63 research outputs found

    Towards Accurate Run-Time Hardware-Assisted Stealthy Malware Detection: A Lightweight, yet Effective Time Series CNN-Based Approach

    Get PDF
    According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on detecting malicious applications that are spawned as a separate thread during application execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy malware refers to harmful cyber attacks in which malicious code is hidden within benign applications and remains undetected by traditional malware detection approaches. In this paper, we first present a comprehensive review of recent advances in hardware-assisted malware detection studies that have used standard ML techniques to detect the malware signatures. Next, to address the challenge of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel specialized time series machine learning-based approach to accurately detect stealthy malware trace at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically identifies potentially contaminated samples in HPC-based time series data and utilizes them to accurately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art ML-based malware detection methods is not effective in detecting stealthy malware samples since the captured HPC data not only represents malware but also carries benign applications’ microarchitectural data. The experimental results demonstrate that with the aid of our novel intelligent approach, stealthy malware can be detected at run-time with 94% detection performance on average with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and general time series classification methods by up to 42% and 36%, respectively

    Studying a Virtual Testbed for Unverified Data

    Get PDF
    It is difficult to fully know the effects a piece of software will have on your computer, particularly when the software is distributed by an unknown source. The research in this paper focuses on malware detection, virtualization, and sandbox/honeypot techniques with the goal of improving the security of installing useful, but unverifiable, software. With a combination of these techniques, it should be possible to install software in an environment where it cannot harm a machine, but can be tested to determine its safety. Testing for malware, performance, network connectivity, memory usage, and interoperability can be accomplished without allowing the program to access the base operating system of a machine. After the full effects of the software are understood and it is determined to be safe, it could then be run from, and given access to, the base operating system. This thesis investigates the feasibility of creating a system to verify the security of unknown software while ensuring it will have no negative impact on the host machine

    Software similarity and classification

    Full text link
    This thesis analyses software programs in the context of their similarity to other software programs. Applications proposed and implemented include detecting malicious software and discovering security vulnerabilities

    Advanced Topics in Systems Safety and Security

    Get PDF
    This book presents valuable research results in the challenging field of systems (cyber)security. It is a reprint of the Information (MDPI, Basel) - Special Issue (SI) on Advanced Topics in Systems Safety and Security. The competitive review process of MDPI journals guarantees the quality of the presented concepts and results. The SI comprises high-quality papers focused on cutting-edge research topics in cybersecurity of computer networks and industrial control systems. The contributions presented in this book are mainly the extended versions of selected papers presented at the 7th and the 8th editions of the International Workshop on Systems Safety and Security—IWSSS. These two editions took place in Romania in 2019 and respectively in 2020. In addition to the selected papers from IWSSS, the special issue includes other valuable and relevant contributions. The papers included in this reprint discuss various subjects ranging from cyberattack or criminal activities detection, evaluation of the attacker skills, modeling of the cyber-attacks, and mobile application security evaluation. Given this diversity of topics and the scientific level of papers, we consider this book a valuable reference for researchers in the security and safety of systems

    Fake Malware Generation Using HMM and GAN

    Get PDF
    In the past decade, the number of malware attacks have grown considerably and, more importantly, evolved. Many researchers have successfully integrated state-of-the-art machine learning techniques to combat this ever present and rising threat to information security. However, the lack of enough data to appropriately train these machine learning models is one big challenge that is still present. Generative modelling has proven to be very efficient at generating image-like synthesized data that can match the actual data distribution. In this paper, we aim to generate malware samples as opcode sequences and attempt to differentiate them from the real ones with the goal to build fake malware data that can be used to effectively train the machine learning models. We use and compare different Generative Adversarial Networks (GAN) algorithms and Hidden Markov Models (HMM) to generate such fake samples obtaining promising results

    Crowdfunding Non-fungible Tokens on the Blockchain

    Get PDF
    Non-fungible tokens (NFTs) have been used as a way of rewarding content creators. Artists publish their works on the blockchain as NFTs, which they can then sell. The buyer of an NFT then holds ownership of a unique digital asset, which can be resold in much the same way that real-world art collectors might trade paintings. However, while a deal of effort has been spent on selling works of art on the blockchain, very little attention has been paid to using the blockchain as a means of fundraising to help finance the artist’s work in the first place. Additionally, while blockchains like Ethereum are ideal for smaller works of art, additional support is needed when the artwork is larger than is feasible to store on the blockchain. In this paper, we propose a fundraising mechanism that will help artists to gain financial support for their initiatives, and where the backers can receive a share of the profits in exchange for their support. We discuss our prototype implementation using the SpartanGold framework. We then discuss how this system could be expanded to support large NFTs with the 0Chain blockchain, and describe how we could provide support for ongoing storage of these NFTs

    A Hierarchical Architectural Framework for Securing Unmanned Aerial Systems

    Get PDF
    Unmanned Aerial Systems (UAS) are becoming more widely used in the new era of evolving technology; increasing performance while decreasing size, weight, and cost. A UAS equipped with a Flight Control System (FCS) that can be used to fly semi- or fully-autonomous is a prime example of a Cyber Physical and Safety Critical system. Current Cyber-Physical defenses against malicious attacks are structured around security standards for best practices involving the development of protocols and the digital software implementation. Thus far, few attempts have been made to embed security into the architecture of the system considering security as a holistic problem. Therefore, a Hierarchical, Embedded, Cyber Attack Detection (HECAD) framework is developed to provide security in a holistic manor, providing resiliency against cyber-attacks as well as introducing strategies for mitigating and dealing with component failures. Traversing the hardware/software barrier, HECAD provides detection of malicious faults at the hardware and software level; verified through the development of an FPGA implementation and tested using a UAS FCS

    On Offensive and Defensive Methods in Software Security

    Get PDF

    Introductory Computer Forensics

    Get PDF
    INTERPOL (International Police) built cybercrime programs to keep up with emerging cyber threats, and aims to coordinate and assist international operations for ?ghting crimes involving computers. Although signi?cant international efforts are being made in dealing with cybercrime and cyber-terrorism, ?nding effective, cooperative, and collaborative ways to deal with complicated cases that span multiple jurisdictions has proven dif?cult in practic

    A sense of self for power side-channel signatures: instruction set disassembly and integrity monitoring of a microcontroller system

    Get PDF
    Cyber-attacks are on the rise, costing billions of dollars in damages, response, and investment annually. Critical United States National Security and Department of Defense weapons systems are no exception, however, the stakes go well beyond financial. Dependence upon a global supply chain without sufficient insight or control poses a significant issue. Additionally, systems are often designed with a presumption of trust, despite their microelectronics and software-foundations being inherently untrustworthy. Achieving cybersecurity requires coordinated and holistic action across disciplines commensurate with the specific systems, mission, and threat. This dissertation explores an existing gap in low-level cybersecurity while proposing a side-channel based security monitor to support attack detection and the establishment of trusted foundations for critical embedded systems. Background on side-channel origins, the more typical side-channel attacks, and microarchitectural exploits are described. A survey of related side-channel efforts is provided through side-channel organizing principles. The organizing principles enable comparison of dissimilar works across the side-channel spectrum. We find that the maturity of existing side-channel security monitors is insufficient, as key transition to practice considerations are often not accounted for or resolved. We then document the development, maturation, and assessment of a power side-channel disassembler, Time-series Side-channel Disassembler (TSD), and extend it for use as a security monitor, TSD-Integrity Monitor (TSD-IM). We also introduce a prototype microcontroller power side-channel collection fixture, with benefits to experimentation and transition to practice. TSD-IM is finally applied to a notional Point of Sale (PoS) application for proof of concept evaluation. We find that TSD and TSD-IM advance state of the art for side-channel disassembly and security monitoring in open literature. In addition to our TSD and TSD-IM research on microcontroller signals, we explore beneficial side-channel measurement abstractions as well as the characterization of the underlying microelectronic circuits through Impulse Signal Analysis (ISA). While some positive results were obtained, we find that further research in these areas is necessary. Although the need for a non-invasive, on-demand microelectronics-integrity capability is supported, other methods may provide suitable near-term alternatives to ISA
    • …
    corecore