94 research outputs found

    Spectral-spatial Feature Extraction for Hyperspectral Image Classification

    Get PDF
    As an emerging technology, hyperspectral imaging provides huge opportunities in both remote sensing and computer vision. The advantage of hyperspectral imaging comes from the high resolution and wide range in the electromagnetic spectral domain which reflects the intrinsic properties of object materials. By combining spatial and spectral information, it is possible to extract more comprehensive and discriminative representation for objects of interest than traditional methods, thus facilitating the basic pattern recognition tasks, such as object detection, recognition, and classification. With advanced imaging technologies gradually available for universities and industry, there is an increased demand to develop new methods which can fully explore the information embedded in hyperspectral images. In this thesis, three spectral-spatial feature extraction methods are developed for salient object detection, hyperspectral face recognition, and remote sensing image classification. Object detection is an important task for many applications based on hyperspectral imaging. While most traditional methods rely on the pixel-wise spectral response, many recent efforts have been put on extracting spectral-spatial features. In the first approach, we extend Itti's visual saliency model to the spectral domain and introduce the spectral-spatial distribution based saliency model for object detection. This procedure enables the extraction of salient spectral features in the scale space, which is related to the material property and spatial layout of objects. Traditional 2D face recognition has been studied for many years and achieved great success. Nonetheless, there is high demand to explore unrevealed information other than structures and textures in spatial domain in faces. Hyperspectral imaging meets such requirements by providing additional spectral information on objects, in completion to the traditional spatial features extracted in 2D images. In the second approach, we propose a novel 3D high-order texture pattern descriptor for hyperspectral face recognition, which effectively exploits both spatial and spectral features in hyperspectral images. Based on the local derivative pattern, our method encodes hyperspectral faces with multi-directional derivatives and binarization function in spectral-spatial space. Compared to traditional face recognition methods, our method can describe distinctive micro-patterns which integrate the spatial and spectral information of faces. Mathematical morphology operations are limited to extracting spatial feature in two-dimensional data and cannot cope with hyperspectral images due to so-called ordering problem. In the third approach, we propose a novel multi-dimensional morphology descriptor, tensor morphology profile~(TMP), for hyperspectral image classification. TMP is a general framework to extract multi-dimensional structures in high-dimensional data. The n-order morphology profile is proposed to work with the n-order tensor, which can capture the inner high order structures. By treating a hyperspectral image as a tensor, it is possible to extend the morphology to high dimensional data so that powerful morphological tools can be used to analyze hyperspectral images with fused spectral-spatial information. At last, we discuss the sampling strategy for the evaluation of spectral-spatial methods in remote sensing hyperspectral image classification. We find that traditional pixel-based random sampling strategy for spectral processing will lead to unfair or biased performance evaluation in the spectral-spatial processing context. When training and testing samples are randomly drawn from the same image, the dependence caused by overlap between them may be artificially enhanced by some spatial processing methods. It is hard to determine whether the improvement of classification accuracy is caused by incorporating spatial information into the classifier or by increasing the overlap between training and testing samples. To partially solve this problem, we propose a novel controlled random sampling strategy for spectral-spatial methods. It can significantly reduce the overlap between training and testing samples and provides more objective and accurate evaluation

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Adaptive Reduced Rank Regression

    Full text link
    We study the low rank regression problem y=Mx+ϵ\mathbf{y} = M\mathbf{x} + \epsilon, where x\mathbf{x} and y\mathbf{y} are d1d_1 and d2d_2 dimensional vectors respectively. We consider the extreme high-dimensional setting where the number of observations nn is less than d1+d2d_1 + d_2. Existing algorithms are designed for settings where nn is typically as large as rank(M)(d1+d2)\mathrm{rank}(M)(d_1+d_2). This work provides an efficient algorithm which only involves two SVD, and establishes statistical guarantees on its performance. The algorithm decouples the problem by first estimating the precision matrix of the features, and then solving the matrix denoising problem. To complement the upper bound, we introduce new techniques for establishing lower bounds on the performance of any algorithm for this problem. Our preliminary experiments confirm that our algorithm often out-performs existing baselines, and is always at least competitive.Comment: 40 page

    Face Centered Image Analysis Using Saliency and Deep Learning Based Techniques

    Get PDF
    Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based object detection, deep learning structured objects categorization and recognition, human facial landmark detection and multitask biometrics. To implement object detection, a three-level saliency detection based on the self-similarity technique (SMAP) is firstly proposed in the work. The first level of SMAP accommodates statistical methods to generate proto-background patches, followed by the second level that implements local contrast computation based on image self-similarity characteristics. At last, the spatial color distribution constraint is considered to realize the saliency detection. The outcome of the algorithm is a full resolution image with highlighted saliency objects and well-defined edges. In object recognition, the Adaptive Deconvolution Network (ADN) is implemented to categorize the objects extracted from saliency detection. To improve the system performance, L1/2 norm regularized ADN has been proposed and tested in different applications. The results demonstrate the efficiency and significance of the new structure. To fully understand the facial biometrics related activity contained in the image, the low rank matrix decomposition is introduced to help locate the landmark points on the face images. The natural extension of this work is beneficial in human facial expression recognition and facial feature parsing research. To facilitate the understanding of the detected facial image, the automatic facial image analysis becomes essential. We present a novel deeply learnt tree-structured face representation to uniformly model the human face with different semantic meanings. We show that the proposed feature yields unified representation in multi-task facial biometrics and the multi-task learning framework is applicable to many other computer vision tasks

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Face recognition for vehicle personalization

    Get PDF
    The objective of this dissertation is to develop a system of practical technologies to implement an illumination robust, consumer grade biometric system based on face recognition to be used in the automotive market. Most current face recognition systems are compromised in accuracy by ambient illumination changes. Especially outdoor applications including vehicle personalization pose the most challenging environment for face recognition. The point of this research is to investigate practical face recognition used for identity management in order to minimize algorithmic complexity while making the system robust to ambient illumination changes. We start this dissertation by proposing an end-to-end face recognition system using near infrared (NIR) spectrum. The advantage of NIR over visible light is that it is invisible to the human eyes while most CCD and CMOS imaging devices show reasonable response to NIR. Therefore, we can build an unobtrusive night-time vision system with active NIR illumination. In day time the active NIR illumination provides more controlled illumination condition. Next, we propose an end-to-end system with active NIR image differencing which takes the difference between successive image frames, one illuminated and one not illuminated, to make the system more robust on illumination changes. Furthermore, we addresses several aspects of the problem in active NIR image differencing which are motion artifact and noise in the difference frame, namely how to efficiently and more accurately align the illuminated frame and ambient frame, and how to combine information in the difference frame and the illuminated frame. Finally, we conclude the dissertation by citing the contributions of the research and discussing the avenues for future work.Ph.D

    Enhanced target detection in CCTV network system using colour constancy

    Get PDF
    The focus of this research is to study how targets can be more faithfully detected in a multi-camera CCTV network system using spectral feature for the detection. The objective of the work is to develop colour constancy (CC) methodology to help maintain the spectral feature of the scene into a constant stable state irrespective of variable illuminations and camera calibration issues. Unlike previous work in the field of target detection, two versions of CC algorithms have been developed during the course of this work which are capable to maintain colour constancy for every image pixel in the scene: 1) a method termed as Enhanced Luminance Reflectance CC (ELRCC) which consists of a pixel-wise sigmoid function for an adaptive dynamic range compression, 2) Enhanced Target Detection and Recognition Colour Constancy (ETDCC) algorithm which employs a bidirectional pixel-wise non-linear transfer PWNLTF function, a centre-surround luminance enhancement and a Grey Edge white balancing routine. The effectiveness of target detections for all developed CC algorithms have been validated using multi-camera ‘Imagery Library for Intelligent Detection Systems’ (iLIDS), ‘Performance Evaluation of Tracking and Surveillance’ (PETS) and ‘Ground Truth Colour Chart’ (GTCC) datasets. It is shown that the developed CC algorithms have enhanced target detection efficiency by over 175% compared with that without CC enhancement. The contribution of this research has been one journal paper published in the Optical Engineering together with 3 conference papers in the subject of research
    • …
    corecore