer 0
Layer 8

0

100

200

300

400

500

Pe
rp

le
xi

ty

Figure 6: The longer a model is trained, the more multilingual it gets. x-axis shows training steps. Alignment F1

is not shown as the models use shared position embeddings. Lines show mean and shaded areas show standard
deviation across 5 random seed.

pus becomes non-parallel. This suggests that the
more comparable a training corpus is across lan-
guages the higher the multilinguality. Note, how-
ever, that the models fit the training data worse and
do not generalize as well as the original model.

3.4 Multilinguality During Training

One central hypothesis is that BERT becomes mul-
tilingual at the point at which it is forced to use
its parameters efficiently. We argue that this point
depends on several factors including the number
of parameters, training duration, “complexity” of
the data distribution and how easily common struc-
tures across language spaces can be aligned. The
latter two are difficult to control for. We provided
insights that two languages with identical structure
but inverted word order are harder to align. Fig-
ure 6 analyzes the former two factors and shows
model fit and multilinguality for the small and large
model settings over training steps.

Generally, multilinguality rises very late at a
stage where model fit improvements are flat. In
fact, most of multilinguality in the overparame-
terized setting (15) arises once the model starts
to overfit and perplexity on the development set
goes up. The original setting (0) has far fewer pa-
rameters. We hypothesize that it is forced to use
its parameters efficiently and thus multilinguality
scores rise much earlier when both training and
development perplexity are still going down.

Although this is a very restricted experimental
setup it indicates that having multilingual models
is a trade-off between good generalization and high
degree of multilinguality. By overfitting a model
one could achieve high multilinguality. Conneau
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Figure 7: With knn-replace multilinguality rises earlier.
Alignment F1 is not shown as the model uses shared
position embeddings.

et al. (2020a) introduced the concept of “curse of
multilinguality” and found that the number of pa-
rameters should be increased with the number of
languages. Our results indicate that too many pa-
rameters can also harm multilinguality. However,
in practice it is difficult to create a model with so
many parameters that it is overparameterized when
being trained on 104 Wikipedias.

Rönnqvist et al. (2019) found that current multi-
lingual BERT models may be undertrained. This
is consistent with our findings that multilinguality
arises late in the training stage.

4 Improving Multilinguality

So far we have tried to break BERT’s multilingual-
ity. Now we turn to exploiting our insights for
improving it. mBERT has shared position embed-
dings, shared special tokens and we cannot change
linguistic properties of languages. Our results on
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overparameterization suggest that smaller models
become multilingual faster. However, mBERT may
already be considered underparameterized given
that it is trained on 104 large Wikipedias.

One insight we can leverage for the masking
procedure is no-random: replacing masked words
with random tokens. We propose to introduce a
fourth masking option: replacing masked tokens
with semantically similar words from other lan-
guages. To this end we train static fastText em-
beddings (Bojanowski et al., 2017) on the training
set and then project them into a common space
using VecMap (Artetxe et al., 2018). We use this
crosslingual space to replace masked tokens with
nearest neighbors from the other language. Each
masked word is then replaced with the probabilities
(p[mask], p[id], p[rand], p[knn]) = (0.5, 0.1, 0.1, 0.3),
i.e., in 30% of the cases masked words get re-
placed with the nearest neighbor from the multilin-
gual static embedding space. Note that this proce-
dure (including VecMap) is fully unsupervised (i.e.,
no parallel data or dictionary required). We call
this method knn-replace. Conneau et al. (2020b)
performed similar experiments by creating code
switched data and adding it to the training data.
However, we only replace masked words.

Figure 7 shows the multilinguality score and
model fit over training time. Compared to the orig-
inal model in Figure 6, retrieval and translation
have higher scores earlier. Towards the end multi-
linguality scores become similar, with knn-replace
outperforming the original model (see Table 1).
This finding is particularly important for training
BERT on large amounts of data. Given how ex-
pensive training is, it may not be possible to train
a model long enough to obtain a high degree of
multilinguality. Longer training incurs the risk of
overfitting as well. Thus achieving multilinguality
early in the training process is valuable. Our new
masking strategy has this property.

5 Real Data Experiments

5.1 XNLI

We have presented experiments on a small corpus
with English and Fake-English. Now we provide
results on real data. Our setup is similar to (K
et al., 2020): we train a multilingual BERT model
on English, German and Hindi. As training cor-
pora we sample 1GB of data from Wikipedia (ex-
cept for Hindi, as its size is <1GB ) and pretrain
the model for 2 epochs/140k steps with batch size

ID Description ENG DEU HIN

0-base original .75 .00 .57 .02 .45 .01
3-base inv-order[DEU] .75 .00 .41 .01 .46 .04
8-base lang-pos;shift-special;no-random .74 .00 .37 .02 .38 .02

30-base knn-replace .74 .01 .61 .01 .54 .00

mBERT Results by (Hu et al., 2020) .81 .70 .59

Table 3: Accuracy on XNLI test for different model
settings. Shown is the mean and standard deviation
(subscript) across three random seeds. All models have
the same architecture as BERT-base, are pretrained on
Wikipedia data and finetuned on English XNLI train-
ing data. mBERT was pretrained longer and on much
more data and has thus higher performance. Best non-
mBERT performance in bold.

256 and learning rate 1e-4. In this section, we
use BERT-base, not BERT-small because we found
that BERT-small with less than 1M parameters per-
forms poorly in a larger scale setup. The remaining
model and training parameters are the same as be-
fore. Each language has its own vocabulary with
size 20k. We then evaluate the pretrained mod-
els on XNLI (Conneau et al., 2018). We finetune
the pretrained models on English XNLI (3 epochs,
batch size 32, learning rate 2e-5, following Devlin
et al. (2019)). Then the model is evaluated on En-
glish. In addition, we do a zero-shot evaluation on
German and Hindi.

Table 3 presents accuracy on XNLI test. Com-
pared to mBERT, accuracy is significantly lower
but reasonable on English (.75 vs. .81) – we pre-
train on far less data. ID 0 shows high multilingual-
ity with 0-shot accuracies .57 and .45. Inverting the
order of German has little effect on HIN, but DEU
drops significantly (majority baseline is .33). Our
architectural modifications (8) harm both HIN and
DEU. The proposed knn-replace model exhibits the
strongest degree of multilinguality, boosting the 0-
shot accuracy in DEU / HIN by 4% / 9%. Note
that to accommodate noise in the real world data,
we randomly replace with one of the five nearest
neighbors (not the top nearest neighbor). This indi-
cates that knn-replace is useful for real world data
and that our prior findings transfer to larger scale
settings.

6 Related Work

There is a range of prior work analyzing the rea-
son for BERT’s multilinguality. Singh et al. (2019)
show that BERT stores language representations in
different subspaces and investigate how subword to-
kenization influences multilinguality. Artetxe et al.
(2020) show that neither a shared vocabulary nor
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joint pretraining is essential for multilinguality. K
et al. (2020) extensively study reasons for multilin-
guality (e.g., researching depth, number of parame-
ters and attention heads). They conclude that depth
is essential. They also investigate language proper-
ties and conclude that structural similarity across
languages is important, without further defining
this term. Last, Conneau et al. (2020b) find that a
shared vocabulary is not required. They find that
shared parameters in the top layers are required
for multilinguality. Further they show that differ-
ent monolingual BERT models exhibit a similar
structure and thus conclude that mBERT some-
how aligns those isomorphic spaces. They investi-
gate having separate embedding look-ups per lan-
guage (including position embeddings and special
tokens) and a variant of avoiding cross-language
replacements. Their method “extra anchors” yields
a higher degree of multilinguality. In contrast to
this prior work, we investigate multilinguality in a
clean laboratory setting, investigate the interaction
of architectural aspects and research new aspects
such as overparameterization or inv-order.

Other work focuses on creating better multilin-
gual models. Mulcaire et al. (2019) proposed a
method to learn multilingual contextual represen-
tations. Conneau and Lample (2019) introduce
the translation modeling objective. Conneau et al.
(2020a) propose XLM-R. They introduce the term
“curse of multilinguality” and show that multilin-
gual model quality degrades with an increased num-
ber of languages given a fixed number of param-
eters. This can be interpreted as the minimum
number of parameters required whereas we find in-
dications that models that are too large can be harm-
ful for multilinguality as well. Cao et al. (2020)
improve the multilinguality of mBERT by introduc-
ing a regularization term in the objective, similar
to the creation of static multilingual embedding
spaces. Huang et al. (2019) extend mBERT pre-
training with three additional tasks and show an im-
proved overall performance. More recently, better
multilinguality is achieved by Pfeiffer et al. (2020)
(adapters) and Chi et al. (2020) (parallel data). We
propose a simple extension to make mBERT more
multilingual; it does not require additional supervi-
sion, parallel data or a more complex loss function
– in contrast to this prior work.

Finally, many papers find that mBERT yields
competitive zero-shot performance across a range
of languages and tasks such as parsing and NER

(Pires et al., 2019; Wu and Dredze, 2019), word
alignment and sentence retrieval (Libovickỳ et al.,
2019) and language generation (Rönnqvist et al.,
2019); Hu et al. (2020) show this for 40 languages
and 9 tasks. Wu and Dredze (2020) consider the
performance on up to 99 languages for NER. In
contrast, Lauscher et al. (2020) show limitations of
the zero-shot setting and Zhao et al. (2020) observe
poor performance of mBERT in reference-free ma-
chine translation evaluation. Prior work here fo-
cuses on investigating the degree of multilinguality,
not the reasons for it.

7 Conclusion

We investigated which architectural and linguistic
properties are essential for BERT to yield crosslin-
gual representations. The main takeaways are: i)
Shared position embeddings, shared special tokens,
replacing masked tokens with random tokens and
a limited amount of parameters are necessary ele-
ments for multilinguality. ii) Word order is relevant:
BERT is not multilingual with one language hav-
ing an inverted word order. iii) The comparability
of training corpora contributes to multilinguality.
We show that our findings transfer to larger scale
settings. We experimented with a simple modifi-
cation to obtain stronger multilinguality in BERT
models and demonstrate its effectiveness on XNLI.
We considered a fully unsupervised setting without
any crosslingual signals. In future work we plan
to incorporate crosslingual signals as Vulić et al.
(2019) argue that a fully unsupervised setting is
hard to motivate.
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A Additional Details on Methods

A.1 Word Translation Evaluation

Word translation is evaluated in the same way as
sentence retrieval. This section provides additional
details.

For each token in the vocabulary w(k) we feed
the “sentence” “[CLS] {w(k)} [SEP]” to the BERT
model to obtain the embeddings E(w(k)) ∈ R3×d

from the l-th layer of BERT for k ∈ {eng, fake}.
Now, we extract the word embedding by taking
the second vector (the one corresponding to w(k))
and denote it by e

(k)
w . Computing cosine simi-

larities between English and Fake-English tokens
yields the similarity matrix R ∈ Rm×m where
Rij = cosine-sim(e

(eng)
i , e

(fake)
j ) for m tokens in

the vocabulary of one language (in our case 2048).
Given an English query token s(eng)

i , we obtain
the retrieved tokens in Fake-English by ranking
them according to similarity. Note that we can do
the same with Fake-English as query language. We
report the mean precision of these directions that is
computed as

τ =
1

2m

m∑

i=1

1argmaxlRil=i + 1argmaxlRli=i.

A.2 inv-order

Assume the sentence “He ate wild honey .” exists
in the corpus. The tokenized version is [He, ate,
wild, hon, ##e, ##y, .] and the corresponding Fake-
English sentence is [::He, ::ate, ::wild, ::hon, ::##e,
::##y, ::.]. If we apply the modification inv-order
we always invert the order of the Fake-English sen-
tences, thus the model only receives the sentence
[::., ::##y, ::##e, ::hon, ::wild, ::ate, ::He].

A.3 knn-replace

We use the training data to train static word em-
beddings for each language using the tool fastText.
Subsequently we use VecMap (Artetxe et al., 2018)
to map the embedding spaces from each language
into the English embedding space, thus creating
a multilingual static embedding space. We use
VecMap without any supervision.

During MLM-pretraining of our BERT model
15% of the tokens are randomly selected and

Lang. Kendall’s Tau Distance XNLI Acc.

en 1.0 81.4

ar 0.72 64.9
de 0.74 71.1
fr 0.80 73.8
ru 0.72 69.0
th 0.71 55.8
ur 0.59 58.0
zh 0.68 69.3
bg 0.75 68.9
el 0.77 66.4
es 0.76 74.3
hi 0.58 60.0

sw 0.73 50.4
tr 0.47 61.6
vi 0.78 69.5

Table 4: Kendall’s Tau word order metric and XNLI
zero-shot accuracies.

“masked”. They then get either replaced by
“[MASK]” (50% of the cases), remain the same
(10% of the cases), get replaced by a random other
token (10% of the cases) or we replace the token
with one of the five nearest neighbors (in the fake-
English setup only with the nearest neighbor) from
another language (30% of the cases). Among those
five nearest neighbors we pick one randomly. In
case more than one other language is available we
pick one randomly.

B Additional Non-central Results

B.1 Model 17
One might argue that our model 17 in Table 1 of the
main paper is simply not trained enough and thus
not multilingual. However, Table 10 shows that
even when continuing to train this model for a long
time no multilinguality arises. Thus in this configu-
ration the model has enough capacity to model the
languages independently of each other – and due
to the modifications apparently no incentive to try
to align the language representations.

B.2 Word Order in XNLI
To verify whether similar word order across lan-
guages influences the multilinguality we propose
to compute a word reordering metric and correlate
this metric with the performance of 0-shot transfer
capabilities of mBERT. To this end we consider
the performance of mBERT on XNLI. We follow
Birch and Osborne (2011) in computing word re-
ordering metrics between parallel sentences (XNLI
is a parallel corpus). More specifically we compute
the Kendall’s tau metric. To this end, we compute
word alignments between two sentences using the
Match algorithm by Sabet et al. (2020), which di-
rectly yield a permutation between sentences as
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Scenario Runtime

pretrain small BERT model on Easy-to-Read-Bible,
100 epochs

∼ 35m

pretrain large BERT model (BERT-base) on Easy-
to-Read-Bible, 100 epochs

∼ 4h

pretrain large BERT model (BERT-base) on
Wikipedia sample, 1 epoch

∼ 2.5days

Table 5: Runtime on a single GPU.

Model Parameters

Standard Configuration (“Small model”) 1M
BERT-Base / Overparameterized Model / “Large model” 88M
Real data model (BERT-Base with larger vocabulary) 131M
mBERT 178M

Table 6: Number of parameters for our used models.

required by the distance metric. We compute the
metric on 2500 sentences from the development
data of XNLI and average it across sentences to get
a single score per language. The scores and XNLI
accuracies are in Table 4.

The Pearson correlation between Kendall’s tau
metric and the XNLI classification accuracy in a
zero-shot scenario (mBERT only finetuned on En-
glish and tested on all other languages) is 46%
when disregarding English and 64% when includ-
ing English. Thus there is a some correlation ob-
servable. This indicates that zero-shot performance
of mBERT might also rely on similar word order
across languages. We plan to extend this experi-
ment to more zero-shot results and examine this
effect more closely in future work.

B.3 Larger Position Similarity Plots

We provide larger versions of our position similar-
ity plots in Figure 8.

C Reproducibility Information

C.1 Data

Table 7 provides download links to data.

C.2 Technical Details

The number of parameters for each model are in
Table 6.

We did all computations on a server with up to
40 Intel(R) Xeon(R) CPU E5-2630 v4 CPUs and
8 GeForce GTX 1080Ti GPU with 11GB memory.
No multi-GPU training was performed. Typical
runtimes are reported in Table 5.

Used third party systems are shown in Table 8.

C.3 Hyperparameters
We show an overview on hyperparameters in Ta-
ble 9. If not shown we fall back to default values
in the systems.
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Name Languages Description Size Link

XNLI (Conneau
et al., 2018)

English,
German,
Hindi

Natural Language Inference
Dataset. We use the English
training set and English, Ger-
man and Hindi test set.

392703 sentence pairs in train,
5000 in test, 2500 in dev per
language.

https://cims.nyu.edu/
˜sbowman/xnli/

Wikipedia English,
German,
Hindi

We use 1GB of randomly sam-
pled data from a Wikipedia
dump downloaded in October
2019.

8.5M sentences for ENG,
9.3M for DEU and 800K for
HIN.

download.wikimedia.
org/[X]wiki/latest/[X]
wiki-latest-pages-articles.
xml.bz2

Bible (Mayer and
Cysouw, 2014)

English We use the editions Easy-
to-Read and King-James-
Version.

We use all 17178 sentences
in Easy-to-Read (New Testa-
ment) and the first 10000 sen-
tences of King-James in the
Old Testament.

n/a

Table 7: Overview on datasets.

System Parameter Value

Vecmap
Code URL https://github.com/artetxem/vecmap.git
Git Commit Hash b82246f6c249633039f67fa6156e51d852bd73a3

fastText

Version 0.9.1
Code URL https://github.com/facebookresearch/fastText/

archive/v0.9.1.zip
Embedding Dimension 300

Transformers Version 2.8.0
Tokenizers Version 0.5.2
NLTK Version 3.4.5

Table 8: Overview on third party systems used.

Parameter Value

Hidden size 64; 768 for large models (i.e., overparameterized and those used for XNLI) derived from BERT-based
configuration

Intermediate layer size 256; 3072 for large models
Number of attention heads 1; 12 for large models
Learning rate 2e− 3 (chosen out of 1e− 4, 2e− 4, 1e− 3, 2e− r, 1e− 2, 2e− 2 via grid search; criterion:

perplexity); 1e− 4 for large models, same as used in (Devlin et al., 2019)
Weight decay 0.01 following (Devlin et al., 2019)
Adam epsilon 1e− 6 following (Devlin et al., 2019)
Random Seeds 0, 42, 43, 100, 101; For single runs: 42. For real data experiments: 1,42 and 100.
Maximum input length after tokenization 128
Number of epochs 100 unless indicated otherwise. (chosen out of 10, 20, 50, 100, 200 via grid search; criterion: per-

plexity)
Number of warmup steps 50
Vocabulary size 4096; 20000 per language for the XNLI models
Batch size 256 for pretraining (for BERT-Base models 16 with 16 gradient accumulation steps), 32 for finetuning

Table 9: Model and training parameters during pretraining.

Mult.- Layer 0 Layer 8 MLM-
Num. score Align. Retr. Trans. Align. Retr. Trans. Perpl.

ID Description Epochs µ F1 ρ τ F1 ρ τ train dev

0 original 100 .70 1.00 .00 .16 .02 .88 .02 1.00 .00 .97 .01 .79 .03 9 00.22 217 07.8
17 lang-pos;shift-special;no-random;overparam 100 .00 .05 .02 .00 .00 .00 .00 .05 .04 .00 .00 .00 .00 2 00.02 270 20.1
17 lang-pos;shift-special;no-random;overparam 250 .00 .06 .02 .00 .00 .00 .00 .06 .05 .00 .00 .00 .00 1 00.00 1111 30.7

Table 10: Even when continuing the training for a long time overparameterized models with architectural modifi-
cations do not become multilingual.
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Abstract

Recently, it has been found that monolin-
gual English language models can be used as
knowledge bases. Instead of structural knowl-
edge base queries, masked sentences such as
“Paris is the capital of [MASK]” are used as
probes. We translate the established bench-
marks TREx and GoogleRE into 53 languages.
Working with mBERT, we investigate three
questions. (i) Can mBERT be used as a multi-
lingual knowledge base? Most prior work only
considers English. Extending research to mul-
tiple languages is important for diversity and
accessibility. (ii) Is mBERT’s performance
as knowledge base language-independent or
does it vary from language to language? (iii)
A multilingual model is trained on more text,
e.g., mBERT is trained on 104 Wikipedias.
Can mBERT leverage this for better perfor-
mance? We find that using mBERT as a knowl-
edge base yields varying performance across
languages and pooling predictions across lan-
guages improves performance. Conversely,
mBERT exhibits a language bias; e.g., when
queried in Italian, it tends to predict Italy as
the country of origin.

1 Introduction

Pretrained language models (LMs) (Peters et al.,
2018; Howard and Ruder, 2018; Devlin et al., 2019)
can be finetuned to a variety of natural language
processing (NLP) tasks and generally yield high
performance. Increasingly, these models and their
generative variants are used to solve tasks by sim-
ple text generation, without any finetuning (Brown
et al., 2020). This motivated research on how
much knowledge is contained in LMs: Petroni et al.
(2019) used models pretrained with masked lan-
guage to answer fill-in-the-blank templates such as
“Paris is the capital of [MASK].”

∗ Equal contribution - random order.

Query Two most frequent predictions

en X was created in MASK. [Japan (170), Italy (56), . . . ]
de X wurde in MASK erstellt. [Deutschland (217), Japan (70), . . . ]
it X è stato creato in MASK. [Italia (167), Giappone (92), . . . ]
nl X is gemaakt in MASK. [Nederland (172), Italië (50), . . . ]

en X has the position of MASK. [bishop (468), God (68), ...]
de X hat die Position MASK. [WW (261), Ratsherr (108), ...]
it X ha la posizione di MASK. [pastore ( 289), papa (138), ...]
nl X heeft de positie van MASK. [burgemeester (400), bisschop (276) , ...]

Table 1: Language bias when querying (TyQ) mBERT.
Top: For an Italian cloze question, Italy is favored as
country of origin. Bottom: There is no overlap be-
tween the top-ranked predictions, demonstrating the in-
fluence of language – even though the facts are the
same: the same set of triples is evaluated across lan-
guages. Table 3 shows that pooling predictions across
languages addresses bias and improves performance.
WW = “Wirtschaftswissenschaftler”.

This research so far has been exclusively on En-
glish. In this paper, we focus on using multilingual
pretrained LMs as knowledge bases. Working with
mBERT, we investigate three questions. (i) Can
mBERT be used as a multilingual knowledge base?
Most prior work only considers English. Extend-
ing research to multiple languages is important for
diversity and accessibility. (ii) Is mBERT’s perfor-
mance as knowledge base language-independent or
does it vary from language to language? To answer
these questions, we translate English datasets and
analyze mBERT for 53 languages. (iii) A multilin-
gual model is trained on more text, e.g., BERT’s
training data contains the English Wikipedia, but
mBERT is trained on 104 Wikipedias. Can mBERT
leverage this fact? Indeed, we show that pooling
across languages helps performance.

In summary our contributions are: i) We auto-
matically create a multilingual version of TREx
and GoogleRE covering 53 languages. ii) We use
an alternative to fill-in-the-blank querying – rank-
ing entities of the type required by the template
(e.g., cities) – and show that it is a better tool
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to investigate knowledge captured by pretrained
LMs. iii) We show that mBERT answers queries
across languages with varying performance: it
works reasonably for 21 and worse for 32 lan-
guages. iv) We give evidence that the query lan-
guage affects results: a query formulated in Italian
is more likely to produce Italian entities (see Ta-
ble 1). v) Pooling predictions across languages
improves performance by large margins and even
outperforms monolingual English BERT. Code and
data are available online (https://github.com/
norakassner/mlama).

2 Data

2.1 LAMA
We follow the LAMA setup introduced by Petroni
et al. (2019). More specifically, we use data from
TREx (Elsahar et al., 2018) and GoogleRE.1 Both
consist of triples of the form (object, relation, sub-
ject). The underlying idea of LAMA is to query
knowledge from pretrained LMs using templates
without any finetuning: the triple (Paris, capital-of,
France) is queried with the template “Paris is the
capital of [MASK].” In LAMA, TREx has 34,039
triples across 41 relations, GoogleRE 5528 triples
and 3 relations. Templates for each relation have
been manually created by Petroni et al. (2019). We
call all triples from TREx and GoogleRE together
LAMA.

LAMA has been found to contain many “easy-
to-guess” triples; e.g., it is easy to guess that a
person with an Italian sounding name is born in
Italy. LAMA-UHN is a subset of triples that are
hard to guess introduced by Poerner et al. (2020).

2.2 Translation
We translate both entities and templates. We use
Google Translate to translate templates in the form
“[X] is the capital of [Y]”. After translation, all
templates were checked for validity (i.e., whether
they contain “[X]”, “[Y]” exactly once) and cor-
rected if necessary. In addition, German, Hindi and
Japanese templates were checked by native speak-
ers to assess translation quality (see Table 2). To
translate the entity names, we used Wikidata and
Google knowledge graphs.

mBERT covers 104 languages. Google Translate
covers 77 of these. Wikidata and Google Knowl-
edge Graph do not provide entity translations for all

1code.google.com/archive/p/
relation-extraction-corpus/

Figure 1: x-axis is the number of translated triples, y-
axis the number of languages. There are 39,567 triples
in the original LAMA (TREx and GoogleRE).

languages and not all entities are contained in the
knowledge graphs. For English we can find a total
of 37,498 triples which we use from now on. On
average, 34% of triples could be translated (macro
average over languages). We only consider lan-
guages with a coverage above 20%, resulting in the
final number of languages we include in our study:
53. The macro average of translated triples in these
53 languages is 43%. Figure 1 gives statistics. We
call the translated dataset mLAMA.

3 Experiments

3.1 Model
We work with mBERT (Devlin et al., 2019), a
model pretrained on the 104 largest Wikipedias.
We denote mBERT queried in language x as
mBERT[x]. As comparison we use the English
BERT-Base model and refer to it as BERT. In initial
experiments with XLM-R (Conneau et al., 2020)
we observed worse performance, similar to Jiang
et al. (2020a). Thus, for simplicity we only report
results on mBERT.

3.2 Typed and Untyped Querying
Petroni et al. (2019) use templates like “Paris is the
capital of [MASK]” and give argmaxw∈V p(w|t)
as answer where V is the vocabulary of the LM
and p(w|t) is the (log-)probability that word w
gets predicted in the template t. Thus the object
of a triple must be contained in the vocabulary of
the language model. This has two drawbacks: it
reduces the number of triples that can be considered
drastically and hinders performance comparisons
across LMs with different vocabularies. We refer
to this procedure as UnTyQ.

We propose to use typed querying, TyQ: for each
relation a candidate set C is created and the pre-
diction becomes argmaxc∈C p(c|t). For templates
like “[X] was born in [MASK]”, we know which
entity type to expect, in this case cities. We ob-
served that (English-only) BERT-base predicts city

113



3252

names for MASK whereas mBERT predicts years
for the same template. TyQ prevents this.

We choose as C the set of objects across all
triples for a single relation. The candidate set could
also be obtained from an entity typing system (e.g.,
(Yaghoobzadeh and Schütze, 2016)), but this is be-
yond the scope of this paper. Variants of TyQ have
been used before (Xiong et al., 2020).

3.3 Singletoken vs. Multitoken Objects
Assuming that objects are in the vocabulary
(Petroni et al., 2019) is a restrictive assumption,
even more in the multilingual case as e.g., “Ham-
burg” is in the mBERT vocabulary, but French
“Hambourg” is tokenized to [“Ham”, “##bourg”].
We consider multitoken objects by including multi-
ple [MASK] tokens in the templates. For both TyQ
and UnTyQ we compute the score that a multitoken
object is predicted by taking the average of the log
probabilities for its individual tokens.

Given a template t (e.g., “[X] was born in [Y].”)
let t1 be the template with one mask token, (i.e.,
“[X] was born in [MASK].”) and tk be the template
with k mask tokens (i.e., “[X] was born in [MASK]
[MASK] . . . [MASK].”). We denote the log proba-
bility that the token w ∈ V is predicted at ith mask
token as p(mi = w|tk), where V is the vocabulary
of the LM. To compute p(e|t) for an entity e that
is tokenized into l tokens ε1, ε2, . . . , εl we simply
average the log probabilities across tokens:

p(e|t) = 1

l

l∑

i=1

p(mi = εi|tl).

If k is the maximum number of tokens of any entity
e ∈ C gets split into, we consider all templates
t1, . . . , tk, with C being the candidate set. The
prediction is then the word with the highest average
log probability across all templates t1, . . . , tk.

Note that for UnTyQ the space of possible pre-
dictions is V × V × · · · × V whereas for TyQ it is
the candidate set C.

3.4 Evaluation
We compute precision at one for each relation, i.e.,
1/|T |∑t∈T 1{t̂object = tobject} where T is the
set of all triples and t̂object is the object predicted
by TyQ or UnTyQ. Note that T is different for
each language. Our final measure (p1) is then the
precision at one averaged over relations (i.e., macro
average). Results for multiple languages are the
macro average p1 across languages.

untyped typed
single

0.1

0.2

0.3

0.4

p1

untyped typed
multi

0.0

0.1

0.2

p1

Figure 2: Distribution of p1 scores for 53 languages in
UnTyQ vs. TyQ. Left: singletoken (object = 1 token).
Right: multitoken (object > 1 token).

4 Results and Discussion

We first investigate TyQ and UnTyQ and find that
TyQ is better suited for investigating knowledge
in LMs. After exploring the translation quality,
we use TyQ on mLAMA and observe rather sta-
ble performance for 21 and poor performance for
32 languages. When investigating the languages
more closely, we find that prediction results highly
depend on the language. Finally, we validate our
initial hypothesis that mBERT can leverage its mul-
tilinguality by pooling predictions: pooling indeed
performs better.

4.1 UnTyQ vs. TyQ

Figure 2 shows the distribution of p1 scores for
single and multitoken objects. As expected, TyQ
works better, both for single and multitoken ob-
jects. With UnTyQ, performance not only depends
on the model’s knowledge, but on at least three
extraneous factors: (i) Does the model understand
the type constraints of the template (e.g., in “X is
the capital of Y”, Y must be a country)? (ii) How
“fluent” a substitution is an object under linguistic
constraints (e.g., morphology) that can be viewed
as orthogonal to knowledge? Many English tem-
plates cannot be translated into a single template
in many languages, e.g., “in X” (with X a country)
has different translations in French: “à Chypre”,
“au Mexique”, “en Inde”. But the LAMA setup
requires a single template. By enforcing the type,
we reduce the number of errors that are due to sur-
face fluency. (iii) The inadequacy of the original
LAMA setup for multitoken answers. Figure 2
(right) shows that the original UnTyQ struggles
with multitokens (mean p1 .03 vs. .17 for TyQ).

Overall, TyQ allows us to focus the evaluation
on the core question: what knowledge is contained
in LMs? From now on, we report numbers in the
TyQ setting.

Manual template tuning or automatic template
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machine manually manually
translated corrected paraphrased

de 18.1 19.4 (6) 20.9 (18)
hi 5.4 6.2 (14) 6.2 (1)
ja 0.4 0.4 (14) 0.7 (5)

Table 2: Effect of manual template modification on Un-
TyQ. Shown is p1, number of templates modified (in
brackets). Templates are modified to correct mistakes
from machine translation and paraphrased to achieve
the correct object type. Manual template correction has
a small effect on UnTyQ.

mining (Jiang et al., 2020b) has been investigated
in the literature to approach the typing problem.
We had native speakers check templates for Ger-
man, Hindi and Japanese, correct mistakes in the
automatic translation and paraphrase the template
to obtain predictions with the correct type. Table 2
shows that corrections do not yield strong improve-
ments. We conclude that template modifications
are not an effective solution for the typing problem.

4.2 Translation Quality

Contemporaneous work by Jiang et al. (2020a) pro-
vides manual translations of LAMA templates for
23 languages respecting grammatical gender and
inflection constraints. We evaluate our machine
translated templates by comparing performance on
a common subset of 14 languages using TyQ query-
ing on the TREx subset. Surprisingly, we find a per-
formance difference of 1 percentage points (0.23
vs. 0.24, p1 averaged over languages) in favor of
the machine translated templates. This indicates
that the machine translated templates in combina-
tion with TyQ exhibit comparable performance but
come with the benefit of larger language coverage
(53 vs. 23 languages).

4.3 Multilingual Performance

In mLAMA, not all triples are available in all lan-
guages. Thus absolute numbers are not compara-
ble across languages and we adopt a relative per-
formance comparison: we report p1 of a model-
language combination divided by p1 of mBERT’s
performance in English (mBERT[en]) on the ex-
act same set of triples and call this rel-p1. A rel-
p1 score of 0.5 for mBERT[fi] means that p1 of
mBERT on Finnish is half of mBERT[en]’s per-
formance on the same triples. rel-p1 of English
BERT is usually greater than 1 as monolingual
BERT tends to outperform mBERT[en].

Figure 3 shows that mBERT performs reason-
ably well for 21 languages, but for 32 languages

LAMA LAMA-UHN
BERT 38.5 29.0
mBERT[en] 35.0 25.7
mBERT[pooled] 41.1 32.1

Table 3: p1 for BERT, mBERT queried in English,
mBERT pooled on LAMA and LAMA-UHN.

rel-p1 is less than 0.6 (i.e., their p1 is 60% of En-
glish’s p1). We conclude that mBERT does not
exhibit a stable performance across languages. The
variable performance (from 20% to almost 100%
rel-p1) indicates that mBERT has no common rep-
resentation for, say, “Paris” across languages, i.e.,
mBERT representations are language-dependent.

4.4 Bias

If mBERT captured knowledge independent of lan-
guage, we should get similar answers across lan-
guages for the same relation. However, Table 1
shows that mBERT exhibits language-specific bi-
ases; e.g., when queried in Italian, it tends to predict
Italy as the country of origin. This effect occurs
for several relations: Table 4 in the supplementary
presents data for ten relations and four languages.

4.5 Pooling

We investigate pooling of predictions across lan-
guages by picking the object predicted by the ma-
jority of languages. Table 3 shows that pooled
mBERT outperforms mBERT[en] by 6 percent-
age points on LAMA, presumably in part be-
cause the language-specific bias is eliminated.
mBERT[pooled] even outperforms BERT by 3 per-
centage points on LAMA-UHN. This indicates that
mBERT can leverage the fact that it is trained on
104 Wikipedias vs. just one and even outperforms
the much stronger model BERT.

5 Related Work

Petroni et al. (2019) first asked the question: can
pretrained LMs function as knowledge bases? Sub-
sequent analyses focused on different aspects, such
as negation (Kassner and Schütze, 2020), easy to
guess names (Poerner et al., 2020), integrating
adapters (Wang et al., 2020) or finding alterna-
tives to a “fill-in-the-blank” approach with single-
token answers (Bouraoui et al., 2020; Heinzerling
and Inui, 2020; Jiang et al., 2020b). Other work
combines pretrained LM with information retrieval
(Guu et al., 2020; Lewis et al., 2020a; Izacard and
Grave, 2020; Kassner and Schütze, 2020; Petroni
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Figure 3: p1 of BERT (red) vs mBERT[x] (blue) divided by p1 of mBERT[en] on the same set of triples in
each language x. mBERT captures less factual knowledge than monolingual English BERT. While performance is
reasonable for 21 languages, it is below 60% for 32 languages. Dashed line is rel-p1 of mBERT[en] (by definition
equal to 1.0). Performance of BERT varies slightly as the set of triples is different for each language. Note that the
Wikipedia of Cebuano (ceb) consists mostly of machine translated articles.

et al., 2020). None of this work addresses lan-
guages other than English.

Multilingual models like mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) perform
well for zero-shot crosslingual transfer (Hu et al.,
2020). However, we are not aware of any prior
work that analyzed to what degree pretrained mul-
tilingual models can be used as knowledge bases.
There are many multilingual question answering
datasets such as XQuAD (Artetxe et al., 2020),
TiDy (Clark et al., 2020), MKQA (Longpre et al.,
2020) and MLQA (Lewis et al., 2020b). Usually,
multilingual models are finetuned to solve such
tasks. Our goal is not to improve question answer-
ing or create an alternative multilingual question
answering dataset, but instead to investigate which
knowledge is contained in pretrained multilingual
LMs without any kind of supervised finetuning.

There is a range of alternative multilingual
knowledge bases that could be used for evaluation.
Those include ConceptNet (Speer et al., 2017) or
BabelNet (Navigli and Ponzetto, 2010). We de-
cided to provide a translated versions of TREx and
GoogleRE for the sake of comparability across lan-
guages. By translating manually created templates
and entities we can ensure comparability across
languages. This is not possible for crowd-sourced
databases like ConceptNet.

In contemporaneous work, Jiang et al. (2020a)
create and investigate a multilingual version of
LAMA. They provide human template translations
for 23 languages, propose several methods for mul-
titoken decoding and code-switching, and experi-
ment with a number of PLMs. In contrast to their
work, we investigate typed querying, focus on com-
parabiliy and pooling across languages, and explore
language biases.

6 Conclusion

We presented mLAMA, a dataset to investigate
knowledge in language models (LMs) in a multi-
lingual setting covering 53 languages. While our
results suggest that correct entities can be retrieved
for many languages, there is a clear performance
gap between English and, e.g., Japanese and Thai.
This suggests that mBERT is not storing entity
knowledge in a language-independent way. Ex-
periments investigating language bias confirm this
finding. We hope that this paper and the dataset
we publish will stimulate research on investigating
knowledge in LMs multilingually rather than just
in English.
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A Language Bias

Table 4 shows the language bias for 10 relations.
For each relation we aggregated the predictions
across all triples and show the most common two
predicted entities together with its count (in brack-
ets). The querying language clearly affects results.
The effect is drastic for relations that ask for a coun-
try (e.g., P495 or P1001). P39 yields very different
results without exhibiting a clear pattern. Other
relations such as P463 or P178 are rather stable.

B Data Samples

Table 4 and Table 5 show randomly sampled entries
from the data.

C Pretraining Data

We investigate whether performance across lan-
guages is correlated with the amount of pretraining
data for each language. To this end we investigate
the number of articles per language as of January
2021 2 and p1 for TyQ in Figure 6. We do not have
access to the original pretraining data of mBERT.
Thus, the number of articles we consider in the
analysis might be different to the actual data used
to train mBERT.

2https://meta.wikimedia.org/wiki/List_
of_Wikipedias
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Figure 4: Three randomly sampled data entries from
mLAMA per language. Due to the automatic genera-
tion of the dataset not all of them are fully correct.
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en de nl it
P495: “[X] was created in [Y]” Japan (170), Italy (56) Deutschland (217), Japan (70) Nederland (172), Italië (50) Italia (167), Giappone (92)
P101: “[X] works in the field of [Y]” art (205), science (135) Kunst (384), Film (64) psychologie (263), kunst (120) fisiologia (168), caccia (135)
P106: “[X] is [Y] by profession” politician (423), composer (80) Politiker (323), Journalist (128) politicus (339), acteur (247) giornalista (420), giurista (257)
P1001: “[X] is a legal term in [Y]” India (12), Germany (11) Deutschland (36), Russland (9) Nederland (22), België (12) Italia (31), Germania (16)
P39: “[X] has the position of [Y]” bishop (468), God (68) WW (261), Ratsherr (108) burgemeester (400), bisschop (276) pastore ( 289), papa (138)
P527 “[X] consists of [Y]” sodium (125), carbon (88) Wasserstof (398), C (49) vet (216), aluminium (130) calcio (165), atomo (96)
P1303 “[X] plays [Y]” guitar (431), piano (165) Gitarre (312), Klavier (204) piano (581), harp (42) arpa (188), pianoforte (139)
P178 “[X] is developed by [Y]” Microsoft (177), IBM (55) Microsoft (153), Apple (99) Microsoft (200), Nintendo (69) Microsoft (217), Apple (49)
P264 “[X] is represented by music label [Y]” EMI (267), Swan (32) EMI (202), Paramount Records (59) EMI (225), Swan (50) EMI (217), Swan (99)
P463 “[X] is a member of [Y]” FIFA (126), NATO (33) FIFA (118), NATO (38) FIFA (157), WWE (16) FIFA (121), NATO (36)

Table 4: Most frequent object predictions (TyQ) in different languages. Some relations exhibit language specific
biases. WW = “Wirtschaftswissenschaftler”.
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Figure 5: Data samples continued.
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Figure 6: Scatter plot of p1 TyQ and number of articles
in the corresponding Wikipedia. There is no clear trend
visible.
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