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Unmanned Aerial Systems (UAS) are becoming more widely used in the new era of 

evolving technology; increasing performance while decreasing size, weight, and cost. A UAS 

equipped with a Flight Control System (FCS) that can be used to fly semi- or fully-

autonomous is a prime example of a Cyber Physical and Safety Critical system.  Current 

Cyber-Physical defenses against malicious attacks are structured around security standards 

for best practices involving the development of protocols and the digital software 

implementation. Thus far, few attempts have been made to embed security into the 

architecture of the system considering security as a holistic problem. Therefore, a 

Hierarchical, Embedded, Cyber Attack Detection (HECAD) framework is developed to 

provide security in a holistic manor, providing resiliency against cyber-attacks as well as 

introducing strategies for mitigating and dealing with component failures. Traversing the 

hardware/software barrier, HECAD provides detection of malicious faults at the hardware 

and software level; verified through the development of an FPGA implementation and tested 

using a UAS FCS. 
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CHAPTER 1 

 

INTRODUCTION 

Cyber Physical Systems (CPS) play an important role in providing critical services in 

industries such as: autonomous vehicle systems, energy, health, manufacturing, etc., by 

integrating computation, physical control, and networking. Most of these systems are not 

only cyber-physical, but also operate in a safety-critical application where a failure or 

malfunction could result in damage or even loss of life. An Unmanned Aerial System (UAS) 

meets the requirements of a CPS and safety-critical system with its dependence on wireless 

communication, sensors, and algorithms that work synergistically to perform its 

functionality. Innovation in UAS technology has followed the paradigm of enhancing 

performance as a main priority, with security as either an afterthought or not considered at 

all, causing a lack of security against cyber-attacks in most UAS. In the past, UAS were 

expensive, heavy, and most commonly used by the military, however, cost, size, and weight 

have decreased drastically, while their capabilities, attributed to technology, have increased 

substantially. Technological advances are rapidly increasing in unmanned systems and 

secure solutions must keep-up with the technology to maintain safety and assurance. The 

increased interest in UAS due to semi and fully autonomous flight has benefited the civilian 

and military community and lead to increased efforts to incorporate UASs into industry [1]–

[3]. The shift of control from a human pilot to an automated, computerized autopilot has 

tremendous advantages; however, the dependence on embedded electronics exposes UASs 

to new threats of cyber-attacks. 

The cyber threats to UASs are becoming more evident and research in the area of 

securing safety-critical CPSs is increasing [4]. Current research is focused on creating attack 

assessments and discovering vulnerabilities [5]–[8], but has not significantly addressed 

detection and prevention of cyber-attacks on UASs, and more specifically the UAS Flight 
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Control System (FCS). A survey has been conducted on cyber-attack vulnerabilities and 

defenses for flight control systems in [9], as a preliminary assessment to developing a 

hardware architecture to detect and prevent attacks on a UAS. Vulnerability assessments 

typically focus on wireless and Global Positioning System (GPS) attacks [10]–[18] and less 

on malicious attacks from within the system. Minimal research has been conducted on 

increasing resilience of the FCS itself by investigating inter-component communication 

functionality, detecting sensor data anomalies, and fingerprinting of normal execution 

behavior. This research presents comprehensive solutions capable of detecting malicious 

attacks at various levels and parts of the system, such as a cyber-attack in the form of 

malicious code injected into the onboard sensors and firmware on the FCS with the ability to 

potentially mitigate the attack and if necessary quarantine the malicious on-board 

component.. The insight gained from the assessments has been used to develop an 

architecture to secure a UAS FCS from cyber-attacks. A block diagram of a typical UAS FCS is 

shown in figure 1 and can be used as a guide to examine the vulnerabilities of the FCS. The 

FCS consists of an autopilot, which is typically the main processor performing navigation and 

control algorithms that control the UAS while simultaneously polling sensors, controlling 

physical actuators and managing command, control and communication with a Ground 

Control Station (GCS) operator. 

The communication links between the FCS and the other on-board sensors are open to 

vulnerabilities, which can be easily identified: sensors, actuators, and wireless 

communication. The fourth vulnerability is the firmware running on the main processor, 

which can consist of not only the navigational and control algorithms, but the lower level 

driver software. Not only is the code written by an error prone human, but may also need to 

be updated for various reasons, which is typically performed by the UAS operator who may 

have little knowledge of the potential security vulnerabilities within the FCS. It is common 
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for a user to purchase a ready to fly, Commercial Off-The-Shelf (COTS) UAS which does not 

require any technical understanding of the UAS, creating additional vulnerabilities. 

 

Figure 1 High Level Abstraction of a UAS FCS architecture 

 

The identified vulnerabilities can be divided into four categories: firmware, sensors, 

communications, and actuators. Many sub-components of a UAS FCS contain embedded 

firmware vulnerable to attacks through the manufacturing and distribution chain or during 

run-time by another component having the access and authority to modify or update the 

sensor firmware. 

One of the mechanisms for inserting malicious code onto the autopilot may be through 

website spoofing [19]–[21], where an attacker may clone a legitimate website and the user 

would download malicious code. Other ways can include a software developer with 

malicious intent or through maintenance of the autopilot, which would require physical 

access, where an un-trusted source can program malicious firmware onto the autopilot. 

Analogous to the autopilot main processor firmware is the sensor firmware. The sensor 

firmware may be corrupted through the manufacturer, distributor, assembly, or during 

programming of the autopilot. The malicious firmware can affect the communication 
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between the sensor and autopilot at the protocol level or interfere with the sensor 

information through false data injection. A sensor may rely on an external reference, where 

an attacker could possibly spoof the external reference, providing false readings. 

The communications network is typically a wireless connection between the autopilot 

and a GCS operator. The autopilot communicates through a modem on-board periodically 

transmitting the status of the UAS and receiving configuration and control parameters as 

well as commands. An attacker within distance of the wireless transmission and with certain 

knowledge of the signal can receive and transmit data to the modem. The attacker can scan 

for activity on a specific frequency, or can jam all frequencies through transmitting noise, 

using up all the available the bandwidth, rendering the autopilot and/or GCS incapable of 

receiving any legitimate data. If an attacker has knowledge of the wireless protocol as well, 

they may have the ability to sniff the data communication and perform a man-in-the-middle 

attack by intercepting and re-transmitting the data, or a replay attack through recording a 

message and transmitting it later. The attacker can use fuzzing techniques, by sending 

random data to the modem and waiting for a physical response of the vehicle. If they have 

knowledge of the command and control, it is possible to send commands and/or control 

parameters to cause harm or take control of the vehicle. 

The actuators are also vulnerable to attacks, which depending on the capabilities of the 

actuator, it may contain firmware or can be modified through physical manipulation. It is 

also possible to attack the actuators through the autopilot or the network, which may require 

modification of the autopilot firmware or parameters that may be configurable through the 

network. The UAS FCS has various parts that can be targets for cyber-attacks such as the 

main processor executing the autopilot firmware, on-board components and sensor 

firmware, wireless network, and ground control station. There currently does not exist any 

solution capable of monitoring the on-board components, integrated on the FCS, that 
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connects between the main processor and on-board components allowing the ability to 

monitor on-board functionality. 

 

Objectives of the Dissertation 

The objective of this dissertation is to present the design, development, and testing of 

an FPGA implementation of the hierarchical architecture accompanied by a set of detection 

algorithms that can be integrated into a UAS FCS (an example of a CPS) to monitor, detect, 

and react against cyber-attacks. 

A hierarchical architecture was developed to secure a UAS FCS from malicious attacks 

at all levels of integration without compromising performance and functionality of the 

system while in a normal monitoring state through passively sniffing the on-board signals. 

As is the case of many CPS applications, there are significant size, weight, and power 

limitations. Furthermore, the monitoring and detection system is designed so that it does not 

create additional vulnerabilities for the UAS FCS. It performs in real-time and is embedded 

into the system such that it has the capability to monitor all communication and components 

within the system and have the ability to isolate any compromised subsystem from the main 

processor. 

 

Contributions of the Dissertation 

To achieve the objectives outlined above, two primary contributions are presented in 

this dissertation. 

The first contribution is a novel methodology that monitors a UAS FCS through 

monitoring the physical signals between the main processor and on-board components, 

performing multi-level verification on the systems specification characteristics, dynamic 

runtime attributes, and system level, functional parameter assertions. In addition, the 
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methodology allows the ability to use the multi-level verification collaboratively to develop 

a more concise decision to reduce the amount of false positive attack detections. 

Second, the detailed design of the embedded cyber security monitor and detection 

hardware architecture is presented. It is designed to be integrated directly within the FCS 

architecture, on-board the PCB and does not require hardware and software external to the 

FCS. The presented architecture not only allows monitoring of external communication but 

allows monitoring at all the functional levels of the CPS including hardware level 

communication protocols, sensor data integrity, and firmware verification. Furthermore, the 

presented architecture is positioned between the autopilot main processor and on-board 

sensors and actuators, allowing isolation of compromised components. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

2.1 Vulnerabilities of a generic CPS 

A vulnerability can be defined as a weakness or flaw in the system which an exploit can 

take advantage of to perform malicious activity. The vulnerabilities of a CPS can vary 

depending on the application. To characterize the vulnerabilities that exist in a CPS, a 

taxonomy of vulnerabilities was developed as shown in Figure 2. Although it is not a 

complete taxonomy listing all vulnerabilities in a CPS, it can be generalized to apply to most 

systems. The taxonomy does not differentiate between deliberately and non-deliberately 

created vulnerabilities, as it demonstrates where a vulnerability is created in a general 

manner. Who created the vulnerability and for what purpose can be considered irrelevant 

for the purposes of this work. 

 

Figure 2 CPS Vulnerability Taxonomy 

 

The taxonomy shows where the vulnerability lies in the various steps of the life cycle of a 

CPS. There are three levels of the taxonomy: Phase of Creation, Access Point, and Access 

Type. The three phases of creation describe where a vulnerability may be developed: 
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development, maintenance, and operation. The development phase is where the system is 

initially designed and implemented by the development team which can have access to many 

parts of the system a typical user would not have access to. This can also be a reoccurring 

phase depending on the application where a system may continuously be in development. 

The maintenance phase consists of system upgrades or updates, or any additional 

modifications to the system which can be carried out by a technician or the user. 

Vulnerabilities can be induced by the software developer or engineer providing the update 

to the software or modifications to the system. Lastly, the operational phase refers to 

vulnerabilities introduced during the operation of the system, such as a communications link 

that transmits and receives when the system is up and running or external factors that can 

only be introduced during operation. Vulnerabilities may exist during the operational phase; 

however, the taxonomy encapsulates the creation of vulnerabilities, not when the 

vulnerability is exposed.  

The access points describe where a malicious attacker would exploit the vulnerability, 

such as through hardware by modifying the physical components, or software through 

exploiting a programming bug or inserting malicious code, or eavesdropping on a wireless 

communication. At the bottom of the taxonomy lies the access types which describes more 

specifically the type of access a malicious adversary would perform to exploit the 

vulnerability, e.g. inserting an intentional bug into the code during the development stage, 

updating the autopilot with corrupt firmware code, or replacing physical components on the 

FCS. 

 

2.2 Vulnerabilities of a UAS CPS 

An assessment on CPS exploits performed in [22] aided in the development of the following 

list of exploits for a UAS Cyber Physical System. The exploits can be placed into four main 
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categories: Network, Firmware, Sensor, and Ground Control Station. The first series of 

exploits consist of network attacks. A network attack can include any type of wired or 

wireless communications attack. Second are firmware attacks, which are related to the 

exploits on the software/firmware executing of the main processor of the system. Third are 

the sensor attacks which refer to the firmware on the physical sensor, external reference 

manipulation, and any on-board component such as the actuators. Last, are the Ground 

Control Station (GCS) attacks which are performed on the computer and/or software the 

operator uses to control and communicate with the UAS. A list of possible exploits are shown 

in detail in Table 1.  

 

Table 1 CPS Exploits 

Method Description 

 

Network Attacks 
 

 

Black Hole/Gray Hole 

 

Compromising the network, dropping all packets (black hole) or selectively 

dropping packets (gray hole). 

Command Injection Accessing a target control unit or network to execute a command with malicious 

intent. 

Communication Jamming Intentional physical interference with the reception of a required signal; the 

adversary needs to be in vicinity of nodes to use a strong enough signal to jam the 

wireless channel 

Denial of Service Cyber equivalent of jamming; bombarding a network with large volumes of 

meaningless traffic. 

False Data Injection Communication-Based: Compromising the communication channel, blocking data 

measurements and inserting false data [23] 

Fuzzing Gaining network access and bombarding the target with messages to observe 

which one has a physical effect. 

Man-in-the-Middle Connecting independently to two computers that are part of the system with the 

purpose of eavesdropping and injecting manipulated messages [5], [24]. 

Network Isolation Attacks aimed at isolating a particular physical geographical area from a network 

[25]. 

Packet Sniffing Gaining network access to eavesdrop on messages. 

Password Cracking Guessing or otherwise determining a password in documentation or brute force 

attack. 

Relay Attack Capturing a communications signal and relaying it through a longer-range 

communication. 

Replay attack Observing and recording a communication sequence to replay it later in order to 

spoof the system [7], [11], [14], [17], [26]. 

Rogue Node Introducing a rogue communications node disguised as a legitimate node. 

  

Firmware Attacks  
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Code Injection Introducing additional instructions with malicious intent (i.e. Sensor Parsing, 

Control Algorithm Adjustment, Memory Leaks, and SQL injection). 

False Data Injection:  Exploiting database vulnerabilities, typically by adding erroneous data [27], [28]. 

Firmware Modification Modifying a subsystems firmware (i.e. router) to get to the ultimate target [29], 

[30]. Requires acquiring samples of an official firmware update, then analyzing,  

disassembling, and attempting to infer the method used by the device to validate 

updates. 

Sleep Deprivation Causing the system to rapidly exhaust its battery by forcing it to never sleep. 

 

Sensor Attacks 

 

 

Supply Chain Attack 

 

Gaining access to supplier computers and modifying the firmware, e.g., pre-

installing back doors, malicious code, etc. 

False Data Injection: 

Sensor-based 

Compromising a computer controlled sensor by reporting false data collected by 

the sensor instead of the actual data. 

GPS Jamming Transmitting high power signals to impede reception of GPS signal (i.e., impacting 

GPS availability). 

GPS Spoofing/Meaconing Synthesizing and transmitting a false GPS signal to deceive a target GPS receiver’s 

location; Meaconing refers to capturing legitimate GPS signal and rebroadcasting 

with a delay, affecting the timing estimation and ultimately the GPS receiver’s 

location 

Malware Infection Inserting software into the system with deliberate harmful intent 

GCS Attacks  

Malware Infection Inserting software into the system with deliberate harmful intent [8], [31]. 

    Viruses Parasitic programs that infect other programs, activated when the program is 

executed by the user. 

    Worms Self-replicating programs that do not require human interaction. 

    Back Doors Program that allows unauthorized access to the system. 

    Bots Program that launches flooding or denial of service attacks. 

    Root kits Sets of software tools used to conceal the presence of an adversary who has 

already gained access. 

    Trojan Horses Software that appears to be useful, but is harmful with malicious code. 

    Key loggers Program that records key strokes on computers where they are installed. 

  

 

Traditionally, UAS flight control system (i.e., autopilot) software and hardware 

developers are not fully aware of CPS cyber security vulnerabilities. Cyber threat analysis is 

typically conducted at a higher level, separate from the design process, by experts in the field. 

However, conventional cyber security techniques need to evolve from the paradigm of build 

it, then secure it, to a more concurrent design approach. It is necessary to not only assess the 

UAS from a high-level system view, but also from a low-level hardware perspective using a 

more detailed holistic approach. The objective of a cyber-attack on a UAS can be categorized 

as one of two types: Mission Envelope Failure or Flight Envelope Failure. Mission Envelope 

Failure is defined as restrictions placed on the vehicle by a cyber-attack (i.e. altitude limits, 
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GPS boundaries, etc.) that result in failure to successfully complete the UASs mission. Flight 

Envelope Failure refers to a failure of the flight control system to maintain the vehicles state 

within the acceptable operating envelope, resulting in failure of the vehicles air-frame and 

often vehicle destruction. 

 

Network Attacks 

UASs typically use wireless communications links for command, control, and 

communications (C3). The C3 link allows a GCS operator to send navigational commands to 

change the vehicles flight path, altitude, airspeed, etc. as well as receiving system status and 

health information from the vehicle. The data communications link, if applicable, allows the 

real-time transmission of data gathered by the vehicle (e.g. video) to be sent to the operator 

or other entities. Usually, the data communications link does not affect the operation of the 

vehicle meaning that it is not safety-critical, although interrupting it may effectively cause a 

Mission Envelope Failure. 

Small, low-cost, COTS UASs were not historically designed with the consideration that 

the wireless communication channel would be a vulnerability since they were considered to 

be used as a hobby. It has become evident, however, that the vulnerabilities in UAS 

communication links can be exploited. With UASs becoming more popular, the use of new, 

low cost, small, lightweight, and fast encryption capabilities will reduce the probability of 

wireless security problems. Techniques for securing the wireless communication link in 

UASs are presented in [10], [17]. In addition, an assessment of different wireless 

communication channels and sensor attack analysis is performed in [7]; In UAS 

communication, there are four basic communication architectures [14]: Direct Link/Ad-hoc, 

Satellite, Cellular, and Mesh Networking. Direct link refers to a connection that is reliable 

with low latency and little to no interference, satellite communication improves coverage, 

however has limited bandwidth; cellular refers to using downlink towers that can be 
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extended for better coverage; and a mesh architecture treats each node as a relay in the 

system. 

Two types of wireless communication for UASs exist, line-of-sight (LOS) and indirect. 

Indirect communication typically refers to satellite communication (SATCOM). The most 

common frequency bands used for wireless communication in Unmanned Systems are 400 

MHz, 900MHz, 15.15GHz – 15.35GHz, 4GHz – 8GHz, 2.4 GHz and 5.8GHz. The 400MHz band 

is commonly used throughout Europe and the rest of the world (excluding US); lower power 

required, lower path loss than 900MHz, translating to less power for the same range. 

However, with the lower frequency channel bandwidths can be limited to 10kbits/s or less. 

The 900MHz Band is commonly used for UASs for narrow band lower data rate applications 

than the 2.4GHz 5.8GHz band. The 900 MHz Band offers better performance than 2.4GHz or 

higher bands when obstructions such as trees and water are present. It is often used in non-

line-of-sight applications [26]. The 15.15GHz - 15.35GHz up link and 14.40 - 14.85 down link 

is referred to as the TCDL Ku-Band; a secured link developed by military and susceptible to 

interference, and can be affected by rain/snow, and air humidity. The 4GHz - 8GHz range is 

referred to as the C-Band. The UAS range is typically 4.4GHz-4.94GHz and 5.25GHz - 5.75GHz, 

which are less susceptible to air humidity, but subject to interference by many COTS devices. 

The most commonly used band is Wi-Fi a/b/g/n: 2.4GHz - 2.48GHz and 5.15GHz - 5.75GHz; 

which uses MIMO and up to 4 antennas. Omnidirectional antennas have an antenna pattern 

that radiates in all directions perform better outdoors, however, there is an increased risk of 

eavesdropping due to its increased radius and the unlicensed commercial nature of the 2.4 

and 5.8 GHz bands. 

A UAS has three main security breaches associated with its control and telemetry 

wireless data link [11]: packet forwarding, eavesdropping, and hijacking. Packet forwarding 

is a technique where the data packets are delivered in an irregular way such as dropping of 

packets, duplication, or modification. Eavesdropping refers to an adversary silently listening 
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to the communication, and hijacking is when an adversary gains control of the vehicle 

through mimicking the GCS. 

A typical UAS-GCS communication can be classified as a Mobile ADHOC Network 

(MANET) like a wireless sensor network (WSN). A WSN typically has static nodes and a 

MANET consists of dynamic nodes. They pose many of the same vulnerabilities, however 

certain attacks, such as proximity based attacks (i.e. jamming), would be less effective 

because the attacker must be mobile. To understand how a UAS may be vulnerable to 

wireless attacks, WSNs vulnerabilities are investigated.  The major attacks on a wireless 

network can be categorized as follows: 

• Denial of Service (DoS) 

o Physical Layer: Jamming, tampering 

o Link Layer: Collision exhaustion, unfairness 

o  Network Layer: Neglect and greed, homing, misdirection, black holes 

o Transport Layer: Flooding, de-synchronization 

• Attack on Information in Transit:  Information may be spoofed, replayed, or vanished. 

• Sybil: Forging an identity; in cases where more than one UAS work together to 

accomplish a task, an adversary node can pretend to be a peer node or a member of a 

group when it is not. This can in turn degrade the integrity of data, security and 

resource utilization, routing, voting, and resource allocation system functions. 

• Black Hole/Sinkhole Wireless Attack: Attacker listens to network and finds the highest 

quality or shortest path between the GCS and a UAS, then attracts all traffic between 

the two entities and corrupts or destroys it. 

• Hello Flood Wireless Attack: In a group of UASs, an adversary sends a Hello type 

message to initiate friendly contact with a neighboring node, the neighboring node 

acknowledges this as a friendly node and sends messages through the adversary to 
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the ground station; typically used in large areas where a mesh type network is 

utilized. 

• Wormhole Wireless Attack: Tunneling or retransmitting data that does not require 

compromising the network; attacker gives a node a false pretense that the recipient 

of a message is only one hop away, when it is multi-hops away. 

• Botnets: The term botnet refers to insertion of a compromised computer into a 

network.  

UASs can be small, cheap, and easily equipped with wireless networking capability, 

providing a platform to create a wireless botnet in the skies [32]. Instead of using a fixed 

computer, attackers can send commands through the non-stationary UAS making it difficult 

to track the attacker. It is possible to get directly between the GCS and the vehicle in the air, 

creating a new type of intrusion. Using this method, it is possible to get close enough to attack 

the wireless network functionality. They can be used to attack a Wi-Fi network by exploiting 

vulnerabilities in Wi-Fi as well as 3G and GSM [33], acting as an antenna that cell phones 

would connect through to make calls. UASs can be used to survey a wireless network and 

gather data such as BSSID, SSID, encryption type, channel, or the MAC addresses of the 

communicating entities. 

Soon, the Automatic Dependent Surveillance Broadcast (ADS-B) will be a major 

cornerstone of aircraft de-confliction in the National Airspace System (NAS). ADS-B is the 

next generation of air traffic modernization. It transmits information about the aircraft’s 

state (i.e. altitude and airspeed) and positional data to other aircraft and ground stations in 

the vicinity [29]. Two types of corruption of the ADS-B message have been identified, 

message misuse which is caused by an adversary identifying, locating, and tracking the 

entity, and message delay, caused by jamming. The ADS-B system will introduce another 

attack surface into the UAS ecosystem. A white paper released in 2012 by Eurecom 

referenced in [30], that presented techniques to address the vulnerabilities in the ADS-B 
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system which include: message authentication to protect from unauthorized users, message 

signatures to protect from tampering of messages, encryption to protect sensitive data, 

message integrity to assure validity of the message, and message freshness to protect against 

replay attacks. 

 

Firmware Attacks 

The autopilot contains control and navigational algorithms that are executing in 

software on the main processor along with low level drivers to communicate with on-board 

sensors. A firmware attack may include modifying the source code that is executing on the 

autopilot, which can be inserted during development or maintenance of the UAS. During 

development of the autopilot software a vulnerability may be inserted intentionally or 

unintentionally by either a malicious developer or an inexperienced programmer.  It is also 

possible for an adversary to mirror a website that is hosting the source code for the autopilot 

code, and malicious code can be programmed onto the autopilot by the operator 

unintentionally.  

 

Sensor Attacks 

The sensors on board a UAS include an Inertial Measurement Unit (IMU), absolute and 

differential pressure sensors, and optical and sonar sensors. Software attacks can occur from 

insertion of malicious code into the sensor firmware which can then create, modify, or stop 

data from being sent to the main processor. Software attacks also include, fuzzing attacks 

that induce noise into the sensor. Unexpected, invalid, completely random noise added to the 

sensor data flowing into the processor can cause unexpected problems, aircraft instability, 

process lock-up, and invalid outputs to next process. Digital update rate attacks can delay 

the frequency of sensor output, causing inconsistent processing of sensor information. 

Software and hardware can be used to create longer sampling periods to increase the 
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probability of aliasing. They can also be used to change sampling times of analog-to-digital 

converters through buffer overflow or hardware manipulation. Denial of service is a threat 

as well, which can prevent the processor from running at desired update rate. With physical 

access to the autopilot, malicious hardware can also be inserted between components 

directly onto the autopilot and/or sensors can be replaced with corrupt sensors to disturb 

the operations of the autopilot. GPS attacks are the most common types of attacks, since a 

typical GPS receiver does not use any type of encryption and can be spoofed with little 

knowledge of the UAS. The most common types of GPS attacks [5] are shown in Table 2. 

 

Table 2 GPS Vulnerabilities 

 

Method Description 

 

GPS Attacks 

 

The GPS is an external reference providing position data for the UAS. A GPS 

receiver can be attacked through manipulation of signal, software, or data [7]. 

GPS Data Level Attack Manipulation of real-time data with a valid GPS signal, such as resetting the 

current year of the GPS receiver to the year of UNIX epoch rollover. 

GPS Receiver Software Attack Exploitation of OS vulnerabilities, and in some cases a network stack on high 

end devices. A GPS receiver is a device and can easily go unpatched against 

certain attacks. 

Reference Station Attack Attacking a reference station that maintains a static position and allows civilian 

GPS to calculate position with greater accuracy, can be spoofed by re-

transmitting faulty data to dependent GPS receivers. 

Spoofing Attacker generates a counterfeit signal with incorrect positional and timing data 

[8], [9]. GPS spoofing is a proximity based attack and was successfully 

demonstrated at 0.62km at the University of Texas [10]. An additional 

limitation to this type is the need to track all GPS signals known to the target 

UAS. 

Signal Delay Using a GPS receiver, the GPS signal is decoded and re-broadcasted creating a 

timing delay, ultimately generating incorrect positional data; it is only possible 

to achieve gradual error with this method [11], however, a delay attack can be 

achieved on military GPS receivers [12]. 

Jamming 

 

An attacker transmits significant RF noise through which the GPS signal 

cannot be deciphered. 
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Ground Control Station Attacks 

The GCS is used by the operator to send commands, navigate, monitor, and in some cases 

manually control the UAS. Sometimes it is the only link to the UAS during a mission. Not only 

is wireless communication between the GCS and the UAS a vulnerability, but the GCS itself 

can be exploited. Thus, the GCS computer must be independently secured before it is 

connected to the UAS. The GCS can be a desktop or laptop computer with a keyboard, and 

consequently a key-logging virus can be inserted that results in the loss of sensitive data or 

compromising the UAS [31]. An attack may not necessarily occur between the UAS and GCS 

directly, but indirectly through a separate network that the GCS connects to that ultimately 

can be used to access the UAS communication link. 

As smart device technology increases, the robustness and usability also increases. 

Desktop computers in the field are becoming antiquated as they are replaced by laptops and 

mobile devices. With this paradigm shift comes a new level of cyber vulnerability. Not only 

do most smart devices have more versatile network connection capabilities, but most 

software development occurs on open source software and third-party applications. A threat 

model has been developed assessing the vulnerabilities that exist in smart device ground 

control stations [8]. It shows that smart devices operating systems and software must be 

updated frequently, along with use of anti-virus software, as they can easily be manipulated 

to monitor soldiers’ communication and movement. A recursive parameter estimation 

algorithm was developed in [34] to perform anomaly detection during flight. It can detect 

cyber-attacks on electronic hardware and the resulting degradation and failure. Adapting the 

Recursive Least Squares method, it can detect significant changes compared to previously 

known parameters and alert the GCS operator of an attack. 
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2.3 Mitigations, Countermeasures, and Defense Strategies for a UAS CPS 

A UAS has a more restrictive set of requirements for features such as size, weight, 

energy usage, and computational power imposed by its physical limitations than a typical 

CPS, such as a control system for a nuclear power plant or even a ground-based autonomous 

vehicle. This can make it more difficult to incorporate traditional counter measures that can 

be applied to other types of CPS. Cyber security techniques for embedded systems related to 

UASs and other unmanned systems will be discussed in the following section. 

Current autonomous vehicle systems that employ some type of detection and protection 

from cyber-attacks incorporate the following characteristics [32]: 

• Multi-Agent System Architecture – Multiple systems composed of subsystems, 

creating a system of systems 

• Redundancy - Prevents a single point of failure 

• Diversity - Prevents a single attack vector from becoming effective 

• Defense-in-Depth - Blocks the pathway for an unauthorized user, providing multiple 

layers of security countermeasures throughout the system; defending the system 

from any attack using multiple independent methods 

• Authentication - Prevents humans and other devices from impersonating another 

entity 

• Micro-Kernel - Uses a minimum-sized OS kernel. All unused device drivers and other 

software are removed, only the required micro kernel is running 

A platform to increase safety and security for unmanned systems known as Sphere was 

developed in [35]. The purpose of Sphere is to create component usage policies by 

categorizing modules by different levels of criticality to mission success. A catastrophic effect 

could result from the failure of a critical component such as the autopilot processor, GPS, or 

airspeed sensor. Furthermore, the components must be isolated and disabled upon failure. 
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Secondly, Sphere created a protocol structure for proof of authenticity among the different 

subsystems, which must authenticate themselves upon start up.  

Fault handling is the process of attempting to correct or work around an error in the system 

once it is detected. It is difficult to assess usefulness of fault handling mechanisms; most 

common techniques include triple redundancy and fail-safe states. Although these 

mechanisms cause restrictions on the size, weight, and power of UASs, they help keep the 

mission alive. It is shown in [7] that fail safe states can impose a risk to the UAS if the wrong 

state is chosen for a given situation. Fault handling must consider both transient and 

permanent failures. Transient failures are irregular and un-predictable faults which included 

external disturbances, while permanent failures typically derive from hardware damage.  

 

ADS-B 

As UAS are introduced into the national airspace, it is imperative that the ADS-B 

system can be as secure as possible from cyber-attacks. Attacks on the availability of ADS-B, 

such as jamming or denial of service, could be mitigated by employing secure, low frequency, 

land based alternatives such as terrestrial land based radio navigation systems; a plane to 

plane type of backup communication could be employed, however another plane could be 

spoofed [36], allowing a malicious entity to cause further harm. Confidentiality can be 

augmented using a common group identifier like IP communications and integrity can 

enhanced through a time-difference-of-arrival technique that helps identify the source of the 

ADS-B transmission. A lightweight Public Key Infrastructure (PKI) would be a viable solution 

adding integrity verification to messages [30] through the use of key-hash message 

authentication (HMAC) to verify message authentication. 
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GPS Spoofing 

Interest in detecting GPS spoofing has increased in the past decade, leading to the 

development of techniques applied to GPS signal characteristics, including the position 

solution, Doppler shift, and SNR [37]–[42]. A method is developed in [12] that uses a 

reference receiver to compare the cross-correlation of the C/A and P(Y) codes. By isolating 

the P(Y) code, a large correlation can be observed in a non-spoofed signal. A new type of GPS 

detection was developed using a monopole-patch hybrid antenna connected to two 

independent GPS receivers that compares the signal to noise ratio to identify a fault [13]. A 

similar approach for GPS spoof detection was developed in [43] using two or more antennas 

with known relative positions, and comparing the resulting position solutions as opposed to 

the RF signal. 

There are four main observable ways to spoof a GPS: the GPS message, code ranges, 

fractional phase ranges and Doppler shift. Various methods that have been developed to 

counter GPS spoofing attacks [44] are shown in Table 3. 

 

Table 3 GPS Spoofing Counter Attack Methods 

 

Method Description 

 

Monitor the absolute power of 

each carrier 

 

A maximum power can be set to determine the spoofed signal. 

Monitor signal power rate 

changing 

RF signal radiation from a point source. Any positional changes near 

earth should not result in a dramatic signal power change.  magnetic 

induction 

Monitor the relative powers Modern GPS have two signals, the relative power ratios should be 

fixed. 

Bound and compare range rates When phase range is manipulated with respect to code range, phase 

range rate will most likely be sacrificed and can be detected. 

Doppler shift check Relative speed of receiver compared to each satellite can be derived; 

attacker would need one spoofer per satellite to go undetected. 

Cross Correlation of L1 and L2 The signal on L2 is slower than that on L1 due to ionosphere effect, 

the sign of cross-correlation shift is known. 

Residual analysis A GPS signal consists of the spoofed signal, authentic signal, and 

noise. It is possible to remove the spoofed signal; however, the 

additional noise may be too strong to recover the weak authentic signal 
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L1-L2 range differences Range differences are caused by ionosphere effects; phase and code 

ranges should conform, a spoofed signal propagating in lower levels 

behaves differently 

Verify received ephemeris data Compare spoofed data with almanac data to ensure the GPS message 

does not provide fixed satellite information 

Jump Detection Monitor changes in observables and power consumption are within a 

tolerable range 

 

 

Redundancy as well as multi sensor data fusion can be used as a cross-checking mechanism 

to reduce the risk of integrity or availability loss [45]. A GPS can be combined with an Inertial 

Navigation System (INS) and an optical sensor [46],  which can provide additional 

information to compare the GPS information against, to reduce  the security risk of incorrect 

position and altitude. 

 

Botnets 

  A UAS being versatile can be quickly deployed to eavesdrop on a private or corporate 

wireless network, and potentially be used as the controlling unit in a botnet. A botnet refers 

to a large number of computers that are infected with code and controlled by an outside 

source.  A UAS that is performing as a botnet can be difficult to detect, unless there is clear 

visibility of the UAS being hijacked. A secure defense requires observing the behavior of the 

UAS and discovering the Geo location of the UAS, or detecting the addition of new hosts in a 

network that then alert the system to the presence of a botnet. 

 

Low Cost UAS Wireless Encryption 

In small UASs, the most widely used wireless modem is the XBEE RF module, more 

specifically, the XBEE Pro 900HP [47] and the XBEE 802.15.4 [48]. These wireless modules 

are low power (between 45mA and 215mA), light weight (3g), and small size (2.438cm x 

2.761cm). The most common way to secure a wireless network is to add encryption to the 

data so that it is not decipherable to a casual observer. The addition of encryption, however, 
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imposes limitations on a wireless network. In an ideal setting, there are unlimited resources 

available; this is not the case for UASs, especially low-cost hobby and civilian grade UASs. 

Wireless security in low cost UASs has three main trade-offs: bandwidth, latency, and energy 

consumption. In a low-cost system, there are greater constraints on the processing 

capabilities, which limits the usage of encryption algorithms. Less intensive algorithms have 

been investigated such as Rivest Cipher 4 (RC4), a simple and fast stream cipher, which 

requires only a small amount of resources and computation. 

The XBEE wireless modules have been shown to work with their encryption 

capabilities enabled for agricultural purposes with low power and cost efficiency [49]. A 

study was conducted on the performance with and without using encryption on an Arduino 

UNO Atmega328P processing platform utilizing a Series 1 XBEE wireless module [50]. It was 

shown that the additional encryption capability of RC4 increased the delay of data transfer 

from 1ms to 150ms, and the use of RC4 with hash increased the delay from 1ms to 400ms. 

In [51], wireless vulnerabilities are analyzed between Bluetooth, WIFI, and the XBEE ZigBee 

wireless modules [52]. The research showed multiple vulnerabilities in the wireless 

communication, including configuration, non-encryption, and the interface by which the UAS 

and ground station would connect through, such as a serial port or socket communication. 

The XBEE wireless module is capable of handling the Advanced Encryption Standard (AES) 

128 encryption algorithm on the module itself, which is based on the Rijndael cipher with a 

block size of 128bits [53]. However, the modules also have enough bandwidth to 

communicate in typical UAS applications with an AES 256 encryption algorithm performed 

off-board of the XBEE using an FPGA [54]. The Skipjack algorithm is less resource intensive 

and just as secure as the RC5 [55] derived from the RC4 algorithm with a few advancements. 

Applying these less intensive encryption algorithms is a first step into securing the wireless 

communication links and will prevent most prevalent attacks, however it is also the users’ 

responsibility to actively enable, monitor, and update security measures. Securing UASs is 
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only useful if the security measures are actively being used during operation and are shared 

amongst the user community.  For example, it is known that wireless communications are 

vulnerable to cyber-attack, however, it is not common for COTS UASs to use encrypted 

communications in civilian applications. 

This section has examined the current mitigation techniques, counter measures and 

defenses for attacks on a UAS CPS and its various subsystems encompassing the hardware, 

software, wireless communication, GCS, and other potential threats. Many vulnerabilities 

that lie in a UAS CPS are application specific, however, many of the vulnerabilities can be 

applied to any CPS. 

 

2.4 Architectural Schemes for securing a UAS CPS 

There are currently, two approaches that have been proposed as solutions to securing 

a low-cost UAV FCS. The first is a System-Aware approach that uses a non-invasive 

architecture referred to as the Sentinel, and the second uses mathematical modelling and 

Embedded Domain Specific Language techniques, referred to as HACMS. 

The System-Aware Cyber Architecture [56] was developed at the University of 

Virginia consisting of an integration of diverse, interchangeable, redundant subsystems from 

multiple vendors. The sub-systems are capable of rapidly changing their configurations and 

using data consistency checks and a voting scheme to determine a fault versus a natural 

failure. The system was referred to as the Sentinel, a non-invasive, external system proposed 

to be capable of monitoring and detecting cyber-attacks on a UAV and has been 

demonstrated using a Piccolo FCS [57]. The architecture depends on a communication 

channel between the FCS and the Sentinel. The Piccolo provides a serial communication 

channel which transmits the information of the autopilot and can also be used to send 

commands to the Piccolo. The Sentinel architecture polls the information from the autopilot 
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and performs four different techniques on the data: diversity, configuration hopping, data 

consistency, and tactical forensics. Implementing diversity requires multiple redundant 

subsystems from different vendors that perform a voting scheme to monitor and detect any 

inconsistency in the data. The Sentinel is also capable of changing the autopilot configuration 

during run-time. Using a voting scheme, data consistency is monitored using redundant 

subsystems and forensics to rapidly identify the attack, alert the operator, and restore the 

system. The Sentinel uses a triple redundancy methodology, comprised of three separate 

Raspberry Pis and a SiCore SHIELD 2 Coprocessor as a central interface point between the 

autopilot and the Sentinel system. 

In most architectural designed systems, horizontal integration is used. This is the 

concept of developing different subsystems independently and interfacing them to interact 

together.  

A new type of architectural design incorporates vertical integration, using 

architectural models to ensure compatibility of independent modules within the 

architecture [37], with the challenge being the trade-off of complexity versus precision of 

analysis. This approach is built upon using high level models that can develop low level code 

(i.e. MATLAB Simulink), minimizing the area for error in developing secure code. The 

vulnerabilities that are embedded in software are typically due to unsafe code written by 

developers or an unforeseen bug that may appear.  

High-Assurance Cyber Military Systems (HACMS) has created an Embedded Domain-

Specific Language (EDSL) specifically for embedded systems that is capable of generating 

safe-C [38]. HACMS was developed by DARPA in an initiative to harden Unmanned Systems 

from security vulnerabilities. The goal of HACMS is to develop a synthesizer capable of 

producing a machine-checkable proof that the generated code satisfies functional 

specifications as well as security and safety policies [36]. It is based on the philosophy of 

creating a programming language that minimizes all the vulnerabilities in current embedded 
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system programming languages. HACMS has done a lot of work in CPS with regard to: 

resilience [40], [41], [58], robustness [59], and attack detection [42]. 

The current proposed solutions to secure a UAV FCS each have their advantages and 

disadvantages. The design decision to make the Sentinel a non-invasive system, has the 

advantage of lower complexities when migrating to another UAV FCS, and does not modify 

the systems characteristics, and can be easier to maintain. However, in the research 

conducted in [57] there is a dependency on the existence of a serial communication interface 

as well as the inability to quarantine and monitor the on-board sensors, verify the firmware, 

and monitor the run-time execution of the autopilot. The HACMS architecture relies on 

mathematical proofs and formal verification, as well as an embedded domain specific 

language to prevent error prone code. However, this approach is very specific and would be 

difficult to apply to other autopilots, since the entire autopilot would need to be redesigned 

and recoded. Formal methods may be used to secure the autopilot; however, it can be 

difficult to detect malicious sensor firmware, communications and actuators attacks by 

solely incorporating formal methods into the firmware on the autopilot through the use of 

embedded DSLs. 
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CHAPTER 3 

HIERARCHICAL MONITOR SYSTEM ARCHITECTURAL PRINCIPLES 

This section describes the design decisions for the various components and reasons 

behind the approach of using a hierarchical architecture and subcomponents that make up 

the proposed methodology. Subsequently, to understand the cyber-attack domain, the 

system model is defined and followed by a description of what makes an attack detectable 

or undetectable. Secondly, various architectural methodologies are presented. The 

following equations will follow a standard model in cyber-physical literature e.g. [60]–[62]. 

The attacker model is integrated into the system model and consists of attacks on the 

hardware communication between the sensors and the main processing unit, the firmware 

on the sensors, the software executing on the main processor, and the actuators that 

manipulate the control surfaces. 

 

3.1 System Model 

Consider the linear control system given by the following equation: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑎𝑘 + 𝑤𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑎𝑘 + 𝑣𝑘  

The system can be defined as  = (A, B, C, D) where matrices A and C describe the system and 

matrices B and D describe the capabilities of the attacker.  In the above equation, 𝑥𝑘 ∈ ℝ𝑛  

represents the state of the system for k ∈ {1,…,n} ,𝑤𝑘 represents the noise in the system 𝑦𝑘 ∈

ℝ𝑝 represents the measurements from the sensors for k ∈ {1,…,p}, 𝑣𝑘 represents the noise 

in the measurements,  and 𝑎𝑘 ∈ ℝ𝑑  represents the attack injections into the system at time 

𝑘  for k ∈ {1,…,d}; ℝ  signifies the real numbers set. The system is in normal operating 

conditions if 𝑘 > 0 and 𝑎𝑘 = 0. 
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Detectable and Undetectable Cyber Attacks 

There exists the set of all attacks, which can be separated into detectable and 

undetectable attacks. There are three main attributes that must be exhibited for an attack to 

be detectable. First an attack must be observable, where it must be possible to view the 

attack. Second, it must be accessible, meaning that there must be some way of retrieving the 

data, such as using a hardware IP core connected to a physical signal to extract the bits from 

the communication and parse the data based on the protocol. Lastly, it must be verifiable, 

meaning that there needs to be something to compare the result against in order to verify 

that it is correct. 

To examine what makes an attack detectable vs. undetectable, we use the following 

equations derived from [62]. First, we make the assumption that the pair (𝐴, 𝐶)  is 

observable. This model allows for simultaneous attacks on the sensors, main processing unit, 

and actuators. First we consider the following sequences, first the output sequence: 

𝑌𝑘 = [  𝑦(0)𝑇  𝑦(1)𝑇 … 𝑦(𝑘)𝑇 ]𝑇,  

and secondly the unknown attack sequence injected by the attacker:  

𝐸𝑘 = [ 𝑎(0)𝑇 𝑎(1)𝑇 … 𝑎(𝑘)𝑇 ]𝑇 , 

with k > 0. 

As stated previously, the pair (A, C) are observable, and can be used to create the 

observability matrix: 

𝑂𝑘 =  [

𝐶
𝐶𝐴

⋮
𝐶𝐴𝑇

], 

 

A detector for a given system  , can be defined as: 

 

𝜕 ∶  ℝ𝑝(𝑘+1)× ℝ𝑞 → {1, 0}, 
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Where “1” represents that an attack has occurred and “0” represents that no attack has 

occurred. An attack 𝐸𝑘 is considered undetectable if 𝜕(𝑂𝑘𝛾) = 0  for all 𝛾 ∈  ℝ𝑛  where 𝛾 

represents any time step where 𝑎𝑘 ≠ 0 . A detectable attack is any attack that is not 

undetectable and there exists an occurrence where 𝜕(𝑂𝑘𝛾) = 1. The set of detectable and 

undetectable attacks can be combined into the set of all possible attacks ℝ𝑑(𝑘+1).  This set of 

all cyber-attacks with the detectable vs. undetectable attacks are shown in Figure 3. When 

developing a monitoring architecture, we must analyze what types of attacks are detectable 

and undetectable and try to extract as much information as possible from the system.  

 

3.2 Partitioning Cyber Attacks on a UAV CPS 

To determine which cyber-attacks against a UAS CPS are detectable and undetectable, 

we must first define which functions of a UAS are observable: 

Function 1 (Sensor communication). The communication between the main processor 

and the on-board sensors, including the communication between the on-board modem and 

main processor. 

Function 2 (Wireless Communication). The Command, Control, and Communications 

(C3C) between the Ground Control Station (GCS) and the UAV. 

Function 3 (Actuator Outputs). The actuator outputs between the main 

processor/receiver and the actuators controlling the UAV control surfaces. 

Function 4 (Autopilot software). The software programmed onto the autopilots main 

processor running navigational, and control algorithms as well as hardware peripheral 

firmware. 
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Sensor Communication 

The communication between the sensors and the main processor can be directly 

monitored and the attacks on the sensors can be partitioned into various types of attacks. 

First, a hardware protocol attack, which consists of changing the configuration of the sensors 

hardware peripheral communication protocol or injecting a fault into the physical signal. 

Secondly, a firmware attack which is injected by modifying the firmware on the sensor, 

which can typically occur during a supply chain attack by the manufacturer or distributor. 

Lastly, a spoofing attack, which requires a sensor to rely on an external reference, where an 

attacker imitates the external reference with malicious intent. 

 

Wireless Communication 

The wireless communication between the UAS and the GCS can easily be eavesdropped 

on by an adversary within the operating distance of the UAS. The wireless communication 

operates through a wireless modem which can be monitored onboard the UAV. Attacks may 

be directed against the wireless communication channel through methods such as Denial of 

Service (DoS), replay, fuzzing, etc. which mostly are detectable attacks, or indirectly by 

attacking the GCS and sending command/controls through the wireless channel, which can 

result in an undetectable attack. 

 

Actuator Outputs 

Actuator outputs can be monitored on the FCS directly between the main processor and 

the actuator. The actuator outputs, depending on the FCS configuration can be driven by 

either a manual receiver, augmented using a combination of manual and autopilot, or 

completely by the autopilot in a fully autonomous mode.  
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Autopilot Software 

The autopilot software is programmed into the main processors flash memory, and can 

be monitored through a debug interface such as JTAG or SWD depending on whether the pins 

are accessible on the FCS. There are programs available that can make use of formal methods 

to create statically verified code to minimize error prone code generation.  

 

Information vs. Security Tradeoff 

 The properties define the observability of the FCS on the UAV and the functionality 

may contain detectable and undetectable attacks. Figure 3 displays visually how there is a 

set of all cyber-attacks, where the objective of a cyber-attack monitor is to bridge the gap and 

minimize the separation of the detectable attacks vs. undetectable attacks.  

 

  

Figure 3 Set of Cyber Attacks 

 

The objective of a cyber-attack detection monitor is to gather as much information 

possible to detect an attack.  With respect to the monitor obtaining the maximum amount of 
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information, a trade-off must be made whether the monitor will make a more informed 

decision and be less secure, or a less informed decision and be a more secure. For example, 

to detect attacks and/or isolate sensors at the hardware communication level between the 

sensors and the main processor, it is necessary to create a monitor that passes through or 

blocks communication between the main processor and the sensor. The capability of 

blocking communication in the monitor, creates a vulnerability, but it does allow a greater 

amount of information to be gathered by the monitor to determine that there is an attack 

ongoing and where it originates.  With a greater amount of observability in the system, the 

amount of detectable errors increases which also allows monitoring at the hardware, data, 

execution, and functional levels of the system. With a detailed set of observable properties 

defined, the following sub sections will describe different architectures for creating the best 

security monitor for cyber-attack detection on a UAV CPS. 

 

3.3 Embedded vs. External 

The first decision in developing the proposed methodology is whether the monitor 

should be an embedded or external isolated system. Embedding the monitor within the 

system provides a monitor with an increased amount of information, through access to 

the on-board components that can be used in the fault/attack detection decision making. 

It allows accessibility of the low-level physical signals that provide internal 

communication between the main processor as well as the on-board components such as 

the actuators and power rails. An embedded approach also allows for the ability to 

physically isolate a sensor from the main processor and perform a mitigation action.  An 

external system such as the Sentinel discussed in related work, has the advantage that it is 

a separate system and can be isolated and does not require any modification of the system 

it is monitoring. However, it is not able to perform analysis of the on-board components 

since it relies on the system being monitored to provide the data necessary to perform the 
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monitoring function at the software level through an external communication line. 

Because the embedded monitor approach enables the detection of a larger number of 

cyber attacks and provides the capability to reconfigure the system to mitigate many types 

of cyber attacks, it was selected as the approach used in this work. 

Figure 4 shows the difference between an embedded and an external solution. The 

embedded version of the monitor is integrated onto the FCS Printed Circuit Board (PCB) 

as an additional hardware component to connect as a hub between the on-board sensors 

and the main processor. The external version connects externally through a 

communication line that the main processor sends out state information. 

 

 

Figure 4 Embedded vs. External Monitor 

 

3.4 Monitor Architecture 

The selection of an embedded monitor approach leads to the requirement to select the 

overall architecture of the monitor itself. An embedded monitor can be organized as either a 

centralized design, a distributed design, or a hierarchical design. 
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3.4.1 Centralized Architecture 

A centralized architecture relies on a single entity that all the subsystems report to 

determine if an attack has been detected or not. Each subsystem contains its own unique 

functionality that aids in the overall system fault detection. In this architectural scheme, all 

the processing within the submodules would be sequential. The advantage of having a 

centralized architecture would be the sharing of memory and resources, which would allow 

a great amount of information to be shared between each of the subsystems. The 

disadvantage would be that everything must flow through the central entity, where if one of 

the submodules were to fail, the whole system would fail. A layout of the centralized 

architecture with the various submodules in a security monitor is shown in Figure 5. 

 

Figure 5 Centralized Architectural Layout of Security Monitor 

 

3.4.2 Distributed Architecture 

The distributed architecture allows each of the subsystems to work separately from one 

another and independently report on attacks. Using a distributed architecture alleviates the 

disadvantage of having a single centralized process deciding on whether an attack has been 

detected, by allowing each subsystem to alert the target system when an attack has been 

detected while not disturbing the other sub modules. Also, a distributed architecture allows 
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for sharing of resources between closely related submodules.  An advantage is that there is 

not a single point of failure, as opposed to a centralized architecture. A disadvantage is that 

data is still passed to all the subsystems regardless of whether there is a fault detected or 

not; a case may be where a fault occurs at the hardware level and detected at one or more of 

the other subsystems, which can make it difficult to determine where the attack originated. 

A distributed system would also allow for improvements to the overall system to be made 

much more easily since each submodule can be upgraded individually as opposed to 

upgrading the entire system. 

 

Figure 6 Distributed Architectural Layout of Security Monitor 

 

3.4.3 Hierarchical Architecture 

The hierarchical architecture follows similar principles of the distributed architecture; 

however, it adds an additional level of hierarchy that can provide an added benefit of multi-

level verification. Hierarchy in this architectural sense refers to the collection of 

subsystems that depend on lower levels for operation, such as retrieving the data from the 

hardware resource, passing it to the next subsystem to translate from raw to sensor data, 

then performing system level analysis on the data. A hierarchical approach allows each 

submodule to verify the data at each level, so that if there is a fault at the lowest level, the 

submodule can notify the upper levels, allowing separation of tasks and collaboration 

amongst the various sub modules. It not only allows for collaboration between the 
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subsystems, but also creates isolation by parallelizing the execution flow for each sensor, 

creating an individual hierarchy amongst the various detection modules for each individual 

sensor so that if a failure is to occur within the architecture, it would allow for the rest of 

the system to operate normally. An example of a hierarchical architecture is shown in 

Figure 7.

 

Figure 7 Hierarchical Architectural Layout of Security Monitor 

 

The hierarchy allows many advantages, such as improved collaboration between the 

subsystems since they all have the ability to communicate.  In the event of a fault or attack, a 

subsystem higher up in the hierarchy can check against a subsystem lower in the hierarchy 

for any abnormal behavior that may not have caused an alert, potentially providing more 

information on an attack with multi-level verification. An example would be a hardware level 

anomaly such as an incorrect parity reading on a UART which may just throw the byte away 

instead of passing it to the next subsystem. In this case, the UART may trigger a warning that 

a parity bit was incorrect, but may continue functioning normally unless the parity bit is 

continuously incorrect.  It can create an isolated flow of information which can improve the 

location of detected faults/attacks that may occur in the system. It also contributes to better 
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security within the monitor itself, in the event of a failure or lock-up in one of the sub-

modules of a particular sensor, it would not affect all of the other operations in the system. 

The following chapter will apply hierarchical properties to the development of a proposed 

architecture to monitor a UAV CPS against cyber-attacks. 

A hierarchical architecture allows for multi-level verification, where system level 

analysis is performed on the sensor data. It is necessary that the information can be 

verified that it is retrieved from the sensors correctly, which depends on the hardware 

peripherals protocol configuration. A foundation is laid where future development can use 

the hardware level information, in a collaborative nature, to create a better decision using 

a collection of the information gathered at the hardware and information layers. This 

method can be used to reduce the number of false positives. It is also necessary to have a 

sequential data flow instead of a parallel flow that would allow checking different aspects 

of the information. If the data received at the hardware level is corrupted, it is possible to 

go undetected, and can be difficult to locate the source of the fault/attack. This type of a 

system requires a sequential data flow that can provide verification at multiple levels so 

that each subsystem in the monitor can provide separate analysis on the different stages 

of the information flow. 

Using the hierarchical architecture with a sequential data flow leads into the design 

decision of developing a monitoring system with four separate subsystems. The data flow 

and the decision flow of the monitor work inversely whereas the data flows upward from 

monitoring the physical signal characteristics and retrieving the data to passing the data 

to the next level that translates the data from raw data into sensor data and performs 

specification checks, and lastly passes the data to a system level module that verifies the 

mission level, functionality of the system. It is also necessary to monitor the execution of 

the main processor to verify that it is performing correctly in conjunction with monitoring 

the on-board components.  The decision flow is performed in a top down topology where 
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in the upper layers performing analysis on the sensor data and system level functions, 

trigger the lower level monitoring the physical signals, to isolate the sensor and change 

the flow of data from receiving to transmitting, depending on the mitigation sequence.   

 

3.5 (FPGA) Field Programmable Gate Array Implementation 

An FPGA implementation allows the ability to customize a soft hardware protocol IP 

core to perform analysis on the protocol configuration specifications. In addition, the 

FPGA allows the development of a customized crossbar switch implemented in digital 

logic. The crossbar switch allows the monitoring system to isolate an on-board component 

by physically switching the connections within the FPGA. If a malicious sensor is detected, 

the monitoring system can connect the autopilot signal to an IDLE state on the hardware 

peripheral, and connect the sensor to a custom internal hardware peripheral in the FPGA 

that can be used to mitigate the sensor through methods such as power cycling or sending 

reconfiguration commands, and can even reconnect the sensor to the autopilot if 

necessary. An FPGA also allows the ability to incorporate a soft-core processor over using 

a general-purpose processor. The advantage of using a soft-core processor is that it can be 

customized to use only the necessary components for the intended application, saving 

resources for other uses, as well as removing un-predictable functionality of the processor 

such as interrupts that can make it difficult to determine how the processor will perform 

its functions. With an FPGA implementation, an interconnect is needed to transfer data 

between the various subsystems. 

 

3.6 Interconnect 

To implement a multi-level architecture in an FPGA, an interconnect is required to 

transfer the data between the various subsystems. An open-source interconnect would 
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have the advantage of customizability vs. a licensed interconnect which may perform 

better in certain applications, however, a licensed interconnect cannot be modified to fit 

the needs of the application. A lightweight architecture with minimal signals required and 

short transaction time allow for a non-complex design and would allow for easier 

customization and would be less prone to faults. The interconnect would benefit from 

having a master slave architecture since the data from the physical signal layer can be 

polled and retrieved by the next layer whenever data is available. It is not necessary to 

incorporate an interconnect that is made up of various modules since it would simply be 

transferring data from one module to the next and no complex functionality is required. If 

a master-slave architecture is used, it would allow for each of the sensor modules being 

monitored to have a paired slave, allowing for a single, shared data bus which would 

provide a less complex solution where each of the sensors can use the same logic to write 

and read from the bus and would only need a unique address based on the master-slave 

pair. 
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CHAPTER 4 

 

HIERARCHICAL EMBEDDED CYBER ATTACK DETECTION SYSTEM (HECAD) 

To protect a UAS FCS from vulnerabilities, a hierarchical hardware architectural design is 

proposed to monitor, detect, and react to malicious faults. The architecture is intended to be 

embedded into the hardware design of a UAS FCS. A programmable hardware 

implementation is recommended over a software solution because it is possible to simulate 

and verify every component of the system, and can be more difficult to penetrate over a 

micro-controller, and has other advantages that will be discussed further in section IV. This 

section will provide the architectural layout, specifying the hardware requirements to 

integrate HECAD into an FCS. 

 

4.1 Overview 

The hardware design of the HECAD, allows for the ability to monitor, detect, and react on 

a resource constrained system. This separation of the FCS and HECAD also incorporates an 

extra level of security in the case of the autopilot being compromised, HECAD remains 

operational as opposed to executing detection algorithms on the autopilot itself. It is 

essential for HECAD to be an embedded hardware solution in order to intercept 

communication between the autopilot and sensors at the hardware level and for counter 

measures to be implemented in real time. A block diagram overview of the architecture is 

shown in Figure 8. It consists of four main functional blocks: Execution, Functional, 

Hardware Resource, and Information Integrity Monitors (respectively EIM, FIM, HRIM, and 

I2M). The functional blocks are isolated from one another and operate concurrently. HECAD 

is designed to be integrated into the architecture of the FCS, external to the main processor, 

creating a separation of autopilot algorithms and security. The hardware implementation of 
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HECAD is secured to make it very difficult for an adversary to attack, allowing the ability to 

completely isolate on-board sensors as well as completely override the autopilot in a secure 

manner.  

  

Figure 8 HECAD System Overview 

 

HECAD has the ability to monitor the system on an individual component level as well as 

monitoring the system from a holistic view. The monitor’s data flow works in a bottom up 

methodology beginning with the HRIM verifying the hardware resources through 

monitoring the communication protocols of the on-board sensors and retrieving then 

transferring the raw data to the I2M which converts the raw data into relevant sensor data. 

After successful packets, have been retrieved by the I2M, the data is transformed into sensor 

data and passed to the EIM which verifies the firmware and run-time execution of the 

autopilot and the FIM, which performs analysis at the functional level. The fault alarms flow 

in the opposite direction, whereas when a fault is detected, it will most likely require the 

HRIM to isolate the corrupt sensor and initiate a reconfiguration. There exists a multi-master, 

multi-slave data bus where each sensor has a master-slave pair connecting the I2M sensor 

to the HRIM IP core. The sensors each have their own data registers for storage of data that 

can be read from the FIM for further processing and validation. For example, the HRIM 

contains a UART IP designed to poll data from the GPS sensor, this data is collected from the 
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UART protocol, then fetched by the I2M, transformed into relevant sensor data such as: 

Latitude, Longitude, Altitude, etc. and transferred to the FIM to validate the functional 

correctness of the data. The following section describes the requirements to integrate 

HECAD into a UAS FCS will be discussed followed by a description of each component of 

HECAD. 

The first and lowest level of the architecture is the HRIM, which analyzes the physical 

signal characteristics, verifying that the hardware protocol conforms to the configuration 

and is within its specifications. At this level, it will sniff the data from the communications 

line passively, minimizing the effect on the characteristics of the system. This is another 

advantage where the monitor does not need to delay the information transmitting 

between the autopilot and sensor.  The next subsystem is the I2M, which analyzes the 

information layer, where the data is translated from ones and zeros into sensor data 

information and can be verified against the sensor specifications. After the data has passed 

the integrity checks it can be further analyzed in the next subsystem, the FIM. Once the 

data can be verified that it is within its specifications and legitimate data, further mission 

specific assertions can be performed on all of the data retrieved from the sensors on the 

FCS for a more complete solution to determine if a fault has occurred. It is also necessary 

to not only perform verification checks on the on-board components and sensor data, but 

to verify that the autopilot firmware executing on the main processor is performing as 

expected, which can be performed in the last subsystem, the EIM. This allows the 

monitoring system to perform run-time, functional agnostic checks on the main processor 

that can verify that it is performing within its intended purpose and the internal control 

algorithms are executing within their timing constraints. In order to develop a system 

capable of being embedded on the FCS and monitor the physical signals an FPGA 

implementation is proposed. 
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4.2 HECAD Requirements 

Integrating HECAD into a UAS FCS has various requirements to maximize its capability for 

monitoring, detecting, and reacting to attacks or component failures. Each of the 

requirements may be implemented by one or more subsystems. Requirements for the 

HECAD include: 

• Verification of the firmware and check for consistency 

• Fingerprint normal execution of the main processing system 

• Verification of hardware level I/O specifications and sensor specifications, and 

configurations 

• Verification and validate system level operation 

• Verification and validate the command, control, and communication 

In the proposed architecture, HECAD does not notify the main processor in regards to fault 

alerts (i.e. it does not communicate to the CPU to indicate that a fault has occurred or any 

information regarding the fault). This disconnect of communication provides an extra layer 

of security to isolate HECAD from the main processor. Since there is no communication, the 

autopilot must have the necessary methods in place for when a sensor is disconnected from 

the main processor to react accordingly. Integrating HECAD onto the PCB of the FCS allows 

the ability to monitor the hardware level internal communications between the main 

processor and the on-board sensors on the FCS. An overview of HECAD is shown in Figure 9 

the subsystems that collectively form HECAD is contained in the following sub-sections. 
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Figure 9 HECAD FCS Detailed Overview 
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4.3 Hardware Resource Integrity Monitor (HRIM) 

The hardware resources in a UAS FCS consist of the data communicating from the on-

board sensors to the autopilot, connected through internal communication. At this level, 

there is no data transformation or knowledge of the sensor data; the module is only aware 

of the communication protocol specifications. Typical FCS internal communication may 

consist of but are not limited to: UART, I2C, SPI, and SDIO protocols. The I2C protocol is a 

shared bus and will be used as an example shown in Figure 10. It is important to note that a 

protocol such as UART does not share an RX and TX line, as it is not a shared bus protocol. 

The principles applied to the I2C protocol may be applied to any IP Core that may exist in the 

HRIM. 

  

 

Figure 10 Hardware Resource Integrity Monitor 

 

The HRIM as shown in Figure 10, acts as a hub between the autopilot and on-board 

sensors acting as a bus protocol monitor, with an additional switch like ability, where in the 

event of malicious fault detection it can disconnect the respective sensor. The HRIM operates 

in PASS TROUGH mode until a fault is detected. In this mode, the data from the sensors are 
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sent directly to the autopilot. The HRIM passively, monitors the data from the line, and 

directs it to an I2C Intellectual Property (IP) core. Each I2C device is connected through its 

own individual I2C communication line, and there is an IP core for each device as well. This 

allows the HRIM to disconnect individual I2C devices without interfering with I2C 

communication between the other sensors and autopilot. 

The HRIM consists of many individual cores, one core per sensor and has knowledge of 

the bus protocol used for its specified sensor. The detection algorithms at this level consist 

of hardware peripheral protocol configuration verification and should be simple, real-time, 

and reliable. A representation of a sensor IP core is shown in Figure 11, consisting of a 

crossbar switch, protocol specific hardware IP core with a wrapper around the hardware 

core, and detection logic that uses techniques to detect malicious faults injected into the 

protocol configuration as well as physical signal faults.  

 

 

Figure 11  Sensor IP Core 

 

Potential faults that could occur include preventing the data to be sent by holding the 

line in an idle condition, changing configuration of the communication protocol, sending 

bogus commands to or from the autopilot, etc. In a typical operation, the update rate of the 

sensor remains constant, and is monitored as well since slight delays in update rates can 
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exponentially affect the navigation and control algorithms by accumulating errors over time. 

When a fault is detected, the sensor is switched to the DISCONNECTED mode, which removes 

the connection between the sensor and the autopilot. The sensor is still connected to the IP 

core which may have the ability to react to the fault. Some of the reaction techniques may 

consist of: resetting the sensor, switching to an alternate sensor, power cycling the sensor, 

or disconnecting the sensor. 

 

 

Figure 12 Pulse Width Modulation IP Core 

 

The HRIM monitors all hardware resources, this includes not only sensor 

communication protocols, but also Pulse Width Modulation (PWM) signals used to control 

the actuators on the UAS. The IP cores can be customized to accommodate different 

applications. The PWM IP core monitors the PWM outputs of the autopilot that are 

controlling the actuators. The PWM IP as shown in Figure 12, has the capability to 

read/monitor the PWM commands sent to the actuators as well as control the actuators in 

the event of a fault. Faults on the physical PWM signal can be detected such as monitoring 

the timing of the pulse width in the HRIM, furthermore the bounds can be checked in the 

I2M, and lastly the actuator position can be cross checked with the other information from 

the sensors in the FIM.  The HRIM provides the data to the I2M from the hardware IP core, 
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allowing the I2M to focus on only information integrity, as well as detect faults that occur at 

the hardware IP core level before it reaches the I2M. A fault that has occurred at the HRIM 

level may not be detected by the I2M; data can still be received; however, it will be incorrect 

data and can disrupt the system undetected. With the HRIM in place, it allows multi-level 

verification of the data so that the I2M has a level of assurance that the data is read correctly 

and can perform information integrity analysis with fewer false positives. 

 

4.3.1 HRIM UART Example  

This section describes the application of the HRIM to a sensor or actuator which uses 

the Universal Asynchronous Receive and Transmit (UART) protocol. The UART protocol is 

asynchronous, which means it does not have a clock, and only consists of two signal lines and 

requires both sender and receiver to be configured with the same settings. This type of setup 

can easily allow a fault to occur that can be difficult to detect. In a typical processor, the UART 

is a hardware component that notifies the upper level software that data has been received, 

however there is usually no indication of any errors with the protocol itself. The UART has 

various configuration settings, which consist of: Baud Rate, Parity, Stop Bits, and Data Bits. 

At the software level, if any of these configuration settings are changed during runtime, there 

will be no indication except for incorrect data being received by the user.  The UART relies 

on the signal being pulled high or low depending on what the IDLE state is, which would 

signify a start, and uses timing until the whole byte is read into the RX register. 

An example of a transmitted byte on a UART is shown in Figure 13 with configuration 

settings of eight data bits, parity enabled, and one stop bit.  The received data byte would be 

a binary 10101010, or in hex 0xAA. If the configuration of the sender or receiver is changed, 

the timing after the start bit is initiated will be off and all of the subsequent bits will be 

misinterpreted. 
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Figure 13 UART Byte Example 

 

Most hardware UARTs implement a 16X oversampled clock to read each bit received on 

the UART.  Using the oversampled clock, it is possible to detect changes in baud rate. One 

technique used in HECAD is to record the signal for the first and second half of the 16 clock 

cycles it takes for each bit. If the configuration of both sender and receiver are the same the 

signal should remain stable for the whole 16 clock cycles, to account for error all of the clock 

cycles do not need to be used, however it can reduce the number of faults detected. A 

technique is used by initially counting half, eight of the oversample clock cycles after a start 

has been initiated, and then the full 16 for each subsequent bit, this enables the receiver to 

not only reduce jitter but grab the middle of the bit instead of the beginning or end. By using 

the oversampled clock, it allows the capability to detect if the baud rate has been modified. 

This may not always work due to a high jitter signal, however, under normal circumstances, 

it allows accurate monitoring of the signals to determine correctly a working UART. Correct 

sampling of a receiving UART is shown in Figure 14, where the oversample clock is storing 

the middle of each bit, and it can be seen that each half of the 16 clock cycles stays constant 

if there is a bit change. There can be a worst and best-case scenario where if the data consists 

of all zeros or all ones it may not be able to detect an error, however the best case would be 

that the first bit is a high signal, or the opposite of a start signal. 
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Figure 14 UART Overclock Sample Baud Rate Configuration @ 57600 

 

In Figure 15 is a depiction of what it would look like if the baud rates would differ between 

the sender and receiver. It shows a higher baud rate from the sender than the receiver. It 

can be seen that the first and second half of the 16 clock cycles are not consistent and can 

easily be detected under normal operating condition. 

 

Figure 15 UART Overclock Sample Baud Rate Configuration @ 115200 

 

Other faults that may occur on the UART pertain to the data bits, parity, and stop bits. 

These faults depend on one another and may not be easy to determine exactly which fault 

has occurred, however it should still be able to determine that it is a configuration fault. The 

simplest of the three is the parity, where the parity of the byte can be calculated on the 

receiving end and determined if the parity bit is incorrect. The stop bits can be checked for 
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an IDLE signal, if the UART is IDLE high and the stop bits are not also each high, then a fault 

has occurred. An attack on the data bit configuration would require counting the number of 

bits, and could possible go undetected, since it would also require the detection of an 

incorrect stop bit. To determine the correct amount of data bits, would require counting bits 

from the initiation of the start bit to the stop bit going to IDLE.  Lastly, based on the 

configuration settings the UART is able to also determine if the signal is being held in an 

active state NOT-IDLE, by counting how long each byte transfer should take. For example, a 

configuration of 8 data bits, no parity, and one stop bit at a baud rate of 57600, it is possible 

to determine the time it takes to transfer a whole byte. As seen in Equation 1, it is calculated 

that the signal should go high approximately 173.6 us after the signal goes low, when IDLE 

is high. 

 

1

57600
∗ ( 8 𝐷𝑎𝑡𝑎 𝐵𝑖𝑡𝑠 + 1 𝑆𝑡𝑎𝑟𝑡 𝐵𝑖𝑡 + 1 𝑆𝑡𝑜𝑝 𝐵𝑖𝑡 ) = 173.6 𝑢𝑠 

Equation 1: UART byte transfer time calculation 

 

4.3.2 HRIM Operational Characteristics 

This section describes the operational characteristics of the HRIM including what data 

it shares with other HECAD systems and how it shares that data, and what types of attacks it 

is intended to detect.   

 

HRIM information provided to other systems  

HRIM provides the data read from the hardware IP core and a status register containing 

the status of the hardware IP core. When data is received on the hardware IP core, a signal 

is emitted to the I2M sensor module and a read command is issued on the interconnect bus 
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that requests the data and the status registers from the HRIM. When a fault is detected in the 

hardware IP core, a fault detected signal is emitted to the I2M and the FIM. 

 

HRIM communication and isolation 

The HRIM hardware IP core continuously reads data from the sensors and stores the 

data into a data register that can be read from an internal data bus connecting the 

subsystems. When data is received, a signal is emitted to the I2M to request a read from the 

data register, which occurs in two system clock cycles, which should be much less than a data 

register update on the hardware IP core. Since the architecture is implemented on an FPGA, 

there is no dependence between sensor modules at the same level, or within the same data 

flow of a single sensor module. In the event of a failure at the I2M or FIM level, the HRIM 

continues to operate without disruption, even if the I2M were to continuously read from the 

data register, it has read-only access and does not write to the data register, thus the HRIM 

would be unaffected. 

 

Information Flow between HRIM and other blocks 

The information flows from the HRIM to the I2M during normal operation, and when a 

fault has occurred the information flows from the I2M to the HRIM. In normal operation, data 

is received by the HRIM and stored in registers. When a fault has occurred, the crossbar is 

enabled and the sensor is isolated from the system. A mitigation technique is engaged when 

the crossbar is enabled, which may require commands to be transmitted to the sensor, which 

is sent from the I2M to the HRIM. 
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Acceptable region of operation of the HRIM  

The acceptable operating region of the HRIM can be defined as a successfully 

operating protocol without any errors detected in the hardware IP core. The HRIM does not 

have any knowledge of the sensor information itself, thus in the case of a data fault injection 

attack, the HRIM is not aware of the attack as long as the hardware protocol is functioning 

correctly. 

 

HRIM Cyber Attack Characteristics  

Faults that are detected at the HRIM can be characterized by configuration parameters 

of the protocol and the characteristics of the physical signal.  An attack in the HRIM level 

can be caused by firmware modification of a sensor or hardware modification. Along with 

monitoring the sensors, the HRIM will monitor the power through an ADC which can 

monitor current or voltage spikes and possibly signatures can be created for operation 

which can be used to verify the power consumption of the system. An attack on the system 

may be caused by creating noise or current drain through overconsumption by a specific 

sensor and/or the main processor through malicious firmware.  It is also possible the 

actuator control signals are maliciously altered through modification of the PWM signal or 

adding noise on the physical signal. 

 

4.4 Information Integrity Monitor (I2M) 

The I2M is responsible for parsing and verifying the integrity of the data received from 

the HRIM. The I2M consists of a collection of individual sensor modules to represent each 

sensor being monitored in the system, an actuator module, a power system module, and a 

communications processing and control module. An overview of the I2M is shown in Figure 

16, displaying the configuration where each of the sensors on-board the UAS FCS has a 
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dedicated module in the I2M which will perform the parsing of the data which translates the 

raw data into usable sensor data. The I2M is customizable and can be modified to add more 

sensors or remove sensors depending on the application, since each module is independent 

of each other in the I2M; e.g. the GPS module does not depend on the IMU module. The 

actuator module is used to monitor the actuator outputs from the autopilot as well as the 

inputs received from the manual operator. The power system module is used for performing 

analysis on the power system of the autopilot, this can include various power sources such 

as the input power source to the FCS, and any other regulated power source on the FCS. The 

communications processing and control filters through the communications between the 

autopilot and the GCS operator, which consists of status updates relayed from the autopilot, 

commands sent from the operator, and control inputs from the operator such as parameters, 

gain values, limits, etc. 

 

 

Figure 16: I2M Overview 

 

An individual sensor module is shown in Figure 17, more specifically, in this case, a GPS 

sensor. Each module in the I2M is connected with an IP core in the HRIM which signals when 

data is ready on the data bus, at which time the module in the I2M reads the data placed on 

the bus.  The I2M has a direct dependency on the HRIM, since it can only parse data that has 
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been read from the sensor using the hardware IP core. If the HRIM were to lock up or become 

corrupt, the I2M would not receive data from the sensor, and would therefore trigger a fault 

since it will expect data to be received at a specified frequency, and will treat it as a sensor 

attack due to the inactivity. 

 

Figure 17 Information Integrity Monitor 

 

Each sensor-specific module in the I2M is equipped with a similar set of blocks. As the data 

is received on the data bus in the I2M, it is placed in the parser. After the data is parsed, it is 

stored in a data register and passed to data verification checking if the information meets the 

sensors specifications. Each sensor module within the I2M contains its own set of 64-bit 

registers to store data in fixed point representation. The configuration register in the I2M is 

used to configure the IP core at the HRIM level. The status register contains the status of the 

integrity of the data, such that if data verification identifies an attack, other subsystems of 

HECAD can be notified. The I2M is aware of the type of sensor and can parse the raw data to 

create the relevant sensor data. The integrity of the data can be verified by using techniques 

that detect faults that may occur in the form of: parser errors, repeat values, data update rate, 

all zeros, and bounds checking. The data is verified and passed to the FIM for further 
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processing in parallel. The I2M verifies that the information received meets the sensors 

specifications and current configuration. Parser errors can occur through a man in the 

middle attack where the data is corrupted before it is received by the processor. Repeat 

values can indicate that a sensor has been corrupted in a way where the values do not change 

or the sensor contains a faulty update rate. Bounds checking can be applied to the sensors 

data through the known minimum and maximum values which are typically set by the user 

in the configuration, or could be determined by the type of data, such as latitude 

measurements which should lie between ±90. In addition to sensors the I2M provides 

verification of the command, control, and communications between the UAV and the GCS.  

The I2M is where the raw data read from the sensor is translated into sensor data which 

can be further analyzed for faults. Holistically, it is adding a level of verification after the 

HRIM and before the EIM and FIM, which verifies that the data the other subsystems are 

receiving is legitimate data and not faulty data, potentially allowing for better detection of 

faults/attacks as well as locating where the fault originated.  This also allows multi-level 

verifiable fault detection method, where the detection can be a three-state detection scheme 

instead of a two state, which the states would be NO FAULT and FAULT. In a three-state 

system, the states could be NO FAULT, POSSIBLT FAULT, and FAULT; where the subsystems 

can work together to verify that a possible fault is in fact an actual fault, reducing the number 

of false positives. 

 

4.4.1 Communications Processing and Control 

The main operation of the Communications Processing and Control (CPC) module in the 

I2M as shown in Figure 18, is to monitor the communications channel between the UAS and 

the ground control station operator. This channel contains the periodic transmission of the 

status of the system, commands sent from the operator to the autopilot, expected response 

from commands, and parameters set in the autopilot by the operator. The CPC currently 
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contains a Cyclic Redundancy Check (CRC) that verifies the checksum of the packets sent to 

the autopilot. The CPC may include techniques to detect denial of service either by loss of 

communication from the autopilot or a sudden increase in bandwidth of data. The commands 

sent from the operator are to be verified using techniques to determine the sender, as well 

as checking for correct status of the system and the type of command set, i.e. setting the 

system to IDLE during flight. In the case of malicious command packets being received, the 

integrity of each command message is verified to identify replay attacks as well as malicious 

data injected into the received data. 

 

 

Figure 18 Communications Processing and Control 

 

Lastly, parameters may be sent through communication to the autopilot from the operator, 

such as actuator limits, control algorithm gains, parameter limits, etc. These parameter 

values are verified for correctness to make sure that a malicious parameter does not hinder 

operation and the UAS can maintain stable operation. 

The CPC requires knowledge of the commands sent from the GCS operator to the autopilot, 

configuration, parameters, and gain values of the control input from the GCS, and lastly 
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knowledge of the communication protocol. Detection algorithms of attacks in the command 

subsection would consist of anomaly detection with the aid of a state estimation cross-

verification algorithm and comparison operators to verify that the navigation and flight limit 

parameter values are within reason. 

The control module could detect anomalies as well the distance of the values from 

previous values to verify gain value changes and ensure correct stable flight. A threshold and 

comparison operation can be used to verify the min and max of the parameter values, as well 

as comparing the state estimation outputs in the communication status updates to the GCS 

with the physical actuator outputs for an extra level of verification. 

Lastly, the communication module would require an algorithm to analyze the data 

received from the GCS to the autopilot as well as vice-versa. This allows the detection of a 

firmware attack as well as a network attack from the communication channel. The I2M 

detects various attacks such as: an increase in update rate, verification of time-stamps on 

packets, and detection of random malicious configuration packets. This minimizes the 

vulnerability to denial of service, fuzzing, and replay attacks. 

 

4.4.2 I2M Operational Characteristics 

This section describes the operational characteristics of the I2M including what data it 

shares with other HECAD systems and how it shares that data, and what types of attacks it 

is intended to detect. 

 

I2M communication and isolation 

The I2M stays in an IDLE state and waits for the HRIM to trigger a data ready signal, 

which means the hardware IP core has received data; the I2M immediately notifies the data 

bus master controller, and requests data on the bus from the HRIM. After the data is received, 

the data is fed through the sensor parser in the I2M and if a sensor data update has been 
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made, i.e. a whole packet has been successfully parsed or data has passed all checks, a signal 

is triggered to notify the FIM and EIM that new sensor data is available. 

The information flows from the HRIM to the I2M, and from the I2M to the EIM and 

FIM when in normal operating conditions; if a fault is to occur in any of the subsystems, the 

information flow changes direction between the HRIM and I2M, and depending on the 

mitigation procedure, data flows from the I2M to the HRIM, (e.g. commands to reset the 

sensor) and the information flow stops between the I2M and EIM and FIM. 

 

I2M information provided to other systems  

The I2M translates the raw data read from the HRIM into legible sensor data that can be 

used for further analysis. The parsed data is stored in memory on HECAD that can be directly 

accessed by the FIM and the EIM. A signal is triggered when new data is available and the 

other subsystems can read from the data registers. The I2M also provides the recovery data 

to the HRIM in the case of a sensor reconfiguration The HRIM is configured through the I2M 

and has no knowledge of the sensor specifications or configurations prior to receiving its 

configuration from the I2M. 

 

I2M Cyber Attack Characteristics  

Attacks in the I2M would be modifications of the sensor data that would exceed the 

specifications of the sensor, such as changing the data rate of the sensor, modifying the 

timestamp, or providing data out of bounds of the sensor specifications reading for a GPS 

sensor. These attacks should not be application specific, but sensor specific, since the 

verification is done per the sensor specs. 
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4.4.3 I2M GPS Sensor Example 

To demonstrate the operations of the I2M, the GPS module will be used as an example. 

The I2M verifies the integrity of the data through various techniques that may consist of the 

techniques in this example but are not limited to them. The verification at the I2M can be 

application specific or taken from the specifications of the sensor. For the purpose of this 

example the GPS sensor I2M verification will adhere to UAV autonomous waypoint 

navigation. 

A control flow graph of the GPS module in the I2M is shown in Figure 19.  Every sensor 

module in the I2M remains in an IDLE state until a data ready signal is triggered from the 

HRIM to alert the I2M that data has been received from its respective sensor. Once the data 

ready signal has been triggered the I2M begins to perform its verification, beginning with 

requesting the data on the bus.  
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Figure 19 Control Flow graph of GPS module in I2M 

 

The GPS module in the HRIM responds to the request by placing the data received by the 

hardware IP core onto the bus. Once the data is transferred to the I2M it is passed to the 

NMEA parser. The NMEA parser verifies that the data received is a valid ASCII character 

(specified by NMEA sentence requirements) and triggers an error signal if the data does not 

meet the specifications or once a whole NMEA sentence has been received and the checksum 

is incorrect. If a full NMEA sentence is received and the checksum is valid it is passed to the 

data verification module, otherwise, it goes back to IDLE and waits for the next byte. The 

specific data verification techniques are not in the scope of this research, however 

rudimentary techniques can be used to demonstrate the ability of the I2M. In the I2M, the 
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verification techniques are currently performed on the raw data, where as some sensors may 

require a conversion that relies on floating point mathematics; to improve performance and 

save area on the FPGA, these types of conversions are performed in the FIM which uses a soft 

core processor to perform the conversion instead of digital logic. 

A technique used for data verification is bounds checking. To perform bounds checking the 

I2M must be aware of the sensors specifications as well as the applications parameters. The 

bounds of the GPS data can be verified on, for example, the Longitude and Latitude which 

must remain within ±180 and ±90 respectively. The altitude of the UAV can be bounded to 

positive measurements and a ceiling specified by the application. Other measurements such 

as airspeed and velocity can be bounded by the capability of the UAV.  Once the data has 

successfully passed all of the verification techniques, it is stored in data registers, and a signal 

is triggered alerting the FIM that new data has been updated and the FIM requests the data 

on a second bus separate from the bus that communicates between the HRIM and I2M. 

  In the event that a fault is detected on the I2M, a signal trigger enables the crossbar 

switch in the HRIM isolating the sensor from the main processor. Currently the sensor is 

isolated by asserting an IDLE state on the RX and TX lines of the autopilot to prevent the 

faulty sensor from communicating with the autopilot. After the sensor is isolated, the I2M 

initiates a mitigation routine which may consist of power cycling the sensor, issuing a reset 

command, or switching to a redundant sensor. Mitigation techniques are out of the scope of 

this research and can be discussed in future work. To demonstrate the capability of the I2M, 

a baud rate attack is performed on a GPS sensor in the results section, where the HRIM 

detects the attack, isolates the sensor, notifies the I2M and the I2M resets, reconfigures, and 

reconnects the sensor to the autopilot 
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4.5 Execution Integrity Monitor (EIM) 

Autopilot firmware is updated for various improvements regarding bug fixes, new 

hardware support, security, etc. This paradigm of updating the firmware on a FCS autopilot 

creates a vulnerability where malicious code can be inserted into the firmware. Malicious 

code can be inserted at many stages of the development of the FCS which begins in 

manufacturing, then to distribution, operator firmware upload, and maintenance.   

Malicious firmware may be inserted in the manufacturing or distribution phase with 

default firmware loaded onto the hardware. It can also be inserted through the form of a 

website mirror attack, or through a malicious maintenance technician. It is not common for 

low cost COTS FCSs to have any type of on-board checking of firmware since most 

autopilots used by the civilian community are constantly updated and modified by the 

operator. Once the FCS has been delivered to the intended operator from manufacturing 

and distribution, new firmware may be downloaded from the web and programmed onto 

the autopilot. In this case, vulnerabilities may lie in downloading the firmware from a 

website, which may be re-directed or mirrored causing a download of malicious firmware. 

Once the firmware is downloaded, the hardware programming device used to load the 

firmware onto the autopilot may be compromised 

The HECAD framework accounts for firmware vulnerabilities within the EIM through 

hardware and software techniques to monitor the control flow of the firmware and perform 

run-time verification. The module is connected to the autopilot’s main processor with the 

capability of reading internal registers and program memory contents for firmware 

verification as well as any other necessary connections needed to monitor execution during 

run-time. It also contains a fault detection alarm to alert the other functional blocks when a 

malicious fault has been detected. The EIM works in conjunction mostly with the HRIM and 

I2M to access the debug interface of the main processor as well as cross verify the data of the 

internal registers of the main processor with the data received from the sensors. It will also 
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be operating with the FIM for higher level analysis of the application specific functionality 

providing timing and code execution information.  

The initial firmware verification is performed on boot-up/initialization of the autopilot, at 

which time techniques are used to verify the memory contents of the autopilot CPU, such as 

using a hash chain [32] with a random challenge, which may require a static hash to compare 

to. If malicious code is inserted in a way that it is disguised from the firmware detection 

techniques, run-time monitors check for any abnormal behaviors during execution. Some 

techniques that can be used for run-time execution can be divided into software and 

hardware solutions. Software based solutions may require an invasive solution, such as 

inserting redundant instructions into the program to detect deviations in the program 

execution flow [33],  [63] [64]. Numerical safety assurance can be used to periodically 

monitor the autopilot to check for inconsistencies in performance or memory contents 

during run time execution Hardware based methods may require external hardware such as 

a watchdog processor [65] [66] and lock-stepping [65] which monitor the state performance 

and state of the master processor, checking the execution flow of the program or trace 

memory accesses. Another technique is to monitor the instantaneous current drain on the 

system through power fingerprint monitoring [66]. This also requires certain specifications 

of the autopilot operations to be known by the HECAD, in the form of instructions, algorithm 

frequencies, sensor update rates, etc. Upon successful verification of the autopilot firmware, 

HECAD transfers authority of the on-board sensors to the main processor. In the case of a 

fault in the firmware verification, HECAD has the ability to prevent the main processor from 

communicating with the sensors and controlling the actuators. The EIM observes the internal 

memory of the main processor to verify register contents and possibly the program counter 

and/or instruction registers to validate program execution.  Future work will include 

implementing the aforementioned techniques as well as artificial neural networks, fuzzy 

logic, and other methods of reinforcement learning techniques. 
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4.5.1 EIM Operational Characteristics 

This section describes the operational characteristics of the EIM including what data it 

shares with other HECAD systems and how it shares that data, and what types of attacks it is 

intended to detect. 

 

EIM communication and isolation 

Upon bootup the EIM should enable the crossbar switch to keep the sensors from 

communicating with the autopilot until it has successfully verified the contents of the 

firmware on the autopilot. Once the EIM passes the initial program memory check, a signal 

is passed to the HRIM to disable the crossbar switch and allow the sensor communication to 

pass through to the autopilot. During run-time, the EIM communicates with the I2M and FIM 

periodically to verify that the data registers match the sensor data as well as provide 

information with regards to internal control and navigational algorithms such as timing 

characteristics, program execution, or registers used to hold dynamic information. 

The EIM is mostly separated from the other blocks since the HRIM, I2M, and FIM mostly 

deal with the communication between the autopilot and other on-board systems. The EIM 

communicates to the HRIM and I2M to access the main processor through a debug interface 

such as JTAG, as well as power fingerprinting. It will pass data from the main processor to 

the I2M and the FIM if internal register data is needed for comparison, as well as signal 

whether a fault/attack has been detected. 

 

EIM information provided to other systems  

Depending on the observability of the system, the EIM may be able to provide the I2M 

and FIM information regarding the systems calculations and received data. If the EIM is 

capable of reading internal registers, it can cross-verify the data read by the sensor in the 
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system with the data read by HECAD in the I2M. The FIM would be able to also take 

advantage of the control and navigation algorithms to check for runtime manipulation such 

as Not a Number (NAN), divide by zero, or other values that may cause the system to lock up 

or behave unexpectedly. The EIM would also be able to verify if the configuration of the 

hardware peripherals changes during runtime unexpectedly.  

 

EIM Cyber Attack Characteristics  

The EIM monitors the systems static and dynamic runtime operations to verify that the 

execution integrity of the system is correct.  Static attacks may include adding, removing, or 

modifying the software that is programmed on the main processor. Dynamic attacks may be 

stealthy attacks that can be hard to detect, possibly a multi-level attack such as modification 

of the data rate of a sensor that could offset the timing of the algorithms executing on the 

main processor. It may also be in the form of a passive listener inserted into the system that 

listens and gathers information without disrupting the system.  

 

4.6 Functional Integrity Monitor (FIM) 

The FIM monitors the functional integrity of the system holistically, validating its 

behavior according to its specifications. The FIM actively monitors the communications 

between the operator and the UAV, the actuator commands, and the sensor data through 

application specific requirements to determine if a fault has occurred. An overview of the 

FIM is shown in Figure 20. The FIM performs analysis in parallel with the system being 

monitored, which may include performing a rudimentary state estimation of the system, 

which could also be used to control the UAS in the event of a failure in the autopilot 

software. Another technique that can be used by HECAD for fault/attack detection is cross 

sensor validation which requires a system to be equipped with multiple sensors that 
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provide similar measurements, such as altitude and/or airspeed provided by a barometric 

pressure sensor and a GPS.  

 

 

Figure 20 Functional Integrity Monitor 

The FIM can monitor the rates at which each of the sensors is changing and determine 

if one of the sensors deviates past a certain threshold, which can be a part of the 

requirements for a specific application. The FIM can be tailored to perform any higher-level 

analysis within the capabilities of an FPGA, to validate the user-specified requirements. The 

specific algorithms used in the FIM are out of the scope of this research and is a topic of future 

research. To get a better understanding of how the FIM will operate, a use case will be 

presented to demonstrate how a list of requirements may be developed for a specific 

application. 

 

4.6.1 Use Case: UAV Surveillance Requirements 

One of the many applications a UAS may be used for is surveillance of a specified area, 

typically including a payload of a camera actively recording video the area below, and for this 

example it will stream the video down to a ground control operator.  The first set of 
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requirements will be designed for the control of the UAS. For the purposes of this example, 

the UAS has 5 different modes of operation: IDLE (on the ground, throttle in the off position), 

TAKE OFF, WAYPOINT, SURVEILLANCE, and LANDING. Since the FIM has access to the 

communications information between the operator and the UAS, it can detect which mode 

the UAS is currently in and change requirements dependent on this information. The 

following set of requirements was developed to be applied towards the SURVEILLANCE 

mode of operation: 

 

• The UAS will not roll greater than 45 when in SURVEILLANCE mode 

• The UAS will not pitch greater than 10 when in SURVEILLANCE mode 

• The UAS airspeed will not exceed 40 knots and maintain a ± 3 knot variance when 

in SURVEILLANCE mode 

• The UAS altitude will not exceed 200 meters and should maintain a ± 5-meter 

variance when in SURVEILLANCE mode 

• The UAS will not roll or pitch at a rate greater than 10/s when in SURVEILLANCE 

mode 

 

The next list of requirements applies to mode changes: 

 

• Mode change WAYPOINT/SURVEILLANCE -> IDLE is prohibited 

• Mode change IDLE -> WAYPOINT/SURVEILLANCE/LANDING is prohibited 

• Mode change TAKE-OFF -> IDLE is prohibited when altitude > 0 

• Mode change LANDING -> IDLE is prohibited when airspeed > 0 

 

The requirements are then placed into code onto the FIM where they can be used to verify 

the assertions on the data in HECAD. A block diagram of a high-level view of HECAD is shown 
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in Figure 21 with an example of a false data injection attack. A false data injection attack may 

occur at the software level where the data is modified; if the data makes it to the FIM level 

then it is a more difficult attack to detect since it passed all of the validation of the I2M 

integrity as well as packet checksum verification. The block diagram shows the physical 

signal data received at the hardware level in the HRIM, then the raw data is passed to the 

I2M, where it is parsed and validated for integrity, and finally it is read into the FIM, which 

for this example uses a previous value vs. the current value to check for consistency. It can 

be seen that the altitude suddenly jumps from 60 to 150 meters, assuming the target altitude 

is approximately 60 meters, the control algorithms would attempt to correct the current 

altitude to reach the target altitude, causing a sudden dive in the UAS potentially crashing 

the plane.  

Since the requirements are in place HECAD will react to the malicious fault 

immediately as shown in Figure 22. The FIM retrieves the sensor data from the I2M, and 

performs a cross-verification analysis on the data and detects that there is a large deviation 

between the altitude measurements. The FIM notifies the I2M that a fault has occurred, then 

the I2M triggers the HRIM crossbar switch enable signal, which will isolate the GPS sensor 

from the autopilot. Once the sensor is isolated the I2M stops receiving data from the HRIM 

and initiates its mitigation procedure. 
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Figure 21 FIM Requirements Example False Data Injection 

 

The mitigation procedure can range from many operations which may include resetting 

the sensor or switching to another on-board redundant sensor, the method used for 

mitigation faults are outside of the scope of this research and will be explored in future work. 

The list of requirements is application specific and can be as complex as needed. A detailed 

finite tree including the requirements and any application specific UAS tasks can be 

constructed to create a series of assertions to be used in the FIM alongside cross sensor 

verification and any other methods that may be necessary to assure integrity at the 

functional level of the system. 
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The FIM requirements can be determined offline and should be tailored to a specific 

application that the UAS will be performing. The FIM has the advantage that it will be 

executing on a soft-core microprocessor, so reconfiguration of the methods is relatively 

easy compared to reconfiguring algorithms developed in programmable logic as well as 

perform necessary calculations which may require floating point operations. One example 

of a soft-core processor is the Xilinx MicroBlaze, which is used for implementation, testing, 

and validation of the HECAD architecture. A hard-core microprocessor can have 

unpredictable behavior in an interrupt driven application or with the use of additional 

accelerator hardware. In the case of a soft-core processor, such as the Xilinx Micro Blaze, 

these unpredictable features can be disabled to improve predictability and decrease 

security risk. 
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Figure 22 FIM Fault Detection and HECAD change of information flow 
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4.6.2 FIM Operational Characteristics 

This section describes the operational characteristics of the FIM including how it 

communicates with other HECAD systems, and what types of attacks it is intended to detect. 

FIM information provided to other systems  

The FIM is the top level of the hierarchical architecture and does not supply any 

information to the other sub-systems, however it can be used collaboratively with all of the 

other sub-systems to collectively decide if a fault/attack has been detected. It does supply 

signals to the other sub-systems when a fault/attack has been detected. The FIM 

communicates to the other sub-modules only to specify if a fault/attack has been detected. 

If a lock up or failure is to occur in the FIM, since it is at the top of the hierarchy, it will not 

affect the rest of HECAD since the other sub-modules do not rely on any information from 

the FIM.  

 

FIM Cyber Attack Characteristics  

 Characteristics of a cyber-attack at the FIM level may be the most difficult type of 

attack to detect since it requires detailed domain knowledge of the application as well as the 

capabilities of the UAS. An attack may be in the form of a GPS walk off attack where over time 

the UAS slowly drifts and may stay within the requirements, rendering it a stealthy attack. 

False data injection attacks may occur in the FIM where all integrity checks pass, requiring 

more experience from an adversary and extensive knowledge of the sensor. 

 

4.7 WISHBONE Bus 

The WISHBONE Bus is a lightweight interconnect architecture designed for interfacing 

portable IP cores in reuse designs that need flexibility. It was originally created by the 
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Silicore Corporation and the stewardship was later transferred to the OpenCores project. 

The other similar bus architectures include: AMBA, Avalon Bus, IBM CoreConnect, PLB, and 

OCP, however these architectures are not open source and require a license to use. The 

WISHBONE Bus is lightweight, which requires minimal number of signals, and can be fully 

customized for various architectures. The WISHBONE bus is used in the HECAD to 

implement the communications between the various hierarchical levels of the architecture. 

 

WISHBONE Signals 

The WISHBONE architecture consists of 6 signals, an address bus, and a read and write 

data bus. The address bus is 16 bits and the data bus is set to 32 bits; however, each bus can 

be modified if necessary. The control signals controlled by the master are the CYC, STB, SEL, 

and WE signal. The SEL signal is not used in this design. The STB and CYC signals are set high 

when the master would like access to the bus, when they are high it means that the bus is 

busy and a master is currently transmitting or receiving data. The WE signal is the write 

enable signal, it specifies if it is a write (high) or a read (low).  

 

 

Figure 23 WISHBONE Single Read Cycle [67] 
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The slave control signals are ACK, ERR, and RTY. The slave sets ACK high on the 

following clock cycle after a master asserts STB and CYC. If there is an issue, such as incorrect 

addressing, the slave asserts the ERR signal, if the bus is busy the RTY signal is asserted. A 

transaction on the WISHBONE bus takes 2 clock cycles. A single read transaction is shown in 

Figure 23. 

 

Shared Bus Architecture 

HECAD uses a shared bus architecture, which requires a slightly more complicated 

interconnect, however it allows for less additional logic required for each additional master 

outside of the WISHBONE bus. The shared bus architecture in HECAD uses a multi-master 

multi-slave bus. Each of the sensor modules in the I2M contains a WISHBONE master, and 

each sensor hardware IP core contains a WISHBONE slave.   

 

 

Figure 24 WISHBONE Shared Bus Architecture 
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WISHBONE Interconnect 

The WISHBONE interconnect is the hub that connects all of the masters to the slaves. To 

accommodate a multi-master multi-slave architecture, some modifications were necessary 

such as integrating an arbiter, which determines which master can use the bus; only one 

master can have access to the bus at any given time. An example of the arbiter’s connections 

is shown in Figure 25, demonstrating one master and one slave on the shared bus to reduce 

complexity, however it can be expanded to multi-master and multi-slave. 

 

Figure 25 WISHBONE Bus interconnect arbiter connection example 

 

The chosen arbiter method for HECAD is the round-robin arbiter, which allows each master 

a chance to access the bus. There is no need for priority since each transaction on the 

WISHBONE bus takes two clock cycles, which assuming a typical UAV has < 10 onboard 

sensors polling at a worst-case scenario of 200 Hz. Assuming the system clock frequency of 

HECAD is 100MHz, this would allow for a maximum of 50M transactions per second, which 

is much greater than 10 sensors polling at 200 samples/second, which would result in 2000 

transactions per second. At the worst case, a sensor would have to wait (2 clock cycles) * (# 

of masters on the bus), which for 10 sensors would be 20 clock cycles, at 100MHz would be 

a maximum of 5MHz sampling rate per sensor, which verifies that a round robin arbiter suits 
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a UAV application. The advantage of using the custom open source bus is that the arbiter may 

be customized to accommodate various applications, in the case that a priority architecture 

is necessary. 

 The operation of the interconnect starts once the CYCX signal of the master is 

asserted, as long as no other master is using the bus, the GNT signal is asserted which allows 

the signals of the master to pass through to the slaves on the bus, the interconnect asserts 

the signals for the specified slave device determined by the address put on the bus, where 

the interconnect enables the specific mux passing through the master signals to the slave. 

The master that owns the bus at any time will have the GNTX signal asserted, and the slave 

signals are passed through to the master for acknowledgment of the transaction. 

 

4.8 Securing HECAD 

When designing a security monitor, it is necessary to consider the trade-off of security 

vs. information gathering ability. The idea behind developing HECAD was to design a cyber-

attack monitor that was capable of gathering as much information about the system as 

possible to maximize the detection capabilities. In order to cross the hardware/software 

boundary and monitor the hardware peripherals of the system, it was required to integrate 

the monitor onto the hardware of the FCS in order to not only monitor the hardware 

peripherals but isolate the slave devices. By integrating the security monitor on-board it also 

creates an additional attack surface, where an adversary could disable HECAD, therefore 

disabling the whole system. It was decided that the amount of effort required to disable 

HECAD would be very high and require physical access to the FCS, and therefore focused on 

gathering as much information as possible over securing the security. Nevertheless, various 

methods for securing FPGAs do exist.  Common threats to FPGAs may include an adversary 

cloning an existing FPGA bitstream and promoting it as their own, reverse engineering a 



 

78 

bitstream, where an adversary recovers the bitstream through the circuit design, tampering 

through added logic, spoofing by replacing the bitstream and re-selling the device, or 

destruction of the FPGA and/or replacing the FPGA with an identically manufactured one. 

Methods to secure FPGAs were surveyed in [68] and a brief overview of the methods will 

follow. 

 

SRAM and Anti-fuse 

The FPGA bitstream can be stored on the FPGA using SRAM, Flash, or Anti-fuse. An 

SRAM configuration is volatile memory, therefore requiring power to keep its contents and 

requires external permanent storage, which is possible for an adversary to attack. Flash 

memory is a form of non-volatile permanent storage; however, it commonly requires In 

System Programming (ISP), which exposes the FPGA to the same issue as SRAM. Lastly, an 

Antifuse FPGA is a one-time programmable method that is disconnected by the 

manufacturer, providing a non-accessible permanent memory storage, however since it can 

only be programmed once, it poses other security concerns. 

 

Bitstream Encryption 

An FPGA implementation is inherently more secure over a general processor since it 

uses a bitstream over program memory, and would take significantly more time to reverse 

engineer, however, for further protection bitstream encryption can be used. The most 

common method of securing and FPGA is to use a method of encryption on the bitstream. 

FPGA vendors such as Xilinx and Altera provide tools that allow the bitstream to be 

encrypted and written into SRAM. Encrypting the bitstream defends against Trojan 

insertions where an adversary could partially reconfigure the FPGA and insert malicious 

logic into the bitstream. The advantage that encryption has is that the design tools provided 
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by Xilinx and Altera will not allow partial reconfiguration mixing encrypted and unencrypted 

reconfigurations. 

 

Battery Backup Random Access Memory (BBRAM) 

Key storage secrecy is fundamental in security, in order to keep the key secret  it 

requires a way of keeping the register in memory confidential on the FPGA. One way of 

keeping the key secret is through using BBRAM, which allows for key agility and zeroization. 

When primary power is applied, the BBRAM is powered through the power supply, which 

would permit replacing the battery in the field. Xilinx provides an internal interface to zero 

out the specified key space in the event of an adversary tampering with the device. However, 

it does have the disadvantage that if the BBRAM loses connection or battery power when no 

primary power is available, the contents could be erased. BBRAM is said to be more 

physically secure than nonvolatile key storage, and to steal the key an adversary would have 

to scan the bits using expensive hard to obtain equipment, and attacking BBRAM is said to 

be beyond all but the most sophisticated adversaries. 

 

eFuse 

An alternative to using BBRAM is to use an eFuse memory, which is a one-time 

programmable non-volatile memory, typically programmed by electro-migration using high 

current. Additional processing complexity and/or high voltage are not required for eFuse; 

however, it does require a lot of logic circuitry and is only practical for low memory key 

storage. 
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Internal Temperature and Power Monitoring  

An embedded analog to digital converter (ADC) is included in Xilinx FPGAs to monitor 

voltage and temperature inside and outside of the FPGA; users can configure the circuitry to 

accommodate the operating temperatures of the environment for specific applications. If a 

threshold is reached, user specific actions can be taken such as clearing crypto registers, 

RAM, zeroing keys, or clearing configurations and shutting the device down. 

 

Fencing and Redundancy 

Xilinx Isolation Design Flow (IDF) provides containment of faults at the FPGA level, 

allowing for the use of modular redundancy, watchdog alarms, segregation, and isolation of 

test logic to minimize single chip faults. The concept of isolation in the FPGA is performed by 

using configurable logic blocks as a fencing mechanism to isolate different systems in the 

programmable logic. Triple modular redundancy is the most popular method of reducing 

single point failures as well as providing and extra level of security through verification of 

sub systems, commonly incorporated through a voting scheme [69]. 

 

4.9 Benefit of HECAD 

Integrating HECAD into a UAV CPS offers many benefits that can help improve cyber-

attack detection in small, low power, and low cost UAVs. It offers a solution that can be 

integrated onto the hardware of the FCS, using an FPGA design approach, to aid in quick 

attack detection and isolation of malicious on-board sensor behavior. The hierarchical 

architecture offers benefits of collaboration between sub-modules to increase the ability to 

detect and locate malicious attacks, as well as potentially increasing the amount of 

information gathered about the system using a hardware-software solution. 
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4.9.1 Sub-module collaboration and increased information 

Traditional approaches to monitoring systems typical monitor a systems software at 

the information level. At the information level, there is no information about a fault/attack 

that may occur below the software layer of the system; for example, if the hardware 

peripheral on the system or hardware on the slave device that the system is receiving data 

from is tampered with. At the software layer, the data may show signs of tampering, however 

it can be difficult to determine where the attack originated. HECAD has the capability to 

detect hardware peripheral attacks, such as an adversary modifying a sensors hardware 

protocol configuration or tampering with the physical signal between the main processor 

and a sensor. An example of a hardware peripheral attack is shown in Figure 26.  It 

demonstrates how an attack at the hardware level may go unnoticed by other methods of 

detection, since an attack may not modify the data to an extent that can easily be identified. 

It is also shown how the attack can trickle through the various levels of HECAD, where it gets 

immediately detected at the HRIM sub-module, however, the data passes through the 

information layer checks such as bounds checking, and the information received from the 

sensor is similar to the data received on the main processor in the EIM.   

 



 

82 

 

Figure 26 Hardware Peripheral Attack Example 

 

However, in the FIM, Cross-verification throws a flag that there is a possible error 

between two sensors, since the error may not be drastic enough to be caught by the 

requirements or restrictions placed in the FIM, it may not be able to accurately determine if 

a fault/attack has occurred.  This demonstrates HECADs ability to use collaboration amongst 

the sub-modules to potentially gather more information on a fault/attack. 

 

4.9.2 Improved Isolation and Location Detection of Faults 

 A fault/attack at the hardware level not only allows HECAD to make a more informed 

decision, it also allows for better isolation and determination of the location of the 

fault/attack.  When a fault is detected at any level, HECAD has the ability to isolate the slave 

device from the main processor; a continuation of the previous example is shown in Figure 

27. Once the fault/attack has been detected by the HRIM, a signal is emitted to all of the other 

sub-modules that are in the hierarchy of that specific slave device, and mitigation can begin.  
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Figure 27 Sensor isolation upon HRIM attack detection 

 

The mitigation techniques for the slave devices on the UAV FCS are out of the scope of 

this research and will be considered in future work.  It is important to note that HECAD 

provides the foundation for mitigation techniques to be possible to implement on a UAV FCS, 

where there is currently no framework that allows such an integrated approach. Currently, 

when a fault/attack is detected, the slave device is isolated from the main processor, and the 

hardware peripheral on the main processor is held at an IDLE state, while HECAD provides 

a mitigation technique such as performing a reconfiguration routine to reset the slave device 

and reconnect the device once it has been successfully reconfigured. 
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4.9.3 Hardware-Software Boundary Attack Detection 

In most monitoring systems that are developed for cyber-attack detection, the emphasis 

is focused on the information layer, which is where the software is contained and do not 

verify the hardware peripherals that communicate between the main processor and the on-

board slave devices. HECAD takes into account the possibility that the firmware on a sensor 

can be a potential attack surface and HECAD has the capability to monitor the information 

layer as well as the hardware peripheral layer. This additional monitoring capability can 

potentially provide more information allowing for quicker fault/attack detection, isolation, 

and location. It also provides a basis for a hierarchical architecture allowing for multi-level 

verification and collaboration between different sub-modules that monitor different 

characteristics of the system. 

Breaking the hardware/software barrier through monitoring hardware resources as 

well as software on a system is becoming more necessary among Cyber-Physical systems 

where a principle of assessing the physical processes as well as the cyber aspect of the 

system is necessary to prevent system failure  [70], [71] . Software failures remain to be the 

leading cause for computer based cyber-physical systems, however hardware failures have 

a larger impact with the number of devices affected [72]. With COTS UAS becoming more 

widely available amongst the civilian community, sensor firmware attacks can potentially 

have more of an impact during the manufacturing and distribution process. A firmware 

attack can remain undetected longer and be more difficult to detect, since autopilot firmware 

can easily be patches and updated, hardware sensor firmware is not. 
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CHAPTER 5 

 

DEVELOPMENT PLATFORM AND DESIGN TOOLS 

5.1 Field Programmable Gate Array 

A Field Programmable Gate Array (FPGA) provides a foundation in which ECAD can be 

implemented as a collection of modules that can perform individual operations 

simultaneously. An FPGA-based design was chosen as the implementation platform because 

of its fully customizable features, simulation capabilities, and ability to meet real-time 

requirements. An FPGA has many features that make it advantageous over a hardcore 

processing system [34]. A main advantage of using an FPGA architecture, is that it can be 

developed entirely using a Hardware Description Language (HDL), which provides many 

features such as: customizability, observability, testability, hardware/software partitioning, 

parallelization, and isolation. An FPGA also allows for partial reconfiguration which allows 

for greater innovation, allowing the developer to modify parts of the overall design without 

needing to reconfigure the whole FPGA design. 

Inside of an, FPGA the programmable logic typically consists of Look up tables (LUTs) and 

flip-flops. The LUTs provide programmable combinational logic, and the flip flops provide 

for efficient implementation of sequential logic such as registers, counters, and state 

machines; integrated together, a group of LUTs and flip flops create a resource referred to as 

a slice. Counting the number of these resources used to implement a design can be used to 

measure the utilization of an FPGA.  

 

Diligent Nexys4 DDR 

The Nexys 4 DDR integrates an Artix-7 FPGA onto a ready-to-use development 

platform. The Artix-7 chip used is the XC7A100T, contains, 15,850 logic slices.  A logic slice 
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consists of 4 LUTs and 8 flip-flops, where in about 1/4th of the logic slices can be used for 

distributed memory. The Xilinx Artix-7 is a member of the Xilinx 7-Series family and 

optimized for low power, low cost, and high throughput applications. The Artix-7 FPGA is 

available in various size packages that contain different amounts of resources. Table 4 

displays the smallest, middle, and largest size packages with specifications of the resources 

available in each package. 

The Artix-7 FPGA is similar in physical size compared to the ARM Cortex M4 micro 

controller, which is commonly used as the main processor for low cost autopilots in the open 

source community, typically around 14x14mm in size.  

 

Table 4 ARTIX-7 Specifications 

Chip Physical Size (mm) LUTs Slices Clock Speed (MHz) Cost 

XC7A12T 10x10 , 15x15 12,800 2000 464 - 628 $25 

XC7A50T 10x10 - 23x23 52,160 8,150 464 - 628 $50 

XC7A100T 15x15 – 27x27 101,440 15,850 464 - 628 $125 

XC7A200T 19x19 - 35x35 215,360 33,650 464 - 628  $256 

 

 

The Nexys 4 has 24 I/O ports, which can be used to connect the autopilot and the 

sensors to HECAD through communication protocols created through custom IP cores in 

HECAD. There are 16 switches, 4 buttons, 16 LEDs, and an ethernet port that can be used 

for debugging and testing. There is also an internal temperature sensor that can be used to 

monitor the temperature of the FPGA. The Nexys 4 has a 100MHz clock integrated onto the 

board to drive the programmable logic clock source. The Nexys 4 is shown in Figure 28 
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Figure 28 Digilent Nexys 4 DDR Development Board 

 

Xilinx MicroBlaze (FIM Soft Core Processor) 

The MicroBlaze is a full-featured, FPGA optimized 32-bit Reduced Instruction Set 

Computer (RISC) soft core processor. As a soft-core processor, it can be instantiated 

completely in programmable logic on the FPGA. There are many configurable options which 

may optimize the functionality for a specific use such as:  performance optimized, 

performance optimized with branch optimizations, area optimized, and frequency optimized 

with branch optimization. The optimization used for HECAD is the area optimization option, 

minimizing the utilization of programmable logic allowing HECAD to contain more 

functionality.  The MicroBlaze can be optimized for performance later on if necessary, 

depending on the application. The amount of resource consumed in the programmable logic 

depends on the optimization configuration chosen, the lowest is area optimization with a 

minimal configuration which utilizes approximately 600 LUTs, and the highest is the 

performance optimization, which uses approximately 6000 LUTs. 

Xilinx recently released a lightweight version of the MicroBlaze processor, referred to 

as the MicroBlaze Micro Controller System (MCS); which can be used for simple control 
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applications. The local memory of the processor is limited to 4KB – 128KB, however its 

footprint is approximately 1000 LUTs. The current HECAD design incorporates this 

lightweight version of the MicroBlaze MCS, consuming 1.7% of the available programmable 

logic on the Artix-7 FPGA. As the complexity of the FIM increases the configuration of the 

MicroBlaze will need to be changed to accommodate the detection methods. The full featured 

MicroBlaze has the option to instantiate a Floating-Point Unit (FPU), which can drastically 

speed up floating point arithmetic that may be needed to calculate an accurate state estimate 

of the UAS. There is also an option to create a lock-step functionality where Xilinx instantiates 

two MicroBlaze processors that perform identical operations and can be used as a form of 

redundancy to detect tampering attempts, transient faults, or permanent hardware faults 

that may occur within the FPGA.  

The MicroBlaze is necessary in the FIM to perform more complex algorithmic analysis 

that may be difficult to implement in a Hardware Descriptive Language (HDL) on the FPGA.  

The MicroBlaze communicates to the I2M through an IO module, which is a light weight 

Xilinx proprietary communication protocol. The MicroBlaze also has multiple GPIO pins, 

which are used to signal the MicroBlaze to fetch the sensor data out of the I2M data registers, 

as well as used to notify the I2M in the event of a fault/attack detection in the FIM. The FIM 

exists entirely inside the MicroBlaze and does not require any external logic in the FPGA, 

therefore expanding the FIM typically will only affect the FPGA block memory utilization, 

unless the MicroBlaze needs to be reconfigured and/or another MicroBlaze is used for lock-

step or another operation to aid in cyber-attack detection. 

 

5.2 VCU ARIES TINY FCS 

The Aries Tiny is a custom FCS designed and developed by students in the UAV lab at 

VCU. The Aries Tiny FCS was chosen as a candidate for a testing platform because of its 
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customizability, accessibility, and familiarity with its hardware and software. The FCS 

contains an I2C bus connecting the Inertial Measurement Unit (IMU), absolute and 

differential barometric pressure units to measure body forces, altitude and air speed, 2 

UARTs connecting the GPS and modem for position and communication, SBUS input for 

manual control, PWM outputs to control the actuators and multiple Analog to Digital 

Converters (ADC) to monitor power. The FCS is shown in Figure 29. 

 

 

Figure 29 VCU Aries Tiny Flight Control System 

 

The Aries Tiny has been tested and verified for semi and fully automated flight for 

several years. The FCS has all of its on-board communication routed to external connectors, 

which allows the ability to configure all of the on-board sensors to be disabled, and external 

sensors connected for testing purposes. This capability allows HECAD to be directly 

embedded between the autopilot main processor which provides HECAD the necessary 

functionality to connect and isolate the sensors from the autopilot. VCU also has a Hardware 

in the Loop Simulator (HILS) that can be used for further testing and future development of 

HECAD allowing for fault injection at the hardware and software level.  
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5.3 Xilinx Vivado 

Xilinx Vivado is a design suite that is used for synthesis and analysis of HDL designs. 

When developing a digital system, the typical design flow uses a process that requires a 3-

step approach: simulation, synthesis, and implementation. In a simulation environment, 

everything is in an “ideal” state, where there are no real-world delays, and nothing gets 

optimized out, and everything works as anticipated as long as the design is correct. The first 

step after compilation in a design suite such as Vivado, is synthesis, this process is where the 

tools take the HDL and try to convert it into a design implementation in the form of logic 

gates that can be directly programmed onto the FPGA. During this process, many things can 

happen during optimization that the user may not be aware of.  

Coming from previous experience in embedded software development, compile times 

are negligible, and code that is not written in an optimized manner, does not slow down the 

compile times noticeably. In the FPGA design tools, this is the exact opposite case, where not 

only does the synthesis time take a lot longer to synthesize, but the design tools will try and 

optimize your code, with unanticipated results. Xilinx Vivado has multiple optimization 

options for synthesis with the two most popular being, runtime for speed and area. The 

default is runtime optimization, which will use however many logic gates necessary to allow 

the design to meet specifications and reduce delays of signals as much as possible. The issue 

with this method is that the design tools may remove certain parts of the design without the 

user’s knowledge possibly due to an unintended HDL design issue, such as a signal that gets 

triggered during run-time that Vivado assumes is not used, and when programmed onto the 

FPGA, it will not behave as expected.  In the opposite case, when selecting area optimized, 

unless the user has accounted for all of the anticipated delays correctly in their simulation, 

the design tools will have optimized the design, and more often than not, will not meet timing 

requirements, therefore, the best case is to use the default option. 
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CHAPTER 6 

 

RESULTS 

6.1 Hardware / low-level communication protocol monitor 

One of the main contributions of the HECAD architectural framework is the ability to 

detect faults in the inter communication at the hardware level between the autopilot main 

processor and on-board components. In addition to having the ability to detect a fault, 

HECAD can isolate a slave device from the main processor of the FCS in the HRIM.  The HRIM 

monitors the physical signal characteristics of the communication protocols of the on-board 

sensors as previously established. An example demonstrated the process of a hardware level 

fault occurring with knowledge of the UART protocol and configuration settings, HECAD is 

able to detect the fault in the HRIM based on the timing characteristics of the protocol at the 

signal level.  

To demonstrate the fault detection and isolation capability of HECAD, a simulation and 

real-world experiment was performed which consisted of a GPS sensor baud-rate change 

during run-time as shown previously in section 4.3.1, where it was shown that the HRIM 

could detect physical signal faults. A simulation and real-world example of a physical signal 

fault injected into the FCS validates HECADs capabilities for detecting attacks/faults as well 

as  isolating sensors using the crossbar switch. Validating this functionality proves that using 

an FPGA is possible to detect configuration attacks as well as isolate a sensor, therefore for 

future work the concepts can be extended for other communication protocols to create a 

complete cyber-attack detection system for a UAS FCS. 

The first experiment shown in Figure 30, was a simulation performed in ModelSim 

consisting of a fault injected into the GPS sensor TX line that changed the baud-rate in the 

middle of a transaction. The signals shown are as follows: clk is the system clock, rst is the 
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system reset, busy is the UART busy signal, uart_0_rx_sensor_o is the UART transmit line from 

the HECAD to the GPS sensor, uart_0_tx_sensor_i is the UART receive line from the GPS sensor 

to HECAD, uart_0_rx_cpu_o is the UART receive from HECAD to the autopilot, uart_0_tx_cpu_i 

is the UART transmit line from the autopilot to HECAD, xbar_en_s  is HRIM crossbar enable 

signal, uart_0_fault_detected is the fault detected in HRIM signal, uart_0_fault_data_reg_s is 

the transmit register used to send mitigation data out on UART, present_state is the I2M GPS 

sensor state machine status, REG_DATA_OUT_s is the data sent from the I2M to the HRIM on 

the WISHBONE bus, and REG_DATA_IN_s is the data sent by the HRIM to the I2M on the 

WISHBONE bus. 

When observing the uart_0_cpu_o and uart_0_tx_sensor_i lines, it is shown that they are 

equivalent which demonstrates that the data received by the GPS sensor is being passed 

through to the autopilot. A UART start transaction is observed on these lines where the signal 

goes from high to low.  

 

Figure 30 GPS Baud Rate fault injection performed in ModelSim (Zoomed In) 

 

The HRIM UART busy line goes high when a start condition is detected in the UART. A 

start condition typically takes half the amount of time a bit takes to be detected based on the 
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baud-rate of the UART, to allow for rejection of signal jitter. Once the busy line is activated, 

the HRIM UART begins to read the data, however as shown in the figure, the current baud-

rate of the UART transmission expects 57600, where a single bit should take 17.36 us, and if 

the correct baud-rate is observed by the UART, the signal transition should appear half way. 

In the figure, the signal changes multiple times within the baud-rate period which signifies 

an error on the UART. The HRIM detects the error, and immediately enables the cross-bar 

module which isolates the sensor and the UART signal connected to the autopilot 

(uart_0_cpu_o) goes high, which is an IDLE state on the UART. The GPS sensor is disconnected 

from the autopilot, and the I2M changes its state to RECONFIG, which is the mitigation state 

that attempts to reset and reconfigure the GPS sensor by the I2M sending a reconfiguration 

sequence to the HRIM through the WISHBONE bus, which can be seen by the data updating 

on REG_DATA_IN_s and the data begins to be populated on REG_DATA_OUT_s.  

To better observe the fault in action, Figure 31 shows the same fault zoomed out. It may 

be easier to identify that the baud-rate attack has occurred. It is important to note that 

HECAD has successfully detected the baud-rate change, isolated the sensor from the 

autopilot by asserting the xbar_en_s signal, and began mitigating the fault/attack through 

notifying the I2M and changing the data flow from HRIM -> I2M, to I2M -> HRIM which can 

be observed on the WISHBONE bus through the REG_DATA signals and the 

uart_0_rx_sensor_o where the reconfiguration data is sent to the GPS sensor on the UART line. 
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Figure 31 GPS Baud Rate fault injection performed in ModelSim (Zoomed Out) 

 

A simplified block diagram of HECAD is shown in Figure 32. It is display the information 

flow of normal operation vs when a fault is detected and mitigation has been initiated. In 

normal operation, the green arrows show the information flowing from the GPS sensor to 

the autopilot through HECAD, which also passively sniffs the data on the communication line. 

HECAD does not interrupt the communication between the GPS sensor and the autopilot, by 

using the FPGA, it allows HECAD to separate the data into two parallel paths as it comes into 

the HRIM providing the ability to pass the data to a hardware IP core to parse the 

communication protocol without interrupting the communication between the sensor and 

the autopilot. Once a successful piece of data has been received by the hardware IP core, it is 

passed to the I2M through the WISHBONE bus, and further processed and eventually 

retrieved by the FIM. 
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Figure 32 Block diagram of HECAD in normal vs mitigation operation 

 

When a fault/attack is detected, the HRIM crossbar is enabled, causing the sensor to be 

isolated from the autopilot. When a sensor is isolated from the autopilot, it is done through 

the FPGA, where the HRIM connects the sensor side to the internal hardware IP core and the 

autopilot side gets forced to an IDLE state while mitigation is performed. After the crossbar 

is enabled, the information flow stops, and begins to flow the opposite way where the 

mitigation module in the I2M is initiated and performs its task.  
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Once the simulation was successfully performed, the architecture was synthesized and 

implemented on the Nexys 4 DDR FPGA and tested in a real-world scenario connected to the 

VCU FCS and a GPS emulator that allowed for a reconfiguration of the baud-rate during run-

time. Resembling the simulation experiment, the UART baud-rate of the autopilot and the 

GPS sensor were both configured to 57600. During run-time after the initialization sequence 

of the autopilot, the baud-rate should remain the same. The baud-rate change fault was 

injected a few seconds after the autopilot boot up and expected normal operation. Shown in 

Figure 33 is the logic analyzer trace capture of the UART signals between the autopilot and 

GPS emulator.  

 

Figure 33 Logic analyzer capture of a real-world autopilot GPS baud-rate fault 

 

The HRIM fault/attack signal is asserted when the HRIM detects an attack, as well as 

enables the cross-bar module isolating the sensor. The GPS UART Rx signal is the GPS sensor 

UART receive line, the Autopilot UART Rx signal is the autopilot UART receive line, the GPS 

UART TX signal is the GPS sensor UART transmit line. It can be Observed that the baud-rate 

is changed from 57600 to a higher baud-rate, which is detected by HECAD and the autopilot 

UART receive line is forced to IDLE by HECAD, disconnected from the GPS sensor which is 

still sending out data, and the mitigation sequence has been initiated, which is shown by the 

data being sent out on the GPS sensor UART receive line. 
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6.2 Cross-sensor data validation in the FIM 

HECAD has the ability to detect attacks at various levels from the hardware to the 

software level. The first results section highlighted on hardware level detection, whereas 

this section will demonstrate HECADs ability to detect attacks at the software level. The first 

level of software fault/attack detection lies in the I2M, which verifies the integrity of the 

data, and is functional agnostic; consisting of methods such as bounds checking, timestamp 

verification, etc. The second level of detection resides in the FIM, which detects more 

functional types of faults and is application specific. 

To validate HECADs ability to perform high level, functional analysis in the FIM, a 

rudimentary cross sensor verification method was used to detect a fault in the sensor data 

that passes all checks from the HRIM, I2M, and EIM. Established previously in section 4.4.3, 

the FIM is capable of verifying functional integrity using a rudimentary method for the 

purposes of demonstrating the ability to apply analysis to sensor data that otherwise would 

not create an alarm based on functional agnostic methods.    

The experiment was performed using a GPS sensor emulator and an absolute 

barometric pressure sensor modelled in VHDL, which can be used to calculate the altitude 

of the UAS. The sensors are connected to the autopilot in the same configuration as 

previously where the sensors are connected to HECAD which passes the data through to the 

FCS autopilot. In this example, the GPS is connected through UART and the absolute 

barometric pressure sensor is connected through I2C. A fault was injected into the GPS 

altitude data after the initialization sequence successfully completed, during normal 

operation.  

The plot shown in Figure 34 displays the data from the FIM data registers in HECAD 

as well as the HRIM crossbar switches enable signal. The data from the GPS sensor is read 

in through a dedicated UART core in the HRIM, and the data from the barometric pressure 
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sensor is read in through a dedicated I2C core in the HRIM. Each sensor has its own sensor 

specific parser that translates the raw data read on the bus into sensor data that can be 

converted into altitude data in the FIM. Once a complete packet is parsed in the I2M and 

the integrity is validated (bounds checking, etc.) a signal is triggered to the FIM, and the 

FIM will retrieve the data out of a block of memory where all of the sensor data is stored. 

The FIM will perform analysis on the data per sensor as well as combined with multiple 

sensors. For this example, a rudimentary cross verification method was used, where a 

threshold of ±10 ft. of altitude was specified; a rudimentary algorithm is used to 

demonstrate the functionality of HECAD, which is the aim of this research, however more 

complex methods will be used in the FIM and is a topic for future development. The fault 

injected into the GPS altitude is shown in Figure 34, where the GPS and pressure sensor 

read similar altitudes of approximately 570 feet, up to a point where the GPS reading 

jumps to > 800ft. In a real-world scenario, a UAS may react by performing a sudden dive 

which could potentially be unrecoverable. The plot shows how HECAD immediately 

catches the fault through cross verification and isolates the sensor and begins mitigating.  

 

Figure 34 FIM readings of GPS and Baro altitude and HRIM XBAR enable signal 
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The signal trace of the ModelSim simulation is shown in Figure 35. The signals are as 

follows:  

• fault_detected: Fault detected signal in the FIM that notifies the I2M 

• gps_altitude, baro_altitude : GPS and barometric pressure sensor altitudes 

parsed in the I2M that reside in the FIM  

• hrim_gps_xbar_en: Crossbar switches enable signal that isolates the GPS sensor 

when enabled which is triggered from I2M to the HRIM 

• fim_fault_detected: Signal received by the I2M triggered by the FIM 

• gps_output_updated_s, abs_baro_output_updated_s: Triggered when a complete 

packet is received by HECAD from the GPS and pressure sensor respectively 

• rx_sensor: GPS UART receive line from HECAD 

• rx_cpu: Autopilot UART receive line from HECAD (passthrough from GPS 

sensor to the autopilot) 

• tx_cpu is the GPS UART receive line from HECAD (passthrough from the 

autopilot to the GPS) 

• xbar_en is the HRIM crossbar switch enable signal 

 

Figure 35 GPS and barometric pressure altitude fault injection attack signal trace 
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The GPS fault injection is in the form of an altitude jump as shown in Figure 35, where 

the altitude value changes from 571 ft. to 880 ft. HECAD immediately catches on the fault in 

the FIM, which is performing cross verification analysis on the barometric pressure sensor 

and GPS sensor, using consistency checking of past values to compare the GPS vs Baro 

altitude measurements. When HECAD detects the fault in the FIM, a signal is immediately 

sent to the I2M, which sequentially triggers the HRIM to enable the crossbar switch module 

and isolate the GPS sensor and initiate the mitigation sequence; exploiting the hierarchy. It 

is important to note that through this process of detecting, isolating, and mitigation that the 

pressure sensor is not disturbed and continues to function normally.  

A block diagram of a high-level description of the information flow of HECAD during 

normal operation and when the FIM detects the GPS fault injection, is shown in Figure 36. 

The left diagram displays the FIM, I2M, and HRIM working under normal operation, where 

the information flows upwards from the HRIM, passing the data to the I2M, and the FIM 

fetching the data for cross verification sensor analysis.  
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Figure 36 HECAD block diagram of a GPS fault injection detected in the FIM 

 

When the fault is detected at the FIM level, the GPS data registers in the FIM do not 

continue to update since no data is available, the I2M stops updating and the information 

flow transitions to sending data to the HRIM to perform the mitigation sequence. The flow 

of information in HECAD follows the same trend for an attack detected in each subsystem 

of HECAD, where the HRIM isolates the sensor and the I2M transitions to mitigation. 

 

6.3 HECAD subsystem isolation 

One of the many advantages of HECAD is the ability to utilize the parallelism and 

isolation of the subsystem hierarchies derived from the FPGA implementation. Every slave 

device connected to HECAD has its own information flow path, using its hierarchical 

properties while adopting a distributed workflow. In a general processor, the event of a 
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system failure is more likely to occur vs. an FPGA when a subsystem is to fail due to the 

sequential processing nature of a general processor vs. digital logic which allows for parallel 

execution. HECADs architecture allows for the system as a whole to keep operating in the 

event that a subsystem is to fail. An experiment was performed where the HRIM GPS 

subsystem is frozen in its current state to simulate the event of a subsystem failure.  

 

 

Figure 37 ModelSim signal trace of a subsystem failure 

The ModelSim signal trace is shown in Figure 37, where it can be observed that the I2M 

GPS subsystem stops receiving data on the WISHBONE bus from the HRIM due to the fault 

that was injected forcing the HRIM GPS subsystem to halt its operation. The result of this 

fault is the GPS sensor unable to be monitored by HECAD since the data flow from the HRIM 

to the I2M has stopped, however, the I2M is expecting data at a certain frequency, which will 

enable the crossbar switch in the HRIM, which will not allow for the sensor to pass through 

any data to the autopilot.  

A block diagram of the subsystem failure is shown in Figure 38, displaying the hierarchy 

of the GPS subsystem blocks halting operation in all of the levels of HECAD. 
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Figure 38 Block diagram of HECAD subsystem failure 

 

The same experimental setup is used as previously where a GPS and an absolute 

barometric pressure sensor are connected to HECAD through a UART and I2C respectively. 

Subsystem isolation is imperative in a monitoring system because if an unexpected event 

occurs in the monitor itself, it is necessary that the system being monitored is affected as 

minimally as possible. In HECAD this allows for the failures to remain local, preventing cross 

subsystems to be affected. 

 

6.4 HECAD Resource Utilization 

HECAD was simulated, synthesized, and implemented on the Nexys 4 DDR. Although the 

whole system was not tested and implemented, the functional aspects of the architecture 
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were tested to verify that the hierarchical architecture design on an FPGA was possible and 

capable of monitoring, detecting, and isolating cyber-attacks on a UAV FCS. As mentioned 

previously, the goal of this research is to develop an architectural framework with the ability 

to monitor, detect, and isolate malicious cyber-attacks at the hardware and software level; 

the specific algorithms in each block are out of the scope of this research and reserved for 

future work. 

The current state of HECAD includes a full stack implementation of the GPS sub modules 

from the HRIM, I2M and FIM with rudimentary algorithms capable of detecting an attack. 

The absolute barometric pressure sensor and modem sub modules have been implemented 

for basic functionality within HECAD, which includes the ability to sniff the communications 

line, collect the sensor data, pass it through the WISHBONE bus up to the I2M to parse the 

raw data into sensor data, and notify the FIM to retrieve the sensor data to perform a 

rudimentary analysis. The differential barometric pressure sensor and IMU sensors can use 

a similar template to the absolute barometric pressure sensor, whereas they will behave the 

same functionally whereas different sensors will have respective parsing algorithms and 

sensor specific verification e.g bounds checking.. The actuator sub modules will need to 

incorporate a PWM IP core for the inputs and the outputs of the FCS, and then can be dropped 

into the skeleton template set in place. The WISHBONE bus is fully functional and 

implemented ready for additional sub modules. The EIM has a rudimentary method of 

monitoring the system during run-time which takes advantage of a watch-dog timer that can 

connect to a GPIO on the Autopilot that allows HECAD to monitor the run-time execution of 

the main processor through knowledge of the execution loops such as the control algorithms 

running at 50Hz. The Autopilot periodically will signal the EIM every 20ms, allowing to verify 

that no extra code is running or sensors have been modified to change how long an execution 

loop will take. 
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The current progress of the HECAD implementation is shown in Figure 39. The complete 

blocks are shown with a filled in blue background, partially complete have a blue outline, and 

the un-implemented blocks are greyed out. In the HRIM and I2M the WISHBONE bus master 

and slave interfaces are instantiated and ready to incorporate the functionality of the 

respective sub modules. Also, for testing purposes a debug module was instantiated in order 

to communicate the status of the system to a user via UART. The debug module has direct 

access to the status registers inside each subsystem, which would alert the engineer if an 

attack has been detected or not. It is not decided yet if the final design will have 

communication with the autopilot, and the decision will be made in future work. 

The implemented features have been simulated, synthesized, and implemented using 

the Xilinx Vivado Design Suite. The current utilization of resources in the Artix-7, XC7A100T 

FPGA programmable logic based on consumed logic slices is 21%. The utilization accounts 

for about half of the system design with rudimentary algorithms, and can be used to estimate 

that the entire system barebones would consume about 50% of the resources of the Artix-7 

FPGA. Depending on the complexity of the algorithms in the FIM level, more RAM may be 

needed to extend the size of the MicroBlaze memory to increase the functionality by adding 

more analysis algorithms. 
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Figure 39 HECAD Block Diagram Overview of all the implemented subsystems 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

Cyber-attacks are becoming more sophisticated as technology improves, and it is not only 

integral to prevent faults from occurring, but it is becoming necessary to monitor and detect 

malicious faults that can have devastating consequences in safety critical applications. 

Current approaches to monitor UASs focus on the software level and utilize an external 

system capitalizing on triple modular redundancy or a DSL developed for specific 

applications using formal methods implemented in line with the system software. The 

research performed in this dissertation introduces a holistic approach of securing a UAS FCS 

at the various levels, traversing the hardware/software boundary, monitoring individual 

component and actuator failures at the hardware level in the HRIM, while simultaneously 

monitoring the system at the software level through the EIM run-time execution verification, 

I2M component specification verifications, and FIM system level, mission envelope 

validation. HECAD allows the use of a combination of system level, mission specific  methods 

that utilize statically defined assertions offline, and functional agnostic methods to monitor 

the dynamic runtime execution of the system. 

The methodology presented in this paper creates a framework that can be used as a 

general guide in securing a UAS CPS by embedding an FPGA based solution onto the FCS. This 

approach creates the ability to monitor low-level communication directly between the 

autopilot main processor and the on-board sensors maximizing the amount of information 

that can be collected to monitor the system. Before HECAD, no solution existed that 

permitted the ability to monitor the low-level communications between the autopilot and 

the on-board sensors without affecting the system. The HECAD methodology opens new 

doors into securing a UAS against cyber-attacks by incorporating a platform onto a UAS FCS 

that not only has access to the main processor, on-board sensors, and actuators, but also the 
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ability to isolate malicious sensors and potentially override the autopilot if a total system 

failure is to occur.  HECAD provides the capability to monitor, detect, and mitigate potential 

cyber-attacks that are unobservable by external or complete software DSL solutions. With 

this accessibility to the on-board components, new methods can be explored to secure a UAS 

FCS.  An FPGA implementation allows the possibility of developing detection algorithms in 

software (on a soft-core processor) was well as hardware (FPGA programmable logic) and 

can be used by future integrators to secure a CPS to improve resilience, reliability, and 

correctness of the system.  

 
7.1 Future work 

The goal for future work is to complete the implementation of the HECAD architecture 

on an FPGA and test it on a UAS FCS using a Hardware in the Loop Simulator (HILS). New 

algorithms will be developed to detect attacks on the physical signal and communication 

protocol to monitor and detect sensor firmware cyber-attacks. Algorithms are to be 

developed to detect cyber-attacks at each level in HECAD, as well as investigating techniques 

to monitor the execution of the main processor dynamically during run time and developing 

solutions on the FPGA in digital logic. More sophisticated algorithms are to be implemented 

in the FIM to combine all of the sensor data as well as information about the application, 

possibly developing a state estimation algorithm that can utilize the sensor data and 

potentially create a mitigation solution that can control the UAS in the event of a total system 

failure.  The hardware resource information, sensor data integrity verification, and mission 

specific functional integrity validation can be used holistically to develop collaborative 

detection algorithms utilizing all of the levels of fault detection to maximize the ability to 

secure a UAS. 
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CHAPTER 8 
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