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SUMMARY

The objective of this dissertation is to develop a system of practical technolo-

gies to implement an illumination robust, consumer grade biometric system based on

face recognition to be used in the automotive market. Most current face recognition

systems are compromised in accuracy by ambient illumination changes. Especially

outdoor applications including vehicle personalization pose the most challenging en-

vironment for face recognition. The point of this research is to investigate practical

face recognition used for identity management in order to minimize algorithmic com-

plexity while making the system robust to ambient illumination changes. We start

this dissertation by proposing an end-to-end face recognition system using near in-

frared (NIR) spectrum. The advantage of NIR over visible light is that it is invisible

to the human eyes while most CCD and CMOS imaging devices show reasonable

response to NIR. Therefore, we can build an unobtrusive night-time vision system

with active NIR illumination. In day time the active NIR illumination provides more

controlled illumination condition. Next, we propose an end-to-end system with active

NIR image differencing which takes the difference between successive image frames,

one illuminated and one not illuminated, to make the system more robust on illumina-

tion changes. Furthermore, we addresses several aspects of the problem in active NIR

image differencing which are motion artifact and noise in the difference frame, namely

how to efficiently and more accurately align the illuminated frame and ambient frame,

and how to combine information in the difference frame and the illuminated frame.

Finally, we conclude the dissertation by citing the contributions of the research and

discussing the avenues for future work.

x



CHAPTER I

INTRODUCTION

1.1 Face Recognition as a Consumer Grade Biometric

Biometrics as an identity management discipline seeks to either identify a person or

verify a person’s claimed identity. In most such systems a design goal is to minimize

the probability of false admission even at the expense of increasing the probability

of false rejection [82]. The economics behind this are driven by applications that

must manage a significant economic, safety, or security threat. Any such system that

incorrectly admits even a vanishingly small number of subjects will fail in the mar-

ketplace. However, the market for ID management extends well beyond high-security

applications. Proponents of pervasive and context-aware computing have argued

that a knowledge of the user’s identity can greatly enhance the perceived value of

an application by personalizing it [122]. The value increase comes from a combi-

nation of usability enhancements such as automatic configuration or customization,

and through the perception that an otherwise shared resource is virtually one’s own

and reflects favorable attributes tied to one’s identity, such as opinion, emotion, or

fashion. There are countless such applications that are enabled by knowing the user’s

identity, but carry no significant risk of personal, physical, or economic harm should

the user’s identity be incorrectly determined. Unlike high-security applications where

it is preferable to reject the identity of a person under any reasonable doubt, in no- or

low-security consumer applications, it is preferable to always attempt to converge on

an identity of the subject, even if it is wrong. Consumer-grade biometrics are there-

fore characterized by minimizing the probability of a false rejection at the expense of

increasing the probability of false admission. This reflects the difference in priorities
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between consumer-grade and high-security applications. Usability is an issue in all

identity management methods and in turn will contribute to the overall ease of use

of an application in which it is used. Ease of use in consumer applications is very

desirable, so consumer grade biometrics ideally will involve a simple training process.

The actual use of the system should be invisible. Operation should be automatic and

require no direct user cooperation.

In this dissertation, face recognition is used because it is a well-studied biometric

[129] using both static- and video-based image collection, and also has the attributes

of being noninvasive and potentially requiring no explicit cooperation from the user

for the biometric to work. With respect to performance, an interesting difference in

this work compared with previous research on face recognition is the idea of consumer-

grade biometrics and how it can alter the goals of biometric device design.

1.2 Vehicle Personalization

The application area selected as a target for this dissertation is biometrics for the

automotive market. This is an attractive application space due to a growing num-

ber of opportunities and needs that can be addressed. Traditional application ideas

using personalization involve automatically adjusting physical properties of the car,

such as the positions of seats and mirrors. New regulatory requirements also play a

role, such as the need to configure and manage hands-free telecommunications for car

drivers [3]. The amount and diversity of information technology being introduced into

new cars in the form of entertainment, email, navigation, telemetry, and driver assis-

tance services are increasing, all of which can be personalized in some way. Beyond

personalization, many expected features of new cars will exploit imaging or video

for some other purpose. Examples include parental supervision, driver distraction

monitoring, and autonomous operation of vehicles. This makes using an image-based

biometric in cars more attractive, as the imaging hardware used can be shared across
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many applications. Currently, image-based biometrics are not commonly found in

commercially available cars, but the market may grow if practical solutions can be

found. Precedent for this is being set by several automotive manufacturers who are

developing sensor-based systems for car security, advanced driver support, and other

tasks.

Several enabling technologies already exist for driver identification, one of which is

embedding special identification devices such as RFID tags in a car key or a key fob.

Many car manufacturers are developing RFID-based smart car keys, which enable

automatic keyless entry based on proximity sensing or alerting the presence of an

intruder in the vehicle cabin [17,55]. Vehicle personalization is another application of

the RFID smart car key. These systems are not looked at in this dissertation as they

imply an ownership and involve the inconvenience of having something that must be

carried and potentially lost. Password-based identity management methods are also

not used in this study as they require user cooperation for the system to work.

1.3 Face Recognition using Near-Infrared Illumination

As face recognition is the biometric chosen for the vehicular personalization appli-

cation, the proposed algorithm needs to be robust under operation during both day

and night. In this regard, the choice and tailoring of the algorithm depend on the

mode of video acquisition. With non-intrusiveness being one of the main features of

this application, the selection of sensors and illuminators is crucial. The initial choice

was to use a color camera as the mode of acquisition. As this camera would work

near flawlessly during the day, it turns out to be almost useless at night without a

reliable illumination source. With sunlight not available at night, an artificial light il-

luminator would be needed to aid the camera. Depending on the specifications of the

algorithm, this illuminator would be continuously on or intermittently pulse, which
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can be troublesome and in turn annoy the driver in both cases. As a result, this op-

tion was eliminated and suggestions to explore the use of Infrared (IR) illumination

were taken into consideration. The IR spectrum is further subcategorized depending

on its wavelength; however, for the purpose of this work, only near-infrared (NIR,

0.7 - 1.4µm) is being considered [59]. The key advantage of NIR over visible light is

that it is invisible to the human eye. Compared to the previously described scenario,

NIR is easily available from the sun during the day since it is an abundant source.

At night however, an NIR illuminator can be used to provide the controlled artificial

illumination without bothering the driver. This feature lays the foundation for the

end product to be non-intrusive.

Although NIR is invisible to the human eye, most CCD and CMOS imaging

devices show reasonable responses to these wavelengths, making them applicable to

this work. Color cameras are typically equipped with an optical “IR-cut” filter in

front of the CCD or CMOS sensors to control the red color photons contributed by

the IR spectrum [53]. As a result, monochromatic cameras are preferred as they do

not include this filter. An NIR camera is easily implemented using a monochromatic

camera along with a NIR wavelength-passing optical filter. The choice of CMOS-

or CCD-based cameras varies depending on application requirements. The artificial

illumination is also easily implemented using a network of NIR light emitting diodes

(LEDs) which are available from most electronic component vendors.

1.4 Organization of the Dissertation

This dissertation focuses on the development of a novel illumination-robust face recog-

nition system for vehicle personalization with the active NIR illumination and camera.

The dissertation is organized as follows:
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Chapter 2 introduces the background literature review on previous illumination-

robust approaches for face recognition including passive and active methods.

Chapter 3 presents a consumer grade biometric system based on face recognition

using infrared imaging with successful recognition result in a small group of subjects.

The system consists of three stages; face detection, eye detection and face recognition.

Chapter 4 focuses on the development of face recognition system with NIR active im-

age differencing. The NIR active image differencing produces images independent of

the ambient illumination. End-to-end face recognition system is presented including

foreground/background segmentation, motion detection, face detection, pose cluster-

ing and face recognition modules. It is shown that the image differencing method

makes the modules more robust to the ambient illumination variation. Additionally,

we present face video acquisition hardware which implements the NIR active image

differencing in real vehicular environment and large face video dataset taken with the

hardware. Finally, extensive test results on the dataset are provided to evaluate the

end-to-end system.

Chapter 5 addresses several aspects of the problem in active NIR image differ-

encing which are motion artifact and noise in the difference frame, namely how to

efficiently and more accurately align the illuminated frame and ambient frame, and

how to combine information in the difference frame and the illuminated frame. Exten-

sive experimental results on video dataset introduced in Chapter 4 show performance

increase using the proposed methods.

Chapter 6 presents the summary and conclusion reported in this dissertation. In

addition, avenues to continue and extend the presented research are also discussed.
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CHAPTER II

BACKGROUND

For many applications, the performance of face recognition systems in controlled envi-

ronments has now reached a satisfactory level; however, there are still many challenges

posed by uncontrolled environments. Some of these challenges are posed by the prob-

lems caused by variations in illumination, face pose, expression, and etc. The effect of

variation in the illumination conditions in particular, which causes dramatic changes

in the face appearance, is one of those challenging problems [129] that a practical

face recognition system needs to face. To be more specific, the varying direction and

energy distribution of the ambient illumination, together with the 3D structure of the

human face, can lead to major differences in the shading and shadows on the face.

Such variations in the face appearance can be much larger than the variation caused

by personal identity [4]. The variations of both global face appearance and local facial

features also cause problems for automatic face detection/localisation, which is the

prerequisite for the subsequent face recognition stage. Therefore, the situation is even

worse for a fully automatic face recognition system. Moreover, in a practical applica-

tion environment, the illumination variation is always coupled with other problems

such as pose variation and expression variation, which increase the complexity of the

automatic face recognition problem.

A number of illumination invariant face recognition approaches have been pro-

posed in the past years. Existing approaches addressing the illumination variation

problem fall into two main categories. The approaches in the first category is called

“passive” approaches, since they attempt to overcome this problem by studying the

visible spectrum images in which face appearance has been altered by illumination
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variations. The other category contains “active” approaches, in which the illumina-

tion variation problem is overcome by employing active imaging techniques to obtain

face images captured in consistent illumination condition, or images of illumination

invariant modalities. Existing reviews related to illumination invariant face recogni-

tion can be found in [69,73,129].

2.1 Passive Approaches

Passive approaches can be divided into four groups: illumination variation modelling,

illumination invariant features, photometric normalisation, and 3D morphable model.

2.1.1 Illumination Variation Modelling

The modelling of face images under varying illumination can be based on a statistical

model or physical model. For statistical modelling, no assumption concerning the

surface property is needed. Statistical analysis techniques, such as PCA(Eigenface)

and LDA(Fisherface), are applied to the training set which contains faces under

different illuminations to achieve a subspace which covers the variation of possible

illumination. In physical modelling, the model of the process of image formation

is based on the assumption of certain object surface reflectance properties, such as

Lambertian reflectance.

2.1.1.1 Linear Subspaces

Hallinan [46] showed that five eigenfaces were sufficient to represent the face images

under a wide range of lighting condition. Shashua proposed photometric alignment

approach to find the algebraic connection between all images of an object taken

under varying illumination conditions [96]. An order k linear reflectance model for

any surface point p is defined as the scalar product x · a, where x is a vector in the

k-dimensional Euclidean space of invariant surface properties (such as surface normal,

albedo, and so forth), and a is an arbitrary vector. The image intensity I(p) of an
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object with an order k reflection model can be represented by a linear combination of

a set of k images of the object. For Lambertian surface under distant point sources

and in the absence of shadows, all the images lie in a 3D linear subspace of the high

dimensional image space, which means that they can be represented by a set of 3

images, each from a linearly independent source. Given three images of this surface

under three known and linearly independent light sources, the surface normal and

the albedo can be recovered. This is known as photometric stereo. Shashua claimed

the attached shadows, which are caused by points where the angle between surface

normal and the direction of light source is obtuse(np · s < 0, therefore I(p) = 0), do

not have a significant adverse effect on the photometric alignment scheme. However,

the cast shadows caused by occlusion cannot be modeled using the above framework.

Belhumeur et al. [13] presented the so-called 3D linear subspace method for illu-

mination invariant face recognition, which is a variant of the photometric alignment

method. In this linear subspace method, three or more images of the same face taken

under different lighting are used to construct a 3D basis for the linear subspace. The

recognition proceeds by comparing the distance between the test image and each

linear subspace of the faces belonging to each identity. The Fisher Linear Discrimi-

nant(also called FisherFace) method is also proposed in [13] in order to maximise the

ratio of the between-class scatter and the within-class scatter of the face image set to

achieve better recognition performance.

Batur and Hayes [10] proposed a segmented linear subspace model to generalize

the 3D linear subspace model so that it is robust to shadows. Each image in the

training set is segmented into regions that have similar surface normals by k-mean

clustering, then for each region a linear subspace is estimated. Each estimation only

relies on a specific region, so it is not influenced by the regions in shadow.
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2.1.1.2 Illumination Cone

Belhumeur and Kriegman [14] proved that all images of a convex object with Lam-

bertian surface from the same viewpoint but illuminated by an arbitrary number

of distant point sources form a convex Illumination Cone. The dimension of this

illumination cone is the same as the number of distinct surface normals. This illu-

mination cone can be constructed from as few as three images of the surface, each

under illumination from an unknown point source. The illumination cone is a convex

combination of extreme rays given by xi,j = max(Bsij, 0), where si,j = bi × bj, and

bi, bj are two different rows of a matrix B where each row is the product of albedo

with surface normal vector. Kriegman and Belhumeur showed in [65] that for any

finite set of point sources illuminating an object viewed under either orthographic or

perspective projection, there is an equivalence class of object shapes having the same

set of shadows. These observations are exploited by Georghiades et al. [42] for face

recognition under variable lighting.

2.1.1.3 Spherical Harmonics

Spherical harmonics method is proposed by Basri and Jacobs [9], and contemporarily

by Ramamoorthi and Hanrahan [86]. Assuming arbitrary light sources (point sources

or diffuse sources) distant from an object of Lambertian reflectance property, Basri

and Jacobs [8] show that ignoring cast shadow the intensity of object surface can

be approximated by a 9-dimensional linear subspace based on a spherical harmonic

representation.

Zhang and Samaras [125] proposed two methods for face recognition under arbi-

trary unknown lighting by using the spherical harmonics representation, which re-

quires only one training image per subject and no 3D shape information. In the

first method [124] the statistical model of harmonic basis images are built based on

a collection of 2D basis images. For a given training face image, the basis images for
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this face can be estimated based on maximum a posterior estimation. In the second

method a 3D morphable model and the harmonic representation are combined to

perform face recognition with both illumination and pose variation.

2.1.1.4 Nine point lights

Lee et al. [67] showed that there exists a configuration of nine point source directions

such that a subspace resulting from nine images of each individual under these nine

lighting sources is effective at recognition under a wide range of illumination condi-

tions. The advantage of this method is that there is no need to obtain a 3D model

of surface as in the spherical harmonics approach [8], or to collect a large number of

training images as in the statistical modelling approaches.

2.1.1.5 Generalized Photometric Stereo

Recently, Zhou et al. [132] analyzed images of the face class with both the Lambertian

reflectance model and the linear subspace approach. The human face is claimed to be

an example of a so-called linear Lambertian object, which is not only an object with

Lambertian surface, but also a linear combination of basis objects with Lambertian

surfaces. The albedo and surface normal vectors of each basis object for the face class

form a matrix called class-specific albedo/shape matrix, which can be recovered by a

generalized photometric Stereo process from the bootstrap set. The model is trained

using Vetters 3D face database [16]. Excellent performance was reported. The work

was further extended for multiple light sources.

2.1.2 Illumination Invariant Features

Adini et al. [4] presented an empirical study that evaluates the sensitivity of several

illumination insensitive image representations to changes in illumination. These rep-

resentations include edge map, image intensity derivatives, and image convolved with

a 2D Gabor-like filter. All of the above representations were also followed by a log
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function to generate additional representations. However, the recognition experiment

on a face database with lighting variation indicated that none of these representations

is sufficient by itself to overcome the image variation due to the change of illumination

direction.

2.1.2.1 Features Derived from Image Derivatives

Line edge map [40] is proposed for face recognition by Gao and Leung. The edge

pixels are grouped into line segments, and a revised Hausdorff Distance is designed

to measure the similarity between two line segments. Chen et al. [23] showed that for

any image, there are no discriminative functions that are invariant to illumination,

even for objects with Lambertian surface. However, they showed that the probability

distribution of the image gradient is a function of the surface geometry and reflectance,

which are the intrinsic properties of the face. The direction of image gradient is

revealed to be insensitive to illumination change. The recognition performance using

gradient direction is close to the illumination cone approach. Relative Image Gradient

feature is applied by Wei and Lai [116] and Yang et al. [105] for robust face recognition

under lighting variation. The relative image gradient G(x, y) is defined as G(x, y) =

|∆I(x,y)|
max(u,v)∈W (x,y)|∆I(x,y)|+c , where I(x, y) is the image intensity, ∆ is the gradient operator,

W (x, y) is a local window centered at (x, y), and c is a constant value to avoid dividing

by zero.

Zhao and Chellappa [130] presented a method based on Symmetric Shape from

Shading for illumination insensitive face recognition. The symmetry of every face

and the shape similarity among all faces are utilized. A prototype image with nor-

malized illumination can be obtained from a single training image under unknown

illumination. Their experiments showed that using the prototype image significantly

improved the face recognition based on PCA and LDA.

Sim and Kanade [100] developed a statistical shape from shading model to recover
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face shape from a single image and to synthesize the same face under new illumination.

The surface radiance i(x) for location x is modeled as i(x) = n(x)T × s + e, where

n(x) is the surface normal with albedo, s is the light source vector, e is an error term

which models shadows and specular reflections. A bootstrap set of faces with labeled

varying illuminations is needed to train the statistical model for n(x) and e. The

illumination for an input image can be estimated using kernel regression based on the

bootstrap set, then n(x) can be obtained by maximum a posterior estimation and the

input face under a new illumination can be synthesized.

2.1.2.2 Quotient Image

Shashua and Riklin-Raviv [95] treat face as an ideal class of object, i.e. the objects

that have the same shape but differ in the surface albedo. The quotient image Qy(u, v)

of object y against object a is defined by Qy(u, v) = ρy(u,v)

ρa(u,v)
, where ρy(u, v), ρa(u, v)

are albedo of the two objects. The image Qy depends only on the relative surface

texture information, and is independent of illumination. A bootstrap set containing

N faces under three unknown independent illumination directions is employed. Qy

of a probe image Y (u, v) can be calculated as Qy(u, v) = Y (u,v)∑
j Aj(u,v)xj

, where Aj(u, v)

is the average of images under illumination j in the bootstrap set, and xj can be

determined from all the images in bootstrap set and Y (u, v). Then the recognition is

performed based on the quotient image.

Based on the assumption that faces are an ideal class of objects, Shan et al. [93]

proposed Quotient Illumination Relighting. When the illumination in the probe image

and the target illumination condition are both known and exist in the bootstrap set,

the rendering can be performed by a transformation learnt from the bootstrap set.

Chen and Chen [22] proposed a generic intrinsic illumination subspace approach.

Given the ideal class assumption, all objects of the same ideal class share the same
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generic intrinsic illumination subspace. Considering attached shadows, the appear-

ance image of object i in this class under a combination of k illumination sources

{li}ki=1 is represented by Ii(x, y) = ρi(x, y)
∑k

j=1 max (n(x, y)ij, 0), where ρi(x, y) is

the albedo, and n(x, y) is the surface normal vector of all objects in the class. The

illumination image is defined as L(x, y) =
∑k

j=1 max (n(x, y)lj, 0). The illumination

images of a specific ideal class form a subspace called generic intrinsic illumination

subspace, which can be obtained from a bootstrap set. For a given image the illumi-

nation image can be estimated by L = Bl, where l = argmin‖Bl − L∗‖. Here B is

the basis matrix of the intrinsic illumination subspace, and L∗ is an initial estimation

of illumination image based on smoothed input image. Finally ρ(x, y) can be ob-

tained by ρ(x, y) = I(x,y)
L(x,y)

. The method was evaluated on CMU-PIE and Yale B face

databases and showed significantly better results than the quotient image method.

It is also shown that enforcing nonnegative light constraint will further improve the

results.

2.1.2.3 Retinex Approach

In retinex approaches the luminance is estimated by the smoothed image. The image

can then be divided by the luminance to obtain the reflectance, which is an invariant

feature to illumination. A single Gaussian function is applied to smooth the image

in the single scale retinex approach [57], and the sum of several Gaussian functions

with different scales is applied in the multi-scale retinex approach [56]. Logarithm

transform is employed to compress the dynamic range in [57] and [56].

Wang et al. [115] defined Self-Quotient Image, which is essentially a multi-scale

retinex approach. However, instead of using isotropic smoothing as in [56], anisotropic

smoothing functions with different scales are applied. Each anisotropic smoothing
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function is a Gaussian weighted by a thresholding function. Zhang et al. [127] pro-

posed a morphological quotient image (MQI) method in which mathematical mor-

phology operation is employed to smooth the original image to obtain a luminance

estimate.

Gross and Brajovic [45] solve luminance L for the retinex approach by minimizing

an anisotropic function over the image region Ω : J(L) =
∫∫

Ω
ρ(x, y) (L− I)2 dxdy +

λ
∫ ∫

Ω

(
L2
x + L2

y

)
dxdy, where ρ(x, y) is space varying permeability weight which con-

trols the anisotropic nature of the smoothing. Lx and Ly are the spacial derivatives

of L, and I is the intensity image. The isotropic version of function J(L) can be

obtained by discarding ρ(x, y).

In the total-variation based quotient image(TVQI) approach [24], the luminance

u(x) is obtained by minimizing
∫∫

Ω
|∆u(x)| + λ |I(x)− u(x)| dx over all points x in

image I(x).

2.1.2.4 Transformation domain features

Recently methods based on the frequency domain representation have received atten-

tion. Savvides et al. [88] performed PCA in the phase domain and achieved impressive

results on the CMU-PIE database [99]. This so-called Eigenphase approach improved

the performance dramatically compared to Eigenface, Fisherface and 3D linear sub-

space approach. Meanwhile, they further showed that even with partial face images

the performance of the Eigenphase approach remains excellent and the advantages

over other approaches are even more significant. Heo et al. [50] showed that applying

Support Vector Machines directly on phase can lead to even better performance than

the Eigenphase approach mentioned above.

In [118] a quaternion correlation method in a wavelet domain is proposed and good

performance is achieved on the CMU-PIE database with only one training sample

per subject. The subband images after discrete wavelet decomposition are encoded
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into a 2-D quaternion image. Quaternion Fourier Transform is then performed to

transfer the quaternion image to quaternion frequency domain, where a quaternion

correlation filter is applied. Qing et al. [84] showed that the Gabor phase is tolerant

to illumination change and has more discriminative information than phase in the

Fourier spectrum.

Savvides et al. proposed a series of work based on advance correlation filters

[87, 89]. A pre-whitening spectrum stage is usually adopted to emphasize higher

frequency components followed by phase matching. Llano et al. [41] examined the

sensitivity of several frequency domain representations of face image to illumination

change. Those representations are the magnitude, phase, real part and imaginary

part of the Fourier spectrum of original face image, and those of gradient image. The

gradient image is defined as an image where each pixel has a complex value with the

horizontal gradient of the original image as the real part, and the vertical gradient

as imaginary part. The experimental results on the normal illumination set and the

darken set of the XM2VTS face database showed that the real part of the Fourier

spectrum of the gradient image is less sensitive to illumination change than other

representations.

2.1.2.5 Local Binary Pattern

Local binary pattern (LBP) is a local feature which characterizes the intensity re-

lationship between a pixel and its neighbors. LBP is unaffected by any monotonic

grayscale transformation in that the pixel intensity order is not changed after such

a transformation. Furthermore, for a region with a number of pixels, a histogram of

the LBP patterns associated with respective pixels within this region tends to be a

good feature for face recognition. LBP has been used in [51, 69] as an illumination

invariant feature.
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2.1.3 Photometric Normalization

Histogram Equalisation [44] is the most commonly used approach. By performing

histogram equalisation, the histogram of the pixel intensities in the resulting image

is flat. It is interesting that even for images with controlled illumination (such as

face images in the XM2VTS database), applying histogram equalisation still offers

performance gain in face recognition. Shan et al. [93] proposed Gamma Intensity Cor-

rection for illumination normalisation. The corrected image G(x, y) can be obtained

by performing an intensity mapping: G(x, y) = cI(x, y)
1
γ , where c is a gray stretch

parameter, and γ is the Gamma coefficient.

In Homomorphic filtering approach [44] the logarithm of the equation of the re-

flectance model is taken to separate the reflectance and luminance. The reflectance

model often adopted is described by I(x, y) = R(x, y)× L(x, y), where I(x, y) is the

intensity of the image, R(x, y) is the reflectance function, which is the intrinsic prop-

erty of the face, and L(x, y) is the luminance function. Based on the assumption

that the illumination varies slowly across different locations of the image and the lo-

cal reflectance changes quickly across different locations, a high-pass filtering can be

performed on the logarithm of the image I(x, y) to reduce the luminance part, which

is the low frequency component of the image, and amplify the reflectance part, which

corresponds to the high frequency component.

Du and Ward [32] performed illumination normalization in the wavelet domain.

Histogram equalisation is applied to low-low subband image of the wavelet decompo-

sition, and simple amplification is performed for each element in the other 3 subband

images to accentuate high frequency components. Uneven illumination is removed

in the reconstructed image obtained by employing inverse wavelet transform on the

modified 4 subband images.

Xie and Lam [119] proposed an illumination normalization method which is called

Local Normalization. They split the face region into a set of triangular facets, the
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area of which is small enough to be considered as planar patch. The main idea of this

approach is to normalize the intensity values within each facet to be of zero mean

and unit variance.

Short et al. [97] compared five photometric normalization methods, namely illu-

mination insensitive eigenspaces, multiscale Retinex method, homomorphic filtering,

a method using isotropic smoothing to estimate luminance, and one using anisotropic

smoothing [45]. Each method is tested with/without histogram equalisation per-

formed in advance. Interestingly it was found that histogram equalisation helped in

every case. It is shown that using anisotropic smoothing method as photometric nor-

malisation led to the most consistent verification performance for experiments across

the Yale B, BANCA [6] and XM2VTS [77] databases.

Chen et al. [26] employed DCT to compensate for illumination variation in the

logarithm domain. The uneven illumination is removed in the image reconstructed

by inverse DCT after a number of DCT coefficients corresponding to low frequency

are discarded.

2.1.4 3D Morphable Model

Blanz and Vetter [16] proposed face recognition based on fitting a 3D morphable

model. The 3D morphable model describes the shape and texture of face separately

based on the PCA analysis of the shape and texture obtained from a database of 3D

scans. To fit a face image under unknown pose and illumination to the model, an

optimisation process is needed to optimize shape coefficients, texture coefficients along

with 22 rendering parameters to minimise the difference of the input image and the

rendered image based on those coefficients. The rendering parameters include pose

angles, 3D translation, ambient light intensities, directed light intensities and angles,

and other parameters of the camera and color channels. The illumination model

of Phong is adopted in the rendering process to describe the diffuse and specular
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reflection of the surface. After fitting both the gallery images and the probe images

to the model, the recognition can be performed based on the model coefficients for

shape and texture. Good recognition performance across pose and illumination is

achieved in experiments on CMUPIE and FERET face database.

2.2 Active Approaches

In active approaches additional devices (optical filters, active illumination sources or

specific sensors) usually need to be involved to actively obtain different modalities

of face images that are insensitive to or independent of illumination change. Those

modalities include 3D face information [19] and face images in those spectra other than

visible spectra, such as thermal infrared image [43] and near-infrared hyperspectral

image [83].

2.2.1 3D information

3D information is one of the intrinsic properties of a face, which is invariant to il-

lumination change. The surface normal information is also used in some passive

approaches described in the previous section, however, they are recovered from the

intensity images captured by the visible light camera. This section discusses the 3D

information acquired by active sensing devices like 3D laser scanners or stereo vision

systems.

3D information can be represented in different ways. The most commonly used

representations are range image, profile, surface curvature, Extended Gaussian Im-

age(EGI), Point Signature, and etc. Surveys on 3D face recognition approaches can

be found in [18,19,90]. The 3D modality can be fused with 2D modality, i.e. texture,

to achieve better performance [19, 21]. Nevertheless, it should be noted that the 2D

face images which are combined with 3D face info as reported in [19,21] are captured

in a controlled environment. It is still not clear how much the fusion will help in the

case of uncontrolled environment due to the impact of uncontrolled illumination on
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the 2D face intensity images.

Kittler et al. [61] reviewed the full spectrum of 3D face processing, from sensing to

recognition. The review covers the currently available 3D face sensing technologies,

various 3D face representation models and the different ways to use 3D model for

face recognition. In addition to the discussion on separate 2D and 3D based recog-

nition and the fusion of different modalities, the approach involving 3D assisted 2D

recognition is also addressed.

2.2.2 Infrared

Visible light spectrum ranges from 0.4µm − 0.7µm in the electromagnetic spec-

trum. The infrared spectrum ranges from 0.7µm − 10mm. It can be divided into 5

bands, namely: Near-Infrared (NIR) (0.7−1.4µm), the Short-Wave Infrared (SWIR)

(1.4 − 3.0µm), the Mid-Wave Infrared(MWIR) (3.0 − 8.0µm), the Long-Wave In-

frared(LWIR) (8.0 − 15.0µm), and Far-Infrared(FIR) (15.0µm − 10mm). NIR and

SWIR belong to reflected infrared (0.7− 3.0µm), while MWIR and LWIR belong to

thermal infrared (3.0µm − 15.0µm). Similar to the visible spectrum, the reflected

infrared contains the information about the reflected energy from the object surface,

which is related to the illumination power and the surface reflectance property. Ther-

mal Infrared directly relates to the thermal radiation from object, which depends on

the temperature of the object and emissivity of the material [62]. Figure 1 shows face

images in different infrared spectrum range.

2.2.2.1 Thermal Infrared

A survey on visual and infrared face recognition is presented in [62]. Wilder at al. [117]

showed that with minor illumination changes and for subjects without eyeglasses,

applying thermal image for face recognition does not lead to significant difference

compared to visible images. However, for scenarios with huge illumination changes

and facial expressions, superior performance was achieved based on radiometrically
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Figure 1: Infrared spectrum [1].

calibrated thermal face images than that based on visible image [101, 103]. The

experiments in [27] show that the face recognition based on thermal images degrades

more significantly than visible images when there is a substantial passage of time

between the acquisition of gallery images and probe images. This result was proved

to be reproducible by [102]. However, it is shown that with a more sophisticated

recognition algorithm the difference of recognition performance across time based on

thermal face and visible face is small.

Despite the independence of visible light, the thermal imagery has its own dis-

advantages. The temperature of the environment, physical conditions and psycho-

logical conditions will affect the heat pattern of the face [11]. Meanwhile, the in-

frared is opaque to eyeglasses. All the above motivate the fusion of thermal infrared

image with visible images for face recognition. Various fusion schemes have been

proposed [11, 27, 62, 102] and shown to lead to better performance than the recogni-

tion based on either modality alone. The thermal face recognition experiments are
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usually conducted on the face database from the University of Notre Dame [27] or

the Equinox face database [1]. The former contains the visible spectrum images and

LWIR images of 240 subjects without glasses, but with different lighting and facial

expressions. The latter was collected by Equinox Corp. and contains the visible im-

ages and LWIR images of a total of 115 subjects. In [60], thermal face recognition is

performed in an operational scenario, where both indoor and outdoor face data of 385

subjects is captured. When the system is trained on indoor sessions and tested on

outdoor sessions, the performance degrades no matter whether one is using thermal

imagery or visible imagery. However, the thermal imagery substantially outperformed

visible imagery. With the fusion of both modalities, the outdoor performance can be

close to indoor face recognition.

2.2.2.2 Active Near-IR Illumination

The Near-IR band falls into the reflective portion of the infrared spectrum, between

the visible light band and the thermal infrared band. It has advantages over both

visible light and thermal infrared. Firstly, since it can be reflected by objects, it can

serve as an active illumination source, in contrast to thermal infrared. Secondly, it

is invisible, making active Near-IR illumination unobtrusive. Thirdly, unlike thermal

infrared, Near-IR can easily penetrate glasses.

Pan et al. [80] performed face recognition in hyperspectral images. A CCD cam-

era with a liquid crystal tunable filter was used to collect images with 31 bands over

near-infrared range. It was shown the hyperspectral signatures of the skin from dif-

ferent persons are significantly different, while those belonging to the same person are

stable. Above 91% rank one correct identification rate is obtained in the recognition

experiments on frontal hyperspectral face images.

Most recently, Li et al. [69] proposed a face recognition system based on active

Near-IR lighting provided by Near-IR Light-Emitting Diodes(LEDs). The Near-IR
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face image captured by this device is subject to a monotonic transform in the gray

tone, then LBP feature is extracted to compensate for this monotonic transform to

obtain an illumination invariant face representation. Zhao and Grigat [128] performed

face recognition in Near-IR images based on Discrete Cosine Transform(DCT) feature

and SVM classifier. Although infrared image is invariant to visible illumination, it

is not independent of the environmental illumination. This is because environmental

illumination contains energy in a wide range of spectrum, including infrared. The

variation of the infrared component in the environmental illumination will impose

variation in the captured image.

One solution to maximize the ratio between the active source and the environmen-

tal source is to apply synchronized flashing imaging by Hizem et al. [52]. A powerful

active illumination source is desirable. Illuminants such as LEDs can provide very

powerful flash but only for very short time to avoid the internal thermal effects which

might destroy the LEDs. The idea in Hizem et al. [52] is to synchronise the sensor

exposure time with the powerful flash. The sensor is exposed to the environmental

illumination only for the same short exposure time as the flash. Since the power of the

flash is usually much stronger than the environmental illumination, the contribution

of the environmental illumination to the captured image will be minimised.

Nevertheless, the illumination variation problem can only be alleviated but not

completely solved by the above mentioned approach. For indoor environment, the

infrared energy in environmental illumination is low and will not cause much problem,

while in outdoor environment, the infrared energy can be very strong.
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CHAPTER III

NEAR INFRARED FACE RECOGNITION

3.1 Overview

The goal of this chapter is to provide a consumer grade biometric with NIR face recog-

nition. Due to restrictions on the mathematical capabilities of the consumer grade

hardware, proven algorithms of low complexity such as intensity based segmentation,

cross correlation, principal component analysis (PCA) and linear discriminant anal-

ysis (LDA) are used since they will work well in conjunction with the provided NIR

band limited CMOS imager. As a result, the volume of silicon used in manufacturing

will be far less than of digital hardware with very low production costs, e.g. US $5

or less.

Research has already been done in the field of face detection and recognition; for

detection, some of the computationally less intensive approaches use variations of

skin color matching or shape detection based on pre-defined databases. Other more

intensive approaches use Support Vector Machine, multi layer Probabilistic Neural

Networks and Wavelets. Since these are application based approaches, some of the

assumptions made are ad-hoc and cannot be generalized towards a particular ap-

proach [74], [92], [60]. In our system, near infrared (NIR) of a wavelength of 940 nm

was chosen as an illumination source. Prior research has been done on detection using

mid and long wave IR (thermal imaging) [63]. Solid state NIR emitters are inexpen-

sive, and bright enough to provide a fill in for shadows during daytime operation, or

to provide total face illumination at night. Although the illumination is invisible to

the subject being imaged, most CMOS based imagers have a high degree of sensitivity

at these wavelengths. A low cost system using NIR illuminators and a CMOS based
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imager with integrated electronics to perform the recognition algorithms should be

practical.

To achieve the goal, the most indispensable tasks are included in the system

which is face detection, eye detection and recognition. Figure 2 illustrates how the

subsystems are interconnected in the overall system. Cluster analysis in face detection

part decides whether the input video frame has a face. If a face is present, the face

region is passed to eye detection otherwise the frame is disregarded. Eye detection

performs boundary analysis on the face image and extracts eye coordinates. Accurate

positioning of eyes is indispensable to make the face recognition work. The face image

is preprocessed based on the eye locations. And finally identification is made based

on the result of face recognition. A detailed functional description of the algorithms

for the subsystems is given in the following sections relating them to previous work

in each area.

Figure 2: System flowchart.

In order to train and test each subsystem and the end to end system, data was

acquired in the form of video captures that simulated a person sitting in the driver’s

seat of a vehicle, fastening the seat belt and starting to drive with mild body move-

ments. Two videos were acquired of each of the four subjects tested, with each video

containing approximately 1000 frames. The videos are in grey scale and the frame

size is 320 by 240. A simple off the shelf imager coupled with an optical IR filter was

used to obtain the video stream.

24



3.2 Face Detection

Visible and NIR light obey the Inverse Square Law which states that brightness of

the light source is inversely proportional to the square of its distance [2]. Using

this property, one can observe that objects closer to the light source will be more

illuminated than those farther away. Consider a person located near the lighting

source, this will cause the person to “glow” or be saturated as compared to the

background. Our face detector is based on this phenomenon. We assume that after

converting a gray level image with a face to a binary image by thresholding, the

largest cluster of white pixels (which are corresponding to the intensity values larger

than a threshold value in the gray level image) is a face or an upper body including

a face.

The face detection subsystem has three steps: thresholding, cluster analysis, and

the final decision step. In the cluster analysis step, a simple erosion and dilation is

performed on the binary image to rid any stray pixels that could be present because

of noise (Fig. 3). Next, the various clusters are collected with centers computed for

each cluster using median information on each axis. The cluster that is closest to

the center of the frame is of interest to us. We choose this cluster because the driver

of a vehicle is going to be located near the center of the camera’s view and sitting

in an upright vertical position. The median is preferred over the mean because the

median will be directed towards the center of a concentration of pixels and is not

easily steered away by stray pixels.

The selected cluster belongs to one of three categories under the assumption men-

tioned above: face, upper body (including the face), or neither of them. The category

that the cluster belongs to is determined in the final decision step with statistical mea-

sures of face dimensions: height and width. In the first pass, the cluster height is

compared to it’s statistical value to decide the category of the cluster. The details

are shown below.
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Figure 3: The original images on the top row and the thresholded binary images on
the bottom row.

select cluster height

Case ≥ mean height + 2 × standard deviation

Possible upper body (including face);

Case ≤ mean height + 2× standard deviation

Possible face;

Case default

Neither;

end select

Given that the classification results in a possible face, we use the height of the

cluster combined with the statistical measure of the aspect ratio to determine the
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width. The face region with the height and width is extracted from the image. Given

that the classification results in a possible upper body, the proper face region in the

upper body cluster is extracted as the pseudo code below. If no face is found in either

of two cases, we decide that there is no face in the image.

if cluster is classified as body

face width = distance between points at location ( mean

height ÷ 2 + top of cluster)

if face width < mean width + 3 × standard deviation

Face region found;

endif

Approximately 200 face images were manually extracted from the 7 videos. The

binary image threshold was set to one standard deviation less than the mean of the

pixel intensity values of the face images, which allows us to segment images with

low illumination. The face images also serve as training data to get statistics of face

dimensions.

The 7 videos were tested to verify the accuracy of the face detection. To perform

this task successfully, each frame was visually inspected by one of the authors. Table

1 shows the result for each video. The detection rate varies from 87.28% to 99.81%.

Figure 4 shows sample results of the face detection.

Table 1: Face detection success rates.

Video Total Frames Frames with
faces present

Frames with
faces incor-
rectly detected

Frames with
face correctly
detect

Detection Rate
(%)

1 1088 931 45 813 87.28
2 1128 1046 2 1044 99.81
3 750 690 11 678 98.26
4 1342 1126 2 1116 99.11
5 563 462 5 410 88.74
6 1324 1168 0 1146 98.12
7 747 676 21 618 91.42
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Figure 4: Sample results of the face detection using thresholds.

3.3 Eye Detection

A large amount of work has been done on finding facial features like eyes. One

approach is to locate the eyes in images without locating the face [64]. Another

approach is to use a combination of physiological properties of the eyes, Kalman

trackers to model eye/head dynamics, and a probabilistic appearance models to locate

the eye appearances [49].

The eye location algorithm is implemented on images from which the background

is cropped out leaving only the face. The eye co-ordinates are used to perform the

required transformation on the face image. Thus, all the face images are centered

based on the eye coordinates in the preprocessing step before they are sent into the

recognition system.

Binary representations of the face images were utilized to outline the face and

eyes. The exterior boundary points of the binary face were determined, as well as the

boundaries of holes inside the face by using 8-connected neighborhood connectivity. It

is assumed that the eyes were the largest objects in the upper face region. Therefore,

only the set of boundary points is chosen which contains the largest number of points.

Once the face is outlined the upper half of the face is analyzed to locate the eyes.

Either the left eye or right eye is detected first. This can be determined from the x
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location of the first eye compared to the vertical midline of the face. Based on which

eye is detected first, the left upper region or the right upper region of the face is

utilized to search for the second eye (See Fig. 5). The accuracy of the eye detection

was verified by the visual inspection of 4 test videos by one of the authors (Table 2).

The detection rates of eyes are lower than the detection rates of faces because the

pixel intensity difference between eye regions and face regions is not as large as the

pixel intensity difference between face regions and background regions.

(a) Original (b) Binary

Figure 5: Eye detection example.

Table 2: Results of the eye detection.

Video Face frames Correctly found
eyes

Incorrectly
found eyes

Incorrectly re-
jected eyes

Detection rate
(%)

1 662 393 249 20 59.37
2 374 268 98 8 71.66
3 564 441 99 24 78.19
4 375 242 121 12 64.53

3.4 Face Recognition

Among many approaches to the problem of face recognition, appearance based sub-

space analyses is one of the oldest approaches delivering the most promising results.

Two of the more popular appearance based subspace analysis are Eigenface methods
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which are equivalent to Principal Component Analysis (PCA) and Fisherface meth-

ods which are the combination of PCA and Linear Discriminant Analysis (LDA).

PCA finds a set of the most representative projection vectors such that the projected

samples retain most information about the original samples [107]. On the other hand,

LDA uses the class information to find a set of vectors that maximize the between-

class scatter while minimizing the within-class scatter [12].

Before further explanation we will clarify the terms for the data sets used in the

recognizer. The recognizer finds an adequate subspace using a set of face images

labeled with the subject’s identity, which we will call the training set. After the

subspace is trained, unlabeled face images (test set) are to be identified as one of the

subjects whose face images are given (gallery set). Figure 6 shows the face recognition

flowchart including the usage of image sets.

LDA 

Learning

Training

Images

LDA

Projection

Gallery Images

Test Images

Gallery LDA Features

Test LDA Features

Minimum 

Distance

Figure 6: Face recognition flowchart.

An experiment was performed to determine if a training set built from subject

images not in the gallery set could result in recognition performance close to that of a

recognizer using a training set built from actual gallery images. Frontal face images of

CMU PIE database [98] are used as the training set that is different from the gallery

set. The training set has approximately 170 images for each of the 68 subjects. 4

videos of 4 subjects in our data set are used for gallery set and the remaining 4 videos

are used for test set. Eigenface methods and Fisherface methods are applied to both
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cases. Figure 7 shows the recognition rates on various numbers of coefficients. It

shows that the recognition rate for the case when CMU PIE database is used as a

training set is almost as good as the case when the gallery set is used as a training set

for both of subspace methods. Since the difference is less than 10%, we can say that

the CMU PIE images are good enough as the training set of our application. The

result also confirms that Fisherface methods perform better than Eigenface methods.

Figure 7: Recognition hit rates comparison.

Before subspace methods are applied to the detected face images in the video

frames, the images go through a preprocessing step. It includes geometrical transfor-

mation, masking and pixel value normalization. Geometrical transformation processes

the face images so that eyes are located in the predefined positions. Masking takes

pixels inside the face boundary. And the pixel values are normalized so that they

have 0 mean and 1 standard deviation.

Preprocessed images are projected on the Fisherface subspace and minimum dis-

tance calculated between the projected test data and the mean values of the projected

gallery data of each subject is applied to identify the test subjects of the images. The

minimum distance method is equivalent to the maximum likelihood decision assuming

that the distributions of all the subjects are equal and priors are equal. The decisions
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on the frames from the beginning of the video to the current frame are used to vote

the overall decision.

The projected test data are also used to decide whether the preprocessed image

comes from a frontal pose or not. If the image is not a frontal face, the projected

test data will have a distance from origin of the subspace larger than that of a frontal

face. A simple threshold can be used to reject the image. This approach is similar to

the method mentioned in [107] but different. The authors suggest using the distance

from a data point in the image space to the face space as a measure for face detection.

But what we use is the distance from a point to the origin in the Fisherface subspace.

3.5 System Results and Discussion

We performed an end to end evaluation of our system using the 8 videos of 4 subjects,

which was introduced in Section 3.1. Considering each subject as a member of a family

of four, the goal is to recognize which one of the 4 is sitting in the driver’s seat of a car.

The overall voting ratios on all the subjects at the final frames of videos are shown

in Table 3. Since all videos have the maximum voting ratios on the corresponding

subjects,it is concluded that all the subjects are successfully identified at the end of

videos. Specifically, video 1 and 3 shows relatively high detection ratios compared

to the others. The Graphs shown in Fig. 8 illustrate the change of voting results

over all the video sequences. Video 1, 3 and 4 indicate that the voting ratios are

stabilized after the 400th frame approximately. Detection ratio of video 2 is high

at the beginning of the sequence but then begins to decrease. To figure out the

difference between the results, we examined the videos and came to find that the

subject in video 4 is in frontal position at the beginning of the video but it moves

actively as time progresses. That explains why the detection ratio is decreased over

time.

Additional tests were conducted to evaluate the performance of subsystems (Table
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Table 3: Voting ratios of 4 videos.

Video Subject in Video Subject 1 Subject 2 Subject 3 Subject 4

1 1 0.618 0.050 0.222 0.044
2 2 0.005 0.570 0.163 0.247
3 3 0.078 0.033 0.843 0.028
4 4 0.027 0.099 0.281 0.556

(a) Video 1 (b) Video 2

(c) Video 3 (d) Video 4

Figure 8: Change of voting ratios over the sequence of frames.

4). In the first test, the recognition part of the system is only evaluated with manually

specified eye locations on manually determined frontal face frames. In the second

test, performance of the overall system is measured on manually detected frontal face

frames. And in the third test, performance of the overall system is assessed on all

frames of videos. The result of the first test is equivalent to the performance of the

face recognition subsystem. If the face and eye detectors find the locations accurately
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Table 4: Detection ratio comparison for additional tests.

Video test 1 test 2 test 3

1 0.956 0.854 0.618
2 0.662 0.591 0.570
3 0.948 0.947 0.843
4 0.969 0.709 0.556

in the presence of face, the difference between the results of test 1 and 2 would be

unnoticeable. If the overall system has low false alarm rate, the difference between

the results of test 2 and 3 would be insignificant. From the results, we finally conclude

that the face recognition subsystem shows a high detection rate. And the difference

between the results of test 1 and test 2, and the difference between the results of

test 2 and test 3 cannot be decided to be significantly indifferent. Therefore, the

face and eye detection subsystems find face with enough accuracy to get a correct

identification result in a small group of subjects, but they need to be improved for

larger dataset.

This chapter presented a consumer grade biometric system based on face recog-

nition using infrared imaging, with a successful detection result in a small group of

subjects. This low cost approach is intended for practical, high volume applications

where the distance is minimum and controlled, such as automotive applications and

hand held devices. The results can be further improved by increasing the accuracy

of the eye detection and the frontal pose detection. Future work will address how

to deal with other sources of variations such as illumination, facial expression, and

occlusion.
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CHAPTER IV

FACE RECOGNITION WITH ACTIVE NEAR

INFRARED IMAGE DIFFERENCING

4.1 Overview

Despite many years of active research on the topic, illumination invariant face recog-

nition remains a very difficult and challenging problem. In outdoor environments, for

example, lighting conditions vary dramatically throughout the day and from one day

to the next. In addition, there may be unknown and highly variable shadows that are

cast by static or moving objects. Despite the abilities of humans to recognize faces

under these conditions, current face recognition algorithms perform very poorly. Face

recognition becomes even more difficult when face recognition must be robust to pose

and expression variations.

One approach that has been studied to solve the illumination problem in com-

puter vision systems is to extract features that are invariant to lighting changes.

Unfortunately, however, Chen et al. showed that there are no illumination invariant

discriminative functions for an object with Lambertian reflectance [23]. Shashua and

Riklin-Raviv [95] reported that the quotient image, i.e., the image ratio between a test

image and linear combination of three non-coplanar illuminated images, depends only

on the albedo information, which is illumination free. Jobson, et al., [58] proposed the

Multiscale Retinex (MSR) method, which reduces the effect of illumination by using

the ratio of the original image to its smoothed version. The self-quotient image (SQI)

model [114] is similar but uses a weighted Gaussian filter to obtain the smoothed

version. In [25], the authors proposed a logarithmic total variation (LTV) model to
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improve SQI using the edge-preserving capability of the total variation model. Au-

thors in [126] proposed illumination insensitive measure called Gradientfaces using

the ratio of the vertical derivative to the horizontal derivative. Wang et al. [113]

proposed Weberfaces method which uses the ratio between local intensity variation

and the original pixel value. However, the underlying assumption of a Lambertian

model is too simple to describe the real face surface under various illuminations [120]

and these methods are unstable in complicated situations when other uncontrolled

variations are mixed in [66]. Furthermore, since these methods are sensitive to noise,

images are smoothed first with Gaussian kernel filter beforehand.

A completely different approach to illumination-robust face recognition is based

on building appearance-based face models that try to model varying illumination

explicitly instead of trying to be invariant to it. The main idea behind these model-

based approaches is to treat the human face as a Lambertian surface and to find a

mathematical description of all images it can produce under all possible illumina-

tions. One such basic model is the illumination cone model proposed by Belhumeur

and Kriegman, which states that, when cast shadows are ignored, Lambertian sur-

faces produce images that lie in a convex polyhedral cone in the image space [14].

Unfortunately, this cone model is very complex to build, providing motivation to

search for simpler models that approximate it in the best possible way with minimum

complexity. Previously proposed techniques include a spherical harmonics represen-

tation independently proposed by Ramamoorthi [85] and Basri and Jacobs [8] and a

segmented linear subspace model proposed by Batur and Hayes [10]. Although these

methods have achieved a degree of success in some face database such as Yale and

CMU PIE, they need a large volume of gallery face images under various illumination

conditions which cannot be achieved in many practical applications [120].

Other directions have also been explored to overcome problems caused by illumi-

nation changes. One direction is to use 3D (in many case, 2.5D) data obtained from a
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laser range scanner or 3D vision method [131]. Because such data captures geometric

shapes of face, such systems are less affected by environmental lighting. Moreover, it

can cope with rotated faces because of the availability of 3D (2.5D) information for

visible surfaces. The disadvantages are the increased cost and slowed speed as well

as specular reflections [69]. More importantly, it is shown that the 3D method may

not necessarily produce better recognition results: recognition performances achieved

by using a single 2D image and by a single 3D image are similar [21]. A commercial

development is A4Vision [123]. It is basically a 3D (or 2.5D) face recognition sys-

tem, but it creates 3D mesh of the face by means of triangulation based on an NIR

light pattern projected onto the face. While not affected by lighting conditions, back-

ground colors, facial hair, or make-up, it has problems in working under conditions

when the user is wearing glasses or opening the mouth, due to limitations of its 3D

reconstruction algorithm.

Rather than trying to solve the problem of dealing with illumination variations in

the visible band, another approach is using modalities other than the visible spectrum

where illumination variations may be less or where variations may be more easily con-

trolled or compensated such as infrared spectrum [20, 43]. The infrared spectrum is

further categorized into four sub-bands: near infrared (NIR, 0.75 1.4µm), short wave

infrared (SWIR, 1.4 3µm), medium wave infrared (MWIR, 3 8µm), and long wave

infrared (LWIR, wavelength 8 15µm). The LWIR spectrum is also refered to as ther-

mal infrared since the spectrum corresponds to thermal radiation from objects near

room temperature, including the human body which is slightly higher than room tem-

perature. Face recognition methods using the thermal infrared shows robustness on

ambient illumination changes in visible band [43]. However, thermal infrared images

are not robust on environmental temperatures and the physical, emotional and health

condition of the subject. And another problem of thermal infrared is that it is opaque

to eyeglasses. On the other hand, NIR has advantages over both thermal infrared
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and visible light. First, it is invisible to human eyes but falls into the reflective range

of the infrared spectrum. Therefore, it is possible to build an unobtrusive night-time

vision system with active NIR illumination such as NIR light-emitting diodes (LEDs).

In day time when there is ambient NIR illumination from the sun, the active NIR

illumination sources that are typically mounted near the camera lens illuminate the

face from the frontal direction and provide more controlled illumination condition.

Second, most CCD and CMOS imaging devices show reasonable responses to NIR,

enabling low cost implementation of the system. Third, unlike thermal infrared, NIR

is independent of the body temperature and can easily penetrate glasses. Authors

in [128] present an NIR-based face recognition system using discrete cosine trans-

form coefficients as features and a support vector machine as the classifier. A linear

discriminant analysis-based face recognition system with NIR illumination was pro-

posed in [59]. Li, et al., [69] present an indoor illumination-invariant face recognition

system using local binary features. In [39], authors propose NIR face recognition by

combining Zernike moments and undecimated discrete wavelet transform. However,

as the authors reported in [69], these approaches are not suitable for outdoor face

recognition due to the strong NIR component in sunlight.

NIR has also been used for eye tracking and gaze analysis. Such systems are

based on the specular and retroreflective response of human eyes to active NIR

illumination [28, 36, 37, 54]. Recently, robust eye tracking methods have been de-

veloped that are based on the bright/dark pupil images with a differential lighting

scheme [47, 48, 133]. Here, several LEDs are placed next to the camera lens, consid-

ered to be on the camera axis, and several additional LEDs are placed away from the

camera lens and are considered to be off-axis. Common approaches using this setup

involve the subtraction of two consecutive video frames with different illuminations

and then applying a threshold to the difference image to obtain a binary image. Then,
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a connected component analysis is applied to get initial eye pupil candidates. Unfor-

tunately this technique relies on the experimental setup to be placed in a controlled

environment such as a laboratory or dark room where the background or lighting

does not change, thus allowing the bright pupil effect to be prevalent. In addition,

for daytime operation, the intensity of the IR present in sunlight far exceeds that of

most artificial illuminators, thus hiding the bright spot in the eyes and causing the

bright pupil effect-based eye detector to fail.

4.2 System and Hardware

A high-level overview of the system described in this chapter that performs the task

of person identification for vehicle personalization is shown in Fig. 9. At the front end

is the video hardware that produces a video of the driver that is to be identified. As

discussed in previous sections, uncontrolled illumination is a major problem for face

detection and recognition systems. Therefore, in order to achieve high recognition

rates during the day as well as at night, in uncontrolled environments, this system

operates in the NIR frequency spectrum, with NIR illumination provided by an array

of IR LEDs. Since CCD and CMOS image sensors are sensitive to NIR, which is

just above the frequency range that is visible by the human eye, the driver may be

illuminated by an IR source non-invasively and video recorded by a camera that is

sensitive in the NIR band. The IR source compensates irregular illumination con-

ditions by providing additional illumination when there is not enough ambient light

and filling in shadow regions when there are deep cast or attached shadows on the

face. Ambient light outside of the NIR band can be removed by an optical filter to

further reduce the ambient illumination variation.

A commercially available IEEE1394a camera, Point Grey Research Flea2 with

Sony ICX424AL monochrome CCD, was used for imaging. Figure 10 shows the spec-

tral sensitivity characteristics of the CCD. Since the sensitivity of the CCD decreases
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Figure 9: System overview flowchart.

as the wavelength is increased in the NIR band, the minimum wavelength that is

invisible to human eyes is preferred. It is commonly reported that humans cannot see

beyond 700 nm, but self-conducted visual tests in the laboratory proved the threshold

to be approximately 850 nm. Therefore, NIR LEDs with a high output at 880 nm

and an approximate half-power bandwidth of 60 nm were selected (Fairchild Semi-

conductor QED223). The camera lens was fitted with an 880 nm optical band pass

filter with a filter response, as shown in Fig. 11. For illumination, a rectangular ar-

ray of 42 LEDs in seven parallel networks was placed around the camera, as shown

in Fig. 12(a). The overall light output from the circuit can be controlled by a DIP

switch on the front of the mount to selectively enable any of the seven networks of

LEDs. Figure 12(b) shows the experimental setup of the camera and illuminator in

a vehicle. Monochrome video is captured at 640x480 pixel resolution. The available

I/O ports on the camera are used to drive the LEDs synchronously with the camera

shutter.

During video capture, the LED array is pulsed by a control signal from the camera

to produce an alternate sequence of the illuminated frames (called “I-frames”) and

ambient frames (called “A-frames”). The illuminated and ambient frames are used

in image differencing to make face recognition more robust to extreme illumination

variations and shadows. Under ideal conditions, with no movement of the face, the

difference between the illuminated and ambient frame (called “D-frame”) will be
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Figure 10: CCD response of the Flea2 camera.
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Figure 11: Band pass filter response.
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LED Array Camera + IR Filter

DIP switch
(a) (b)

Figure 12: (a) Illustration of hardware components (b) Camera and illuminator
installed in a vehicle.

similar to a night-time image that is captured with the LED array turned on. In

other words, the image differencing method will give face images that are illuminated

only by the LEDs, thereby removing the unknown and highly varying ambient IR

light as well as shadows that are cast by visors, mirrors, and other objects. As a

result, the difference frame will have much less illumination variation compared to a

face that is illuminated with a combination of outdoor light plus the IR-LED array.

With image differencing, since the dynamic range of the difference image will be

smaller than that of the original image, a higher bit depth is necessary in the original

image. Therefore, 12-bits per pixel were used for image capture. Example frames are

shown in Fig. 13. Figure 13(a) shows a ambient frame with a strong shadow that

is cast by the car roof and Fig. 13(b) shows an illuminated frame. The difference

frame that is formed by a point-wise pixel subtraction of the image in (a) from that

in (b) is shown in Fig. 13(c), and Fig. 13(d) shows the same difference image after it

has been scaled to increase the dynamic range of the pixels. Note that the difference

frame is similar to what we would expect to find at night with the only source of IR

illumination coming from the LEDs. Also note that in the difference frame, part of

the shirt is very dark. This is due to the fact that the pixel intensities of both the
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(a) Ambient frame (b) Illuminated frame (c) difference frame (d) normalized differ-
ence frame

Figure 13: Example ambient, illuminated and difference frames are shown. Only the
image in (d) was normalized to be visualized in proper contrast.

illuminated frame and ambient frames in this area are saturated and the difference

is close to 0. Therefore, saturation should be avoided, if possible, by adjusting the

camera exposure. Also, it was observed that gamma correction in the camera should

be disabled in order to avoid nonlinear processing prior to image differencing. In the

difference frame, negative values were set to 0.

Referring to Fig. 9, the IR video frames from the IR imaging system are processed

through several steps to perform face recognition of the driver. First, the image dif-

ferencing between illuminated and ambient frames is performed. Then, the difference

frames are processed to separate the foreground objects, i.e., the candidate driver(s),

from the background. Next, the illuminated frames containing detected foreground

objects are checked for motion between frames. Still or near-still groups of frames are

sent on for further processing, while all others are rejected. The reason for discard-

ing frames that have motion is that when the image-differencing method takes place,

even a small amount of motion may severely affect the difference image and make it

difficult to perform face recognition. For those frames that have little or no motion,

the modified version of the boosted classifier proposed by Viola and Jones [71, 110]

is used to find the face of the driver only on the foreground region in the difference

43



frame. Then, preprocessing is done on the difference frames, such as image transfor-

mations and intensity normalization. Finally, linear discriminant analysis (LDA) is

performed to determine the identity of the driver for each frame. At the end of some

period of time, a decision is then made as to who the driver is. Each of these steps is

described in greater detail in the following sections.

4.3 Foreground/Background Segmentation

A foreground/background segmentation method is applied as an initial step toward

face localization. Since there is no standard definition of what is classified as fore-

ground or background, application-specific definitions need to be created. For this

vehicle personalization application, the area seen by the camera before the driver

enters the vehicle is defined as the background, and everything else is classified as

foreground.

The image-differencing method enables robust segmentation by applying a thresh-

old to individual pixels. When considering a single frame, e.g., an illuminated or an

ambient frame, there is no prior knowledge relating the intensities of the foreground

and background areas. Depending on current illumination conditions, background

areas may appear brighter than foreground areas or vice versa, making it difficult to

achieve appropriate conditions for segmentation. However, when considering a differ-

ence frame obtained from consecutive illuminated and ambient frames, there exists

prior knowledge about the pixel intensities, i.e., foreground pixels appear brighter

than background pixels. Ideally, in a static environment, the difference frame exag-

gerates the areas that are largely affected by the illumination from the LEDs. The

reason for this phenomenon can be explained using the physics of light. It is observed

that the intensity of light from the illuminators attenuates at a rate of 1
R2 , where R

is the radial distance from the illuminators to the area being illuminated [79]. Since

foreground areas are generally closer to the illumination source than background, they
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appear brighter. A threshold method can then be applied to classify pixel intensities

as background or foreground accordingly. If the intensity of a pixel is higher than the

threshold, then a pixel is classified as a foreground pixel; otherwise, it is classified as

a background pixel.

The initial step is to find a threshold value for comparison to each pixel in the

difference frame. The range of background pixel intensities can vary depending on

the camera settings and interior of the vehicle. But, there is a high probability that

the range of the intensities does not change over the length of the video. For this

reason, the maximum intensity value of the first difference frame in the video, i.e., the

difference frame of the background scene, is a good candidate for the threshold. But

the maximum intensity is not robust because it is easily affected by noise generated

from the camera, trembling of the vehicle, or outside moving illumination sources.

Consequently, 1.1 times the 99.9 percentile is used as the threshold.

The threshold value is used for the foreground/background segmentation of the

incoming difference frames from the video. At first, the difference frame is uniformly

downsampled by 8 to reduce computation time. A decrease in spatial resolution

is acceptable considering that the purpose of the segmentation process is only to

find approximate locations of candidate faces. The downsampled difference frame is

converted to binary after application of the threshold. A median filter is then applied,

followed by dilation and erosion to the binary image. An example showing a typical

sequence of images passing through this process is shown in Fig. 14.

In the median filter we used, each output pixel contains the median value from a

3-by-3 neighborhood centered on the corresponding pixel in the thresholded binary

image. And the structuring elements for dilation and erosion operations were circular

disks of radius 3. For further improvement, we could use one pass of a separable

recursive median filter of window width 3 or 5 instead of the non-recursive two-

dimensional median filter.
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(a) (b) (c)

(d) (e) (f)

Figure 14: Example images in the processing steps of the foreground/background
segmentation are presented. (a) The first difference frame with a background scene
(b) The current illuminated frame (c) The current difference frame (d) Thresholding
(e) Median filter (f) Dilation and erosion.

In addition, the median filter applied to binary data is a max of mins, or min of

maxes, corresponding to a majority logic gate where an AND gate corresponds to a

min operator and an OR gate corresponds to a max operator. Erosions and dilations

applied to binary images are also maxes and mins over the structuring elements.

Therefore, a simpler and faster method can be implemented combining the median,

dilation and erosion operations by considering the composition of these three logic

operators, which is another logic operator.

4.4 Motion Detection

Although the image-differencing method is used to solve many of the illumination re-

lated problems, it is very sensitive to motion between frames. In fact, if motion occurs,

the difference image is likely to contain random artifacts; hence, a motion detector

is required to determine the existence of motion between frames. Methods used in

MPEG-2, MPEG-4, Divx, and other motion-based codecs (compressor-decompressor)

serve to objectively quantify motion in a frame set; but these methods have a very
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high degree of computational complexity. The goal of the motion detector imple-

mented here is to suggest when to keep or reject frames using simple metrics. The

flowchart of motion detection is shown in Fig. 15. Motion detection runs on only

the illuminated frames since they are taken with better illumination conditions than

ambient frames.

Compute 
Motion Vectors

Sum All Vector 
Lengths

Motion
Present

Yes
Reject Frames

Video
Frames No Near still

video frames

Figure 15: Motion detection flowchart.

Given a frame pair, one frame is chosen as the reference frame, while the other is

chosen as the comparison frame. Motion vectors are computed by correlating areas

between the reference and comparison frame. As illustrated in Fig. 16, an M × N

block centered at a point (x, y) in the reference frame, referred to as a template

block, is correlated with corresponding blocks within a 2M × 2N search window in

the comparison frame, which is also centered at point (x, y). The best match is

determined by the maximum of the normalized cross correlation [68]:

γ(u, v) =

∑
x,y[f(x, y)− f̄u,v][t(x− u, y − v)− t̄]√∑

x,y[f(x, y)− f̄u,v]2
∑

x,y[t(x− u, y − v)− t̄]2
(1)

where f is the image within the 2M × 2N search window, t is the template block,

t̄ is the mean of the template, and f̄ is the mean of f under the template. For the

purpose of this work, M = N = 30 pixels. The distance between the location of the

largest correlation coefficient and the center of the search window defines both the

direction and amount of translation for the given block.

Once the driver is settled inside the vehicle, it is safe to assume that the driver’s

face will eventually be located near the center of the frame. Therefore, the normalized
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(a) (b)

(c) (d)

Figure 16: Finding a motion vector. (a) Reference frame with the template block
(b) Comparison frame with the corresponding search window (c) Best match between
the template block and the search window (d) Computed motion vector.

cross correlation given in Eq. (1) will be focused on finding motion vectors near the

center of the frame. As a result, motion vectors are computed within the area near the

center of the frame, as illustrated in Fig. 17, where the grid represents the locations of

the template blocks. Each block is correlated with its corresponding search window

to generate motion vectors. The collection of these motion vectors is referred to as

the motion field. An 11 × 11 grid of template blocks is used in this implementation

of the motion detector.

Once the motion field has been determined, the lengths of all the vectors are

summed together for use as a metric, β, to determine the amount of motion within
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(a) (b)

Figure 17: Motion fields. (a) A grid of template blocks (b) A motion field generated
by computing motion vectors for each template block in (a).

the frame.

β =
∑
i∈MV

`(i) (2)

where MV is the collection of motion vectors and `(i) is the computed length of the

ith motion vector using the L2 norm.

The training set for the motion detector consisted of 1,000 frame pairs that con-

tained little to no motion within each pair. The magnitude of the motion field for

each pair was computed using Eq. (2) and its distribution over the training set is

shown in Fig. 18. The exponential distribution shown in Fig. 19 was estimated based

on the mean of the distribution of the training set. The formula for the exponential

distribution is:

p(X) =
1

µ
e
X
µ (3)

where µ is the sample mean of the data set. After visually inspecting the results

on a small subset of the test data, the value corresponding to the 80% percentile (τ)

in the CDF (cumulative distribution function) for the exponential distribution was

chosen as a threshold to classify the presence of motion between the frames. The

empirical values used are:
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Figure 18: Actual distribution of the sum of lengths of motion vectors.
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Figure 19: Estimated exponential distribution based on the sample data.
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Near Still if β ≤ τ

Unknown or motion present if β > τ

If the motion field is classified as still, the corresponding reference frame is for-

warded to the face detector. Otherwise, it is rejected.

4.5 Face Detection

The face detector implemented in this system finds the face of the driver using the

difference frame. The search range of the face detector was narrowed down by the

foreground/background segmentation. Face detection is then performed using the

modified version of the boosted classifier proposed by Viola and Jones [71,111]. After

detection, the candidate face region is forwarded to the face recognition stage for

further processing. With the help of the image-differencing method, this face detector

is able to produce good results even in conditions of low or non-uniform illumination.

The fowchart of face detection is shown in Fig. 20.

Frontal 
Face 

Detection

Choose 
Largest 

Face

Face 
Detected Yes

No
Reject Frames

Video
Frames

Multiple 
Faces

Yes
Face

Region

No

Figure 20: Face detection flowchart.

Figure 21 shows face detection results on an example ambient, illuminated, and

difference frame triplet. The face detector failed to detect the frontal face in the am-

bient frame, and while the face in the illuminated frame was detected, the detected

face size was smaller than the actual face. On the other hand, the face detector was

successful when the difference frame was used. It was demonstrated experimentally,

in fact, that higher face detection rates are achieved using difference frames compared
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(a) (b) (c)

Figure 21: Face detection using Viola-Jones face detector [111]. In the figures above,
face detection is performed on (a) an ambient frame with no success (b) an illuminated
frame (c) a difference frame. In (b) and (c), the eyes are located based on size and
orientation of the detected face region.

with ambient and illuminated frames. Specifically, using 4302 ambient and illumi-

nated frame pairs with frontal faces from 10 video sequences, face detection results

of ambient, illuminated, and difference frames were manually determined. The error

rates are reported in Table 5. Here, a missed detection means that the face detector

fails to detect a frontal face, and a false detection means that the detected region is

not a face. All of the missed detections and false detections on the 4302 frames were

counted and the error rates reported. As we see from the table, the difference frames

have the lowest missed detection rates as well as the lowest false detection rates.

Not surprisingly, the ambient frames have the highest missed detection rates and the

highest false detection rates. From these results it is evident that LED illumination

improves the face detection rate and the image-differencing method further improves

the performance. When a single face is detected in the difference frame, it is cropped

and passed to the face recognition stage for further processing. If multiple faces are

detected, the largest face region is considered to be the face of interest and is passed

on to the next stage.

52



Table 5: Error rates of face detection for ambient, illuminated and difference frames.

Types of frames Ambient Illuminated Difference

Missed detection rate 0.1104 0.0463 0.0140
False detection rate 0.0122 0.0101 0.0094

4.6 Face Recognition

Among the many approaches used for face recognition, appearance-based subspace

methods are among the most popular, primarily due to their success in controlled

or semi-controlled environments and their computational simplicity. Two popular

appearance-based subspace analysis methods are Eigenface and Fisherface. Eigenface

is equivalent to principal component analysis (PCA) [108] and Fisherface is a combi-

nation of PCA and linear discriminant analysis (LDA) [13]. PCA performs dimension

reduction by finding a set of representative projection vectors such that a projection

of a sample set retains most of the information of the original sample set. On the

other hand, LDA uses the class information to find a set of vectors that maximize

the between-class scatter while minimizing the within-class scatter [33]. Fisherface

methods embody face recognition systems by using personal identities as class labels.

Prior research [13] shows that the Fisherface algorithms display higher accuracy in

recognizing faces under variable illumination conditions compared to the Eigenface

algorithm. If the training data set contains frontal face frames under various illu-

mination conditions for each subject, the subspace corresponding to the illumination

variation is minimized from the LDA space because LDA has the ability to maximize

the ratio of between-class scatter to within-class scatter. The success of LDA under

variable illumination is based on the fact that frames of a Lambertian surface under

varying illumination lie in a 3D linear subspace of the image space when cast shad-

ows are ignored [94]. The Lambertian surface images approximately lie in a 9D linear

subspace when attached shadows are taken into consideration [8].

All the images in the training and test data sets go through a preprocessing stage.
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This stage includes image registration, masking, and pixel value normalization. Image

registration is performed by rotating and scaling the face images in an attempt to

relocate the eyes to predefined positions. For the training set, eye locations are

manually found and the face images are rotated and scaled according to the eye

locations. For the probe and gallery images in the test set, face regions located by

the face detector are registered without rotating. Masking is then used to consider

only the pixels inside the face boundary. The pixel values are then normalized to have

zero mean and a unit standard deviation. Before normalization, the pixel intensities

are clipped at a level corresponding to the 99% percentile of the largest intensity

value in an effort to reduce the noise from specular reflectance. Specular reflectance

depends on the position of the illumination source relative to the face and should be

prevented in order to reduce dependency on illumination source factors.

Two experiments were performed to demonstrate the effectiveness of the image

differencing on face recognition with Fisherface in highly variable illumination con-

ditions. In the first experiment, face recognition rates are reported on face frames

with and without shadows cast by other objects, such as a car roof or a sun visor,

to show robustness under various shadow conditions. In the second experiment, face

recognition rates are reported on face images illuminated with three different LED

configurations: 6, 18, and 24 LEDs, to show robustness to changes in the intensity of

the active illumination source.

For the first experiment, near-frontal face frames of 40 subjects are manually

selected from the video stream (automatic detection of frontal face images is a subject

for the second phase of the development of this system). The frames are divided into

two subsets: face frames with shadows and face frames without shadows. The shadow

subset consists of 1885 triplets of face frames, where each triplet is made up of an

illuminated frame, an ambient frame, and a difference frame. Similarly, the no-shadow

subset consists of 1786 frame triplets. The total number of triplets for each subject
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varies. The eyes are located manually for each frame in the triplet sharing the same

eye locations. Face frames are registered, masked, and normalized in the preprocessing

step. Figure 22 (a) shows sample face triplets in the shadow subset and Fig. 22 (b)

shows sample face frame triplets in the no-shadow subset. In Fig. 22, each column is

a triplet corresponding to a subject. The first row corresponds to illuminated frames,

the second row corresponds to ambient frames, and the third row corresponds to the

difference frames. For every sample frame, it is evident that most of the shadow is

removed in its corresponding difference frame. Face recognition is then conducted

multiple times with randomly chosen frames and the average recognition rates are

reported for the cases of ambient, illuminated, and difference frames. The procedure

for this experiment is as follows: one frame for each of the 40 subjects is randomly

selected as a gallery frame from a particular subset. Similarly, another frame for each

of the 40 subjects is randomly selected as a probe frame from a particular subset.

Hence, the gallery and probe sets have 40 frames each referring to the 40 subjects.

Since there are two subsets (shadow and no-shadow) available for selecting the gallery

and probe frames, there are effectively four ways to collectively generate gallery and

probe sets, as shown in the first and second columns of the subtables in Table 6. 10,000

iterations of Fisherface recognition are performed on each of the four permutations

of the gallery and probe sets. After every iteration, a new gallery and probe set is

generated by randomly choosing frames from the subsets. The average recognition

rate of each permutation is reported in Table 6. The entire experiment is repeated for

different choices of the training data sets. The CMU PIE database [99] and CBSR NIR

database [69] are selected as candidate training data sets. The CMU PIE database

consists of more than 40,000 frames of 68 subjects from various ethnic groups and

also includes variations in both pose and illumination. Thirteen Sony DXC 9000 (3

CCD, progressive scan) cameras with gain and gamma correction disabled were used

for data acquisition. The CBSR NIR database has 3,940 NIR face frames of 197
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(a)

(b)

Figure 22: In (a) and (b), each column is a face frame triplet corresponding to a
subject. Each row corresponds to a type of frame; Row 1: Illuminated frames, Row 2:
Ambient frames, Row 3: Difference frame obtained by applying the image differencing
method on Rows 1 and 2. Two groups of face triplets are shown above, (a) Shadow
on the face of the subject, (b) No shadow on the face of the driver.

people of Asian ethnicity taken with NIR illumination fixed at 850 nm wavelength.

The first candidate training set was built using only frontal face frames from the

CMU PIE database, which accounted to approximately 108 frames per subject or

7,372 frames in total. The second candidate training set was built using face frames

without glasses from the CBSR NIR database, which amounted to approximately 17

frames per subject or 3,329 frames in total.

The two subtables in Table 6 show that the image-differencing method enables

a face recognition system that is robust to illumination variations. For the ambient

frames, the face recognition rate is high when the probe set and gallery set is built from
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Table 6: Face recognition experiment results using a variety of face images with and
without shadows.

Gallery Set Probe Set
Type of Frames

Ambient Illuminated Difference

No shadow No shadow 0.9987 1.0000 0.9987

Shadow Shadow 0.8261 0.8499 0.9729

No shadow Shadow 0.2656 0.4388 0.8933

Shadow No shadow 0.2739 0.5901 0.9537

(a) Face recognition rates using CBSR NIR database for training.

Gallery Set Probe Set
Type of Frames

Ambient Illuminated Difference

no shadow no shadow 0.9993 0.9987 0.9965

shadow shadow 0.7998 0.8313 0.9443

no shadow shadow 0.3361 0.3548 0.8752

shadow no shadow 0.2602 0.4259 0.8261

(b) Face recognition rates using CMU PIE database for training.

the same subset, i.e., the shadow subset or the no-shadow subset. The face recognition

rate is low when the probe and gallery set are built from different subsets. It is

observed that LED illumination itself improves recognition rates from the fact that

recognition rates of illuminated frames are higher than those of the ambient frames for

all cases. The recognition result of difference frames shows significant improvement

over illuminated frames especially when comparing shadow and no-shadow frames.

Training with the CBSR NIR database showed better results than training with the

CMU PIE database because the CBSR NIR database is made up of NIR frames and

the CMU PIE database is made up of visible light frames.

The difference in the face recognition rates is further analyzed using the one-way

analysis of variance (ANOVA). The objective of the ANOVA test is to verify that the

mean face recognition rates achieved when using the illuminated, the ambient, and
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difference frames are significantly different at the 0.05 confidence interval. As shown

in Table 6, each of the four permuations output three recognition rates corresponding

to the different types of frames: the illuminated, the ambient, and the difference

frame. To prepare the data for computing ANOVA, the recognition rates of the four

permutations are averaged for each type of frame over all experiments. Table 7 (a)

shows the resultant ANOVA table when CBSR NIR database is used for training

and Table 7 (b) shows the resultant ANOVA table when CMU PIE database is used

for training. Observing the results in Table 7 (a) and (b), it is evident that the H0

hypothesis can be easily rejected because the mean recognition rates recorded when

using the illuminated, the ambient, and the image differencing are in fact significantly

different. This is also in accordance with the result in Table 7 (a) and (b) that

’Prob>F’ is less than 0.05, and, as a consequence, rejects the hypothesis.

Table 7: Analysis of variance for experiment 1.

Source SS df MS F Prob>F

Columns 681.215 2 340.607 276435.38 0

Error 363961 29997 0.001

Total 718.175 29999

(a) ANOVA Table for CBSR NIR database

Source SS df MS F Prob>F

Columns 555.102 2 277.551 206053.16 0

Error 40.406 29997 0.001

Total 595.507 29999

(b) ANOVA Table for CMU PIE database

The difference in the recognition rates is further analyzed using the 2-way Analysis

of Variance (ANOVA). In the 2-way ANOVA, two tests are performed; the first test is

a ’column-wise’ test and the second test is a ’row-wise’ test. In the column-wise test,

the recognition rates for a particular experiment are tested for consistency between
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the two databases, and, in the row-wise test, the consistency in the recognition rates

for the different experiments is tested. The 2-way ANOVA is used to verify the

rejection of the H0 hypothesis at the 0.05 confidence level across both, the choices

of the different experiment setups (row-wise test), and, the choices of the training

databases (column-wise test). Table 7 (a) shows the data used for computing ANOVA

and Table 7 (b) shows the results of experiment using ANOVA. From the results, it

is evident that the H0 hypothesis can be rejected for the row-wise test because the

mean recognition rates recorded for the various experiment setups are significantly

different at a 0.05 confidence interval. This result is further supported using Tukey’s

procedure (the T-Method) [29]. It is also evident that the H0 hypothesis cannot be

rejected at the 0.05 confidence interval for the column-wise test. This implies that

the differences in the recognition rates achieved by running the various experiments

are more significant that the differences achieved by running the same experiment

using different training databases.

The second experiment follows a procedure similar to the first experiment. The

test frames are divided into three subsets corresponding to three different LED con-

figurations: 6, 18, and 24 LEDs. The illumination variations in the test set are also

increased by including horizontally mirrored frames in each subset. With the mir-

rored frames included, the six LED subset now consists of 2338 frame triplets, the

18 LED subset consists of 2236 frame triplets, and the 24 LED subset consists of

2210 frames triplets. Figure 23 shows sample face frames in the 6, 18, and 24 LED

subsets. For every sample frame, it is evident that most of the shadow is removed in

its corresponding difference frame.

Face recognition is then conducted multiple times with randomly chosen frames,

and the average recognition rates are reported for the cases of ambient, illuminated,

and difference frames. The procedure for this is as follows: one frame for each of

the 10 subjects is randomly selected as a gallery frame from a particular subset.
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(a)

(b)

(c)

Figure 23: In (a), (b) and (c), each column is a face frame triplet corresponding
to a subject. Each row corresponds to a type of frame; Row 1: illuminated frames,
Row 2: ambient frames, Row 3: difference frame obtained by applying the image
differencing method on Rows 1 and 2. Three groups of face triplets are shown above,
(a) Face illuminated with 6 LEDs, (b) Face illuminated with 18 LEDs, and (c) Face
illuminated with 24 LEDs.
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Similarly, another frame for each of the 40 subjects is randomly selected as a probe

frame from a particular subset. Hence, the gallery and probe sets have 10 frames,

each referring to the 40 subjects. Since there are three subsets (6, 18, and 24 LED

configuration) available for selecting the gallery and probe sets, there are effectively

nine ways to collectively generate gallery and probe sets, as shown in first two columns

of the subtables of Table 8. Table 8 (a) reports average recognition rates when the

CBSR NIR database is used to build the training set and Table 8 (b) reports average

recognition rates when the CMU PIE database is used to build the training set. For

both cases, the image differencing shows an increase in the recognition rates compared

to the illuminated and ambient frames. There does not appear to be a relationship

between active illumination intensities and recognition rates. This result is surprising

considering that there appears to be a significant amount of noise present in the 6

LED subset, but the recognition performance seems to remain unaffected.

The difference in the face recognition rates is further analyzed using the 1-way

Analysis of Variance (ANOVA). The objective of the ANOVA test is to verify that

the mean face recognition rates achieved when using the illuminated, the ambient

and the image-differencing method are significantly different at the 0.05 confidence

interval. As shown in Table 6, each of the 4 permutations output 3 recognition rates

corresponding to the different types of frames; the illuminated, the ambient and the

Difference frame. To prepare the data for computing ANOVA, the recognition rates

of the 4 permutations are averaged for each type of frame over all experiments. Table

7 (a) shows the resultant ANOVA table when CBSR NIR database is used for training

and Table 7 (b) shows the resultant ANOVA table when CMU PIE database is used

for training. Observing the results in Table 7 (a) and (b), it is evident that the

H0 hypothesis can be easily rejected because the mean recognition rates recorded

when using the illuminated, ambient and the image-differencing method are in fact

significantly different. This is also in accordance with the result in Tables 7 (a) and
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Table 8: Face recognition experiment results using face images with a variety of
active illumination settings.

Gallery Set Probe Set
Type of Frames

Ambient Illuminated Difference

6 LEDs 6 LEDs 0.7225 0.7753 0.8989

6 LEDs 18 LEDs 0.6955 0.6825 0.8597

6 LEDs 24 LEDs 0.6824 0.6725 0.8870

18 LEDs 6 LEDs 0.6801 0.7480 0.8733

18 LEDs 18 LEDs 0.6856 0.7547 0.8582

18 LEDs 24 LEDs 0.6787 0.7617 0.8760

24 LEDs 6 LEDs 0.6885 0.7493 0.8866

24 LEDs 18 LEDs 0.6785 0.7690 0.8868

24 LEDs 24 LEDs 0.6935 0.7745 0.9035

(a) Face recognition rates using CBSR NIR database for training.

Gallery Set Probe Set
Type of Frames

Ambient Illuminated Difference

6 LEDs 6 LEDs 0.8454 0.8659 0.9619

6 LEDs 18 LEDs 0.8282 0.7686 0.9373

6 LEDs 24 LEDs 0.8258 0.8073 0.9289

18 LEDs 6 LEDs 0.8294 0.8489 0.9239

18 LEDs 18 LEDs 0.8347 0.9032 0.9330

18 LEDs 24 LEDs 0.8342 0.9061 0.9151

24 LEDs 6 LEDs 0.8222 0.8546 0.9492

24 LEDs 18 LEDs 0.8131 0.9068 0.9477

24 LEDs 24 LEDs 0.8279 0.9472 0.9443

(b) Face recognition rates using CMU PIE database for training.

(b) that ’Prob>F’ is less than 0.05, and, as a consequence, rejects the hypothesis.

The differences in the recognition rates for the second experiment are also analyzed

using the one-way ANOVA. On the same lines as the first experiment, the one-way

ANOVA is used to verify the rejection of the H0 hypothesis at the 0.05 confidence
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interval. As shown in Table 8, each of the nine permutations output three recognition

rates corresponding to the different types of frames: the illuminated, the ambient,

and the difference frame. The data for ANOVA is prepared by computing the average

recognition rates of the nine permutations for each of the three types of frames for

all experiments. Table 9 (a) shows the resultant ANOVA table when the CBSR NIR

database is used for training and Table 9 (b) shows the resultant ANOVA table when

the CMU PIE database is used for training. The results in Table 9 (a) and (b) clearly

show that the H0 hypothesis can be rejected again because the mean recognition

rates recorded when using the illuminated, ambient and difference frames are again

significantly different, and, as a consequence, ’Prob>F’ is less than 0.05.

Table 9: Analysis of variance for experiment 2.

Source SS df MS F Prob>F

Columns 3.134 2 1.56678 285.9 0

Error 164.387 29997 0.00548

Total 167.52 29999

(a) ANOVA Table for CBSR NIR database

Source SS df MS F Prob>F

Columns 1.056 2 0.52779 131.5 0

Error 120.4 29997 0.00401

Total 121.456 29999

(b) ANOVA Table for CMU PIE database

The aftermath of the two experiments above shows that not only are the average

face recognition rates higher when image differencing is used in contrast to the illu-

minated and ambient frames, but the average rates are also significantly different as

proved by ANOVA. This goes to show that the image differencing plays an important

role in building this robust face recognition-based personalization system.
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4.7 Pose Clustering

The last module is the video-based face recognition with pose clustering. The gallery

videos are processed through the modules explained above: image differencing, fore-

ground segmentation, motion detection, face detection, motion interpolation, prepro-

cessing, and projection onto the LDA subspace. Then the projected LDA features

are clustered into 10 different poses. Then, the cluster centroids are stored in the

system and represent different poses of the driver which improve the robustness of

the system to the pose variation. A probe video of an unknown driver is then fed to

the system and also processed through the same modules. Then the identity of each

detected frontal face image is decided by the nearest neighbor algorithm. The identity

of the gallery cluster centroid that has the minimum distance to the probe image in

the LDA subspace determines the identity of the probe image. The final decision on

the probe video is made by majority voting of the image-based recognition results.

Figure 24 shows an example of the pose clustering.

Figure 24: Clustering example.
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4.8 Performance Evaluations

A NIR face video database of outdoor vehicular scenario were collected with the

camera and LEDs shown in Fig. 12. Videos were recorded in extremely challenging

outdoor illumination and shadowing conditions including various weather condition,

direct sunlight and cast shadows. The number of LEDs turned on for illuminated

frames were varied including 6, 12, 18 and 24 LEDs. The database is composed of

195 videos of 40 drivers in vehicles. There is one gallery video for each driver in the

database and the rest of videos are probe videos. For gallery videos, drivers were

asked to move their faces up, down, to the left, and to the right slowly to record

various head pose variation. To simulate real vehicular scenario, probe videos were

taken while drivers get into the car and start engine naturally without any specific

user cooperation. The length of each video is approximately from 20 to 30 seconds

long. Videos were originally saved in PGM file format and the total size of the

database is 197 GB. Illuminated frames and ambient frames were encoded in AVI

video file format separately and the total size of encoded videos is 7.8 GB. In real

system, procedure similar to the gallery videos in the database will be performed. If

the driver selects the new user registration option, the system will instruct the driver

to move the face up, down, to the left, and to the right slowly, record the video, and

register the user with recorded face images.

The performance of the end-to-end system was evaluated with the NIR face video

database. Figures 22 and 23 show sample face images of the 40 subjects in the data

set undergoing different illumination variations, for example, non-uniform shadow,

intensity variations from led configurations, and so on. For the experiment setup, four

subjects from the data set of 40 are randomly selected to constitute a family, while a

fifth subject is randomly selected as an intruder. The gallery set for this experiment

contains a gallery video for each member of the family. The probe set contains a

randomly selected probe video of the same family members along with a randomly
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selected probe video of an unknown person posing as the intruder. As a result, the

gallery set contains four videos and the probe set contains five videos. Since there are

40 subjects in the video data set, the number of combinations in generating a four-

person gallery set and a corresponding five-person probe set is enormous. Due to time

constraints, experiments were performed on only 200 of these random combinations.

Each combination constituted to a new experiment with a new gallery and probe

set. The 200 experiments were further divided into two groups of 100 experiments

each. The first group of experiments was considered ’inter-ethnic’ experiments and

the second group of experiments was considered ’intra-ethnic’ experiments. In the

inter-ethnic experiment, the family consists of two subjects of Asian ethnicity and

two subjects of other ethnicities. In the intra-ethnic experiments, the family consists

of four subjects of the same ethnicity, which is the Asian ethnicity for this project.

Table 10 shows the recognition rates of the family members and the intruder for

the two groups of 100 experiments. The results are reported for the three different

frame types: ambient, illuminated, and difference frames. Table 10 summarizes the

experimental design and parameter choices.

Table 10: Experimental design and parameter choices.

Experimental setting method/value

selection of subjects in probe set random
number of subjects in probe set 4

selection of gallery videos fixed
selection of subjects in gallery set subjects in probe set + random intruder
number of subjects in gallery set 5

selection of probe videos random
number of experiments 200

The results in Table 11 clearly show that the difference frame acquired by using

the image differencing enables a more accurate subject recognition system compared

to the cases of the illuminated and the ambient frames for both family types. The

results for detecting an intruder do not seem to be noticeably affected by the different
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types of frames. Since the difference frame is one of the fundamental building blocks

of this end-to-end system, further analysis on the results in Table 10 is performed

only for the case of the difference frame using one-way ANOVA. For the inter-ethnic

experiment, the recognition rates of the family members are averaged for each of the

100 experiments to prepare the data for ANOVA. Since the recognition rates for each

family member are nearly identical, the averaged rate is not very different from that of

each member, making it appropriate for use with ANOVA. The objective of the one-

way test here is to verify that the mean recognition rates of the family members and

the intruders are significantly different, implying the rejection of the H0 hypothesis

at the specified confidence interval. The results of the one-way test are reported in

Table 12. A similar ANOVA test is also performed for the intra-ethnic experiment

and the results are reported in Table 13.

Table 11: Recognition rates of 200 experimental unit iterations are reported for all
possible combinations of family types, probe types and frame types.

Family Type Probe Type
Type of Frames

Ambient Illuminated Difference

Inter-ethnicity
Family member 0.6575 0.55 0.965

Intruder 0.07 0.03 0.12

Intra-ethnicity
Family member 0.325 0.2825 0.905

Intruder 0.18 0.02 0.11

Table 12: Analysis of variance on the recognition results of the inter-ethnic family.

Source SS df MS F Prob>F

Columns 35.7013 1 35.7013 642.87 0
Error 11.3125 198 0.0571
Total 47.0138 199

Since the ’Prob>F’ column in both Table 12 and 13 is less than 0.05, the H0

hypothesis can be easily rejected at the 0.05 confidence interval, supporting the results

in Table 10 that the mean recognition rates for the members of both family types
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Table 13: analysis of variance on the recognition results of the intra-ethnic family.

Source SS df MS F Prob>F

Columns 31.6012 1 31.6012 537.66 0
Error 11.637 198 0.0588
Total 43.2387 199

are significantly different from the intruders. As a result, the implemented system

is capable of easily recognizing the members in its data set while also being able to

distinguish them from potential intruders or subjects unknown to the data set.

The performance of the end-to-end video-based face recognition system with pose

clustering is evaluated with the video dataset. In this case, all 40 subjects in the

database are included in the gallery set and the probe set to evaluate more accurate

face recognition rates. The gallery set contains the 40 head rotation gallery videos

of 40 subjects. And the probe set contains randomly chosen probe videos of 40 sub-

jects. Due to time constraints, experiments were performed on 200 of these random

combinations. Table 14 summarizes the experimental design and parameter choices.

Table 14: Experimental design and parameter choices.

Experimental setting method/value

selection of subjects in probe set fixed
number of subjects in probe set 40

selection of gallery videos fixed
selection of subjects in gallery set fixed
number of subjects in gallery set 40

selection of probe videos random
number of experiments 200

Table 15 shows the experimental results of image- and video-based recognition

of the proposed end-to-end system compared with the state-of-the-art illumination

invariant feature methods for face recognition including Local Binary Patterns (LBP)

[51] and gradientfaces [126]. The experimental results show that the proposed method
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outperforms both illumination invariant feature methods. Additionally, the illumina-

tion invariant features methods can be applied to the output images of the proposed

system to further increase face recognition rates.

Table 15: Face recognition rate comparison.

Methods Image-based Video-based

LBP 0.691 0.772
Gradientfaces 0.719 0.823

Proposed 0.881 0.934
Proposed + LBP 0.923 0.961

Proposed + Gradientfaces 0.929 0.966

Finally, the system performance without the foreground/background segmenta-

tion including the morphological filter is evaluated. As described in Section 4.3, the

foreground/background segmentation reduces the search range of the following face

detection module for computational efficiency and doesn’t affect the final face recog-

nition rate. Experimental test of 10 example videos shows that the average time

reduction for each frame is 0.43 ms which is not significant in the rate of 30 fps. The

performance of the end-to-end system without the foreground/background segmen-

tation is evaluated and the face recognition rate remains the same as in Table 15.

Therefore, the foreground/background segmentation can be removed safely without

affecting the system performance.

4.9 Conclusion

This chapter presents a system of practical technologies to implement an illumination-

robust, consumer-grade biometric system based on face recognition to be used in the

automotive market and ultimately result in very low-cost, easy-to-deploy solutions en-

abling a wide variety of applications that can benefit from personalization. The image

differencing method with an active illumination control was presented and proved to

produce images independent of the ambient illumination. Foreground/background
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segmentation, motion detection, face detection and face recognition modules in the

end-to-end system were presented and the performance improvements on the mod-

ules with the use of difference frames were shown with test results. Test results on

the end-to-end system with test videos taken in the extremely challenging illumina-

tion and shadowing conditions demonstrate highly accurate face recognition in the

vehicular application scenario.

The current solution uses only frontal face images and does not deal with occlusion

problems explicitly. The system could be improved by considering face images with

other face poses and also considering occlusion problems. More advanced decision

methods can further improve the accuracy in the decision on the subject identification.

70



CHAPTER V

IMAGE ALIGNMENT AND IMAGE FUSION FOR

ACTIVE NEAR INFRARED IMAGE DIFFERENCING

5.1 Overview

We have shown that the NIR image differencing introduced in the previous chapter

successfully removes the ambient illumination effect and improves the face recognition

rate. However, there are two critical limitations in the active image differencing. First,

the methods assume that there is no motion between I-frames and the respective A-

frames. Therefore, any motion between frames can result in severe artifacts in the

D-frame. Second, the differencing operation tends to amplify the effect of sensor noise

and the face recognition performance is deteriorated by the noise when the gallery

or probe images are taken under strong ambient illumination, especially with direct

sunlight.

For the motion problem, Zou, et al., proposed a motion interpolation approach

[135]. They captured an I-frame and an A-frame alternately. Then the motion be-

tween two I-frames is estimated using the optical flow estimation method by Black and

Anandan [15], and a virtual I-frame is computed using the motion estimate to inter-

polate between I-frames. The difference frame between this virtual I-frame, and the

A-frame captured between the above two I-frames is used for recognition. However,

since the motion between an I-frame and an A-frame is estimated from the motion

between two I-frames, there is a possibility of errors when the face is not moving at

the same speed in the same direction. Additionally, interpolation on I-frames will

smooth out the details in I-frame and also in resulting D-frame. And the optical flow

method by Black and Anandan is slow and often not viable in real-time applications.
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For the outdoor noise problem, the authors in [120] proposed an enhanced NIR

imaging where a narrow band NIR laser generator is used to increase the relative

NIR light intensity of active NIR illumination to sunlight. However, they reported

that their method is not perfect when the ambient NIR lighting is very strong such

as direct sunlight, and the noise produced by the differentiation has certain influence

on the results.

The problem of active NIR image differencing is related to the use and combination

of flash and non-flash images in computational photography in the visual spectrum.

While active NIR image differencing methods focus on getting ambient illumination-

free difference images for automatic face recognition, most of flash/no-flash methods

focus on improving the visual quality of the no-flash image using the paired flash

image. Various methods of enhancing color, reducing noise, and reducing shadows

have been proposed. Dicarlo, et al., introduced an active imaging method to measure

ambient illumination using flash and non-flash image pairs [30]. Petschnigg, et al.,

proposed the joint bilateral filter combining flash and non-flash images to achieve

better exposure and color balance and to reduce noise [81]. In [38], Eisemann and

Durand presented an alternative algorithm that shares some of the same basic con-

cepts of [81]. Agrawal, et al., presented a gradient projection and flash-exposure

sampling scheme to remove photography artifacts [5]. In [31], shadows from color

images were removed using flash/no-flash image edges. Sun, et al., proposed an ap-

proach for foreground layer extraction using flash/no-flash image pairs [104]. Zhuo,

et al., developed an image deblurring approach to remove camera motion blur using a

pair of blurred and flash images [134]. In [91], an iterative improvement of the guided

image filter for flash/no-flash photography was presented. Li, et al., introduced a

hand-held multispectral camera to capture a pair of blurred image and NIR flash im-

age simultaneously and analyze the correlation between the pair of images for blind

motion deblurring [70]. Mikami, et al., captured color and near-infrared images with
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different exposure times for image enhancement under extremely low-light scene [78].

Yoon, et al., presented an image enhancement method with flash and no-flash pairs

based on adaptive total variation minimization [121].

However, these works do not attempt to combine exposures for moving subjects.

When operating on human faces, some motion must be allowed for between frames and

since the methods cited are based on the pixel-to-pixel correspondence, misalignment

between images can cause artifacts and decrease performance. When an algorithm

involves the difference between two pixels, even a very small misalignment can lead

to significant artifacts in the result.

This chapter proposes new parametric image alignment methods which directly

align face regions in the I-frame and A-frame to increase the efficiency and the accu-

racy, and a new image fusion method to reduce the noise in the D-frame. This research

is motivated by the desire to have reliable face recognition in automobiles. Therefore,

the face recognition system must allow natural movement of drivers and needs to be

robust on noise in outdoor environment. The new image alignment algorithms are

based on the parametric image alignment method proposed by Lucas and Kanade [75]

and its inverse compositional variation proposed by Baker and Matthews [7]. To make

the algorithm work on the I-frame and A-frame pairs under different illumination con-

ditions, we define a new error minimization criterion and derive a new formula. And

also we propose a pre-computation scheme for the inverse compositional algorithm to

keep the advantage of fast calculation of the inverse compositional algorithm. From

these methods, more accurate image alignment is achieved. In addition, warping and

interpolation can be applied to A-frames to avoid smoothing on I-frames. Another

problem with difference signals is that noise tends to be amplified. Therefore, in this

work, we propose an algorithm for reducing the noise in the D-frame using detail

information from the I-frame.
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The rest of this chapter is organized as follows: the new parametric image align-

ment methods based on forward additive and inverse compositional Lucas-Kanade are

presented in Section 5.2. Section 5.3 describes the image fusion method for reducing

the noise and improving the image quality in the difference image. The details and

results of the experiments carried out on the face video dataset of outdoor vehicular

scenario are presented in Section 5.4. Finally, Section 5.5 concludes this chapter.

5.2 Image Alignment

Figure 25 and 26 illustrate the motion problem in active NIR image differencing.

Figure 25 shows an example of an A-frame, an I-frame and a D-frame where there is

no motion between the A-frame and the I-frame. And Fig. 26 shows an example of

an A-frame, an I-frame and a D-frame where there is motion between the A-frame

and the I-frame. The D-frame in Fig. 26 (c) shows artifacts introduced by the motion

between the A-frame and the I-frame. These examples underscore the importance of

accurate image alignment or motion compensation.

(a) A-frame (b) I-frame (c) D-frame

Figure 25: Example of images without motion.

(a) A-frame (b) I-frame (c) D-frame

Figure 26: Example of images with motion.
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In this section, we introduce new parametric image alignment methods for active

image differencing based on the forward additive and inverse compositional Lucas-

Kanade image alignment methods. The subsection 5.2.1 summarizes the forward

additive and inverse compositional Lucas-Kanade image alignment methods. Then,

in the subsection 5.2.2, we propose a new error minimization criterion with non-

positive error function which modifies the Lucas-Kanade methods so that the face

region in A-frame can be directly aligned to the face region in I-frame.

5.2.1 Lucas-Kanade Image Alignment

5.2.1.1 Forward Additive Algorithm

The original Lucas-Kanade algorithm is a parametric and iterative image alignment

method based on gradient descent [75]. It finds an image region in an input image

I(x) that best matches a template image T (x), where x = (x, y)T represents the pixel

coordinates. Here, the notations and derivations of equations are presented (based

on [7]).

The vector p = (p1, ..., pn)T is a parameter vector and W(x;p) is a warping

function that maps pixels in the template T to the locations in the image I. The

choice of the warp can be arbitrary including a translation, scaling, affine, piecewise

affine or homography. Then the difference image D is the difference between two

images, the template T and the warped image I(W(x;p)):

D(x;p) = T (x)− I(W(x;p)). (4)

The difference image is the error that should be minimized in general image alignment

applications. The goal of the Lucas-Kanade algorithm is to find the parameters that

minimize the measure of error E(p):

argmin
p

E(p) (5)

where the measure of error E(p) is defined by the sum of squares of pixel intensities
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in the difference image:

E(p) =
∑
x

[D(x;p)]2 . (6)

Minimizing the measure of error E(p) is a non-linear optimization problem because

the pixel values I(x) are, in general, non-linear in x. In the Lucas-Kanade algorithm,

the non-linear optimization is iteratively calculated using the Gauss-Newton gradient

descent method. Starting with an initial guess of p, the method proceeds by the

iterations

p← p + ∆p, (7)

where the increment ∆p is the solution to minimize the approximated measure of

error Ê(p + ∆p):

argmin
∆p

Ê(p + ∆p). (8)

The approximated measure of error Ê(p + ∆p) is derived as follows. First, the non-

linear expression of the difference image D(x;p+∆p) is linearized by applying a first

order Taylor expansion of I(W(x;p+∆p)):

D̂(x;p + ∆p) = T (x)− I(W(x;p))−
(
∇I ∂W

∂p

)
∆p. (9)

Then, from Eq. (6) the measure of error is approximated:

Ê(p + ∆p) =
∑
x

[
D̂(x;p + ∆p)

]2

(10)

=
∑
x

[
T (x)− I(W(x;p))−

(
∇I ∂W

∂p

)
∆p

]2

.

In these equations, the term ∇I =
(
∂I
∂x
, ∂I
∂y

)
is the gradient of the image I and ∂W

∂p
is

the Jacobian of the warp. The problem of finding the increment ∆p that minimizes

Eq. (10) is a least squares problem and it can be solved by setting ∂Ê(p+∆p)
∂∆p

= 0:

∆p = H−1
∑
x

[
∇I ∂W

∂p

]T

[T (x)− I(W(x;p))] (11)
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where H is the Hessian matrix:

H =
∑
x

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
. (12)

The Lucas-Kanade algorithm then consists of iteratively applying Eq. (11) and (7).

This algorithm is referred to as the forward additive algorithm since the update in

Eq. (7) is forward and additive.

5.2.1.2 Inverse Compositional Algorithm

Inverse compositional Lucas-Kanade algorithm is a computationally more efficient

variation of the original forward additive Lucas-Kanade algorithm [7]. It reformulates

the update rule in inverse compositional way so that some variables in the iteration

are independent of the current parameter p and can be precomputed. It is proved that

the inverse compositional algorithm is equivalent to the forward additive algorithm

up to the first order in ∆p [7]. The difference image D, the measure of error E to be

minimized, and the warp W(x;p) update in each step are redefined as follows:

D(x; ∆p,p) = T (W(x; ∆p))− I(W(x;p)), (13)

E(∆p,p) =
∑
x

[D(x; ∆p,p)]2 , (14)

W(x;p)←W(x;p) ◦W(x; ∆p)−1. (15)

The difference from the forward additive algorithm is that the small increment of

the parameters ∆p is applied to the warp for the template image T as in Eq. (13).

And the increment ∆p is from zero and not from the parameters p of the current

iteration as in the forward additive algorithm. The increment ∆p that approximately

minimizes Eq. (14) is used to update the warp W(x;p) as in Eq. (15) and then the

updated warp is used for the input image I(W(x;p)) back in Eq. (13). This algorithm

is referred to as the inverse compositional algorithm because the warp update in Eq.

(15) involves the inversion and the composition. The difference image D(x; ∆p,p)
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is linearly approximated by the first order Taylor expansion of the template image

T (W(x; ∆p)):

D̂(x; ∆p,p) = T (W(x; 0)) +

(
∇T ∂W

∂p

)
∆p− I(W(x;p)), (16)

and the measure of error E is approximated accordingly:

Ê(∆p,p) =
∑
x

[
D̂(x; ∆p,p)

]2

. (17)

In Eq. (16), the gradient ∇T is evaluated at x and the Jacobian ∂W
∂p

is evaluated at

(x; 0) where we set W(x;0) = x without loss of generality. Then ∂Ê(∆p,p)
∂∆p

= 0 can be

solved by replacing D̂(x;p + ∆p) with Eq. (16):

∆p = −H−1
∑
x

[
∇T ∂W

∂p

]T

D(x;0,p), (18)

where

H =
∑
x

[
∇T ∂W

∂p

]T [
∇T ∂W

∂p

]
. (19)

Because the gradient ∇T and the Jacobian ∂W
∂p

are independent of p, the gradient

∇T , the Jacobian ∂W
∂p

, the steepest descent image ∇T ∂W
∂p

and the Hessian H can be

precomputed in advance before the iteration.

5.2.2 Image Alignment with Nonpositive Error Function

For active illumination applications, we have two images to align: an I-frame that is

taken with the active illumination and an A-frame that is taken with only ambient

illumination. The template T (x) is set to be a detected face region in the I-frame, and

the input image I(x) is set to be the A-frame. In most image alignment applications,

the difference image D is the error that should be minimized. But in the active

image differencing method, the difference image D is the desired output image. Since

the I-frame is taken with additional illumination, the pixel intensities in the I-frame

should be greater than or equal to the corresponding pixel intensities in the A-frame

assuming that pixel intensities corresponding to the ambient illumination do not
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change between the two images. Therefore, positive pixel values are considered as

the desired output, and nonpositive pixel values are considered as error or noise.

Consequently we modified the measure of error so that only nonpositive intensities

are considered as errors.

5.2.2.1 Forward Additive Algorithm

First, we generalize the measure of error term in Eq. (5) by introducing an error

function ρ(x):R→ R instead of the Euclidean L2 norm. The goal is then to minimize

this measure of error:

E(p) =
∑
x

ρ(D(x;p)). (20)

To penalize negative values in the difference image, we choose the error function as

ρ(x) =


1
2
x2 ; x < 0

0 ; x ≥ 0.

(21)

For negative values, the L2 norm error function is chosen as in the original Lucas

Kanade method. For positive values, the error is set to be zero since the positive

values are not errors. The 1
2

factor is used to simplify the following equations. Figure

27 shows the original L2 norm error function and proposed nonpositive error function.

The derivative of the error function ρ(x) is x for negative values of x and zero for

non-negative values of x. Then, the first-order Tayler series expansion of

Ê(p + ∆p) =
∑
x

ρ
(
D̂(x;p + ∆p)

)
(22)

is the same as in Eq. (10) except that the function ρ is applied to each term in the

sum, which is equivalent to restricting the sum to only those terms that are negative.

To solve the minimization problem in Eq. (8), we calculate the partial derivative

of the approximated measure of error with respect to ∆p, and find the solution that
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y

(a) Original error

y

(b) Proposed error

Figure 27: Nonpositive error function.

makes the equation to be equal to zero:

∂Ê(p + ∆p)

∂∆p
= −

∑
x

[
∇I ∂W

∂p

]T

ρ′
(
D̂(x;p + ∆p)

)
(23)

= −
∑

{x:D̂(x;p+∆p)<0}

[
∇I ∂W

∂p

]T

D̂(x;p + ∆p).

The problem is that this equation cannot be solved analytically because the condition

of the summation includes ∆p which make the equation non-linear with respect to

∆p. To solve the equation, we assume that in the condition of the summation,

D̂(x;p + ∆p) ≈ D(x;p) (24)

for small ∆p. Then Eq. (23) can be solved by replacing D̂(x;p + ∆p) with Eq. (9)

and solving a least squares problem in the same manner as in Eq. (11) and (12):

∆p = H−1
∑

{x:D(x;p)<0}

[
∇I ∂W

∂p

]T

D(x;p), (25)

where

H =
∑

{x:D(x;p)<0}

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
. (26)
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Note that the terms in Eq. (25) and (26) are included in the summations only if the

difference D(x;p) is negative. That means the updates are driven by the negative

values which are the artifacts of the misalignments. Therefore, this algorithm works

directly to remove the misalignment artifacts on every iteration.

5.2.2.2 Inverse Compositional Algorithm

The inverse compositional algorithm can also be reformulated to use the nonposi-

tive error function resulting in a more efficient algorithm than the forward-additive

nonpositive algorithm. The error measure, E, for the inverse compositional Lucas

Kanade image alignment method in Eq. (14) is generalized with the error function

ρ(x):

E(∆p,p) =
∑
x

ρ(D(x; ∆p,p)) (27)

where we choose the same nonpositive error function ρ(x) as in Eq. (21). Then the

partial derivative of the approximated error measure on the parameter increment is

approximated as below:

∂Ê(∆p,p)

∂∆p
=
∑
x

[
∇T ∂W

∂p

]T

ρ′
(
D̂(x; ∆p,p)

)
(28)

=
∑

{x:D̂(x;∆p,p)<0}

[
∇T ∂W

∂p

]T

D̂(x; ∆p,p)

≈
∑

{x:D(x;0,p)<0}

[
∇T ∂W

∂p

]T

D̂(x; ∆p,p),

using the similar approximation in the condition of the summation as in Eq. (24) for

small ∆p. Then ∂Ê(∆p,p)
∂∆p

= 0 can be solved by replacing D̂(x;p+ ∆p) with Eq. (16):

∆p = −H−1
∑

{x:D(x;0,p)<0}

[
∇T ∂W

∂p

]T

D(x;0,p), (29)

where

H =
∑

{x:D(x;0,p)<0}

[
∇T ∂W

∂p

]T [
∇T ∂W

∂p

]
. (30)
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As in the original inverse compositional Lucas-Kanade algorithm, the gradient ∇T ,

the Jacobian ∂W
∂p

, and the steepest descent image ∇T ∂W
∂p

are independent of the

current parameter p and can be precomputed and re-used. On the other hand, for the

computation of the Hessian H in Eq. (30), the elements of the summation, which are

the outer products of the steepest descent image, ∇T ∂W
∂p

, with itself, are independent

of p, but the condition of the summation depends on p and the Hessian cannot be

precomputed. Therefore, the outer products are precomputed, stored and included

in the summation only for the negative pixels in the difference image, D(x;0,p), to

make the computation of the Hessian more efficient.

Figure 28 shows an example of the results using no motion compensation, using the

motion interpolation method by [135], and using our alignment methods with nonpos-

itive error functions in the forward additive and inverse compositional ways. As seen

in the figure, the positive difference image with no motion compensation shows severe

motion artifacts especially around edges and facial features. The negative difference

image with no motion compensation has significant pixel intensities around edges and

facial features. The motion interpolation method reduces the motion artifacts on the

positive difference image and the pixel intensities on the negative difference image.

And our forward additive and inverse compositional methods with nonpositive error

function further reduce those noises in both positive and negative difference images.

The similarity of the results of forward additive and inverse compositional methods

shows the equivalence of the two algorithms. Figure 29 and 30 show the experimen-

tal result images after applying face detection and image alignment with nonpositive

error function.

5.3 Image Fusion

When motion is compensated by the image alignment methods proposed in the pre-

vious section, the D-frame is (ideally) equivalent to the night-time image where the
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 28: Experimental comparison of image alignment methods: (a) detected face
region in the I-frame (b) corresponding face region in the A-frame (c) positive differ-
ence image without alignment (d) positive difference image with motion interpolation
(e) positive difference image with forward additive alignment method with nonposi-
tive error function (f) positive difference image with inverse compositional alignment
method with nonpositive error function (g) negative difference image without align-
ment (h) negative difference image with motion interpolation (i) negative difference
image with forward additive alignment method with nonpositive error function (j)
negative difference image with inverse compositional alignment method with nonpos-
itive error function.
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Figure 29: Experimental result 1 of face detection and image alignment.

Figure 30: Experimental result 2 of face detection and image alignment.
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only illumination is the active LED illumination. However, when the illumination

intensity of ambient light is much larger than that of LED illumination, the image

quality of the D-frame is poor and the difference frame exhibits noise and has low

signal-to-noise ratio (SNR). The main reason for the increased noise in the D-frame

is the increased photon shot noise in the I-frame and A-frame. Photon shot noise is

caused by statistical quantum fluctuations and is proportional to the pixel intensity.

Under bright illumination, photon shot noise dominates the noise behaviour of the

sensor [76].

Let Si and Ni be the signal and noise intensity of a pixel in the I-frame, and Sa

and Na be the signal and noise intensity of the corresponding pixel in the A-frame.

Then the total pixel intensity on each frame is the sum of the corresponding signal

and noise value:

Ii = Si +Ni, Ia = Sa +Na. (31)

When the signal value, Si or Sa, is expressed in terms of electrons, the photon shot

noise has a standard deviation of

σi =
√
Si, σa =

√
Sa (32)

also with units of electrons [35]. Then the value of the variance of the photon shot

noise is equivalent to the signal value (with units of signal squared):

σ2
i = E

[
N2
i

]
= Si, σ2

a = E
[
N2
a

]
= Sa. (33)

And the SNR is also equivalent to the signal value:

SNRi =
E [S2

i ]

E [N2
i ]

=
S2
i

Si
= Si, SNRa =

E [S2
a]

E [N2
a ]

=
S2
a

Sa
= Sa. (34)

If we define the signal, noise and total pixel intensity of the D-frame as follows:

Sd = Si − Sa, Nd = Ni −Na, Id = Ii − Ia = Sd +Nd, (35)
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then, under the assumption that Ni and Na are independent, the noise variance of

the corresponding pixel in the D-frame is

σ2
d = E

[
N2
d

]
= E

[
(Ni −Na)

2] = E
[
N2
i +N2

a

]
= Si + Sa = Sd + 2Sa, (36)

and the SNR of the pixel in the D-frame is

SNRd =
E [S2

d ]

E [N2
d ]

=
S2
d

Sd + 2Sa
=

Sd

1 + 2Sa
Sd

. (37)

When there is no ambient illumination (Sa = 0), SNRd is equivalent to the difference

signal Sd which is the case of the night-time image. If the difference signal Sd is

fixed and the ambient signal Sa is increased, then the noise is increased and SNRd

is decreased. The increased noise can be observed in Fig. 31. The relative intensity

of the ambient illumination to LED illumination is large in this example. Therefore,

the difference image shows high noise level. Since the ambient illumination is much

brighter on left side of the subjects face, the noise is more visible on that side. The

SNRd is further reduced if the camera exposure level is reduced to prevent the possible

pixel intensity saturation due to the increased ambient illumination. This can be

explained by the reduced Sd with the fixed ratio Sa
Sd

in Eq. (37).

One way of dealing with the noise problem caused by the bright ambient illumina-

tion is increasing the active NIR illumination power. For example, a narrow band NIR

laser generator is used in [120] to overpower outdoor sunlight. However, they reported

that their method is not perfect when the ambient NIR lighting is very strong such as

direct sunlight, and the noise produced by the differentiation has certain influence on

the results. And powerful NIR lasers have other drawbacks, especially when directed

at a person’s face at close range. Therefore, a different solution is presented here.

One observation is that the D-frame has good illumination levels across the entire

face but may exhibit unacceptable levels of noise. On the other hand, the I-frame

tends to have good detail quality and low noise but unacceptable variations in il-

lumination. The ideal image for face recognition would combine the advantages of
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(a) Ambient (b) Illuminated

(c) Difference (d) Detail (e) Fusion

Figure 31: Example ambient, illuminated, difference, detail and fusion images are
shown when the difference image contains visible noise.

the D-frame and I-frame. Since the illumination is largely a low-pass phenomenon,

combining the illumination (low-pass spatial components) from the D-frame with the

detail (high-pass spatial components) from the I-frame may result in better recogni-

tion performance. Here we introduce image fusion methods to combine low frequency

of the D-frame and high frequency of the I-frame. We de-noise and transfer detail

to merge the controlled illumination of the D-frame with the high-frequency detail in

the I-frame.

The high-frequency detail from the I-frame is computed as the following ratio:

Qi =
Ii

Îi
, (38)

where Ii is the pixel intensity of the I-frame and Îi is the smoothed version of Ii.

Then the image fusion is the product of the smoothed version of the D-frame and the

detail from the I-frame:

Ifusion = ÎdQi. (39)
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To compute the smoothed version of the I-frame and the D-frame, we apply an edge-

preserving smoothing filter such as the bilateral filtering [106]. The bilateral filter is

designed to average together pixels that are spatially near on another and have similar

intensity values. It combines a classic low-pass filter with an edge-stopping function

that attenuates the filter kernel weights when the intensity difference between pixels

is large. In the notation of [34], the bilateral filter computes the value of pixel p for

the I-frame Ii as:

Îi,p =
1

k(p)

∑
p′∈Ω

gd (p′ − p) gr (Ii,p − Ii,p′) Ii,p′ , (40)

where k(p) is a normalization term:

k(p) =
∑
p′∈Ω

gd (p′ − p) gr (Ii,p − Ii,p′) . (41)

The function gd sets the weight in the spatial domain based on the distance between

the pxiels, while the edge-stopping function gr sets the weight on the range based on

intensity differences. Typically, both functions are Gaussian with widths controlled

by the standard deviation parameters σd and σr respectively. By experiments, we

set σd to be 4 pixels and σr to be 0.2 when pixel values are normalized to [0.0 1.0].

The smoothed version of the D-frame is computed in the same manner with the same

value of σd and σr. Figure 31 shows an example of the detail image and resulted

fusion image. The detail in the I-frame is transferred to the fusion image through the

detail image and the low-pass spatial components are transferred from the D-frame

while the noise in the D-frame is reduced.

5.4 Experiments

We used the same NIR vehicular-scenario face video dataset that was introduced in the

previous chapter. Face regions in I-frames of the videos are detected using a modified

version [72] of the boosted classifier proposed by Viola Jones [112]. Corresponding face

regions in A-frames are found and aligned by our proposed methods and the difference
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face images are calculated. A warping function for the image alignment is modeled as

a single affine transformation throughout the whole face image. Piecewise or block-

based affine transformation can model more complicated and deformable face motion.

However, it requires computationally expensive motion interpolation between pieces

or blocks and small deformation between frames makes the single affine transformation

approximates the motion with enough precision. The motion interpolation method is

also applied to consecutive I-frames for comparison. Then the difference face images

are preprocessed to mask the image to consider only pixels inside the face boundary.

The pixel values are then normalized to have zero mean and a unit standard deviation.

For recognition, two popular dimension reduction methods are applied: Principal

Component Analysis (PCA) [109] and Linear Discriminant Analysis (LDA) [13]. PCA

and LDA subspaces are trained by CBSR NIR database [69] which has 3,940 NIR

face images of 197 subjects.

To test the effectiveness of the proposed direct image alignment methods on face

recognition, image and video-based face identification experiments were performed.

The gallery set contains the 40 head rotation gallery videos of 40 subjects. And the

probe set contains randomly chosen probe videos of 40 subjects. The experimental

setting is the same as in Section 4.8. Then each found face image in each probe video

is compared with all the found face images in the 40 gallery videos, and the face iden-

tity is determined by the minimum distance between two images in three subspace

domains: raw, PCA and LDA. Then the same experiment is repeated 200 times with

other randomly selected probe videos. The results in Table 16 (a) show that active

NIR image differencing improves face recognition performance, and motion interpo-

lation method using Black and Anandan optical flow method further improves the

result. Furthermore, our proposed direct image alignment methods based on forward

additive and inverse compositional Lucas-Kanade outperform both prior methods in
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the raw, PCA, and LDA domains. For the video-based face identification experi-

ment, pose clustering method is applied. Table 16 (b) shows the results and it also

shows that our methods outperform the previous methods in the raw, PCA, and LDA

domains.

Table 16: Face recognition experiment results. MI-BA stands for motion interpo-
lation method using Black and Anandan optical flow method. NPE-FA stands for
the forward additive image alignment with the non-positive error function. NPE-
IC stands for the inverse compositional image alignment with the non-positive error
function.

Type RAW PCA LDA

A-frame 0.508 0.521 0.586
I-frame 0.629 0.639 0.656
D-frame 0.700 0.726 0.751
MI-BA 0.726 0.753 0.769

NPE-FA 0.742 0.762 0.819
NPE-IC 0.742 0.761 0.819

(a) Image-based

Type RAW PCA LDA

A-frame 0.533 0.552 0.601
I-frame 0.640 0.676 0.709
D-frame 0.739 0.748 0.792
MI-BA 0.812 0.871 0.882

NPE-FA 0.845 0.898 0.932
NPE-IC 0.845 0.898 0.932

(b) Video-based

Face recognition results improve further when the motion estimation is combined

with image fusion. Table 17 shows that a consistent 3% improvement in recognition

accuracy results when motion estimation is combined with image fusion.

Table 17: Face recognition experiment results with image fusion.

Type RAW PCA LDA

D-frame 0.729 0.759 0.764
MI-BA 0.749 0.789 0.795

NPE-FA 0.788 0.798 0.849
NPE-IC 0.787 0.798 0.849

(a) Image-based

Type RAW PCA LDA

D-frame 0.766 0.770 0.828
MI-BA 0.839 0.909 0.912

NPE-FA 0.890 0.939 0.961
NPE-IC 0.889 0.938 0.961

(b) Video-based

5.5 Conclusion

Active NIR image differencing improves robustness of face recognition by generat-

ing images only lit by active NIR illumination. However, motion between frames
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introduces artifacts and strong ambient illumination introduces noise in the differ-

ence frame. This chapter proposed methods for image alignment and noise reduction.

First, we proposed image alignment methods which directly align face images in the il-

luminated frame and the ambient frame. The methods can compensate for non-linear

motions and are based on forward additive and inverse compositional Lucas-Kanade

image alignment with a modified error criteria. Second, we proposed an image fusion

method to reduce noise in the difference frame and include the detail information

from the illuminated frame. Extensive experiments on a face video dataset from an

outdoor vehicular scenario show that the face recognition performance increases by

both of the image alignment and image fusion methods. We note that since both NIR

and visible lights are reflected on the surface and share the same physical properties,

the proposed direct image alignment and image fusion methods can also be applied

to flash and no-flash image pair applications.

The end-to-end system is composed of submodules introduced in Chapter 4 and 5.

Each submodule was designed to be computationally efficient for embedded systems.

However, submodules need to be selectively chosen if the hardware specification is

more restricted and very limited. Image differencing, cascade face detection and

LDA dimension reduction methods do not involve iterative algorithms and are highly

efficient. Those submodules are indispensable parts of the system and should be

included. On the other hand, correlation based motion detection, morphological filter

based background subtraction, K-means based pose clustering and Lucas-Kanade

based image alignment methods require more computational resources compared to

the benefit they provide. Therefore, those can be removed from the system. Image

fusion and illumination robust features are efficient methods but those are additional

supplements for the system. Therefore, those can be included optionally.
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CHAPTER VI

CONCLUSION

In this dissertation, we have developed a system of practical technologies to implement

an illumination-robust, consumer-grade biometric system based on face recognition

to be used in the automotive market and ultimately result in very low-cost, easy-

to-deploy solutions enabling a wide variety of applications that can benefit from

personalization.

First, we presented an end-to-end face recognition system using NIR illumination

and camera system. The key advantage of NIR over visible light is that it is invisible to

the human eye. Compared to the previously described scenario, NIR is easily available

from the sun during the day since it is an abundant source. At night however, an

NIR illuminator can be used to provide the controlled artificial illumination without

bothering the driver. This feature laid the foundation for the end product to be non-

intrusive. The system consists of three stages; face detection, eye detection and face

recognition. The performance of each module and the end-to-end system was tested

by the NIR dataset taken in indoor simulating the vehicular environment.

Second, we improved the NIR face recognition system by introducing the image

differencing method. Providing illumination sufficient to overcome the shadows cast in

full sun is impractical. Therefore, we proposed active NIR image differencing which

takes the difference between successive image frames, one illuminated and one not

illuminated. In ideal condition when the camera image processing pipeline is linear on

pixel intensities and there is no motion between frames, the image differencing method

removes the effect of the ambient illumination and yields ambient illumination free

face images. We developed an end-to-end face recognition system including the active
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NIR image differencing, foreground/background segmentation, motion detection, face

detection, pose clustering and face recognition. And it was shown that the image

differencing method makes the modules more robust to the ambient illumination

variation. Vehicular application videos were taken in extremely challenging outdoor

illumination and shadowing conditions and used to test each module. Extensive test

results of vehicular scenario were provided to evaluate the end-to-end system.

Lastly, we addressed several aspects of the problem in active NIR image differ-

encing which are motion artifact and noise in the difference frame, namely how to

efficiently and more accurately align the illuminated frame and ambient frame, and

how to combine information in the difference frame and the illuminated frame. We

proposed image alignment methods which directly align face images in the illuminated

frame and the ambient frame. The methods can compensate for non-linear motions

and are based on forward additive and inverse compositional Lucas-Kanade image

alignment with a modified error criteria. Then we proposed an image fusion method

to reduce noise in the difference frame and include the detail information from the

illuminated frame. Extensive experiments on the face video dataset of the outdoor

vehicular scenario showed that the face recognition performance increased by both of

the image alignment and image fusion methods.

The current solution uses only frontal face images and does not deal with occlusion

problems explicitly. The system could be improved by considering face images with

other face poses and also considering occlusion problems. More advanced decision

methods can further improve the accuracy in the decision on the subject identification.

And we note that since both NIR and visible lights are reflected on the surface and

share the same physical properties, the proposed direct image alignment and image

fusion methods can also be applied to flash and no-flash image pair applications.

Publications, submissions, and presentations based on this work so far are as

follows:
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• J. Kang, D. Anderson and M. Hayes, “Image Alignment and Image Fusion

for Face Recognition with Active Near Infrared Image Differencing,” Optics

Express. [submitted]

• J. Kang, D. Anderson and M. Hayes, “Face Recognition for Vehicle Personaliza-

tion with Near Infrared Frame Differencing,” IEEE Transactions on Consumer

Electronics. [submitted]

• J. Kang, D. Anderson, and M. Hayes, “Direct image alignment for active near

infrared image differencing,” in Advanced Concepts for Intelligent Vision Sys-

tems, pp. 334-344, Springer, 2015.

• J. Kang, D. Anderson, and M. Hayes, “Face recognition in vehicles with near

infrared frame differencing,” in IEEE Signal Processing and Signal Processing

Education Workshop (SP/SPE), pp. 358-363, 2015.

• J. Kang, and M. Hayes, “Face recognition for vehicle personalization with near-

ir frame differencing and pose clustering,” in IEEE International Conference on

Consumer Electronics, pp. 455-456, 2015.

• H. Park, J. Choo, B. Drake, and J. Kang, “Linear discriminant analysis for

data with subcluster structure,” in IEEE International Conference on Pattern

Recognition, pp. 1-4, 2008

• J. Kang, A. Borkar, A. Yeung, N. Nong, M. Smith, and M. Hayes, “Short

wavelength infrared face recognition for personalization,” in IEEE International

Conference on Image Processing, pp. 2757-2760, 2006.
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[43] Ghiass, R. S., Arandjelović, O., Bendada, A., and Maldague, X.,
“Infrared face recognition: A comprehensive review of methodologies and
databases,” Pattern Recognition, vol. 47, no. 9, pp. 2807–2824, 2014.

[44] Gonzalez, R. and Woods, R., Digital Image Processing. Prentice Hall, third
edition, 2007.

[45] Gross, R. and Brajovic, V., “An image preprocessing algorithm for illumi-
nation invariant face recognition,” in Audio-and Video-Based Biometric Person
Authentication, pp. 10–18, Springer, 2003.

[46] Hallinan, P. W., “A low-dimensional representation of human faces for arbi-
trary lighting conditions,” in Computer Vision and Pattern Recognition, 1994.
Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, pp. 995–
999, IEEE, 1994.

98



[47] Hansen, D. and Hammoud, R., “An improved likelihood model for eye track-
ing,” Computer Vision and Image Understanding, vol. 106, no. 2-3, pp. 220–230,
2007.

[48] Haro, A., Flickner, M., and Essa, I., “Detecting and tracking eyes by using
their physiologicalproperties, dynamics, and appearance,” Computer Vision and
Pattern Recognition, 2000. Proceedings. IEEE Conference on, vol. 1, 2000.

[49] Haro, A., Flickner, M., and Essa, I., “Detection and tracking eyes by
using their physiological properties, dynamics, and appearance,” pp. 163–168,
2000.

[50] Heo, J., Savvides, M., and Vijayakumar, B., “Illumination tolerant face
recognition using phase-only support vector machines in the frequency domain,”
in Pattern Recognition and Image Analysis, pp. 66–73, Springer, 2005.

[51] Heusch, G., Rodriguez, Y., and Marcel, S., “Local binary patterns as an
image preprocessing for face authentication,” in 7th International Conference
on Automatic Face and Gesture Recognition (FGR06), pp. 6–pp, IEEE, 2006.

[52] Hizem, W., Krichen, E., Ni, Y., Dorizzi, B., and Garcia-Salicetti, S.,
“Specific sensors for face recognition,” in Advances in Biometrics, pp. 47–54,
Springer, 2005.

[53] Hornberg, A., Handbook of Machine Vision. Wiley-VCH, 2007.

[54] Hutchinson, T., White Jr, K., Martin, W., Reichert, K., and Frey,
L., “Human-computer interaction using eye-gaze input,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. 19, no. 6, pp. 1527–1534, 1989.

[55] Job, A., “Driving without car keys.”.

[56] Jobson, D. J., Rahman, Z.-u., and Woodell, G. A., “A multiscale retinex
for bridging the gap between color images and the human observation of scenes,”
Image Processing, IEEE Transactions on, vol. 6, no. 7, pp. 965–976, 1997.

[57] Jobson, D. J., Rahman, Z.-u., and Woodell, G. A., “Properties and per-
formance of a center/surround retinex,” Image Processing, IEEE Transactions
on, vol. 6, no. 3, pp. 451–462, 1997.

[58] Jobson, D., Rahman, Z., Woodell, G., Center, N., and Hampton, V.,
“Properties and performance of a center/surround retinex,” Image Processing,
IEEE Transactions on, vol. 6, no. 3, pp. 451–462, 1997.

[59] Kang, J., Borkar, A., Yeung, A., Nong, N., Smith, M., and Hayes,
M., “Short Wavelength Infrared Face Recognition for Personalization,” Image
Processing, 2006 IEEE International Conference on, pp. 2757–2760, October
2006.

99



[60] Kawato, S. and Ohya, J., “Automatic skin-color distribution extraction for
face detection and tracking,” vol. II, pp. 1415–1418, 2000.

[61] Kittler, J., Hilton, A., Hamouz, M., and Illingworth, J., “3d assisted
face recognition: A survey of 3d imaging, modelling and recognition approach-
est,” in Computer Vision and Pattern Recognition-Workshops, 2005. CVPR
Workshops. IEEE Computer Society Conference on, pp. 114–114, IEEE, 2005.

[62] Kong, S. G., Heo, J., Abidi, B. R., Paik, J., and Abidi, M. A., “Recent
advances in visual and infrared face recognitiona review,” Computer Vision and
Image Understanding, vol. 97, no. 1, pp. 103–135, 2005.

[63] Kong, S., Heo, J., Abidi, B., Paik, J., and Abidi, M., “Recent advances
in visual and infrared face recognition: a review,” Computer Vision and Image
Understanding, vol. 97, pp. 103–135, Jan. 2005.

[64] Kothari, R. and Mitchell, J., “Detection of eye locations in unconstrained
visual images,” p. 19A8, 1996.

[65] Kriegman, D. J. and Belhumeur, P. N., “What shadows reveal about
object structure,” JOSA A, vol. 18, no. 8, pp. 1804–1813, 2001.

[66] Lai, Z.-R., Dai, D.-Q., Ren, C.-X., and Huang, K.-K., “Multiscale loga-
rithm difference edgemaps for face recognition against varying lighting condi-
tions,” Image Processing, IEEE Transactions on, vol. 24, no. 6, pp. 1735–1747,
2015.

[67] Lee, K.-C., Ho, J., and Kriegman, D., “Nine points of light: Acquiring
subspaces for face recognition under variable lighting,” in Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, vol. 1, pp. I–519, IEEE, 2001.

[68] Lewis, J., “Fast normalized cross-correlation,” Vision Interface, pp. 120–123,
1995.

[69] Li, S., Chu, R., Liao, S., and Zhang, L., “Illumination Invariant Face
Recognition Using Near-Infrared Images,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 29, no. 4, pp. 627–639, 2007.

[70] Li, W., Zhang, J., and Dai, Q.-h., “Robust blind motion deblurring us-
ing near-infrared flash image,” Journal of Visual Communication and Image
Representation, vol. 24, no. 8, pp. 1394–1413, 2013.

[71] Lienhart, R. and Maydt, J., “An extended set of Haar-like features for
rapid object detection,” Image Processing. 2002. Proceedings. 2002 Interna-
tional Conference on, vol. 1, 2002.

100



[72] Lienhart, R. and Maydt, J., “An extended set of haar-like features for
rapid object detection,” in Proceedings of International Conference on Image
Processing, vol. 1, pp. I–900, IEEE, 2002.

[73] Liu, D.-H., Lam, K.-M., and Shen, L.-S., “Illumination invariant face recog-
nition,” Pattern Recognition, vol. 38, no. 10, pp. 1705–1716, 2005.

[74] Liu, Z.-f., You, Z.-s., Jain, A. K., and Wang, Y.-q., “Face detection and
facial feature extraction in color image,” p. 126, 2003.

[75] Lucas, B. D. and Kanade, T., “An iterative image registration technique
with an application to stereo vision,” in International joint conference on arti-
ficial intelligence, vol. 81, pp. 674–679, 1981.

[76] MacDonald, L. W., Digital heritage: applying digital imaging to cultural
heritage. Routledge, 2006.

[77] Messer, K., Matas, J., Kittler, J., Luettin, J., and Maitre, G.,
“Xm2vtsdb: The extended m2vts database,” in Second international conference
on audio and video-based biometric person authentication, vol. 964, pp. 965–966,
Citeseer, 1999.

[78] Mikami, T., Sugimura, D., and Hamamoto, T., “Capturing color and
near-infrared images with different exposure times for image enhancement un-
der extremely low-light scene,” in IEEE International Conference on Image
Processing, pp. 669–673, IEEE, 2014.

[79] Newman, P., “More on brightness as a function of distance.” January 2006.

[80] Pan, Z., Healey, G., Prasad, M., and Tromberg, B., “Face recognition
in hyperspectral images,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 25, no. 12, pp. 1552–1560, 2003.

[81] Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H.,
and Toyama, K., “Digital photography with flash and no-flash image pairs,”
ACM transactions on graphics, vol. 23, no. 3, pp. 664–672, 2004.

[82] Prabhakar, S., Pankanti, S., and Jain, A. K., “Biometric recognition:
Security and privacy concerns,” IEEE Security & Privacy, no. 2, pp. 33–42,
2003.

[83] Prasad, M. and Tromberg, B., “Face Recognition in Hyperspectral Im-
ages,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25,
pp. 1552–1560, December 2003.

[84] Qing, L., Shan, S., Chen, X., and Gao, W., “Face recognition under vary-
ing lighting based on the probabilistic model of gabor phase,” in Pattern Recog-
nition, 2006. ICPR 2006. 18th International Conference on, vol. 3, pp. 1139–
1142, IEEE, 2006.

101



[85] Ramamoorthi, R., “Analytic PCA construction for theoretical analysis of
lighting variability in images of a Lambertian object,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 10, pp. 1322–1333, 2002.

[86] Ramamoorthi, R. and Hanrahan, P., “On the relationship between ra-
diance and irradiance: determining the illumination from images of a convex
lambertian object,” JOSA A, vol. 18, no. 10, pp. 2448–2459, 2001.

[87] Savvides, M., Abiantun, R., Heo, J., Park, S., Xie, C., and Vijayaku-
mar, B., “Partial & holistic face recognition on frgc-ii data using support vec-
tor machine,” in Computer Vision and Pattern Recognition Workshop, 2006.
CVPRW’06. Conference on, pp. 48–48, IEEE, 2006.

[88] Savvides, M., Kumar, B., and Khosla, P. K., “Eigenphases vs eigenfaces,”
in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on, vol. 3, pp. oo810–oo813, IEEE, 2004.

[89] Savvides, M., Kumar, B., and Khosla, P. K., “” corefaces”-robust shift
invariant pca based correlation filter for illumination tolerant face recognition,”
in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on, vol. 2, pp. II–834, IEEE,
2004.

[90] Scheenstra, A., Ruifrok, A., and Veltkamp, R. C., “A survey of 3d face
recognition methods,” in Audio-and Video-Based Biometric Person Authenti-
cation, pp. 891–899, Springer, 2005.

[91] Seo, H. J. and Milanfar, P., “Iteratively merging information from a pair
of flash/no-flash images using nonlinear diffusion,” in IEEE International Con-
ference on Computer Vision Workshops, pp. 1324–1331, IEEE, 2011.

[92] Seow, M.-J., Valaparla, D., and Asari, V. K., “Neural network based
skin color model for face detection,” pp. 141–145, 2003.

[93] Shan, S., Gao, W., Cao, B., and Zhao, D., “Illumination normalization
for robust face recognition against varying lighting conditions,” in Analysis
and Modeling of Faces and Gestures, 2003. AMFG 2003. IEEE International
Workshop on, pp. 157–164, IEEE, 2003.

[94] Shashua, A., Geometry and Photometry in 3D Visual Recognition. PhD thesis,
Massachusetts Institute of Technology, 1992.

[95] Shashua, A. and Riklin-Raviv, T., “The quotient image: class-based re-
rendering and recognition with varying illuminations,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 23, no. 2, pp. 129–139, 2001.

[96] Shashua, A., “On photometric issues in 3d visual recognition from a single 2d
image,” International Journal of Computer Vision, vol. 21, no. 1-2, pp. 99–122,
1997.

102



[97] Short, J., Kittler, J., and Messer, K., “A comparison of photometric nor-
malisation algorithms for face verification,” in IEEE International Conference
on Automatic Face and Gesture Recognition, pp. 254–259, IEEE, 2004.

[98] Sim, T., Baker, S., and Bsat, M., “The cmu pose, illumination, and expres-
sion database,” vol. 25, pp. 1615–1618, Dec. 2003.

[99] Sim, T., Baker, S., and Bsat, M., “The CMU pose, illumination, and expres-
sion database,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 25, no. 12, pp. 1615–1618, 2003.

[100] Sim, T. and Kanade, T., “Combining models and exemplars for face recog-
nition: An illuminating example,” in Proceedings of the CVPR 2001 Workshop
on Models versus Exemplars in Computer Vision, vol. 1, 2001.

[101] Socolinsky, D. A. and Selinger, A., “A comparative analysis of face recog-
nition performance with visible and thermal infrared imagery,” tech. rep., DTIC
Document, 2002.

[102] Socolinsky, D. A. and Selinger, A., “Thermal face recognition in an op-
erational scenario,” in Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 2,
pp. II–1012, IEEE, 2004.

[103] Socolinsky, D. A., Selinger, A., and Neuheisel, J. D., “Face recogni-
tion with visible and thermal infrared imagery,” Computer vision and image
understanding, vol. 91, no. 1, pp. 72–114, 2003.

[104] Sun, J., Sun, J., Kang, S. B., Xu, Z.-B., Tang, X., and Shum, H.-Y.,
“Flash cut: Foreground extraction with flash and no-flash image pairs,” in IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–8, IEEE, 2007.

[105] Thomas Yang, C.-H., Lai, S.-H., and Chang, L.-W., “Robust face
matching under different lighting conditions,” in Multimedia and Expo, 2002.
ICME’02. Proceedings. 2002 IEEE International Conference on, vol. 2, pp. 149–
152, IEEE, 2002.

[106] Tomasi, C. and Manduchi, R., “Bilateral filtering for gray and color images,”
in Computer Vision, 1998. Sixth International Conference on, pp. 839–846,
IEEE, 1998.

[107] Turk, M. and Pentland, A., “Eigenfaces for recognition,” Journal of Cog-
nitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[108] Turk, M., Pentland, A., Vision, Group, M., of Technology, M. I.,
and Laboratory, M., Eigenfaces for Recognition. Vision and Modeling
Group, Media Laboratory, Massachusetts Institute of Technology, 1991.

103



[109] Turk, M. and Pentland, A., “Eigenfaces for recognition,” Journal of cog-
nitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[110] Viola, P. and Jones, M., “Rapid object detection using a boosted cascade
of simple features,” Proc. CVPR, vol. 1, pp. 511–518, 2001.

[111] Viola, P. and Jones, M., “Robust Real-Time Face Detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[112] Viola, P. and Jones, M., “Rapid object detection using a boosted cascade of
simple features,” in Proceedings of Computer Vision and Pattern Recognition,
vol. 1, pp. I–511, IEEE, 2001.

[113] Wang, B., Li, W., Yang, W., and Liao, Q., “Illumination normalization
based on weber’s law with application to face recognition,” Signal Processing
Letters, IEEE, vol. 18, no. 8, pp. 462–465, 2011.

[114] Wang, H., Li, S., and Wang, Y., “Generalized quotient image,” Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, vol. 2.

[115] Wang, H., Li, S. Z., and Wang, Y., “Face recognition under varying lighting
conditions using self quotient image,” in Automatic Face and Gesture Recogni-
tion, 2004. Proceedings. Sixth IEEE International Conference on, pp. 819–824,
IEEE, 2004.

[116] Wei, S.-D. and Lai, S.-H., “Robust face recognition under lighting varia-
tions,” in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th In-
ternational Conference on, vol. 1, pp. 354–357, IEEE, 2004.

[117] Wilder, J., Phillips, P. J., Jiang, C., and Wiener, S., “Comparison
of visible and infra-red imagery for face recognition,” in Automatic Face and
Gesture Recognition, 1996., Proceedings of the Second International Conference
on, pp. 182–187, IEEE, 1996.

[118] Xie, C., Savvides, M., and Kumar, B. V., “Quaternion correlation filters
for face recognition in wavelet domain.,” in ICASSP (2), pp. 85–88, 2005.

[119] Xie, X. and Lam, K.-M., “An efficient illumination normalization method for
face recognition,” Pattern Recognition Letters, vol. 27, no. 6, pp. 609–617, 2006.

[120] Yi, D., Liu, R., Chu, R., Wang, R., Liu, D., and Li, S. Z., “Outdoor face
recognition using enhanced near infrared imaging,” in Advances in Biometrics,
pp. 415–423, Springer, 2007.

[121] Yoon, S. M., Lee, Y. J., Yoon, G.-J., and Yoon, J., “Adaptive total
variation minimization-based image enhancement from flash and no-flash pairs,”
The Scientific World Journal, vol. 2014, 2014.

104



[122] Yu, Z., Cheng, D., Khalil, I., Kay, J., and Heckmann, D., “Theme
issue on adaptation and personalization for ubiquitous computing,” Personal
and Ubiquitous Computing, vol. 16, no. 5, pp. 467–468, 2012.

[123] Yukhin, A. and Klimov, A., “Methods and systems for detecting and recog-
nizing an object based on 3d image data,” 2007. US Patent 7,174,033.

[124] Zhang, L. and Samaras, D., “Face recognition under variable lighting us-
ing harmonic image exemplars,” in Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 1, pp. I–19,
IEEE, 2003.

[125] Zhang, L. and Samaras, D., “Face recognition from a single training image
under arbitrary unknown lighting using spherical harmonics,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 28, no. 3, pp. 351–363,
2006.

[126] Zhang, T., Tang, Y. Y., Fang, B., Shang, Z., and Liu, X., “Face recogni-
tion under varying illumination using gradientfaces,” Image Processing, IEEE
Transactions on, vol. 18, no. 11, pp. 2599–2606, 2009.

[127] Zhang, Y., Tian, J., He, X., and Yang, X., “Mqi based face recognition
under uneven illumination,” in Advances in Biometrics, pp. 290–298, Springer,
2007.

[128] Zhao, S. and Grigat, R., “An Automatic Face Recognition System in the
Near Infrared Spectrum,” Proceedings of the 4th International Conference on
Machine Learning and Data Mining in Pattern Recognition (MLDM 2005),
pp. 437–444, July 2005.

[129] ZHAO, W., CHELLAPPA, R., PHILLIPS, P., and ROSENFELD, A.,
“Face Recognition: A Literature Survey,” ACM Computing Surveys, vol. 35,
no. 4, pp. 399–458, 2003.

[130] Zhao, W. and Chellappa, R., “Illumination-insensitive face recognition us-
ing symmetric shape-from-shading,” in Computer Vision and Pattern Recogni-
tion, 2000. Proceedings. IEEE Conference on, vol. 1, pp. 286–293, IEEE, 2000.

[131] Zhou, H., Mian, A., Wei, L., Creighton, D., Hossny, M., and Naha-
vandi, S., “Recent advances on singlemodal and multimodal face recognition:
A survey,” Human-Machine Systems, IEEE Transactions on, vol. 44, no. 6,
pp. 701–716, 2014.

[132] Zhou, S. K., Aggarwal, G., Chellappa, R., and Jacobs, D. W., “Ap-
pearance characterization of linear lambertian objects, generalized photometric
stereo, and illumination-invariant face recognition,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 29, no. 2, pp. 230–245, 2007.

105



[133] Zhu, Z. and Ji, Q., “Robust real-time eye detection and tracking under vari-
able lighting conditions and various face orientations,” Computer Vision and
Image Understanding, vol. 98, no. 1, pp. 124–154, 2005.

[134] Zhuo, S., Guo, D., and Sim, T., “Robust flash deblurring,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 2440–2447, IEEE,
2010.

[135] Zou, X., Kittler, J., and Messer, K., “Motion compensation for face
recognition based on active differential imaging,” in Advances in Biometrics,
pp. 39–48, Springer, 2007.

106


