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Abstract

As an emerging technology, hyperspectral imaging provides huge opportunities in

both remote sensing and computer vision. The advantage of hyperspectral imaging

comes from the high resolution and wide range in the electromagnetic spectral do-

main which reflects the intrinsic properties of object materials. By combining spatial

and spectral information, it is possible to extract more comprehensive and discrimi-

native representation for objects of interest than traditional methods, thus facilitating

the basic pattern recognition tasks, such as object detection, recognition, and clas-

sification. With advanced imaging technologies gradually available for universities

and industry, there is an increased demand to develop new methods which can ful-

ly explore the information embedded in hyperspectral images. In this thesis, three

spectral-spatial feature extraction methods are developed for salient object detection,

hyperspectral face recognition, and remote sensing image classification.

Object detection is an important task for many applications based on hyperspec-

tral imaging. While most traditional methods rely on the pixel-wise spectral re-

sponse, many recent efforts have been put on extracting spectral-spatial features. In

the first approach, we extend Itti’s visual saliency model to the spectral domain and

introduce the spectral-spatial distribution based saliency model for object detection.

This procedure enables the extraction of salient spectral features in the scale space,

which is related to the material property and spatial layout of objects.

Traditional 2D face recognition has been studied for many years and achieved

great success. Nonetheless, there is high demand to explore unrevealed informa-

tion other than structures and textures in spatial domain in faces. Hyperspectral

imaging meets such requirements by providing additional spectral information on

objects, in completion to the traditional spatial features extracted in 2D images. In

the second approach, we propose a novel 3D high-order texture pattern descriptor
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for hyperspectral face recognition, which effectively exploits both spatial and spectral

features in hyperspectral images. Based on the local derivative pattern, our method

encodes hyperspectral faces with multi-directional derivatives and binarization func-

tion in spectral-spatial space. Compared to traditional face recognition methods,

our method can describe distinctive micro-patterns which integrate the spatial and

spectral information of faces.

Mathematical morphology operations are limited to extracting spatial feature in

two-dimensional data and cannot cope with hyperspectral images due to so-called

ordering problem. In the third approach, we propose a novel multi-dimensional

morphology descriptor, tensor morphology profile (TMP), for hyperspectral image

classification. TMP is a general framework to extract multi-dimensional structures

in high-dimensional data. The nth-order morphology profile is proposed to work

with the nth-order tensor, which can capture the inner high order structures. By

treating a hyperspectral image as a tensor, it is possible to extend the morphology to

high dimensional data so that powerful morphological tools can be used to analyze

hyperspectral images with fused spectral-spatial information.

At last, we discuss the sampling strategy for the evaluation of spectral-spatial

methods in remote sensing hyperspectral image classification. We find that tradition-

al pixel-based random sampling strategy for spectral processing will lead to unfair

or biased performance evaluation in the spectral-spatial processing context. When

training and testing samples are randomly drawn from the same image, the depen-

dence caused by overlap between them may be artificially enhanced by some spatial

processing methods. It is hard to determine whether the improvement of classifi-

cation accuracy is caused by incorporating spatial information into the classifier or

by increasing the overlap between training and testing samples. To partially solve

this problem, we propose a novel controlled random sampling strategy for spectral-

spatial methods. It can significantly reduce the overlap between training and testing

samples and provides more objective and accurate evaluation.
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Chapter 1

Introduction

1.1 Hyperspectral Imaging

Human vision has evolved to satisfy the requirement of living and played a signif-

icant role in finding food or avoiding dangers in the history [1]. We can sense not

only the brightness of light but also the color. The trichromatic color vision results

from three types of color photoreceptors which are sensitive to three different spectra

in the visible light, corresponding to blue, green and red. Via cross-reference of these

three colors, we can distinguish a number of color signals. Essentially, color is a vec-

tor instead of a scalar and color perception is a comparative sensory phenomenon.

However, the human is still restricted to visible light and limited spectral resolution.

Researchers have developed different instruments to capture irradiance from ob-

jects in various wavelengths. For example, a spectrometer is used to measure the

spectral irradiance at a single point, and a conventional RGB camera takes the inte-

grated irradiance across the visible wavelength at a region of interest. Different from

these two types of instruments, hyperspectral imager can obtain both spatial and

spectral information simultaneously. A hyperspectral image usually contains tens or

hundreds of continuous light wavelength indexed spectral bands, providing much

higher spectral resolution than human vision or regular RGB cameras. The spectrum

it covers is not only limited to the visible spectrum but also extends to ultraviolet or

infrared light depending on the equipment characteristics. It has been known that

objects consisting of different materials may emit, reflect, and absorb light and the

proportion is a function of light wavelength or frequency [2]. Therefore, the irradi-
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2 Introduction

ance from objects by a hyperspectral camera can be used as a clue to estimate the

physical or chemical properties of the objects.

Due to its high discriminative ability to identify and distinguish different ma-

terials, hyperspectral imaging has been widely used in remote sensing to analyze

the earth surface for applications such as mining, military, agriculture, environment

monitoring, etc. Moreover, with compact and high spatial resolution commercial in-

struments being developed, hyperspectral imaging has attracted increasing interests

in close-range applications, e.g. food security, biomedicine, biometrics and quality

control, etc. Another notable trend in the last decade is the introduction of hyper-

spectral imaging into computer vision applications. By providing extra information

in the spectral domain, hyperspectral imaging has great potential to push forward

research in some challenging problems in computer vision area, such as illumination

estimation, super-resolution, camera sensitivity analysis [3, 4], scene analysis [5],

document processing [6], object classification [7], etc.

Supporting a broad range of scope in research and applications, hyperspectral

image classification covers broad topics in predicting the categories of targets, for

instance, general object/scene classification, saliency detection, and image labeling,

etc. The targets vary from single pixels, regions, objects to scenes. In remote sens-

ing, hyperspectral image classification mainly focuses on pixel-level classification for

land-cover classes identification and thematic map generation. In computer vision,

hyperspectral images have not been widely used due to absence of large scale image

data. Most image classification tasks are still using grayscale or color images which

usually contain single object [8, 9, 10].

Though hyperspectral imaging gives access to more valuable and abundant da-

ta than grayscale and RGB images, it is necessary to extract and refine information

for various analytical tasks. Feature extraction addresses this problem by providing

compact and informative set of information to increase the efficiency and effective-

ness of data storage and processing. Numerous feature extraction methods have been
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developed in remote sensing and computer vision during the past decade. Howev-

er, most of these methods focus on either pixel-wise spectral information in remote

sensing or gray-scale spatial information in computer vision, in accordance with the

characteristics of images available in two areas, i.e., high spectral resolution and low

spatial resolution in remote sensing, and the opposite in computer vision.

For hyperspectral images obtained by advanced hyperspectral cameras, detailed

spectral information and fine spatial resolution enable analysis of both material and

structure of objects in a scene. However, most of the existing methods are not suit-

able for this task due to the constraints as mentioned above. Therefore, it is necessary

to develop new techniques to exploit these underlying spatial and spectral informa-

tion in hyperspectral images, thus addressing the limitation of human vision, com-

puter vision, and remote sensing. Though some attempts have been made in both

computer vision and remote sensing recently, there is still a huge gap between hy-

perspectral imaging and practical classification applications due to lack of effective

spectral-spatial feature extraction methods. This thesis focuses on developing several

novel methods based on spatial and spectral analysis, thus facilitating hyperspectral

image classification.

1.2 Motivation

The demand for new spectral-spatial feature extraction methods is mainly from t-

wo perspectives, remote sensing, and computer vision. Hyperspectral images were

firstly adopted in remote sensing when NASA Jet Propulsion Laboratory developed

the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in 1987 [11]. In

this application area, they are usually acquired by airborne or spaceborne sensors,

capturing the spectral radiance of the earth surface. With advancement in sensor

technology, the spatial resolution of hyperspectral images has significantly increased

and is much higher than 29 years ago, describing detailed structures, shapes, and

textures of the scene. Pixel analysis methods are widely adopted in traditional re-
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mote sensing image analysis, which usually extract spectral information with band

selection or dimensionality reduction without exploring spatial information. Due to

random noises from data collection, transmission, and processing, pixel analysis may

create pepper and salt like classification map instead of a spatially coherent map [2].

This type of method has ignored the fact that different objects with the same material

may be distinguished with the aid of the spatial information.

Nevertheless, facing the challenging obstacles in pattern recognition with compu-

tational models, researchers have mainly focused on developing sophisticated feature

extraction and machine learning approaches, take two influential works for example,

Scale-Invariant Feature Transform (SIFT) [12] and Convolutional Neural Network (C-

NN) [9]. These methods are developed to match human vision system by exploring

visual processing mechanism in the brain. Although tremendous success has been

achieved, most methods are still limited to grayscale or RGB images analysis, mean-

ing that there is no additional input into computational models than the human

vision system.

Rather than relying on image processing and machining learning algorithms, hy-

perspectral imaging provides computer vision with new opportunities. First, hy-

perspectral images contain tens or hundreds of bands, thus dramatically increasing

its discriminative ability to distinguish a large number of spectral responses beyond

the trichromatic human vision system. Furthermore, some extra information beyond

visible light range can be captured, for instances, fluorescence which is related to ab-

sorption of ultraviolet light, infrared light which can be used to detect plants, and the

spectrum in short wave infrared light that water absorbs. The spectral response of

materials is called spectral signature, with which the materials can be easily classified

or detected.

Motivated by these facts, in this thesis, we explore the possibilities of fusing

the spectral and spatial information by extracting the spectral-spatial features, thus

facilitating the basic pattern recognition tasks, such as object detection, recognition,
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and classification.

1.2.1 The advance of imaging technology

Hyperspectral imaging instruments were originally developed for airborne and satel-

lite platforms so as to measure the spectral characteristics of land cover on earth sur-

face. They were seldom available for close-range data collection due to their massive

sizes and high prices. With new material, optical, electronics technologies applied to

this area, new instruments keep emerging and becoming faster, cheaper, and more

compact. Without much loss of spectral range or resolution, the spatial resolution

of new hyperspectral cameras has been dramatically increased, making them com-

parable to conventional chromatic or monochrome cameras. Table 1.1 shows some

examples of hyperspectral imaging instruments developed during the past years.

We can observe that there are more and more high spatial and spectral resolution

hyperspectral cameras available in the market.

1.2.2 Demand for new hyperspectral image processing methods

For the last decade, a series of methods have been developed to tackle the problems

of the particular characteristics of hyperspectral images. Different mathematical for-

malisms have been built for typical tasks, such as classification, segmentation, spec-

tral mixture analysis. However, most of such works still focus on the spectral domain.

With high spatial resolution images available, it is inevitably demanded to develop

new spectral-spatial methods for the emerging images. Meanwhile, hyperspectral

imaging is still a new topic in the area of computer vision. The limited amount of

existing research pays attention to the low level of image processing, for instance,

how to obtain the hyperspectral image or videos with high spatial resolution, how to

denoise the hyperspectral image and so on. There is a lack of basic methods for the

hyperspectral image processing, especially the feature extraction methods.

1The spatial resolution of ground based camera depends on lens and object distance.
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On the other hand, the hyperspectral imaging has broad application prospects

in agriculture, industry, and military due to its higher discriminative ability than

conventional cameras. But the lack of basic methods has constrained the analysis

in the spectral domain. The various spatial approaches from the computer vision

area have not been associated with the spectral methods. A lot of work needs to be

done to build the foundation of hyperspectral imaging. It can be expected that there

will be a trend that hyperspectral imaging plays a more important role in computer

vision and remote sensing in near future, and the spectral-spatial feature extraction

will make a difference to the prosperity of hyperspectral imaging.

1.2.3 Challenges

It is a challenging task to extract spectral-spatial features without introducing too

much data complexity. The main challenges come from two perspectives: how to

fuse spectral and spatial features and how to reduce redundant information in the

extracted feature [13]. Several other factors also influence the spectral-spatial feature

extraction process, including illumination, noise, and a large amount of data. We

summarize these challenging problems as follows:

1. Huge data and high computation complexity. Hyperspectral images consist of

tens or hundreds of bands. The size of a single hyperspectral image is usually

much bigger than an RGB or grayscale image. To store, process and analyze

such massive data is challenging for personal computers.

2. How to fuse spatial and spectral information. In hyperspectral images, spatial

and spectral domain are completely different, showing distinct characteristics.

Spatial information usually involves shape, structure, texture, edge, as well as

contextual information. On the other hand, spectral information is extracted

from the irradiance of object surface, showing unique object material related

properties. In contrast to spatial edges and corners, reliable spectral informa-

tion is usually located in a flat region which corresponds to a group of pixels
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made of the same material. Due to their different characteristics, there is no

straight way to fuse them to represent spectral-spatial features.

3. Curse of Dimensionality. In machine learning, the curse dimensionality refers

to a phenomenon that when the dimensionality of feature space increases, the

amount of data demanded to obtain a statistically reliable result grows expo-

nentially with the dimensionality. This issue is because the number of param-

eters to be estimated will increase dramatically. Determining and optimizing

such a large number of parameters in a high-dimensional space is problemat-

ic. If the number of training instances is much less than the dimension of the

features, the learning algorithms tend to overfit. Hyperspectral image classifi-

cation usually suffers from such a problem due to its high dimensional nature

and limited labeled data. In many cases, the produced spectral-spatial features

are of ultra high dimensionality [14, 15].

4. Influence of illumination and other external factors. Object material is not the

only fact determining the spectral response of objects. Several factors also affect

the imaging process, such as illumination, object geometry, surface smoothness,

sensor sensitivity, etc.. Illumination plays an important role here. Objects illu-

minated by different light sources, such as sunlight, tungsten, halogen, and

fluorescent, show varying spectral irradiance. Varying lighting condition sub-

stantially constrains the application of hyperspectral imaging in uncontrolled

environment. Geometry and surface smoothness determine whether shadows

or specularity will contaminate the spectral responses. Therefore, how to obtain

consistent spectral reflectance under different conditions needs to be figured

out.
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Figure 1.1: The framework of the proposed methodology.

1.3 Objective

The objective of this thesis is to develop novel spectral-spatial feature extraction solu-

tions for hyperspectral image classification. Several goals shall be achieved, including

effective fusing of spectral-spatial feature, achieving superior performance than spa-

tial or spectral only features in several common tasks, such as remote sensing land

cover classification, face recognition, salient region detection. For various tasks with

different objectives, the developed features shall meet their unique needs. While

spectral information is primary and spatial information is supplementary for remote

sensing hyperspectral image classification, spatial structure is more important than

spectral information for face recognition. Fig. 1.1 shows the framework of the pro-

posed methodology. Spatial and spectral feature extraction methods originate from

computer vision and remote sensing, respectively. The fused spectral-spatial features

serve as the input to classification and other tasks. Our ultimate goal is to develop

practical hyperspectral image descriptors and feature representation methods, so as

to increase the classification accuracy, especially when available data are limited.
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1.4 Contribution

In this thesis, we have developed three spectral-spatial feature extraction methods for

saliency detection, hyperspectral face recognition, and remote sensing image classi-

fication. Furthermore, we also discuss the sampling strategy for the evaluation of

spectral-spatial methods in remote sensing hyperspectral image classification.

The first method is for salient object detection in hyperspectral images. Object de-

tection is an important task for many applications. While most traditional methods

are pixel-based on hyperspectral images, many recent efforts have been putting on

extracting spectral-spatial features. In this method, we extend Itti’s visual saliency

model to the spectral domain and introduce the spectral-spatial distribution based

saliency model for object detection. This model enables the extraction of salient spec-

tral features in the scale space, which is related to the material property and spatial

layout of objects. To our knowledge, this is the first attempt to combine hyperspec-

tral data with salient object detection. Several methods have been implemented and

compared to show how color component in the traditional saliency model can be

replaced by spectral information.

Traditional 2D face recognition has been studied for many years and achieved

great success. Nonetheless, there is high demand to explore unrevealed information

other than structure and texture in spatial domain in the faces. Hyperspectral imag-

ing meets such requirements by providing additional spectral information on objects,

in completion to the traditional spatial features extracted in 2D images. In the second

approach, we propose a novel 3D high-order texture pattern descriptor for hyper-

spectral face recognition, which effectively exploits both spatial and spectral features

in hyperspectral images. Based on the local derivative pattern, our method encodes

the hyperspectral faces with multi-directional derivatives and binarization function

in spectral-spatial space. Then a spectral-spatial feature descriptor is generated by

applying a 3D histogram on the derivative pattern, which can be used to convert hy-

perspectral face images into vectorized representations. Compared to traditional face
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recognition methods, our method can describe the distinctive micro-patterns which

integrate both spatial and spectral information in faces.

The third approach is based on morphological profiles for remote hyperspectral

image classification. Traditional mathematical morphology operations are limited to

extracting spatial feature in two-dimensional data and are not able to be applied to

hyperspectral image due to the so-called ordering problem. In this approach, we pro-

pose a novel multi-dimensional morphology descriptor, namely, tensor morphology

profile (TMP). TMP is a general framework to extract multi-dimensional structures in

high-dimensional data. The nth-order morphology profile is proposed to work with

the nth-order tensor, which can capture the inner high order structures. By treating

a hyperspectral image as a tensor, it is possible to extend morphology operations to

high dimensional data so that this powerful tool can be used to analyze hyperspectral

images with fused spectral-spatial information.

Spectral-spatial processing has been increasingly explored in remote sensing hy-

perspectral image classification. While extensive studies have focused on developing

methods to improve the classification accuracy, experimental setting and design for

method evaluation have drawn little attention. In the scope of supervised classifica-

tion, we find that traditional experimental designs for spectral processing are often

improperly used in the spectral-spatial processing context, leading to unfair or bi-

ased performance evaluation. This is especially the case when training and testing

samples are randomly drawn from the same image - a practice that has been com-

monly adopted in the experiments. Under such a setting, the dependence caused

by overlap between the training and testing samples may be artificially enhanced by

some spatial information processing methods such as spatial filtering and morpho-

logical operation. Such an interaction between training and testing sets has violated

data independence assumption that is abided by supervised learning theory and per-

formance evaluation mechanism. Therefore, the widely adopted pixel-based random

sampling strategy is not always suitable to evaluate spectral-spatial classification al-
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gorithms because it ’s hard to determine whether the improvement of classification

accuracy is caused by incorporating spatial information into a classifier or by increas-

ing the overlap between training and testing samples. To partially solve this problem,

we propose a novel controlled random sampling strategy for spectral-spatial meth-

ods. It can substantially reduce the overlap between training and testing samples

and provides more objective and accurate evaluation.

1.5 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 presents a literature review

on hyperspectral imaging technology, feature extraction in both computer vision and

remote sensing, and potential combination of spatial and spectral features. Chapter 3

introduces the proposed hyperspectral salient object detection method. In Chapter 4,

we introduce 3D local derivative pattern for hyperspectral face recognition. Then,

tensor morphological profile for hyperspectral image classification is elaborated in

Chapter 5. After these three approaches, Chapter 6 discusses the sampling strategy

for the evaluation of spectral-spatial methods in hyperspectral image classification.

At last, a summary of this thesis and future work are given in Chapter 7.
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Chapter 2

Literature Review

2.1 Hyperspectral Imaging Technology

Before introducing hyperspectral imaging in more details, this section explains the

terminology commonly used in related areas, for example, hyperspectral imager,

hyperspectral imaging, multispectral imaging, spectral imaging, spectrometer, spec-

troscopy, and photography.

A hyperspectral imager is an instrument which can capture hyperspectral data/im-

ages, while hyperspectral imaging refers to the complete hyperspectral data pro-

cessing including collection, measurement, analysis and interpretation of spectra.

Both hyperspectral imaging and multispectral imaging are kinds of spectral imaging

which capture the spectral information at every pixel on the image plane. The differ-

ence is that the former emphasizes high spectral resolution and continuous spectral

range, while the latter contains only several bands without spectral continuity re-

quirement. Spectral imaging is a combination of photography and spectroscopy.

While photography projects scene and object on an electronic sensor or photograph-

ic film, spectroscopy studies the interaction between matter and radiated energy at

a single point. Spectral imaging takes advantage of both photography and spec-

troscopy and captures both spatial and spectral information in a scene. Although the

conventional camera can capture partial spectral information by separating light into

three channels dominated by red, green and blue, the spectral resolution is rough

and cannot cover spectrum out of the visible range compared to hyperspectral imag-

ing. For the sake of conciseness and without confusion, we use "spectral imaging",

15
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Figure 2.1: Brimrose hyperspectral imaging system.

"hyperspectral imaging" and "multispectral" interchangeably in the rest of the thesis.

The concept of hyperspectral imaging can trace back to 1980s when NASA’s Jet

Propulsion Laboratory developed a new remote sensing instrument AVIRIS which

covers the wavelengths from 0.4 to 2.5 µm and produces more than two hundred

spectral bands. Since then, a variety of hyperspectral systems have been developed,

and they are no longer restricted to the remote sensing applications. Hyperspectral

cameras capture images at narrow range wavelengths in the electromagnetic spec-

trum and thus the core issue to solve is how to split the spectrum and transfer light

to the imaging sensor. So far, existing technologies such as liquid crystals, grating,

light filters have been widely used as light separation tools. They are located either

between lens and sensor or in front of the lens. Hyperspectral sensors can be cate-

gorized into line scan, push broom, and snapshot designs. The difference between

these types is the order of obtaining spatial and spectral information. A snapshot

system captures a grayscale image at a particular wavelength and then moves along

the spectral dimension to receive the data cube, while a push broom or line scan

system gets the complete spectrum at a spatial line and then moves along the other

spatial dimension. Push broom system is widely adopted in remote sensing because

airborne and satellite platforms fly in one direction which is required by the scan-
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ning systems. On the contrary, snapshot cameras are more suitable for close-range

computer vision applications where the complete spatial layout of objects and scenes

shall be taken at a time. In Fig. 2.1, we show a Brimrose hyperspectral imaging

system in the Spectral Lab at Griffith University.

Compared with conventional cameras, hyperspectral cameras have their limita-

tions. First, the spatial resolution of images is relatively low at the cost of extra

spectral bands. Furthermore, the imaging process is time-consuming, generally re-

quiring the scene remain still during the exposure time which can last for several or

tens of seconds. The exposure time is closely related to illumination condition. Since

incident light is separated into narrow bands, a limited amount of light arrives at the

sensor. Therefore, the generated images may have low signal to noise ratio. This can

only be solved by either extending the exposure time or increase the light intensity

when a sensor is given. Sometimes the band images may suffer from out of focus

problem as the focus is normally tuned on a single band.

During the past several years, new hyperspectral imaging technologies have been

developed so as to allow fast snapshot mechanism. For example, IMEC has designed

a new series of hyperspectral cameras with snapshot mosaic technology1. The new

camera is developed based on a large CMOS sensor wafer in which different pix-

els in an array are sensitive to different wavelengths. Therefore, this camera can

capture real-time images and videos as traditional digital cameras, but with many

more spectral channels. This advantage has dramatically increased the feasibility of

hyperspectral cameras in real-world computer vision applications.

When data representation is concerned, a hyperspectral image is usually in the

form of a data cube as shown in Fig. 2.2. It consists of two spatial dimensions X and

Y, and a spectral dimension λ. Each pixel is a vector corresponding to the spectral

response at the spatial location. At each wavelength, a grayscale band image can be

acquired, representing the spatial distribution of the scene at this band.

1Products link: http://www2.imec.be/be_en/research/image-sensors-and-vision-systems/
hyperspectral-imaging.html

http://www2.imec.be/be_en/research/image-sensors-and-vision-systems/hyperspectral-imaging.html
http://www2.imec.be/be_en/research/image-sensors-and-vision-systems/hyperspectral-imaging.html
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Figure 2.2: Representation of a hyperspectral image and meaning in different dimen-
sions2.

2.2 Radiometry for Hyperspectral Imaging

There has been a long history since researchers began to study the light and its in-

teraction with matter. Radiometry is such a tool to measure light in the magnetic

spectrum. The target of radiometry research covers different light sources such as

sunshine and man-made lights, objects of different scales from man-made to earth

and universe, and a variety of imaging devices including naked eyes, spectrome-

ter, cameras and radio telescope. Among various imaging devices, spectrometers

and cameras are particularly useful to measure the interactions of objects and light

courses. Light contains abundant spectral information related to electromagnetic ra-

diance. Imaging devices normally cover ultraviolet, visible and infrared light in the

spectral range. Ultraviolet can be further divided into UVA, UVB, and UVC. Visible

light is the spectral range which human vision can perceive. Infrared light covers

near-infrared, short wave infrared, middle wave infrared, and long wave infrared

light spectra. Different spectral ranges of light have unique characteristics and serve

different functions. Fig. 2.3 shows the electromagnetic spectrum with respect to the

2This figure is from http://www.bodkindesign.com/products-page/hyperspectral-imaging/
hyperspectral-imaging/

http://www.bodkindesign.com/products-page/hyperspectral-imaging/hyperspectral-imaging/
http://www.bodkindesign.com/products-page/hyperspectral-imaging/hyperspectral-imaging/
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Figure 2.3: Electromagnetic spectrum3.

wavelength.

Like the formation of normal images, hyperspectral imaging captures a propor-

tion of spectrum within the electromagnetic spectrum. While a color image is nor-

mally formed by integration of light in red, blue, and green wavelengths, hyper-

spectral imaging is able to cover up to hundreds of bands in ultraviolet, visible and

infrared ranges.

2.2.1 Spectral range, absorption, and materials

In physics, when an object interacts with light, it may absorb the incident radiation

over a range of frequencies which is referred as spectrum absorption. It is primarily

determined by the atomic and molecular composition of the material. Consequently,

this property can be used to distinguish different elements and plays an important

role in astronomy. For instance, each element has its own spectral atom spectrum.

When scaling up, the molecule spectrum and material have photophysical effect.

Different materials have distinct absorption properties. The wider range and higher

resolution of the spectra a sensor can cover, the more materials it can distinguish [2,

16]. Across the whole electromagnetic spectrum, the visible bands only occupy a

small proportion and a large amount information existing in other bands.

3This figure is borrowed from htp://www.ces.fau.edu/nasa/module-2/radiation-sun.php

htp://www.ces.fau.edu/nasa/module-2/radiation-sun.php
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A lot of physical phenomena are connected with spectral reflectance or absorp-

tion. Plants, water/moisture, and DNA all have their own spectral signatures. In

Table 2.1, we show some examples of materials which can be distinguished with

specific spectral range.

Table 2.1: Examples of materials and most useful spectral range for recognition.

Materials Spectral Range

Chlorophyll absorbtion/vegetation reflectance 510-970 nm

Oxygenation in blood 500-900 nm

Hydrocarbon organic compounds 750-950 nm

Water absorption 970, 1450,1850 nm

PVC/plastic recycling 1700-1900 nm

Minerals mapping 2300-2400 nm

CH4 2300 nm

CO2 2100,3500,4800 nm

2.3 Feature Extraction in Computer Vision and Remote Sens-

ing

Where there is an image, there are features. Feature extraction is a major research

topic in computer vision. It is widely used in image matching, tracking, segmenta-

tion, compression, recognition and so on [17]. The very basic features include edges,

corners, and blob in an image. Features can be invariant to many conditions, such

as the scale invariant features transform (SIFT) descriptors [12] and other rotation,

transmission, and illumination invariant features [18, 19, 20]. These kinds of features

usually help to look for correspondences between two images containing the same

object but captured under different conditions. In image classification and recogni-

tion, image and objects are usually represented by a group of features, for example,
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visual words [21]. Theoretically, a feature is a pattern which represents particular

property of an image and sometimes even a robust presentation of image. In this

chapter, I review some local features, texture features and color features that are

relevant to my research, as well as how they are extracted and described.

2.3.1 Local image feature

Local features are an important cue to predict the shape of an object [17]. Other

causes include sharp changes in albedo, surface orientation or illumination. Local

features are very useful because it reflects the properties of images: the change of

albedo results from the texture variant; the change of surface orientation shows the

shape; the illumination change is caused by the movement of light source.

Local features can be extracted at points, edges or small patches in an image. Be-

sides their locations, details about the regions where features locate can form descrip-

tors for other computer vision steps. Depending on the properties of local feature and

their corresponding patterns in images, local features can be used in various ways.

For example, they may represent specific objects in some applications, such as road

recognition which can be implemented by line detection in an image [22], and impu-

rity identification in quality inspection of glasses by detecting blobs. Local features

could also possess transform invariant property, which is one of the foundations of

image registration. Last, a class of objects or images need general representation for

recognition and classification purposes. A set of features can play such a role and act

as abstract description.

2.3.2 Texture feature

Texture refers to repeated patterns in an image rather than the structure of an object.

Texture features have been used in many tasks, for example, segmentation in which

local texture representation describes similar points in a region, material recognition

in which pooled texture representation is used, and shape estimating such as shape
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from texture [17]. The reason why texture is important is that it describes prop-

erty of materials and helps to identify an object. Although traditionally extracted

from grayscale and color images, texture can be associated with spectral information

which is covered in this thesis.

In order to represent a local texture, two factors shall be addressed: what texture

element shall be extracted and how texture is distributed. An element of texture is

usually called texton. Textures vary a lot so it is difficult to predict which textons

exist in an image. A solution to this problem is to split textures into subelements

like spots and bars. Then subelements are detected by applying a set of filters at

various scales to an image so that each of subelement is represented by the vector

of the corresponding filter. At last, the summary of the output maps provides a

representation of texture in the image.

2.3.3 Color feature

Color is a kind of low spectral resolution information located in red, green and

blue bands, which can be used for illumination estimation, saliency detection, image

segmentation, specularity and shadow removal, etc. There are several color spaces,

i.e. RGB color space, CIE XYZ color space, HSV color space. Each of them represents

different information and can be used in various applications. However, color itself

is not capable of distinguishing different materials due to metamerism [23], i.e., the

same color may correspond to different spectral power distribution.

Color feature is traditionally used with other features because it contains low

descriptive information of visual contents in an image. Here, the importance of

reviewing color feature is due to its direct correlation with spectra in hyperspectral

images. One aspect of color feature that we can learn from is the transform of color

space. After RGB images are transformed to HSV (hue, saturation, and value) space,

the new color feature maintains some good invariant properties which are more

useful in classification and recognition than the original feature. Another aspect is
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Figure 2.4: Vegetation, soil and water spectra recorded by AVIRIS [11].

the color histogram [24] which is a good color feature descriptor.

2.3.4 Spectral feature extraction in remote sensing

In remote sensing, researchers focus more on the spectral domain. It is because that,

on one hand, the hyperspectral images consist of tens or hundreds of wavelength in-

dexed bands which contain rich information of spectra; on the other hand, the spatial

resolution of remote sensing image is quite low, usually measured by meters. As a

result, researchers need to unmix a single pixel (which is to analyze the components

of a pixel) to different components for image analysis, rather than considering shapes

or textures in an image. Note that a pixel with a spectral vector is a feature itself.

Therefore, most algorithms in this area are pixel based. The problem for feature ex-

traction becomes how to use the feature efficiently rather than how to represent the

feature. In order to solve this problem, a lot of research has been done in feature

selection and feature extraction, including methods that are supervised and unsu-

pervised, parametric and nonparametric, linear and nonlinear [25]. All of them try

to seek the informative subspace of features.

There are a large number of bands in hyperspectral images but not all of them are
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useful. Every material has its unique spectral absorption feature. However, discrimi-

native information might only exist in a portion of wavelengths. For example, Fig. 2.4

shows that the difference of spectra between vegetation and soil mainly lies in the

visible range but not the far infrared range. Even if the spectral reflectance is not sim-

ilar, the spectral information may be redundant considering that many contiguous

bands are highly correlated. Moreover, noises coming from imaging environment

and instruments often contaminate some bands. Therefore, the raw hyperspectral

bands shall be preprocessed for remote sensing applications. For the hyperspectral

images captured on the ground as used in my research, this problem also needs to

be considered.

A simple but useful method for dimensionality reduction is principal component

analyze (PCA) [26]. Based on statistics of data, its objective is to find the most vari-

ant dimensions of data and map the original data on these dimensions so that the

variance of data is maximally retained. Mathematically, given the original feature set

X and its element xi, each new feature yi is calculated using the following equation:

yi = wTxi (2.1)

where the columns of w are the eigenvectors of the covariance matrix of the original

feature set X. The method to calculate the covariance matrix is shown in Equation 2.2

where µ is the mean vector of X.

C =
1
N ∑

i,j
(xi − µi)

T(xj − µj) (2.2)

As an unsupervised method, the feature extracted by PCA algorithm contains

the largest variance but may not be optimal for classification. Therefore, supervised

methods are employed to select features. With the training data, while paramet-

ric methods try to build models by measuring separability of two classes [2], non-

parametric methods use label information directly to estimate the similarity between
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classes [27].

2.4 Spectral-spatial Feature Extraction

Table 2.2: Summary of spectral-spatial feature extraction methods.

Year Author Feature/Classifier

2002 Q.Jackson et al. Markov Random Field [28]

2003 D.A. Landgrebe ECHO Classifier [29]

2005 Benediktsson et al. Extended Morphological Profile [30]

2006 G. Camps-Valls et al. Composite Kernels [31]

2009 Y. Tarabalka et al. Spatial Regulation based on Segmentation [32]

2011 Y. Chen et al. Dictionary-based Sparse Representation [33]

2011 M. Dalla Mura et al. Extended Attribute Profile [34]

2011 L. Shen et al. 3D Gabor Wavelet [35]

2013 Y. Qian et al. 3D Discrete Wavelet Transform [15]

2013 L. Zhang et al. Tensor Discriminative Locality Alignment [36]

2013 T. Fuai et al. 3D Gray Level Co-occurrence [37]

2014 W. Duan et al. Superpixel Representation [38]

2014 R. Ji et al. Spectral-Spatial Constraint [39]

2015 J. Liang et al. 3D Local Derivative Pattern [14]

2015 J. Li et al. Multiple Feature Combination [40]

To our knowledge, existing spectral-spatial feature extraction methods are mainly

developed for remote sensing and there has not been much research in computer

vision on this topic. This is because computer vision based on hyperspectral imaging

is still in its early research stage. Most computer vision tasks are accomplished on

gray-scale images with spatial information heavily explored. Though color features

are also widely used, it is less discriminative than spatial structures. Moreover, color

is sometimes not reliable since it is easily influenced by the illumination condition,

but the spatial information is not. For instance, edges can be consistently observed
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under both sunlight and halogen light, but color is not. Due to its high spectral

resolution, hyperspectral images provide much more information than color image,

and its inner constraints can help to estimate the reflectance, therefore making them

particularly useful for computer vision tasks [16].

The spatial information in a hyperspectral image may cover many factors. These

include local information such as structures, textures, and contextual information,

as well as global information such as geometric information. Due to the high di-

mensionality of this kind of feature, it is quite expensive to associate both spatial and

spectral features at the same time. So an alternate way is to consider them separately.

The advantage of using hyperspectral data in land cover classification is that

spectral responses reflect the properties of components on the ground surface [2].

Therefore, raw spectral responses can be used directly as the discriminative features

of different land covers. At the same time, hyperspectral data also possesses the ba-

sic characteristic of conventional images - the spatial information which corresponds

to where a pixel locates in the image. The spatial information can be represented in

different forms, such as structural information including the size and shape of object-

s, textures which describe the granularity and patterns, and contextual information

which can express the inter-pixel dependency [41]. This is also the foundation of

developing spectral-spatial methods for hyperspectral image classification.

In general, spectral-spatial information can contribute to hyperspectral image

classification through three ways. Firstly, in image preprocessing, it can be used

for image denoising, morphology, and segmentation. Image denoising enables the

reduction of random noises introduced from sensor, photon effects, and calibration

errors. Several approaches have been exploited for this purpose, for example, s-

moothing filters, anisotropic diffusion, multi-linear algebra, wavelet shrinkage, and

sparse coding methods [42]. In most cases, denoising can be done by applying a local

filter with designed or learned kernel across the whole image. In mathematical mor-

phology, operations are performed to extract spatial structures of objects according
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to their spectral responses [43, 41]. Similar information is explored in image segmen-

tation which groups spatially neighboring pixels into clusters based on their spectral

distribution [44, 45].

Secondly, common usage of joint spectral-spatial information lies in the feature

extraction stage. While traditional spectral features are extracted as responses at

single pixel level in hyperspectral images, spectral-spatial feature extraction meth-

ods use spatial neighborhood to calculate features. Typical examples include tex-

ture features such as 3D discrete wavelet [15], 3D Gabor wavelet [46], 3D scattering

wavelet[47], and local binary patterns [48]. Morphological profiles, alternatively, use

closing, opening, and geodesic operators to enhance the spatial structures of object-

s [30, 49, 34]. Other spectral-spatial features include spectral saliency [50], spherical

harmonics [51], and affine invariant descriptors [52]. Heterogeneous features can be

fused using feature selection or reduction approaches [25].

Thirdly, some image classification approaches rely on spatial relation between

pixels for model building. A direct way of doing so is calculating the similarity be-

tween a pixel and its surrounding pixels [53]. Markov random field, for example,

treats hyperspectral image as dependent data and uses spectral information in the

local neighborhood to help pixel class prediction [54, 45, 55]. Similar spatial struc-

tures are explored in conditional random fields [56], hypergraph modelling [39], and

multi-scale analysis [57]. The spatial information can also be explored in constructing

composite kernels in support vector machines [31]. Supervised learning approaches,

such as K-nearest neighbors, linear discriminant analysis, Bayesian analysis, support

vector machines, etc. are widely used in these classification tasks [58, 59]. Nonethe-

less, some approaches adopt semi-supervised or active learning strategies [60, 61].

2.4.1 Extended morphological profiles

Extended morphological profiles (EMP) is an extension of mathematical morphology

for hyperspectral images. It solves the problem of mathematical morphology which
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cannot be applied to hyperspectral images directly since there is no explicit ordering

relationship in vectors. In other words, neither maximum nor minimum, which are

necessary for basic morphological operations, is not defined for a set of vectors.

The details of this method and its variation can be found in a survey paper from

Fauvel et al [41]. The spatial feature is extracted as follows

Ω(n)(I) =
[
o(n)(I), ..., o(1)(I), I, c(1)(I), ..., c(n)(I)

]
(2.3)

where o(n)(I) and c(n)(I) are the opening and closing operations with a disk-shape

structural element of size n, respectively. As different sizes of structuring elements

are used, the morphological profile Ω(n)(I) is capable of integrating multi-scale in-

formation. Before the feature extraction, a principle component analysis (PCA) step

is applied to hyperspectral images to reduce the dimension of the data. Then the

morphological profiles are obtained on each of the m primary components:

Ω̂(n)
m (I) =

[
Ω(n)

1 (I), Ω(n)
2 (I), ..., Ω(n)

m (I)
]

(2.4)

In the last step, the morphological profiles are stacked with the spectral response to

form the spectral-spatial feature.

2.4.2 3D Gabor wavelet

Three dimensional Gabor filter [35] is the extension of two dimensional Gabor which

is widely adopted in texture feature extraction. By tuning the scale and orientation,

the Gabor Wavelet can extract multi-scale and multi-orientation features from images.

A 3D Gabor filter with the frequency f and orientation (φ, θ) can be defined as

following

G f ,φ,θ(x, y, b) = N × exp(−( x′

σx

2

) + (
y′

σy

2

) + (
b′

σb

2

))× exp(j2π(xu + yv + bw)) (2.5)
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This function is a Gaussian kernel function modulated by a sinusoid plane wave.

N is the normalise factor. [x′, y′, b′]T is transformed signal which is coincide with

orientation of the sinusoid. It can be calculated as

[x′, y′, b′]T = R× [x− xc, y− yc, b− bc]
T (2.6)

where (xc, yc, bc) is the central position for signals and R is the rotation matrix defined

by (φ, θ). σx, σy and σb are width of Gaussian envelop in different axis. Regarding the

sinusoid plane wave, w is the axis of the wave vector and u− v is the perpendicular

plane in frequency domain. u = f sin φ cos θ, v = f sin φ sin θ, w = f cos φ.

2.4.3 3D discrete wavelet transform

The three-dimensional wavelet texture features proposed by Qian et al [15] is a re-

al 3D feature on hyperspectral images. In this method, hyperspectral data cube is

treated as a a whole tensor and it is composed at different scales, frequencies and ori-

entations by the 3D discrete wavelet transform. The definition of continuous wavelet

transform is

Ψψ
x (τ, s) =

∫
x(t) · ψτ,s(t)dt (2.7)

where ψτ,s is the basis functions (wavelet) with s and τ controlling the scale and

translation, respectively. x(t) is the original signal in the time domain. When it

comes to discrete samples, discrete wavelet transform (DWT) is implemented by a

series of filters in the frequency domain. Since hyperspectral images consist of three

dimensions, 3D-DWT exploits the correlation along the wavelength axis, as well as

along the spatial axes, so that both spatial and spectral structures of hyperspectral

images can be adequately mapped into the extracted features.

The implementation of 3D-DWT has several steps. Firstly, the hyperspectral im-

age is processed by a cascade of high pass filters and low pass filters. At each level,

the data is decomposed into high-frequency part and low-frequency part. After three
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levels of decomposition, the original data is separated into 15 sub-cubes C1, C2, ..., C15

based on the bandwidth, such that each of the sub-cubes contains different scales of

information. To further capture the spatial distribution of hyperspectral images, a

mean filter is applied on the sub-cubes:

Ĉn(x, y, .) =
1
9

x+1

∑
i=x−1

y+1

∑
j=y−1

C(i, j, .) (2.8)

where C(i, j, .) is the spectral response at the position of (i, j). [x − 1, x + 1] and

[y− 1, y + 1] define a 3 by 3 neighbourhood.

In order to keep the sub-cube and the original data cube at the same size, the

filtered signals are not down-sampled as what the traditional DWT does. Then these

sub-cubes are concatenated into the wavelet features. The multidimensional function

is carried out along two spatial dimensions x and y, as well as the spectral dimension

λ, respectively. The final concatenation work as the feature for the whole data cube

and can be represented as:

f (x, y) = (Ĉx
1 , Ĉx

2 , ..., Ĉx
15, Ĉy

1 , Ĉy
2 , ..., Ĉy

15, Ĉλ
1 , Ĉλ

2 , ..., Ĉλ
15) (2.9)

where f (x, y) is the 3D-DWT feature at location (x,y).

2.4.4 Tensor modeling

Recently, tensor decomposition methods have been employed in hyperspectral im-

age classification. A tensor is a multidimensional array and number of dimensions is

denoted as the order or mode. In Fig. 2.5, we show an example of third-order tensor

in different formats including the cube, fibers, and slices [62]. Fibers are the higher-

order analogue of matrix rows and columns. Fixing every index but one forms a fiber.

Similarly, slices are two-dimensional sections of a tensor and fixing every index but

two forms a slice. Hyperspectral images can be treated as a third-order tensor so that

tensor methods can help analyze the hyperspectral data. A hyperspectral image can
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be arranged as a three-dimensional array with the modes corresponding to spatial x

spatial y and wavelength λ. Zhang et al. [36] represented the spectral-spatial feature

of a pixel as a tensor. The feature was constructed by the spectra of the pixel itself as

well as its k nearest neighbors. Then a tensor discriminative locality alignment (TD-

LA) was developed to transform the high-order tensor space to a low dimensional

feature space via patch optimization which included the information of same and

different classes in the training data. Its superiority over several unsupervised and

supervised feature dimension reduction methods was proved on three commonly

used hyperspectral datasets. Meanwhile, Velasco-Forero et al. [63] developed an ad-

ditive morphological decomposition (AMD) which decomposed an image into two

parts. While the first part was formulated by the summation of anti-extensive trans-

formations and extensive transformations, representing all contrast and boundary

information, the second part was related to the residue of anti-extensive transfor-

mations and extensive transformations with different scales, constituting a hierarchy

of multiscale texture components. Then tensor modeling methods were employed

to reduce the dimension of extracted features in which the spatial information was

maintained.

2.4.5 Other spectral-spatial operations

Other spectral-spatial operations can also be used either before or after the classifica-

tion to improve the classification accuracy. Image segmentation partitions an image

into multiple groups of pixels based on their local properties. Naturally, it groups the

nearby pixels together and embeds spatial information. When it applies to a hyper-

spectral image, the segmentation algorithms can make use of spectral information

and create more accurate regions than RGB images. On these partitioned regions,

feature extraction can combine spectral and spatial information. Extracted features

can be the mean of the spectral responses in the region or other combined spatial and

spectral features. After each pixel in a region is assigned a label with classification
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Figure 2.5: Tensor structure in different formats. From left to right: cube, fibers,
slices (modified from [62]).

algorithms, major voting can be used to reassign the labels of pixel wise classification

by counting the most frequent labels in the region so as to create a smooth classifi-

cation map. Although this method is simple and straightforward to associate the

spatial information with spectral information for hyperspectral image classification,

the classification results heavily depend on the segmentation algorithms.

Alternatively, Markov Random Field (MRF) is popular as a post-processing step

for hyperspectral image classification. It is a theory to model the distribution of a set

of random variables in 2D space satisfying the Markov property that joint distribu-

tion of X is determined entirely by its local conditional distributions [64]. This prop-

erty makes it suitable to describe the spatial context in images. In remote sensing,

applying MRF in pixel wise classification takes advantage of the dependence among

neighboring pixels to achieve a smooth classification thematic map [54, 65]. In this

framework, the probability of the label of a pixel depends not only on its spectral

response but also the labels of its neighboring pixels. Due to Markov-Gibbs equiva-

lence, the maximization of the global posterior probability mass function P(Y|X) is
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equivalent to the minimization of the energy function U(Y|X).

2.5 Classification Methods

Effective and efficient classifiers are very important for hyperspectral image classifi-

cation. The inputs to classifiers are normally extracted features or image representa-

tion. Depending on the availability of the labeled data, classification methods can be

categorized into unsupervised learning and supervised learning. Unsupervised clas-

sification methods can be used to discover groups of similar samples in the dataset

based on statistics. Clustering is a typical unsupervised classification method. The

most popular clustering algorithm is K-means clustering [66]. It adopts an iterative

updating methods to partition data samples into k clusters in order to minimize the

within class distance. On the contrary, supervised learning methods use labeled da-

ta to train a classifier and then apply it to unseen data. It is usually more reliable

than unsupervised methods. In this thesis, we mainly focus on supervised learning

methods.

For hyperspectral image classification, there are only limited labeled data avail-

able for training and testing due to lacking of benchmark datasets and high cost of

ground truth data collection. Therefore, not all of supervised learning methods are

suitable for such task, especially those require a large amount of training data such

as deep learning approaches. We briefly introduce three typical methods commonly

used in hyperspectral image classification: support vector machine, random forest,

and extreme learning machine.

2.5.1 Support vector machine

Support vector machines (SVM) has been widely used in classification tasks [67].

It aims at estimating a hyperplane(s) to classify data into two classes such that the

maximum margin between the hyperplane and training samples is achieved. The su-

4This figure is from https://en.wikipedia.org/wiki/Support_vector_machine

https://en.wikipedia.org/wiki/Support_vector_machine
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Figure 2.6: Maximum-margin hyperplane for a two-class SVM. White and black dots
represent sample from class "+1" and "-1", respectively4.

periority of SVM over the old statistical learning method is that it introduces the con-

cept of geometrical margin that involves only a few training samples at the bound-

aries (support vectors), which makes it very suitable to deal with small training set

problem. Fig. 2.6 shows an example to explain this concept. Given a binary clas-

sification problem in two-dimensional feature space X1 and X2. There are samples

represented as white and black dots from class "+1" and "-1", respectively. In order to

fully separate two classes, the optimal hyperplane should find those training samples

near boundaries and maximize the distances between them and hyperplane. If the

hyperplane can be defined as w · x− b = 0, then the total distance equals to 2
‖w‖ .

Mathematically, the optimal hyperplane can be solved by the following linearly

constrained optimization problem:

Minimize
w, ξ

1
2

wTw + C
l

∑
i=1

ξi

Subject to yi(wTφ(xi) + b ≥ 1− ξi)

ξi ≥ 0

(2.10)
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where ξ is slack variables introduced to account for the nonseparability of data, and

the constant C is a regularization parameter which controls the penalty assigned to

errors. For the linear non-separable problem, φ(xi) is a kernel function, mapping

data into a high dimensional space. The kernels can be polynomial, Gaussian radial

basis function, and sigmoid function. A widely used Matlab toolbox for classification

can be found at [68].

2.5.2 Random forest

Algorithm 1 Random forest algorithm

Require: Training set, the number of trees k, the number of features m
Randomly sample a subset S of training set N times
for each subset Si in N do

Build a decision tree T
for each node n in T do

Randomly select m features and split the tree
Stop until the tree is fully grown and not pruned

end for
end for
Combine all k trees by major voting to construct the classifier

Random forest is an ensemble learning method that combines multiple decision

trees to construct more powerful classifier than any individual tree [69]. It has drawn

increasing interest in hyperspectral image classification [70, 71, 72]. The advantage of

this method is that it can avoid the overfitting problem even if the feature dimension

is high. Unlike conventional decision trees which may overfit the training dataset,

random forest uses multiple subsets of the training data and build multiple deci-

sion trees, thus to avoid the correlation of multiple trees. Furthermore, instead of

using all feature variables, it only uses some of the features when splitting the trees.

The algorithm is fast to implement and can deal with large-scale datasets with high

dimension variables.

The procedure of random forest is showed in Algorithm 1. Two inputs need to

be defined, the number of trees k and the number of features m. A new subset of
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data is drawn from training set with replacement. A decision tree is learned from

each subset. In each split of the procedure, only m randomly selected variables

are considered. The iteration stops when the tree is fully grown. The output is an

ensemble tree which is used to make prediction for new data.

2.5.3 Extreme learning machines

In recent years, neural network methods, especially deep learning, regain prosperity

in the machine learning community. Huang et al [73] proposed extreme learning

machine (ELM) which is a two-layer feedforward neural network that provides ex-

cellent classification performance without long training time. The characteristics of

ELM make it qualified for the hyperspectral image classification in which only a

limited training data are available, but massive data needs to be processed [38, 48].

ELM employs a hidden layer to connect the input and output layers where the

input and output correspond to the feature and regression or classification results. D-

ifferent from the networks trained using back-propagation, ELM does not update the

weights between the input and hidden nodes and only learns the weights connecting

to the output. It is claimed that any nonconstant piecewise continuous function can

be approximated by such a model without tuning the hidden node parameters [74].

This mechanism makes it much faster than either SVM or deep learning.



Chapter 3

Salient Object Detection in

Hyperspectral Imagery

3.1 Introduction

A hyperspectral image consists of tens or hundreds of contiguous narrow spectral

bands. Each pixel in a hyperspectral image is a vector of spectral responses across

the electromagnetic spectrum (normally in the visible to the near-infrared range).

Such spectral responses are related to the material of objects in a scene that has been

imaged, which provides valuable information for automatic object detection.

Due to its high dimensionality, traditional pattern recognition and computer vi-

sion technology cannot be directly applied to hyperspectral imagery. Most object

detection methods for hyperspectral images are still pixel-based, i.e., performing

pixel-wise detection and classification based on spectral signatures followed by post-

processing to group pixels or segment regions from an image [7, 44]. In this manner,

feature extraction is only performed in the spectral domain, but the spatial distribu-

tion of objects has not been fully explored. More recently, researchers have tried to

use spectral-spatial structure modeling for hyperspectral image classification. Such

efforts include Markov random field and conditional random field [56, 45], which

introduces spatial information into classification steps using a probabilistic discrimi-

native function with contextual correlation. Furthermore, multi-scale time-frequency

signal analysis methods based on 3D discrete wavelet transform have also been in-

37
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troduced for object detection and classification in remote sensing imagery [15].

Visual saliency is another type of approaches to extract multi-scale image features.

The concept of saliency is from human attention model, which detects objects or

regions in a scene that stand out with respect to their neighborhood [75]. As a

consequence, saliency detection models are normally established on the trichromatic

or greyscale images, which are visible to human eyes. When used for object detection

in computer vision and robotics applications, saliency map is often constructed in

a bottom-up manner. For example, Itti et al. calculated multi-scale differences of

intensity, color, and orientation features, and linearly combined them to form the

final saliency map [76]. Liu et al. formulated the saliency detection problem as a

region of interest segmentation task [77]. Salient features were extracted at the local,

regional and global levels, and were combined via learning with conditional random

field. Similarly, many saliency detection methods try to detect image regions that are

different from its neighborhood in the scale space, as reviewed in [75].

When applied to hyperspectral imagery, saliency model has been used for image

visualization. Wilson et al. employed contrast sensitivity saliency to fuse different

bands of hyperspectral remote sensing images so that it can be used for visual anal-

ysis [78]. Itti’s model [76] has been combined with dimensionality reduction method

to convert a hyperspectral image to a trichromatic image that can be displayed on

computer screen [79]. Saliency has also been used to help edge detection and to

predict eye fixation on hyperspectral images [80, 81].

Despite its success in object detection on RGB images, as far as we know, salien-

cy has not been used for object detection in hyperspectral imagery. Therefore, the

contribution of this chapter is to explore how salient regions can be extracted from

hyperspectral images, and then be used for object detection. Compared with tradi-

tional pixel-level operations, this chapter introduces a novel region-based approach

for hyperspectral object detection. We propose three methods based on Itti’s saliency

detection model which is a benchmark method. The first method converts a hy-
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Figure 3.1: The architecture of Itti’s saliency model [76].

perspectral image into an RGB image and applies Itti’s model directly. The second

method replaces the color double-opponent component with grouped band compo-

nent. The third method directly uses the raw spectral signature to replace the color

component. The last method creates a spectral-spatial distribution and uses it for

saliency prediction.

3.2 Itti’s Saliency Model

The saliency detection method proposed by Itti et al. mimics the behavior and

structure of the early primate visual system [76]. It extracts three types of multi-

scale features, including intensity, color, and orientation, and then computes their

center-surround differences. These differences are linearly combined to form the

final saliency map.

As shown in Fig. 3.1, this method is processed as follows. An input image is first-

ly smoothed using low-pass filters so as to generate nine spatial scales. Three types



40 Salient Object Detection in Hyperspectral Imagery

of visual cues are then extracted from the intensity, color, and orientation features

and each of them forms a conspicuity map. The intensity feature is obtained by av-

eraging the RGB channel values at each pixel. By calculating the differences between

each pair of fine and coarse scales, six intensity channels are generated. The second

set of features are calculated from a set of color opponency between red, green and

blue values against yellow value at each pixel. Center-surround differences for each

pair of color opponent are then derived over three scales, which leads to 12 channels.

The orientation features are generated using a set of even-symmetric Gabor filters.

The dominant orientation at each pixel is recovered, whose center-surround differ-

ences are calculated at six scales and four orientations. This leads to 24 orientation

channels. Channels of each type are then linearly combined to form three conspicu-

ity maps in terms of the intensity, color and orientation. Finally, the mean of the

conspicuity maps becomes the saliency map.

3.3 Saliency Extraction in Hyperspectral Images

3.3.1 Spectral saliency

3.3.1.1 Hyperspectral to trichromatic conversion

What has hindered the adoption of saliency extraction by hyperspectral object de-

tection is the large amount of bands in the spectral data. This makes the color

component not able to be calculated directly. Furthermore, effective extraction of

the intensity and texture saliency requires a grayscale image to be used. A direct

solution to this problem is conversion of a hyperspectral image into a trichromat-

ic image, which allows traditional saliency model to be applicable. As pointed out

in [79], this can be achieved by dimensionality reduction, band selection, or color

matching functions.

In this research, we have followed the method of Foster [82]. This method first

converts the hyperspectral image to a CIE XYZ image. Given a hyperspectral image
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I(λi) for each of the bands λi, such conversion can be implemented by the following

color matching function:

It =
N

∑
i=1

I(λi)Wt(λi) (3.1)

where N is the total number of bands, t = {X, Y, Z} are the tristimulus component

of the color space, and Wt comes from the spectral sensitivity curves of three linear

light detectors that yield the CIE XYZ tristimulus values X, Y, and Z. This conversion

is then followed by a further transform step to the sRGB color space [83], then Itti’s

method can be applied.

Figure 3.2: Spectral band group.

3.3.1.2 Spectral band opponent

Although the above method is straightforward, it does not take advantage of the high

spectral resolution information provided by the hyperspectral image. Notice that the

second conspicuity map in Itti’s method is formed from RGB color channels, we shall

be able to replace the color opponents with groups spectral bands that are approx-

imately correspondence to these color channels. Furthermore, the yellow channel

in Itti’s method is extracted from RGB channel. For a hyperspectral image, we can

group spectral bands to represent the original multichannel color information. To

do so, we divide the bands into four groups with each group occupying approxi-

mately the same width of visible spectrum, as shown in Fig. 3.2. Then the original

single value color component is replaced by a vector, so the double opponency can

be computed as follows

Opp1(c, s) = |(G1(c)− G3(c))	 (G3(s)− G1(s))|1 (3.2)
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Opp2(c, s) = |(G2(c)− G4(c))	 (G4(s)− G2(s))|1 (3.3)

where G1 to G4 are vectors whose entries are extracted from the corresponding group

of spectral bands, c and s are two scales for the cross-scale difference computation,

and |.|1 is the 1-norm of a vector. 	 is the cross-scale center-surround difference

operator as defined in [76]. Then Opp1 and Opp2 can replace the red/green and

blue/yellow opponency in [76]. In this method, the intensity and orientation maps

can be extracted from the grayscale image converted from the trichromatic image

generated using the color matching function as described in section 3.3.1.1.

3.3.1.3 Spectral saliency with Euclidean distance and spectral angle distance

Further extending the method in section 3.3.1.2 allows the using of whole spectral

responses for saliency detection. When replacing the color saliency with spectral

saliency, the spectral relationship embedded in the spectral data can be fully ex-

plored. Following the general multi-scale operation, differences between the spectral

responses and its neighborhood can be calculated. Regarding the measurement of

vector distance, both Euclidean distance (EUD) and spectral angle distance (SAD)

can be used to measure the similarity between two spectral vectors sk and sj. The

EUD is computed via the following equation:

dEUD(sk, sj) =

√
n

∑
i=1

(si
k − si

j)
2 (3.4)

where n denotes the dimension of the vector. We can calculate SAD by:

dSAD(sk, sj) = arccos

(
sT

k sj

‖sk‖‖sj‖

)
(3.5)

After the distance between two spectral responses is defined, we follow the work-

flow of intensity feature extraction by calculating the differences between each pair

of fine and coarse scales in hyperspectral images. In the original method, conspicuity
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computed from intensity reflects the outstanding features from brightness. The above

step leads to a set of center-surround spectral differences in the scale space. They can

be combined into a spectral conspicuity map, which is used with the intensity and

orientation conspicuity maps to form the final saliency map. The incorporation of

spectral data suggests that not only the visual clue has been extracted, i.e., from the

color and orientation contrast, but also the intrinsic material property of objects. This

has provided visual saliency model with additional information beyond the capabil-

ity of human and traditional camera vision. Furthermore, the SAD and Euclidean

measures provide two pieces of spectral distance information that is useful for object

detection.

3.3.2 Spectral-spatial distribution

The above features aim at replacing the color channel with spectral information and

does not consider the spatial distribution of saliency objects. Based on Liu’s pa-

per [77], it is observed that the color component of salient object tends to concentrate

in spatial domain but the background objects usually have color distributed across

the image. Consequently, the variance of global distribution of color components can

be used as a clue of the extent of saliency for an object. This characteristic of saliency

suits hyperspectral images very well considering its high discriminative ability to the

intrinsic material related properties of objects. Instead of estimating the color spatial

distribution, we propose the spectral-spatial distribution to measure the saliency.

To estimate the spectral-spatial distribution, we firstly need to group the hyper-

spectral responses in an image into several representative components so as to re-

duce the parameters to be estimated. To do so, we employ hyperspectral unmixing

approach to decompose the hyperspectral image. The unmixing theory makes the

assumption that the spectral response at a pixel is a mixture of light scattered by

substances located in the field of view [84]. Therefore, a hyperspectral image can be

separated in a collection of spectral signatures, called endmembers, which represents
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the pure materials, and a set of fractional abundances illustrating the percentage of

each endmember. For instance, a hyperspectral image Y with n bands and m pixels

is decomposed as:

Yn×m = Mn×b · Rb×m + En×m (3.6)

where each column of M is an endmember with spectral response, each row of R

is a vector of the abundance of each endmember at a pixel, b is the total number of

endmembers, and E is the residue error.

Researchers have developed a number of unmixing methods such as N-FINDR [85],

Pixel Purity Index, Vertex Component Analysis (VCA) [86], nonnegative matrix fac-

torization (NMF) [87], etc. Among them, we adopt VCA for unmixing. In addition

to its high efficiency, this method assumes the presence of at least one pure pixel

per endmember in the hyperspectral image, which is consistent with the close-range

hyperspectral image which has high spatial resolution [84]. Theoretically, VCA is

based on geometrical orthogonal projection. It estimates the endmember one by one

by projecting the data to orthogonal subspaces where new endmember corresponds

to the extreme of the projection. Then it iteratively projects data onto a direction

orthogonal to the subspace spanned by the endmembers already determined until

all endmembers are exhausted.

To help understand the unmixing process, we show the unmixing results of a

hyperspectral scene in Fig. 3.3. The original hyperspectral image is converted to a

color image shown in Fig. 3.4. For each endmember in Fig. 3.3, the first row shows

it spectral responses, and the second row shows its abundance at each location. The

brighter the abundance map is, the higher percentage of this particular endmember

at the location. It can be seen that the endmembers relate to strong semantic meaning,

i.e., roughly correspond to pink petals, white petals, specularity, leaves, and stamens.

The abundance map can be used to estimate the probability of each endmember at

particular location so as to calculate the spectral-spatial distribution. The probability
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Figure 3.3: Unmixing results for a hyperspectral scene. The first row shows end-
members and the second row illustrates the corresponding abundance maps.

Figure 3.4: Conspicuity maps built from spectral-spatial distribution of a hyperspec-
tral scene.

of an endmember c at a pixel u can be calculated as follows

p(c|(ux, uy)) = R(c, ux + uy ∗ l); (3.7)

where (ux, uy) is the coordinates of pixel u and l is the width of the image. ux + uy ∗ l

represents the index of pixel after the pixels in the image are rearranged into a vector

in the unmixing step. The variance of spatial distribution of component c is the
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combination of variances along x and y dimensions which are calculated as

σx(c) =
1
N

n

∑
i

p(c|(ui
x, ui

y)) · |ui
x − m̄x(c)|2

σy(c) =
1
N

n

∑
i

p(c|(ui
x, ui

y)) · |ui
y − m̄y(c)|2

(3.8)

where Nx is the normalised factor which equals to ∑n
i p(c|(ui

x, ui
y). m̄x(c) is the

average x coordinate for component c and can be calculated as 1
N ∑n

i p(c|(ui
x, ui

y)) · ui
x.

After combining σx(c) and σy(c) into σ(c), we can calculate the conspicuity map

from the spectral-spatial distribution. The conspicuity value at each pixel u is in

accordance to the probability of u belonging to component c and the spatial variance

of component c. To reduce the effect from the uncommon components of small

objects near boundaries, we also weight the conspicuity value based on the distance

between a pixel and the image center du. As a result, the conspicuity map based on

spectral-spatial distribution is formulated as:

f (u) = ∑
c

p(c|u)(1− σ(c))(1− D(c)) (3.9)

where D(c) = ∑u p(c|u)du, assigning less importance to the components near bound-

aries. Both σ(c) and D(c) are normalized to [0, 1].

We draw the conspicuity map from the spectral-spatial distribution for a hyper-

spectral scene in Fig. 3.4. From Figs. 3.3 and 3.4, it can be observed that petals and

stamens stand out in the conspicuity map as their spectral signatures concentrate in

the spatial domain. On the contrary, leaves are suppressed due to the wide spreading

of their corresponding spectral signatures.

Essentially, the spectral-spatial distribution reflects the material composition in

a scene. The less frequent a material presents and more concentrated its spatial

distribution is, it is more likely that material belongs to salient object. On one hand,

the assumption of this method is consistent with our instinct. On the other hand,

since it takes the advantage of hyperspectral imaging, it can extraction information
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beyond human vision. Therefore, we expect this method can create more accurate

estimation of the saliency map compared to the traditional methods based on color

information.

3.4 Object detection

In the previous step, saliency map can be generated to highlight image regions that

are different from their surrounding areas. To detect a region with a salient object,

we binarize the saliency map using the optimal threshold recovery method [88]. This

allows the pixels with low saliency values be removed. Then a set of morphological

operations are used to fill the small holes in the connected components. Those small

components that come from noisy clusters are removed.

The object detection follows a winner-take-all strategy, i.e., assuming that there

is only one salient object per image. The remaining image regions that contain the

highest value in the saliency map is selected as the one that contains the target object.

It should be noted that this method can be easily extended to detect more than one

objects by sequentially selecting regions in order of their highest saliency values.

3.5 Experiments

To compare the four salient object detection methods introduced in Section 3.3, we

have performed experiments on close-range hyperspectral images from two online

datasets. The first dataset was collected by Foster et al. [89, 82]. It contains in total

55 hyperspectral images of natural scenes, with 16 images available online for free

access. The images consist of 33 bands, covering the spectral range from 400 to

720nm. Due to the low signal to noise ratio at two ends of the range, the first and last

bands are removed for some scenes. The second dataset consists of 50 hyperspectral

images collected at Harvard University [90], which includes images captured in both

indoor and outdoor settings. The wavelength that this dataset covers is from 420 to
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Figure 3.5: Conspicuity maps computed from different methods. From left to right:
input image, conspicuity maps from intensity (I), orientation (O), trichromatic col-
or (C), spectral band opponent (G), spectral Euclidean distance (E), spectral angle

distance (A), and spectral-spatial distribution (S).

720nm, containing 31 bands.

It should be noted that these two datasets were not collected specifically for

saliency object detection purpose. Therefore, in most of the images, it is hard to

find salient objects or the scenes are cluttered with many objects. We have careful-

ly selected image regions that contain salient objects in their surroundings from 13

images in these datasets for our experiments. To provide the ground truth, we have

manually labeled the location of salient objects by bounding boxes. Because spectral

saliency is not directly observable to human eyes, we have combined visual salien-

cy on synthesized RGB images and domain knowledge on the object materials for

judgment.

We have implemented both Itti’s method and the proposed methods. The first

method based on converted RGB images consists of three conspicuity maps comput-

ed from intensity, orientation, and color, respectively. We denote them as “I", “O" and

“C". The second method based on grouped spectral band opponent is named “G".

We have implemented two versions of the third method, i.e., using Euclidean dis-

tance of spectral response “E" and the spectral angle distance “A". The last method
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Figure 3.6: Saliency maps computed from different combinations of conspicuity map-
s. From left to right: input image, IOC, EAS, EASG, EOA, EOG, IOE and the method

in [79].

employed is the spectral-spatial distribution based method and denoted as “S". We

have calculated the above conspicuity maps for the all 13 scenes, four of which are

shown in Fig. 3.5. From this figure, we have a few observations. Firstly, if comparing

the third column with fourth to eight columns, the conspicuity maps from spectral

bands are generally better than those from trichromatic color. The method “C" com-

pletely fails to highlight the objects in the third and fourth scenes. Furthermore,

results from methods “E" and “A" are complementary to each other. They are able

to emphasize different parts of the object in the scene. It is probably because they

make use of different characteristic of distance measurements. At last, method “S"

achieves excellent results. Although it mistakenly highlights the leaves on the top of

the second scene, it successfully extracts the whole bottle in the fourth scene. Overall,

this experiment indicates that the spectral bands based saliency detection methods

perform better than the traditional one based on trichromatic color.

The saliency maps are usually generated by linearly combining several conspicu-

ity maps. Here, we have tested a series of different combinations of conspicuity maps

from intensity, orientation, color, group opponents, Euclidean distance, spectral an-
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Figure 3.7: Salient object detection results. From left to right: manually labeled
image, results computed from IOC, EAS, EASG, EOA, EOG, IOE and the method

in [79].

gle distance and spectral-spatial distribution. For the sake of briefness and clearness,

we denote these methods with the abbreviation introduced for the conspicuity map.

For instance, the saliency map associating the conspicuity map from the intensity,

orientation, and color is denoted as “IOC". The saliency map using the group oppo-

nents, Euclidean distance, spectral angle distance and spectral-spatial distribution is

denoted as “EASG". Therefore, the methods tested include IOC, EAS, EASG, EOA,

EOG, IOE. These methods are compared against an alternative method from Moan

et al. [79]. The method from Moan et al. firstly combines spectral channels into red,

green, and blue groups, then computes the spectral differences on each of the col-

or groups to get the spectral saliency. The orientation saliency is extracted on the

first principle component generated by principle component analysis to reduce the

dimensionality of the hyperspectral image, while the intensity saliency is not used.

Fig. 3.6 and 3.7 display the saliency map and corresponding object detection re-

sults generated by each method under comparison. It can be observed that spectral

information based methods can generate better saliency features than that based on

color information. After combining all spectral-based methods, EASG achieves the
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Figure 3.8: Precision recall curves computed from different saliency detection meth-
ods.

best result. When it comes to object detection, the spectral-based methods can de-

tect the truth object more accurately, especially EAS and EASG. In contrast, IOA

either includes plenty of background regions into the results or detects parts of the

salient object. Moan’s method, although achieved good results, also includes some

background regions into the final results.

To provide quantitative analysis to the saliency object detection methods, we have

calculated the precision and recall curve when different binarization thresholds are

used. The results are shown in Fig. 3.8. The precision is the percentage of true

object pixels out of all detected pixels. The recall calculates the percentage of true

object pixels that have been detected. It can be seen that the spectral saliency meth-

ods are clearly better than the method based on color images. The performance of

the spectral-based solutions are very close to each other, with the EASG option out-

performing the others. Furthermore, we have calculated the F-Measure to evaluate

different methods. F-Measure is a comprehensive used evaluating indicator to eval-

uate the quality of a saliency map. It is calculated as a weighted harmonic mean
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Figure 3.9: F-Measure computed from different saliency detection methods.

of precision and recall. For each scene, we can obtain an F-Measure value on the

binary map of saliency map. Then the final F-Measure is computed as the average

F-Measure value in the datasets. The results are shown in Fig. 3.9. It can be noted

that EAS and EASG achieved significantly higher value than the rest of methods. It

is consistent with our previous observations that the proposed features E,A,S and

G have better prediction on the salient objects than traditional methods I, O and C.

These experimental results show the advantage of combining different spectral and

spatial based measures for saliency detection.

3.6 Conclusion

We have developed two strategies to generate saliency map from hyperspectral im-

agery for object detection. One is to extend Itti’s visual attention model to hyper-

spectral images by replacing the color component with spectral saliency, which can

be implemented by dividing visual spectrum into groups, or use the whole spectral

responses. The second method makes use of variance of the spectral-spatial distribu-

tion of endmembers to estimate the saliency. The endmembers and their abundance

maps are estimated using hyperspectral unmixing method. These methods allow

extra information from spectral data to contribute to the traditional visual atten-
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tion model. Experiments have shown the effectiveness of the proposed methods for

salient object detection. In the future, we will apply the method to more hyperspec-

tral data, for example, on remote sensing images. We will also incorporate other

saliency models into the hyperspectral object detection tasks.



54 Salient Object Detection in Hyperspectral Imagery



Chapter 4

3D Local Derivative Pattern for

Hyperspectral Face Recognition

4.1 Introduction

Although a large number of techniques have been developed for face recognition

by introducing new feature extraction and pattern recognition methods [91, 92, 93],

existing methods still cannot meet the requirements from many real-world applica-

tions. This is partly due to the drawback of only using 2D spatial information for face

recognition. To address this problem, one solution is to introduce sensors that can

capture additional information other than radiance in the visible spectrum. Examples

include range sensors such as Kinect and 3D scanners to capture three-dimensional

geometrical information to improve the discrimination of individual faces under d-

ifferent orientation [94, 95, 96]. Another promising technique is to exploit spectral

imaging devices to bring in the spectral responses of faces which are supposed con-

tains more information than RGB or grayscale images. Such studies include infrared

imaging, hyperspectral imaging [97, 98, 99], etc.

Studies have proved that human skin retains its own spectral properties due to

the portion of melanin and hemoglobin [100]. For example, the differences in portion

of melanin between African, Asian, and Caucasian lead to obvious distinction in the

darkness of skin. Regarding individuals, this property could be influenced by the

molecular composition related to tissue, blood, and organizational structure. Con-

55
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Figure 4.1: Hyperspectral face example. On the top right, the spectral responses on
the forehead and cheeks are drawn with respect to the wavelength.

sequently, the spectral response of the skin has the potential of being an additional

discriminative feature for face recognition. An example of hyperspectral face image

is shown in Fig. 4.1 with some band images displayed. This example also shows that

the spectral responses on the forehead and cheeks are different for a single subject

and the spectral signature is more discriminative than the intensity at a single band.

Methods employing both spectral and spatial information for face recognition

have been reported in recent years [101, 102, 103, 104, 105]. The challenges for inte-

grating spectral-spatial features are in two aspects. The first one is the low quality of

existing hyperspectral face images [102, 106]. Some spectral bands, which are impor-

tant for face recognition, are corrupted by heavy noises and have very low signal to

noise ratio. Most hyperspectral faces also suffer from the cross-band misalignment

resulting from the offset of different wavelengths of light, movement of faces and

blinking of eyes during the image capturing process which normally takes several

seconds [102, 106]. These factors contaminate the spectral signature that can be ex-

tracted from faces. The second and a more serious problem is the totally different

intrinsic attributes of spatial and spectral information. Direct concatenation of spa-

tial and spectral features may not improve the recognition performance and lead to

overfitting. [41].
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Faced with these challenges, researchers have proposed different solutions. Pan et

al. [101] pioneered the hyperspectral face recognition by extracting spectral features

picked from typical face regions, such as forehead, cheeks, hair, and lips. Experi-

ments proved that their method is robust to the orientation and expression varia-

tions. However, this method did not make use of any spatial information. In order

to tackle this defect, an extended work integrated the spatial information by intro-

ducing a spectral eigenface method [107]. Di et al. [102] performed (2D)2PCA on

hyperspectral faces and transformed high dimension faces into subspace. A hyper-

spectral face dataset was collected to analyze this method in all bands, single band,

and band subset with fusion. In the work of Shen and Zheng [103], a 3D Gabor

Wavelet was employed to extract multi-scale and multi-orientation features from hy-

perspectral face images. This approach achieved a significantly higher accuracy than

all aforementioned methods on the benchmark dataset adopted in [102]. Despite its

high accuracy, this approach suffered from huge computation and memory costs. In

more recent, Uzair et al. [104] developed a spectral-spatial feature extraction method

based on 3D discrete cosine transform (3D DCT) to calculate low-frequency coeffi-

cients of hyperspectral face images. By using a partial least square regression model

to perform face classification, this method achieved recognition rates higher than

90% on three datasets. Regarding spectral-spatial feature extraction, all these work

did not completely solve the two challenges mentioned above. They either only used

spectral signature or treated the hyperspectral data as an isotropic volume.

In this chapter, we propose a 3D high-order texture pattern descriptor based on

local derivative pattern (LDP) for hyperspectral face recognition. LDP is a high-order

derivative descriptor which provides a general framework for encoding directional

features on 2D images [19]. It can be represented as a high-order and multi-direction

derivative plus a special binarization function which acts as a denoising function.

In this chapter, we introduce the 3D local derivative pattern (3D LDP) to extract

the spectral-spatial information from hyperspectral face images. A 3D histogram is
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constructed on the derivative pattern and then used as the feature descriptor for face

recognition. We also compared our method with the 3D extension of local binary

pattern (3D LBP) which is originally developed for dynamic texture analysis [108].

The superiority of our method is validated on two benchmark hyperspectral face

datasets. The results show that the proposed method outperforms several state-of-

the-art methods.

The rest of the chapter is organized as follows. Section 4.2 describes the proposed

3D LDP method and how the extracted texture feature is converted to a descriptor for

each hyperspectral image. The implementation details are described in Section 4.3,

followed by experiments and analysis in Section 4.4. Finally, the conclusions are

drawn in Section 4.5.

4.2 3D Local Derivative Pattern

The proposed 3D LDP is a three-dimensional high-order texture descriptor. It an-

alyzes the micro-patterns in three-dimensional data and encodes them into binary

numbers. This method consists of two parts, a 3D directional derivative pattern and

a special binarization function. The 3D directional derivative pattern describes the

changes in multi-directions and curvature in high orders. The binarization function

provides a general description on the consistency of two derivatives, which is suitable

to extract detailed features in multi-dimensional data. Though hyperspectral images

provide additional spectral information, there is large huge redundancy along the

wavelength dimension. It is because that spectral responses of objects change s-

moothly across most wavelengths and the discriminative spectral information may

only exist in several specific wavelengths. Therefore, 3D LDP has the potential to

extract the spectral-spatial features in hyperspectral faces. After the 3D LDP fea-

tures are calculated, they are converted into histogram to generate vectorized image

representation.
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Figure 4.2: Coordinate systems in 3D space

4.2.1 Construction of local derivative pattern

Given a hyperspectral image represented as a cube, a Cartesian coordinate system

and a spherical coordinate system can be defined. A 3× 3× 3 example is shown

in Fig. 4.2. In the 3D coordinate system, a point P is represented by its index of

(x, y, λ) while angle/direction is expressed by the combination of inclination θ and

azimuth ϕ. Given the 3D neighborhood of a central point, the first-order 3D direc-

tional derivative I′(θ,ϕ)(x, y, λ) is defined as follows

I′(θ,ϕ)(x, y, λ) = I(x +4x, y +4y, λ +4λ)− I(x, y, λ)

θ = arctan(

√
4x2 +4y2

4λ
), ϕ = arctan(

4y
4x

)

(4.1)

where P = (x +4x, y +4y, λ +4λ) is the nearest neighbor of the central point

P = (x, y, λ) in direction of (θ, ϕ). It should be noted that in the discrete 3D image

space, θ and ϕ are also discrete which means θ ∈ {kπ/4|k = 0, 1, 2, 3} and ϕ ∈

{bπ/4|b = 0, 1, ..., 7}. Given the directional derivative calculated in a specific angle,

higher order derivative can be calculated in the same angle.

In order to encode the derivative, our method employs a function to binarize the

derivative between the central point and its neighbors. This function describes the



60 3D Local Derivative Pattern for Hyperspectral Face Recognition

consistency of two neighboring derivatives. It is defined as follows

f (I′(Pc), I′(Pi)) =


0 if I′(Pc) · I′(Pi) > 0

1 if I′(Pc) · I′(Pi) ≤ 0
(4.2)

where I′(Pi) is the derivative calculated at the ith neighbour of the central point

Pc. When the derivatives are consistent, i.e., both are positive or negative, the result

is 0, otherwise, the result is 1.

The directional derivative and binarization function play different roles and are

independent to each other. The former extracts various distinctive spatial and spec-

tral changes, while the latter quantizes the consistency between derivatives of the

central point and its neighbors. From this point of view, the binarization function

can be considered as another level of derivative on top of the directional derivative

of the hyperspectral image, i.e., a special second order derivative of the raw image.

Therefore, given point Pc, we denote such second order derivative as D2
(θ,ϕ)(Pc) , such

that

D2
(θ,ϕ)(Pc) = f (I′(θ,ϕ)(Pc), I′(θ,ϕ)(Pi)) (4.3)

After obtaining the binary derivative, these values are fed into an encoding system

to generate a unique integer which encodes the local derivative pattern as follows

3DLDP2
(θ,ϕ) =

m

∑
i=1

D2
(θ,ϕ) × 2i−1 (4.4)

where i indexes the ith neighbour in the m neighbourhood of the central point.

When all directions are combined, the final second-order 3D LDP becomes

3DLDP2 =

∑θ∈A,ϕ∈B ∑m
i=1 f (I′(θ,ϕ)(Pc), I′(θ,ϕ)(Pi))× 2(j−1)×m+i−1

(4.5)
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where A = {kπ/4|k = 0, 1, 2, 3} is the set of angles for θ and B = {bπ/4|b = 0, 1, .., 8}

is the set of angles for ϕ in the discrete 3D space in Fig. 4.5. Different combinations

of θ and ϕ determine different directions for derivative calculation, and j is the index

for these combination.

4.2.2 nth-order local derivative pattern

The 3D LDP can be extended to higher-order derivatives. This can be implemented

by applying Equation 4.1 iteratively and then perform binarization function. Conse-

quently, the nth-order derivative of 3D LDP is constructed by calculating the direc-

tional derivative for n− 1 times before applying the binarization function in Equa-

tion 4.2. Therefore, the nth-order derivative is defined as

Dn
(θ,ϕ)(Pc) = f (In−1

(θ,ϕ)(Pc), In−1
(θ,ϕ)(Pi)) (4.6)

After the encoding step, the nth-order 3D LDP code in the direction of (θ, ϕ)

within the m neighborhood of Pc is calculated as

3DLDPn
(θ,ϕ) =

∑m
i=1 f (In−1

(θ,ϕ)(Pc), In−1
(θ,ϕ)(Pi))× 2(j−1)×m+i−1

(4.7)

The 3D LDP code extracted in different directions can be combined into a final

3D LDP code as follows

3DLDPn =

∑θ∈A,ϕ∈B ∑m
j=1 f (In−1

(θ,ϕ)(Pc), In−1
(θ,ϕ)(Pi))× 2(j−1)×m+i−1

(4.8)

where the parameters have the same meaning as in Equation 4.5.
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Figure 4.3: 3D LDP descriptor construction.

Figure 4.4: 3D LDP pattern in λ direction at different bands.

4.2.3 Construction of 3D LDP descriptor

Through the above procedure, each pixel is assigned with an integer at given direc-

tion (θ, ϕ). Such mixed-order derivative code contains discriminative texture feature

of a local neighborhood in a hyperspectral image. To convert such texture feature

into a vectorized descriptor for face recognition, statistical distribution of the 3D LD-

P feature in local regions is calculated and summarized using a histogram. Directly

using the code generated by Equation 4.5 leads to very high dimensional and sparse
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Figure 4.5: Left: directions of 3D LDP. Right: 8 neighbours chosen to code the pattern.

histogram, which is not suitable for efficient classification. In practise, the 3D LDP

codes are constructed in different directions based on Equation 4.4. These codes are

used to build histograms, and the length of each histogram is 2m for each direction.

The number of bins can be further shortened by merging the neighboring entries.

The hyperspectral image is also divided into small cubes. On each cube, a local

histogram is generated in each direction. For each direction, the local histograms

are concatenated, such that the resulting directional histogram embeds both spatial

and spectral information at the region level. Then the directional histograms are

merged into a final histogram which is the final descriptor of the hyperspectral face

image. An example of 3D LDP descriptor extracted from hyperspectral face image is

displayed in Fig. 4.3 and the pattern in lambda direction is shown in Fig. 4.4.

4.2.4 Hyperspectral face recognition

A distance measurement between hyperspectral face images is required for the final

recognition step. In our method, histogram intersection is adopted to measure the

similarity between two histograms

M12 =
K

∑
i

min(H1(i), H2(i)) (4.9)
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where M12 is the histogram intersection between histogram H1 and H2. K is the

length of the histogram. This measurement calculates the common area of two his-

tograms. The higher the value is, the more similar two histograms are.

4.3 Implementation Details

In our method, we first filter the hyperspectral faces with a 3D Gabor filter. It is nec-

essary because hyperspectral images often suffer from serious noises coming from

both hardware and the imaging process. Directly applying 3D LDP will result in

encoding a lot of noises in the spectral domain. The 3D Gabor filter reduces the

influence of sensor noise and cross-band misalignment. It also enhances the discrim-

inative patterns in the spatial and spectral domain. Different from the 3D Gabor

Wavelet method in [103], filters with fixed scale are used.

In a 3D space, a pixel can have up to 26 direct neighboring pixels. Without

losing generality, we make use of 3 directions and 8 neighbors in the cube in our

implementation, as shown in Fig. 4.5. These three directions are (0, 0), (π/2, 0) and

(π/2, π/2), which correspond to positive x, positive y, and positive λ, respectively.

The 8 neighbors are the eight corners of the cube which span both spatial and spec-

tral dimensions. It should be mentioned that this is the most basic form and more

directions and neighbors can be used to extract more detailed information. In the im-

plementation, we calculate the second order 3D LDP. A summary of the second-order

3D LDP is given in Algorithm 2. Its extension to higher order is straightforward.

4.4 Experiments and Results

The experiments consist of two parts. In the first part, we compare the proposed

methods with the state-of-the-art hyperspectral face recognition algorithms on two

well-established hyperspectral face datasets. For the completeness of experiments,

we also implement the 3D LBP in our test. The results show that our method outper-
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Algorithm 2 Second-order 3D LDP

Require: Hyperspectral data cube S
for each pixel in S do

Calculate the derivative in x, y, and λ positive direction, obtaining Dx, Dy and
Dλ

end for
for each direction do

for each pixel pc in S do
for each neighbour pi around pc do

Apply Equation 4.2 on D(pi) and D(pc)
end for
Calculate the LDP code using Equation 4.4

end for
for each local region in S do

Build the histogram
end for
Concatenate the histogram in different local regions

end for
Concatenate the histogram in different directions

forms all other approaches. Then in the second part, we validate the usefulness of

spectral information by comparing the proposed method with a state-of-the-art 2D

face recognition method.

Hyperspectral face recognition is much less mature than work in 2D faces. There

are very few datasets available. Some hyperspectral face datasets are not publicly

available due to privacy or other reasons such as those collected and used in [101]

and [104]. To our knowledge, there are only two publicly available datasets of hy-

perspectral face, i.e., Hong Kong Polytechnic University Hyperspectral Face Dataset

(HK-PolyU) [102] and Carnegie Mellon University Hyperspectral Face Dataset (C-

MU dataset) [106]. As a consequence, our experiments were conducted on these two

datasets.

4.4.1 Results on HK-PolyU hyperspectral face dataset

The first dataset is the Hong Kong Polytechnic University Hyperspectral Face Dataset

(HK-PolyU) [102], which consists of 300 hyperspectral faces from 25 subjects. For
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each subject, there are four sessions collected at two times with an average span of

five months. Each session consists of frontal, right and left views with the neutral

expression. Each image covers the visible wavelength from 400nm to 720nm with

an interval of 10nm. The images are quite noisy at the both ends of the spectral

range. So the first six and last 3 bands are removed in the experiment. Fig. 4.6 shows

examples of two subjects taken in four sessions. It can be seen that the appearance

of the same person varies a lot in different sessions. The bands of this dataset are

not well registered and the pixel based spectral signature are contaminated. This

explains why it cannot be used directly by 3D LDP.

Figure 4.6: Examples from the HK-PolyU hyperspectral face dataset. Images are
extracted from different sessions.

In order to evaluate the performance of 3D LDP, we compare it with several

hyperspectral feature extraction methods. These methods are Spectral Feature [101],

Spectral Eigenface [107], 2D PCA [102], 3D LBP [108], 3D Gabor Wavelet [103] and

a newly developed method of 3D DCT [104]. We followed the experiment setting

in [103]. The hyperspectral faces were cropped into 64× 64 in spatial dimension and

the position of eyes was manually aligned. Four sessions of 25 subjects were used as

the test set. The gallery set was constructed by randomly selecting two sessions from

the test set and the remaining faces were used as the probe set. For our method, 13

3D Gabor transforms (frequency = 0.25, θ = 0, π/4, π/2, 3π/4, ϕ = 0, π/4, π/2,

3π/4) were used to preprocess the hyperspectral faces. We fixed the subregion size
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to 8 × 8 × 8 pixels to build the 3D histogram and set the derivative order to two.

The 3D LBP uses the same settings as 3D LDP except that it takes 14 neighbors

as introduced in [108]. In 3D Gabor Wavelet, the size of Gabor was 39 × 39 × 39

and 52 filters were used as recommended in [103]. The 3D DCT method reported

in [104] consists of a 3D DCT based feature extraction method and a partial least

squares regression based classification method. We only implemented the feature

extraction part using the code published by the authors of [104] because our method

focuses on the spectral-spatial feature extraction. The face recognition in alternative

methods was implemented by using the nearest neighbor classifier based on the

Euclidean distance between probe and gallery images, while our method used the

nearest neighbor classifier based on histogram intersection. We used the mean and

standard deviation of rank-1 recognition rate of six possible combinations of the

gallery and probe sets to evaluate the performance of each method.

Table 4.1: Recognition rate on the HK-PolyU Hyperspectral Face Dataset using Spec-
tral Feature, Spectral Eigenface, 2D PCA, 3D DCT, 3D LBP, 3D Gabor Wavelet and

the proposed 3D LDP.

Methods Recognition Rate

Spectral Feature [101] 45.35 ± 3.87%

Spectral Eigenface [107] 70.33 ± 3.61%

2D PCA [102] 71.00 ± 3.16%

3D DCT [104] 84.00 ± 3.35%

3D LBP [108] 88.80 ± 1.79%

3D Gabor Wavelet [103] 90.00 ± 2.83%

3D LDP 95.33 ± 1.63%

The experimental results are shown in Table 4.1. 3D LDP has achieved the highest

recognition rate of 95.33±1.63% on the HK-PolyU dataset, exceeding the second best

3D Gabor Wavelet by 5.33% in average. The 3D Gabor Wavelet feature extraction

method has achieved similar results as reported in [103] and [104]. Just like LDP
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performing better than LBP in 2D face recognition, the 3D version also shows the

same trend in which the accuracy of 3D LDP is 6.53% higher than that of 3D LBP.

The accuracy of 3D DCT is 84.00%, which is much lower than the results reported

in [104]. This is partly due to the fact that the partial least square regression has not

been used as the classifier. Compared with 3D LDP and 3D Gabor methods, 3D DCT

only extracts low-frequency coefficients of DCT, which is a general representation of

signal energy. In contrast, 3D LDP and 3D Gabor Wavelet extract multi-scale and

multi-direction local textures, which capture more local information than 3D DCT.

The results also show that pure spectral feature performs the worst because it has

ignored the spatial information.

4.4.2 Results on CMU hyperspectral face dataset

The second hyperspectral face dataset is the Carnegie Mellon University Hyperspec-

tral Face Dataset (CMU dataset) [106]. Examples of this dataset are shown in Fig. 4.7.

Compared with the HK-PolyU dataset, the CMU dataset covers a wider range of

spectrum from 450nm to 1090nm with an interval of 10nm. It includes data of 54

subjects taken in multiple sessions. Each session consists of four different illumina-

tion conditions which include all lights on, center light on, left light on and right

light on. Each subject has 1 to 5 sessions taken at different times. Due to the low

spectral sensitivity of hyperspectral camera, bands at the two ends of spectrum range

have very low signal to noise ratio. In this experiment, faces under the condition of

all lights on taken at different time were used as the test set. The gallery set was

constructed by randomly sampling one face per subject from the test set and the rest

faces were used as the probe set. This procedure repeated 10 times and the mean

and standard deviation were used to evaluate the performance of different methods.

The gallery included 47 faces while the probe had 98 faces. Each face was cropped

into 64× 64 in spatial dimension and the position of eyes was manually aligned. The

first 7 and last 2 noisy bands were removed. In this experiment, we adopted the same
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Figure 4.7: Example images on two subjects in the CMU hyperspectral face dataset.
For each subject, the images are captured in four sessions with 700nm band dis-

played.

settings as on the HK-PolyU dataset for 3D LBP, 3D Gabor Wavelet, 3D DCT and 3D

LDP.

Table 4.2: Recognition rates on the CMU Hyperspectral Face Dataset using Spectral
Feature, Spectral Eigenface, 2D PCA, 3D DCT, 3D LBP, 3D Gabor Wavelet and the

proposed 3D LDP..

Methods Recognition Rate

Spectral Feature [101] 38.18 ± 1.89%

2D PCA [102] 72.10 ± 5.41%

Spectral Eigenface [107] 84.54 ± 3.78%

3D DCT [104] 88.65 ± 2.34%

3D LBP [108] 92.16 ± 3.52%

3D Gabor Wavelet [103] 92.20 ± 2.46%

3D LDP 94.83 ± 2.62%

The experimental results are shown in Table 4.2. These results are consistent with

those on the HK-PolyU dataset. The 3D LDP leads the performance among all the

methods with an average recognition rate of 94.83%. The second and third methods

are 3D Gabor Wavelet and 3D LBP. Regarding the efficiency, 3D DCT is the fastest
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because it only produces one cube per face, while the 3D Gabor Wavelet is the worst

which produces 52 cubes. The 3D LBP and 3D LDP are in the middle by creating 13

cubes per face. Overall, the 3D LDP efficiently extracts the spectral-spatial features

and performs the best in recognition rate among all methods.

4.4.3 Further analysis of 3D LDP

In order to show that the spectral information provided by the hyperspectral im-

ages increases the accuracy of face recognition, we also conducted an experiment in

which 3D LDP was compared with a 2D face recognition method. We chose 2D LDP

for comparison because it uses the same rationale in feature extraction in 2D space.

Because 2D LDP cannot be directly applied to hyperspectral images, we ran it on

each individual band. Then average recognition rate and standard deviation from

all bands were calculated. In 2D LDP, the subregion size was set to 8× 8 pixels and

the derivative order was set to two. The comparison was conducted on both datasets

following the same settings as experiment A and B. The results in Table 4.3 show that

3D LDP performs significantly better than 2D LDP on both datasets. This proves the

value of introducing spectral information for face recognition. Effective characteriz-

ing the spectral-spatial information has led to remarkable benefit in improving the

accuracy of face recognition.

Table 4.3: Recognition rates of 3D LDP and 2D LDP on two datasets.

Methods HKPolyU dataset CMU dataset

2D LDP [19] 86.25 ± 9.62% 90.27 ± 3.51%

3D LDP 95.33 ± 1.63% 94.83 ± 2.62%
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4.5 Conclusion

In this chapter, we have introduced a 3D texture descriptor for hyperspectral face

recognition. It provides a framework for constructing multi-direction and multi-

neighbourhood local derivative patterns. This pattern integrates the information

from both spatial and spectral domains and reduces the negative influence of noise

in the hyperspectral images. By building a 3D histogram on this feature, a spectral-

spatial descriptor can be generated for hyperspectral face recognition. The proposed

method has been tested on two publicly available hyperspectral face datasets and has

been compared with several existing methods. The results prove that our method has

outperformed the state-of-the-art methods in terms of accuracy. It is expected that

the proposed method can also be used in other hyperspectral image classification

applications.
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Chapter 5

Tensor Morphological Profiles for

Hyperspectral Image Classification

5.1 Introduction

In remote sensing, hyperspectral image classification addresses the problem of land-

cover class identification and thematic map generation, which has extensive applica-

tions in precision agriculture, mine exploration and environment monitoring [2]. A

classification system usually consists of several key steps, including data preprocess-

ing, feature extraction, and prediction model building. Among these steps, feature

extraction is of significant importance which aims to find the most compact and infor-

mative set of features and improve the accuracy and efficiency of classification tasks.

In traditional pixel-wise feature extraction methods, the spectral response at a single

pixel reflects the components of the ground object at the corresponding location. It

usually works as the raw feature for hyperspectral image classification. Research on

the raw spectral features has focused on extracting discriminative bands or a subset

of bands selection for dimensionality reduction and class separation [29, 109, 110].

Although a well-trained classifier may have good generalization capability to unseen

data with these features, the created thematic map often suffers from salt and pepper

noises. Moreover, in images of urban areas, only relying on spectra might not be able

to distinguish different classes made of similar materials. Therefore, it is necessary to

introduce spatial information into hyperspectral image classification, so as to build

73
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better models of local structures in the image and facilitate more accurate land-cover

and object classification.

During the past several years, spectral-spatial feature extraction has attracted

increasing attention in hyperspectral image classification [13, 41]. While tradition-

al spectral features are extracted at the single pixel level in hyperspectral images,

spectral-spatial feature extraction methods use spatial neighborhood to calculate fea-

tures. Several typical image processing methods have been extended to multiple

dimensions to extract spectral-spatial features in hyperspectral images, such as 3D

discrete wavelet [15], 3D Gabor wavelet [35], 3D scattering wavelet[47], and local

binary patterns [111]. Other novel spectral-spatial features based on other theories

include spectral saliency [50], spherical harmonics [51], and affine invariant descrip-

tors [52].

Alternatively, some researchers tend to extract spectral and spatial features sep-

arately. One of the highly cited methods is the extended morphology profile (EM-

P) [30, 49, 41]. Mathematical morphology is suitable to extract or suppress objects

and structures in images and thus can be used for typical image processing tasks such

as image filtering and image segmentation and image measurement. Benediktsson

et al. [30] pioneered the application of mathematical morphology in hyperspectral

image classification. Fauvel et al. [49] fused the spatial and spectral information

by stacking the extended morphology profile and original spectral response vector,

and then it was fed into an SVM classifier. Since then, EMP has become a baseline

method to extract spectral-spatial features in hyperspectral image classification and

several variations have been proposed [34, 41].

In spite of these efforts, mathematical morphology is still restricted to two-dimensional

images and cannot cope with higher dimensional images directly. The reason is that

morphological operations require assigning orders to pixels based on their values. In

grayscale images, each pixel has an intensity value and thus they can be easily com-

pared. A hyperspectral image, however, consists of multiple bands so that a pixel is
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expressed in the form of a vector which represents the spectral responses at multi-

ple wavelengths. Unfortunately, defining maximum or minimum among vectors is

ambiguous, which causes the ordering of vectors a problem [112]. This leads to the

difficulties in defining the basic set operations. Some researchers attempt to solve

this problem by developing different vector ordering scheme, but these approaches

have not been commonly accepted due to their suitability to particular tasks [113].

As a consequence, it is necessary to extend morphology to multivariate images in a

simple way so that this powerful tool can be used to deal with the increasing number

of multiple multivariate images such as Magnetic Resonance Imaging (MRI), (Hy-

perspectral Imaging) HSI and videos.

Recently, tensor decomposition methods have been employed in hyperspectral

image classification. A tensor is a multidimensional array, and the order of a tensor

is the number of indices needed to indicate an element in the array. A hyperspectral

image can be arranged as a three-dimensional array with the modes corresponding

to spatial x, spatial y and wavelength λ so that it can be treated as a third-order

tensor. This suggests that tensor methods can help to analyze the hyperspectral data.

Zhang et al. [36] represented a pixel’s spectral-spatial feature as a tensor constructed

by the spectra of the pixel itself as well as its k nearest neighbors. Then a tensor

discriminative locality alignment method (TDLA) was developed to transform the

high-order tensor space to a low dimensional feature space via patch optimization

which includes the information from intraclass and interclass in the training data.

Its superiority over several unsupervised and supervised feature dimensionality re-

duction methods has been proved on three commonly used hyperspectral datasets.

Meanwhile, Velasco-Forero et al. [63] developed an additive morphological decompo-

sition (AMD) which decomposes an image into two parts. The first part is formulated

by the summation of anti-extensive transformations and extensive transformations,

representing all contrast and boundary information. The second part is related to

the residue of anti-extensive transformations and extensive transformations with dif-
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(a) Raw cube (b) Binary cube
(0.25)

(c) Binary cube (0.5) (d) Binary cube
(0.75)

Figure 5.1: The Pavia University dataset in tensor representation: (a) raw hyper-
spectral tensor rendered with false color; (b-d) binary hyperspectral tensors with
thresholds of 0.25, 0.5 and 0.75. These images indicate that different classes are with
different high-dimensional structures which can be extracted by mathematical mor-

phology.

ferent scales, constituting a hierarchy of multiscale texture components. Then tensor

modeling methods are employed to reduce the dimension of extracted features in

which the spatial information is maintained. However, this method processed the

hyperspectral image band by band in the AMD, resulting in breaking the correlation

of spectral dimension.

In this chapter, we show that it is possible to design a multi-dimensional mor-

phology which works better than two-dimensional morphology. Instead of treating

an HSI as a two-dimensional image with vectorized values at each pixel, we borrow

the concept of tensor modeling and design the morphology on the tensor structures

so as to avoid the ordering problem. In Fig. 5.1, the hyperspectral image is repre-

sented as a tensor and different color indicates the value of a voxel. It can be noted

that different classes are with distinguishable structures in both spatial and spectral

dimensions. Such high-dimensional structure can be further investigated when the

data cube is converted into binary data via a thresholding process. Each class con-

sists of discriminative high dimensional binary structures mixed with isolated dots

owing to random noises, which can be analyzed by set operations in mathematical

morphology [114].

The main contributions of this chapter are as follows. Firstly, we develop a tensor

morphology profile which fuses the spectral and spatial information in a better way
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than the benchmark EMP method. Secondly, we design a framework to extend mor-

phology to hyperspectral images by considering them as high-order tensors, thus

avoiding the ordering problem of vector data. Thirdly, though exemplified on hy-

perspectral images, the proposed multivariate image feature extraction method is

general in nature and can be applied to MRI and video analysis as well.

The rest of this chapter is organized as follows. Section 5.2 introduces some

basic notations and background knowledge related to mathematical morphology,

and explains the ordering problem of mathematical morphology for multivariate

images. The detailed method description is provided in Section 5.3 which covers

tensor modeling, multiple dimensional morphology as well as tensor morphology

profile. It gives an in-depth analysis on the characteristics of spatial dimension and

spectral dimension in hyperspectral images. The comparison experiments and results

are presented in Section 5.4, which is followed by the conclusions and future work

in Section 5.5.

5.2 Morphology in Multivariate Images

5.2.1 Notation and theoretical foundation

We have defined several symbols used in this chapter as shown in Table 5.1. Through-

out the chapter, a set is denoted with capital letters. The scalars are denoted by

lowercase letters and vectors are represented by boldface lowercase letters. Matrices

are written in boldface capitals and high order tensors correspond to boldface Euler

script letters.

Mathematical morphology was originally developed on two-dimensional images [41].

Then the target space of mathematical morphology evolves from images to Euclidean

sets, and then reaches more general concept of complete lattice [112]. Given two sets

of data, the spatial unit of images in two dimensions and the set consisting of intensi-

ty values, respectively, an image is a function f mapping the set of intensity values to
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Table 5.1: List of symbols

Symbol Description
Rn n dimensional Euclidean space
Zn n dimensional integer grid
U the set of spatial unit of an image, equivalent to a

subset of Z2

u the spatial position of a pixel (an element in U)
I the set of intensity values
tmax the maximum value in set I
f the mapping function from the set of spatial unit to

the set of intensity, representing an image
B the structural element in mathematical morphology
ε erosion operation
δ dilation operation
γ opening operation
φ closing operation
Ω morphological profiles
T a tensor
g the mapping function from the set of multidimen-

sional unit to the set of intensity
X the set of spatial and spectral unit of a hyperspectral

image, indexed with x, y, b, equivalent to a subset
of Z3

CS cross section of thresholding

the spatial units. Therefore, the definition of different types of images mainly relies

on the definition of set I. For example, a grayscale image can be defined as:

f : U ⊂ Z2 → {0, 1, ..., tmax} (5.1)

where tmax is the maximum value of image intensity. When tmax equals 1, f becomes

a binary image.

After the object space is defined, it is possible to define the basic operations

in mathematical morphology - erosion and dilation. They employ the structuring

elements to enhance or alleviate structures based on the specific requirements from

users. In terms of the operations set theories, the erosion and dilation on binary
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images are defined as:

εB(U) =
⋂
b∈B

Ub

δB(U) =
⋃
b∈B

Ub

(5.2)

where U and B are image spatial set and structural element, and their entries are

represented as u and b. Note that translation of set is used here, Ub means that

set U is translated so that element b in B is the origin of U. When mathematical

morphology is applied to grayscale images, the equation becomes:

[εB( f )](u) = min
b∈B

f (u + b)

[δB( f )](u) = max
b∈B

f (u + b)
(5.3)

Based on erosion and dilation, a series of tools can be developed such as opening

and closing. These two operations can remove specific structures and noises without

destroying the original primary structures. The opening is the erosion of an image

followed by an dilation and the closing firstly dilates the image and then erodes the

output. The mathematical definition is

γB( f ) = δB[εB( f )]

φB( f ) = εB[δB( f )]
(5.4)

5.2.2 Ordering problem in morphology on multivariate images

The above equations include operations such as union, intersection, maximum and

minimum. These operations are straightforward in two-dimensional grayscale im-

ages. However, when applying to multivariate or multichannel data such as RGB

or hyperspectral images, the mathematical morphology equations face difficulties

in defining the maximum and minimum due to lack of ordering relationship. The

ordering relationship has to satisfy the following conditions:
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• 1. reflexivity, A ≤ A;

• 2. anti-symmetry, A ≤ B and B ≤ A if and only if A = B;

• 3. transitivity, if A ≤ B and B ≤ C, then A ≤ C.

The set satisfying the above conditions is called a partially ordered set and the re-

lation "≤" is the partial order. A stricter concept total order also requires the property

of totality, for any A and B, only one of A < B, B < A, A = B is true.

The ordering problem is involved with multichannel or multivariate images. In

this case, the set of intensity is a vector rather than a scaler. An image with m

channels or bands can be denoted as:

f : U ⊂ Z2 → {Im|I = {0, 1, ..., tmax}} (5.5)

where Im = [i1, i2, ..., im], representing the possible intensity values in the multivariate

images. In other word, the function f maps each pixel at location u in image to a

vector.

f (u) = [ f1(u), f2(u), ..., fm(u)]T (5.6)

Therefore, defining Equation 5.3 on the new object space is not straightforward. In

particular, hyperspectral image usually consists of multiple bands so that a pixel

is expressed in a vector which represents the spectral responses at different wave-

lengths. Applying mathematical morphology on hyperspectral images will have the

same problem.

5.2.3 Extended morphological profile

The ordering problem in multivariate images can be solved through a marginal

process, which ignores the inner-correlation between channels and processes each

channel of an image separately. Since hyperspectral images consist of many band-

s, marginal process will surfer from heavy computational burden and redundant
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information. Extended morphological profile employs principle component analy-

sis (PCA) to transform the original hyperspectral images into fewer number of bands

while maintaining the majority of spectral variance:

[I1, I2, ..., Ip] = PCA( f (x)) (5.7)

where I1, I2, ..., Ip are the first p principle components. Then a series of morpholo-

gy operations can be applied on a single component to extract multi-scale spatial

information with different sizes of structuring elements:

Ω(n)(I) =
[
γ(n)(I), ..., γ(1)(I), I, φ(1)(I), ..., φ(n)(I)

]
(5.8)

where γ(n)(I) and φ(n)(I) are the opening and closing operations with a disk-shape

structural element of size n, respectively. Then the morphological profiles are ob-

tained on each of the p primary components:

Ω̂(n)
p (I) =

[
Ω(n)

1 (I), Ω(n)
2 (I), ..., Ω(n)

p (I)
]

(5.9)

In the last step, the morphological profiles are stacked with the spectral response to

form the spectral-spatial feature.

Two limitations of EMP exist in this process. Firstly, unsupervised dimension-

ality reduction methods cannot guarantee the completeness of spatial information

associated with different classes. Applying PCA on hyperspectral images maintain-

s the largest spectral variance at each pixel but it may not contain all spatial clues

belonging to different classes of objects. Secondly, since EMP and spectral response

are of different characteristics, directly stacking them into a representation leads to

unbalanced spatial and spectral information to be extracted from the same pixel.
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5.2.4 Vector morphology profile

Other than the marginal process, it is also possible to define an ordering relationship

or ranking scheme on vectors, such as conditional ordering, partial ordering, and

reduced ordering [113]. For instance, reduced ordering transforms the vectors to

scalar values so that they can be ranked according to natural order. The mapping

process can be realised based on either projection or distances. Given a vector x =

(x1, x2, ..., xp), the scalar value h(x) can be obtained by using one of the followings:

h(x) =
p

∑
i=1

λixi (5.10)

h(x) = φ(x, xre f ) (5.11)

where λi is the weight parameter in the mapping function, φ is the distance mea-

suring function, and xre f is the predefined reference vector. Then the morphological

profiles can be defined on the scalar values h(x).

5.3 Proposed Approach

5.3.1 Tensor modeling

As mentioned earlier, it is convenient to model hyperspectral images as tensors. A

tensor can be defined as a multidimensional array whose number of dimension-

s is the order or mode [62]. Formally, an Nth order tensor can be represented as

T ∈ Rd1×d2×...×dn . 1 ∼ dn is the range of elements in nth dimension. Therefore, a hy-

perspectral image can be arranged as a third order tensor with modes corresponding

to the columns, rows and wavelengths of images [36].

A tensor can also be transformed into sub-array data for the sake of interpretation.

Fixing every index but one forms a fiber which is a vector. Similarly, fixing every

index but two forms a slice. A hyperspectral image is a third-order tensor which
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can be represented as H ∈ Rm×n×b. m, n, b corresponds to the height and width of

images, and the number of bands in the HSI. A spectral response is a fiber with fixed

x and y dimension. A frontal slice, horizontal slice, lateral slice correspond to X-Y,

X-λ, and Y-λ spaces, respectively. Denoting hyperspectral image as a tensor makes it

easier to analyze its intrinsic properties from multiple aspects than the original form.

5.3.2 Multiple dimensional morphology

Morphology operations are primarily used for spatial feature extraction. After defin-

ing a hyperspectral image as a tensor, the structural information is not restricted to

the spatial dimension. A fiber can either be a spectral response or spatial line. A

slice can also reside in a spectral-spatial space. Theoretically, the morphology can be

applied in any dimension or space in a tensor. But it is necessary to inspect whether

it is reasonable to employ morphology to describe spectral responses.

Fig. 5.2 shows three truncation surfaces from a hyperspectral image after a thresh-

olding process. They correspond to a tradition X-Y slice, an X-λ slice, and a Y-λ slice.

Although X-λ and Y-λ are not images in practice, yet in the perspective of data

analysis, they are similar to the X-Y slice and retain some sort of structures in the

hyperspectral image. Figs. 5.2(a) and (b) also show some interesting phenomena.

They depict the distributions of individual classes at spectral-spatial space, i.e. the

X-λ and Y-λ distributions. It provides us with another point view of data distribu-

tion from which we can obtain something new. Specifically, those isolated holes and

zigzags are likely owing to random noises. Furthermore, these 2D slices are still not

sufficient to describe the complete view of the characteristics of each class. That is

the reason we need to apply morphology to the whole tensor structures.

5.3.3 Tensor morphology profile

In perspective of object space for mathematical morphology, a tensor is a function

rather than a subset of Euclidian space. It maps a subset of Euclidean space to a
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(a) X-Y slice (b) X-λ slice (c) Y-λ slice

Figure 5.2: Two dimensional representation of the Pavia University dataset thresh-
olded by 0.5: (a) X-Y slice at band 103; (b) X-λ slice at Y=100 (red line in X-Y slice);
(c) Y-λ slice at X=60 (blue line in X-Y slice). These images reflect different shape

structures and distributions.

range of intensity values. A grayscale tensor with mode n can be formalised as:

T = g : X ⊂ Zd1×d2×...×dn → {0, 1, ..., tmax} (5.12)

where X is the defined index domain for tensor and each element χ is a location of

the original tensor T . tmax is the maximum of tensor values. The difference between

equation 5.5 and the definition here is that the former definition treats the data as

two-dimensional sets plus n− 1 dimensional intensity set. In contrast, the later one

treats data as n dimensional data along with one-dimensional set accounting to the

intensity. In this manner, the vector ordering issue can be avoided in the subsequent
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Figure 5.3: Extended morphological profiles versus tensor morphological profiles
on a region of the Pavia University dataset. The second to fourth rows correspond
to TMP at different bands. Different columns illustrate opening and closing with

structural element of different sizes.

definition of morphology operations.

For the sake of understanding the practical meaning of mathematical morphology

on a tensor, it can be further partitioned to multiple binary tensors so that the set

operations can be applied. The thresholding process on an intensity set is defined as:

CShg(χ) =


0 if g(χ) < h

1 if g(χ) ≥ h
(5.13)

CShg(x) is named as cross section which represents the output with a threshold of

h. In order to contain the complete information of the original data, it is necessary to

apply thresholding steps for multiple times and set h = 0, 1, 2, ..., tmax. Then, we can

obtain the a series of binary tensors as introduced in Fig. 5.1. Interestingly, we can

find special relationship among these cross sections:

CStmax g(χ) ⊆ CStmax−1g(χ) ⊆ ...CS0g(χ) (5.14)

Thus a grayscale tensor can be decomposed into the sum of its cross-sections:
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T =
tmax

∑
h=1

CSh g(χ) = max{h | CSh g(χ) = 1} (5.15)

The thresholding step not only plays an intermediate role to connect the grayscale

tensor and its binary representation but also provides the practical meaning of apply-

ing mathematical morphology on a tensor. It is straightforward to apply the binary

morphology to extract the high dimensional structures inside the binary tensor using

following erosion and dilation:

εB(CSh g(χ)) =
⋂
b∈B

CSh g(χ + b)

δB(CSh g(χ)) =
⋃
b∈B

CSh g(χ + b)
(5.16)

This step is able to remove those isolated structures in tensors which are mainly

caused by random noises. Then these binary high dimensional set based features can

be combined to represent the feature of grayscale tensors based on Equations 5.15

and 5.16 .

εB(T ) =
tmax

∑
h=1

[⋂
b∈B

CSh g(χ + b)

]

δB(T ) =
tmax

∑
h=1

[⋃
b∈B

CSh g(χ + b)

] (5.17)

Base on the threshold decomposition principle [112], the above equation is equiv-

alent to

εB(T ) = min
b∈B

g(χ + b)

δB(T ) = max
b∈B

g(χ + b)
(5.18)

Here structural element B is a binary tensor with the same mode to f and it corre-

sponds to the flat structural element in EMP. It is straightforward to derive opening
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and closing:

γB(T ) = δB[εB(T )]

φB(T ) = εB[δB(T )]
(5.19)

At last, the tensor morphological profiles are obtained by applying opening and

closing on a tensor with multiple structural elements of size n:

Ω(n)(T ) =
[
γ(n)(T ), ..., γ(1)(T ), T , φ(1)(T ), ..., φ(n)(T )

]
(5.20)

The output Ω(n)(T ) fuses the spectral-spatial information in high dimensions. Note

that choosing a suitable structural element is crucial to TMP but it is beyond the

scope of this chapter. To show the difference between EMP and TMP, an example on

Pavia Univeristy is shown in Fig. 5.3. It can be noted that the profiles extracted by

TMP have taken account of spectral information and vary at different bands.

5.3.4 Tensor structural element

Since no prior knowledge is known for target classes, the structural element has to

cover as many properties of objects as possible such as multi-scale, multi-shape, and

rotations. In EMP, we choose to use a disk-shaped structural element whose radius

varies to cover the multi-scale information. When the mathematical morphology is

extended to 3D dimension, the above condition remains valid in the form of 3D set

theory. Instead of extracting 2D shape structures, 3D morphology enhances specific

3D structures based on the 3D structural element. Fig. 5.4 shows some common 2D

and 3D shapes which can be used as the structural elements. Based on the design of

2D structural element, the first consideration is the sphere and it may extract multi-

scale information in the hyperspectral images by varying radius. However, based

on our experiment, it is not suitable for the spectral dimension which has different

characteristics from the spatial dimension. In Fig. 5.2 (b) and (c), it can be noted that
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Figure 5.4: Examples of two dimensional structural elements (top row) and potential
three dimensional structural elements (bottom row).

the spectral-spatial slices usually show bar-shape patterns because pixels in a local

region are likely to share similar spectral responses. Therefore, based on the above

analysis, we choose cylinder shape as the tensor structural element.

5.4 Experimental Analysis

We developed experiments to evaluate the effectiveness of our method. Three fea-

ture extraction methods were used in the experiments, including raw spectral re-

sponse (SPE), extended morphological profile (EMP) and the proposed tensor mor-

phological profile (TMP). While a disk-shaped structural element was used in EMP,

a cylinder-shaped structural element was adopted in TMP. Experimentally, the ra-

dius of the cylinder was set to 1, 3, 5, 7 and the height was 3, 5, 9, 17, respectively.

The shape of structural element is designed based on the characteristics of spatial

and spectral dimensions. A linear SVM was adopted in the classification step. To

guarantee the fairness of the experiments, the same setting were applied to different

experiments including the classifier and the parameters of EMP and TMP.

5.4.1 Datasets

Three commonly used hyperspectral datasets were used in the experiments, includ-

ing Pavia University, Pavia Center, and Washington DC datasets. The Pavia Univer-
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sity dataset was captured at Pavia, northern Italy by the Reflective Optics System

Imaging Spectrometer sensor (ROSIS). It has 103 spectral bands covering spectral

range from 0.43 to 0.86 µm. The resolution is very high at 1.3 m per pixel. There

are nine classes in the ground truth thematic map. Available training and testing

samples are available with the dataset which can be found in [41]. Fig. 5.6 (a) and (b)

shows the training map and testing map.

The Pavia Center dataset was also captured by the same ROSIS sensor. However,

it contains seven different land cover classes from the Pavia University dataset. Both

datasets were provided by the Telecommunications and Remote Sensing Laboratory,

Pavia University, Italy.

The Washington DC dataset was acquired by the Hyperspectral Digital Imagery

Collection Experiment (HYDICE) airborne over the Washington, DC Mall. The dataset

contains 1280 scan lines with 307 pixels in each scan line. The number of spectral

bands is 189 (21 bands are deleted due to water absorption), covering 0.4− 2.4µm

range of the visible and infrared spectrum. Seven classes are considered in the exper-

iment. This dataset comes from MultiSpec Project by Landgrebe [115]. The labeled

pixels are divided into training set and testing set which are shown in Fig. 5.8 (a) and

(b).

5.4.2 Parameters of cylinder-shaped structural element

To determine the influence of key parameters of cylinder-shaped tensor on image

classification, we performed experiments on the Pavia University dataset. Then we

calculated the classification accuracy for each category when the cylinder with d-

ifferent combinations of radius and height were used in the TMP. The radius and

height were set to 1, 3, 5, 7, 9 and 1, 3, 5, 9, 17, 33, 65, respectively. The results are

shown in Fig. 5.5. The classification accuracy is represented by color with red and

blue corresponding to high and low values.

This figure shows some interesting results. While the category of Asphalt corre-
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sponding to the roads is sensitive to small radius cylinders, the category of Meadows

prefers large radius cylinders. For category of gravel, the most sensitive cylinder is

with the smallest height. Since the signal in the third dimension of tensor may have

distinct characteristics from other two dimensions, the structural element should not

be isotropic. Therefore, the designed cylinder shape structural element in TMP are

suitable to extract various information from different classes.

(a) C1 Asphalt (b) C2 Meadows (c) C3 Gravel (d) C4 Trees (e) C5 Sheets

(f) C6 Soil (g) C7 Bitumen (h) C8 Bricks (i) C9 Shadows (j) Scale/Color

Figure 5.5: Classification results for Class 1 to 9 on the condition of different com-
bination of cylinder size in morphology. The radius of cylinder is represented by
Y axis (from up to down): 1, 3, 5, 7, 9; the height of cylinder is represented by X
axis (from left to right): 1, 3, 5, 9, 17, 33, 65. The color indicates the value of accuracy.
The variance of color on different images shows that different classes are sensitive to

different structural elements.

5.4.3 Experiment on the Pavia University dataset

The classified thematic maps on the Pavia University dataset are shown in Fig. 5.6

(c)-(d). From the figure, it can be seen that the spectral-spatial methods achieve much

smoother results than raw spectral method. Furthermore, since TMP fuses the spec-

tral and spatial information in high dimension and extracts the inner structures, it

successfully classifies a few samples when EMP failed on the meadows. In Table 5.3,

we also show the statistical results of each class, along with overall accuracy, aver-

age accuracy and Kappa coefficient. Some interesting phenomena can be observed

from this table. SPE achieves the highest accuracies for Gravel, Bitumen, and Shadow
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which do not consist of fixed spatial structures. EMP performs better than two other

methods for Asphalt and Bricks and TMP obtains the better results on the rest of

classes including Meadows, Trees, and Sheets. When only comparing two morpho-

logical methods, it can be found that TMP performs better than EMP on most classes,

which means that TMP can extract more discriminative feature than EMP by fusing

the spectral-spatial information in morphology operations.

5.4.4 Experiments on the Pavia Center dataset

Similarly, we show the training and testing map on the Pavia Center dataset in Fig. 5.7

(a) and (b). The classification maps are shown in Fig. 5.7 (c)-(d). Table 5.4 shows the

results for class 1 to 9 in terms of classification accuracy, overall accuracy, average

accuracy and kappa coefficient. In this table, SPE achieves the highest accuracies for

Asphalt and Bare Soil. The results of TMP are comparable with EMP for most classes.

However, TMP 10.4% and 9.6% achieves higher performance than EMP and SPE for

class Bricks, respectively. Based on the overall accuracy and average accuracy, TMP

achieves the highest accuracy and EMP performs better the SPE. This is consistent

with the previous experimental result.

5.4.5 Experiments on the Washington DC Mall dataset

The classification results on the Washington DC Mall dataset are shown in Table 5.5.

The results are consistent with two previous experiments. TMP achieves the highest

accuracy on most of the classes. In terms of overall accuracy (OA) and average

accuracy (AA), TMP still performs better than EMP.

From above experimental analysis, the results indicate that TMP consistently per-

forms better than EMP. This is mainly due to that TMP has associated the spectral

information during the morphology operation, thus extracting more discriminative

information than EMP.
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5.5 Conclusion

In this chapter, a tensor morphological profile has been introduced to extend mathe-

matical morphology to high dimensional data. It partially solves the ordering prob-

lem in traditional mathematical morphology and can be used to extract spectral-

spatial features with morphological operations. By associating the spectral informa-

tion in the morphological profile, the designed structural element can extract variable

information in different classes. Experiments validate that tensor morphological pro-

file consistently performs better than the original extend mathematical morphology

on different datasets.

Although the proposed method is simple regarding the application of tensor

modeling and morphology operations, it provides a new insight to develop tensor-

based morphology operations such that different morphology operations can be ap-

plied to hyperspectral images directly. This idea can be extended to other feature

extraction methods bearing the similar properties such as extended attribute profiles.

Furthermore, the tensor structural element is with high flexibility. By developing d-

ifferent structural elements, it would be promising to improve the performance of

tensor morphological profile in hyperspectral image classification and create possi-

bilities in other computer vision tasks such as Magnetic Resonance Imaging or videos

processing.
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Table 5.3: Overall accuracy (OA), average accuracy (AA) and Kappa coefficient (κ)
on the Pavia University dataset when different feature extraction methods were used:
spectral feature (SPE), extended morphological profiles (EMP) and tensor morpho-

logical profiles (TMP).

Class SPE EMP TMP

C1 Asphalt 81.0 86.8 77.5
C2 Meadows 59.1 88.0 94.3
C3 Gravel 74.3 39.3 47.8
C4 Trees 78.5 97.2 99.0
C5 Sheets 99.5 99.5 99.7
C6 Soil 93.7 95.8 95.8
C7 Bitumen 87.3 75.8 75.0
C8 Bricks 84.1 96.7 94.6
C9 Shadows 99.4 90.1 91.7
OA 73.3 88.0 89.7
AA 84.1 85.5 86.2
κ 0.67 0.84 0.86

(a) Training map (b) Testing Map (c) SPE (d) EMP (e) TMP

Figure 5.6: Classification results on the Pavia University dataset with different meth-
ods: (a)training map; (b)testing map; (c)spectral feature (SPE);(d)extended morpho-

logical profiles (EMP) and (e)tensor morphological profiles (TMP).
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Table 5.4: Overall accuracy (OA), average accuracy (AA) and Kappa coefficient (κ) on
the Pavia Center dataset when different feature extraction methods were used: spec-
tral feature (SPE), extended morphological profiles (EMP) and tensor morphological

profiles (TMP).

Class SPE EMP TMP

C1 Water 98.5 98.6 99.1
C2 Trees 94.6 96.9 95.0
C3 Asphalt 95.4 94.0 93.8
C4 Bricks 72.5 71.7 82.1
C5 Bitumen 94.1 98.3 97.9
C6 Tiles 94.2 97.8 97.9
C7 Shadows 93.6 95.6 94.0
C8 Meadows 99.8 100.0 100.0
C9 Bare Soil 99.9 99.9 99.6
OA 97.0 97.7 98.0
AA 93.6 94.8 95.5
κ 0.95 0.96 0.96

(a) Training map (b) Testing Map (c) SPE (d) EMP (e) TMP

Figure 5.7: Classification results on the Pavia Center dataset with different methods:
(a)training map; (b)testing map; (c)spectral feature(SPE);(d)extended morphological

profiles (EMP) and (e)tensor morphological profiles (TMP).
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Table 5.5: Overall accuracy (OA), average accuracy (AA) and Kappa coefficient (κ)
on the Washington DC Mall dataset when different feature extraction methods were
used: spectral feature (SPE), extended morphological profiles (EMP) and tensor mor-

phological profiles (TMP).

Class SPE EMP TMP

C1 Roofs 95.1 95.9 95.2
C2 Roads 97.3 99.7 100.0
C3 Grass 93.1 99.8 100.0
C4 Trail 94.0 94.0 95.6
C5 Water 99.9 100.0 99.8
C6 Shadows 97.2 99.4 98.1
C7 91.5 95.7 96.5
OA 94.6 97.6 97.8
AA 95.4 97.8 97.9
κ 0.93 0.97 0.97

(a) Training map (b) Testing Map (c) SPE (d) EMP (e) TMP

Figure 5.8: Classification results on the Washington DC dataset with different meth-
ods: (a)training map; (b)testing map; (c)spectral feature(SPE);(d)extended morpho-

logical profiles (EMP) and (e)tensor morphological profiles (TMP).
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Chapter 6

On the Sampling Strategy for the

Evaluation of Spectral-Spatial

Methods in Hyperspectral Image

Classification

6.1 Introduction

Spectral-spatial processing has attracted increasing attentions during the past several

years. Bringing spatial information into traditional single pixel based spectral analy-

sis leads to better modeling of local structures in the image and facilitates more ac-

curate land-cover and object classification. While a large portion of the hyperspectral

remote sensing community have focused their research on improving classification

accuracy by developing a variety of spectral-spatial methods [116, 33, 41, 65], few

attention has been paid to experimental settings. Evaluation of hyperspectral image

classification methods requires careful design of experiments such as appropriate

benchmark data sets, sampling strategy to generate training and testing data, and

appropriate and fair evaluation criteria [116, 117]. In the scope of supervised classifi-

cation, we find that traditional experimental designs for spectral processing are often

improperly used in the context of spectral-spatial processing, leading to unfair or

biased performance evaluation. This is particularly the case when training and test-

97
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Figure 6.1: Framework of a supervised hyperspectral image classification system that
uses spectral-spatial features.

ing samples are randomly drawn from the same image/scene which is a common

setting in the hyperspectral image classification research due to limited availability

of benchmark data and high cost of ground truth data collection.

Fig. 6.1 shows a typical spectral-spatial hyperspectral image classification system

built on a supervised learning scheme. Training and testing samples are drawn from

an image dataset following a specific sampling strategy. After image preprocessing

which may involve spectral-spatial operations, feature extraction step fuses the spec-

tral and spatial information to explore the most discriminative features for different

classes. The extracted features are used to train a classifier that minimizes the error

on the training set. In the testing step, the learned classifier is used to predict the

classes of testing samples based on the extracted features. The testing error is given

by comparing the predicted labels with the ground truth, which can be used as a

performance indicator for image preprocessing, feature extraction and classification

methods.

In the experimental setting, the sampling strategy plays an important role in the

classifier learning and evaluation. Given a dataset including a hyperspectral image

and its land-cover classes or other ground truth data, in most cases, training and

testing samples are not given in advance. A sampling strategy has to be employed

to create the training and testing sets [118, 2, 119]. Random sampling is a natural

choice since it treats all labeled data equally and each sample would be selected with
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the same probability. However, by this method, some classes with a small number of

labeled samples may have much fewer selected samples than expectation. Therefore,

a more sophisticated sampling method, stratified random sampling, is often used [2].

To guarantee each class having sufficient samples, it firstly groups those labeled

samples into subsets based on their class labels, and then random sampling is carried

out within each subset. In terms of the number of training samples in each subset,

it normally requires that the proportion of each group should be the same as in

the population. Then the rest of the samples are employed as testing samples in the

testing step. This method is very simple to implement, reproducible, and of statistical

significance. To the best of our knowledge, majority of existing hyperspectral image

classification methods adopted this option in the experimental setting [33, 45, 41, 15,

57]. In the following sections, we refer to the stratified random sampling as random

sampling.

Before proceeding to the issue of random sampling, we have to re-affirm some

basic principles for supervised learning. Under a statistical learning framework, a

common assumption for inference purpose is that random variables are independent

and identically distributed (i.i.d.). The identical condition implies that training and

testing samples are generated from the same data distribution. The independent

condition requires that the occurrence of each sample do not affect the probability

of other samples. i.i.d. shall hold for data in different forms, for example, both

raw spectral responses and extracted features. Most supervised hyperspectral image

classification approaches assume that data are i.i.d.. Pixels in the same class shall have

similar spectral responses or spectral-spatial features so that a trained classifier can

be generalized to predict the labels of unseen samples. However, the independent

assumption does not always hold if the training and testing samples are not carefully

selected.

In general, arbitrary samples selected from a population by random sampling can

be seen roughly independent from each other, or at least independent between the
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sets of training and testing samples. However, for hyperspectral images, the random

sampling is usually undertaken on the same image. Consequently, those randomly

selected training samples spread over the image and the testing samples will locate

adjacent to them. Then the independence assumption would become jeopardized

due to the spatial correlation between training and testing samples. This is not a

problem for the traditional pixel-based spectral analysis methods in which no spa-

tial information is used. However, when it comes to the spectral-spatial methods,

the training and testing samples would inevitably interact with each other, and thus

the dependence caused by overlap or partial overlap between the training and test-

ing data could result in exaggerated classification accuracy. To be more specific, the

information from the testing set could have been used in the training step through

spatial operations, leading to a biased evaluation result. The sampling problem was

originally noticed by Friedl et al. [117], who referred to overlap as auto-correlation.

Zhen et al. [120] compared the influence of different sampling strategies to the classi-

fication accuracy. However, none of these work has given theoretical analysis on the

problems and provided an effective solution. Therefore, it is necessary to revisit the

sampling strategy and data dependence issue for supervised hyperspectral image

classification, especially those based on spectral-spatial processing. In-depth discus-

sion on this issue can be made from both experiment and the computational learning

theory points of view.

In this chapter, we study the relationship between sampling strategies and the

spectral-spatial processing in hyperspectral remote sensing image classification, when

the same image is used for training and testing. We find that the experimental set-

ting with random sampling makes data dependence on the whole image be increased

by some spectral-spatial operations, and in turn increases the dependence between

training and testing samples1. To address this problem, we propose an alternative

controlled random sampling strategy to alleviate the side effect of traditional random

1For the sake of conciseness and without confusion, we use “dependence between training and
testing data" and “data dependence" interchangeably in the rest of the chapter.



§6.1 Introduction 101

sampling on the same hyperspectral image. This leads to a fairer way to evaluate the

effectiveness of spectral-spatial methods for hyperspectral image classification.

In summary, the contributions of this work are in three aspects. Firstly, we point

out that the traditional random sampling from the same image experimental setting

is not suitable for supervised spectral-spatial classification algorithms. This helps

to re-examine the performance evaluation of various spectral-spatial classification

methods. Secondly, we find that under the random sampling setting, spectral-spatial

methods can enhance the data dependence and improve the classification accuracy.

We give a theoretical explanation to this phenomenon via computational learning

theory. Finally, we propose a novel controlled random sampling strategy which can

greatly reduce the overlap between training and testing samples caused by spatial

processing, such that more objective and accurate evaluation can be achieved.

The rest of this chapter is organized as follows. Section 6.2 reviews the spectral-

spatial processing methods that has been commonly used for hyperspectral image

classification. Section 6.3 provides an in-depth analysis on the dependency between

training and testing samples. The spatial information embedded in the spectral-

spatial processing under the experimental setting with random sampling is exam-

ined. Section 6.4 analyzed the overlap between neighboring training and testing sam-

ples caused by spatial operations. Such overlap increases the dependence between

training and testing samples, which may lead to mistakenly using of the testing data

in the training process. Section 6.5 discusses the relationship among spectral-spatial

processing, data dependence and classification accuracy via computational learning

theory. A new sampling strategy is proposed in Section 6.6 which reduces the in-

fluence of overlap between training and testing data. To prove its advantage over

random sampling, a series of experiments are developed and results are presented

in Section 6.7. At last, the conclusions are drawn in Section 6.8.
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6.2 Spectral-spatial Processing in Hyperspectral Image Clas-

sification

The advantage of using hyperspectral data in land cover classification is that spectral

responses reflect the properties of components on the ground surface [2]. Therefore,

raw spectral responses can be used directly as the discriminative features of different

land covers. At the same time, hyperspectral data also possesses the basic charac-

teristic of conventional images - the spatial information which corresponds to where

a pixel locates in the image. The spatial information can be represented in different

forms, such as structural information including the size and shape of objects, textures

which describe the granularity and patterns, and contextual information which can

express the inter-pixel dependency [41]. This is also the foundation of the develop-

ment of most spectral-spatial methods for hyperspectral image classification.

In general, spectral-spatial information can contribute to hyperspectral image

classification through three ways. Firstly, in image preprocessing, it can be used

for image denoising, morphology, and segmentation. Image denoising enables the

reduction of random noises introduced from sensors, photon effects, and calibra-

tion errors. Several approaches have been exploited for this purpose, for example,

smoothing filters, anisotropic diffusion, multi-linear algebra, wavelet shrinkage, and

sparse coding methods [42]. In most cases, denoising can be done by applying a local

filter with designed or learned kernel across the whole image. In mathematical mor-

phology, operations are performed to extract spatial structures of objects according

to their spectral responses [43, 41]. Similar information is explored in image segmen-

tation, which groups spatially neighboring pixels into clusters based on their spectral

distribution [44, 45].

Secondly, common usage of joint spectral-spatial information lies in the feature

extraction stage. While traditional spectral features are extracted as responses at

single pixel level in hyperspectral images, spectral-spatial feature extraction meth-

ods use spatial neighborhood to calculate features. Typical examples include tex-
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ture features such as 3D discrete wavelet [15], 3D Gabor wavelet [46], 3D scatter-

ing wavelet[47], and local binary patterns [48]. Morphological profiles, alternatively,

use closing, opening, and geodesic operators to enhance spatial structures of object-

s [30, 49, 34]. Other spectral-spatial features include spectral saliency [50], spherical

harmonics [51], and affine invariant descriptors [52]. Heterogeneous features can be

further fused using feature selection or reduction approaches [25].

Thirdly, some image classification approaches rely on spatial relation between

pixels for model building. A direct way of doing so is calculating the similarity be-

tween a pixel and its surrounding pixels [53]. Markov random field, for example,

treats hyperspectral image as dependent data and uses spectral information in the

local neighborhood to help pixel class prediction [54, 45, 55]. Similar spatial struc-

tures are explored in conditional random fields [56], hypergraph modelling [39], and

multi-scale analysis [57]. The spatial information can also be explored in constructing

composite kernels in support vector machines [31]. While supervised learning ap-

proaches, such as K-nearest neighbors, linear discriminant analysis, Bayesian analy-

sis, support vector machines, etc. are widely used in these classification tasks [58, 59],

some approaches adopt semi-supervised or active learning strategies [60, 61].

6.3 Spatial Information Embedded in Random Sampling

Random sampling makes the training and testing samples spread over the image,

embedding plenty of underlying spatial information. In this section, we point out

that the embedded spatial information will mistakenly influence the classifier learn-

ing and evaluation. We exploit this problem in a specific/extreme way, by which a

hyperspectral image classification task can even be done without spectral informa-

tion.

In many benchmark hyperspectral datasets, pixels in the same class are not dis-

tributed randomly in an image. On the contrary, they tend to exist in continuous

regions and follow a certain spatial distribution, especially when objects in the same
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Figure 6.2: Three band false color composite (top row) and ground truth labels (bot-
tom row) of five commonly used hyperspectral datasets. From left to right: Botswana,

Indian Pines, Kennedy Space Center, Pavia University, and Salinas Scene.

materials present in the scene. Fig. 6.2 shows the false color composite and ground

truth maps of five commonly used hyperspectral datasets, i.e., Botswana, Indian

Pines (Indian), Kennedy Space Center (KSC), Pavia University (PaviaU), and Salinas

scene (Salinas) [121]. In these images, there are strong dependencies between the

spatial locations of pixels and land cover classes. This results in the potential using

of the spatial structure and distribution of each single class. In most cases, if random

sampling is used for selecting training and testing samples in the same image, the

class label of a testing sample can be easily inferred only by its spatial relation to the

training samples. This can be exemplified by Fig. 6.3, in which 5%, 10% and 25% of

training data are sampled from the Indian Pines and Pavia University datasets. When

it comes to 25% sampling rate, the spatial distribution of training samples (last col-

umn) is similar to the shape of the ground truth map (first column) in the spatial

domain.

To show the extent that the classification accuracy is impacted by spatial infor-

mation, we performed experiments on five benchmark datasets in Fig. 6.2. In the

experiment, a nonlinear support vector machine (SVM) was employed because the

land cover classes are not linearly separable in the spatial domain. The spatial coor-
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Figure 6.3: Random sampling strategy on Indian Pines (top row) and Pavia Univer-
sity (bottom row) datasets. From left to right: the ground truth map, training set
with 5% sampling rate, training set with 10% sampling rate, training set with 25%

sampling rate.

dinates were used as the spatial feature and no spectral information was included.

The parameters of the SVM were learned via five-fold cross validation. Three sam-

pling rates were explored, i.e. 5%, 10%, and 25% to generate the training data from

all labeled samples, while the rest of labeled data served as the testing samples. In

contrast to the spatial feature, the traditional spectral feature based methods were

also implemented in which we followed the same setting as the spatial method.

Each test was repeated ten times in the experiment with random generation of

training and testing samples. The overall classification accuracies (OA), average ac-

curacies (AA) and Kappa Coefficient (κ) are shown in Table 6.1 for different methods.

The comparison between accuracies using spectral feature with SVM (Spe) and spa-

tial feature with SVM (Spa1) shows some surprising results. Classification accuracy

based on pure spatial feature has significantly outperformed the counterpart using

pure spectral feature in all cases. In terms of overall accuracy, the spatial method

achieves more than 93.8% accuracy on all datasets when only 5% of training sam-

ples are used, while the spectral method has only around 75.5%− 93.2% in accuracy.

When the sampling rate becomes 25%, the accuracy almost reaches 100% for the spa-
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Table 6.1: Overall accuracy (OA), average accuracy (AA) and Kappa coefficient (κ)
on five hyperspectral datasets when different feature/classifier combinations were
used: spectral feature with SVM (Spe), spatial feature with SVM (Spa1) and spatial

feature with KNN (Spa2).

Dataset
OA AA κ

Spe Spa1 Spa2 Spe Spa1 Spa2 Spe Spa1 Spa2

Botswana (%5) 89.1 93.8 93.3 89.0 93.8 92.9 0.873 0.933 0.928

Botswana (%10) 91.9 98.1 97.7 92.7 97.9 97.5 0.913 0.979 0.975

Botswana (%25) 94.9 99.7 99.7 95.3 99.6 99.7 0.944 0.996 0.997

Indian (%5) 75.5 95.5 95.1 67.7 92.1 90.5 0.718 0.949 0.944

Indian (%10) 81.0 98.0 97.6 76.5 97.1 94.9 0.783 0.977 0.972

Indian (%25) 87.0 99.7 99.4 84.6 99.5 98.7 0.851 0.996 0.993

KSC (%5) 87.6 98.1 98.8 81.6 97.5 98.5 0.862 0.979 0.987

KSC (%10) 90.3 99.6 99.8 85.4 99.2 99.7 0.892 0.995 0.998

KSC (%25) 93.4 99.9 100.0 89.6 99.9 100.0 0.927 1.000 1.000

PaviaU (%5) 93.2 96.4 96.9 91.3 90.1 93.3 0.910 0.952 0.958

PaviaU (%10) 94.2 97.3 98.7 92.3 91.8 96.8 0.923 0.964 0.982

PaviaU (%25) 95.3 98.0 99.7 94.0 93.4 99.2 0.941 0.973 0.996

Salinas (%5) 93.1 99.9 99.2 96.2 99.8 98.1 0.923 0.999 0.991

Salinas (%10) 94.1 99.9 99.7 97.1 99.9 99.4 0.934 0.999 0.997

Salinas (%25) 95.3 100.0 99.9 97.8 100.0 100.0 0.948 1.000 1.000

tial feature, which agrees with the perceptual intuition in Fig. 6.3. Essentially, these

phenomena are caused by the random sampling strategy on the same image. The re-

sults also show that higher sampling rate leads to increase of classification accuracy

on all datasets.

In another point of view, the spatial classification can also be exploited in the local

neighborhood. Since the training samples spread uniformly in the image, it would

be easy to find the nearest training sample for any testing samples that belong to

the same class. An experiment was designed to test how the local information con-
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(a) (b) (c)

Figure 6.4: Classification maps of the Indian Pines (including the unlabeled pixels)
using only spectral or spatial features: (a) Spe, (b) Spa1 and (c) Spa2.

tributes the classification. We employed the K-nearest neighbor (KNN) classifier and

set the parameter K to 1. The results are displayed in Table 6.1 under the columns of

Spa2. It can be seen that the performance of Spa2 is comparable to the spatial method

Spa1 on all datasets, which has significantly outperformed the spectral method on

all datasets. It should be noted that in the KNN classification, predicting the label of

testing samples is only based on the nearest training pixels in their spatial neighbor-

hood. This is similar to the mechanism of some spectral-spatial methods which also

make use of the local spatial neighborhood information but in a different way. This

experiment further proves that the training data provide too much information on

the spatial domain for the classification task.

While classification based on spatial coordinates seems to perform better than

the spectral information, it is infeasible in real applications in which unlabeled pixels

are involved. Those unlabeled pixels are prone to be classified into its nearby class,

thus producing a thematic map dramatically different from the ground truth. To

exemplify this phenomenon, Fig. 6.4 shows the classification maps of the Indian

Pines including the unlabeled pixels with 10% sampling rate. Although Sp1 and Sp2

achieve higher classification accuracy than Spe, their classification maps are far away

from the ground truth map. Therefore this method is not acceptable in reality. In

summary, these two experiments show that random sampling from the same image
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makes an underestimated amount of spatial information be embedded in the training

set and the testing set. It is natural to raise the concern that they would interact with

each other if spatial processing is applied to the image.

6.4 Overlap between Training and Testing Data from the Same

Image

The spectral-spatial methods make use of the spatial information in different forms

and different ways as introduced in Section 6.2. When it comes to the random sam-

pling strategy, a more severe problem may happen in the spectral-spatial analysis,

especially at the feature extraction stage. When only spectral responses are used,

feature extraction is performed at single pixel, without exploring its spatial neigh-

borhood. Therefore, random sampling strategy provides a statistical solution for data

splitting and there is no explicit overlap between training and testing samples. How-

ever, the spectral-spatial methods usually exploit information from neighborhood

pixels. This is normally implemented by a sliding window with a specific size, for

example, 3× 3, 5× 5 and so on. In each window, a kernel or filter is used to extract

discriminative information. Since the training and testing samples are drawn from

the same image, their features are almost certain to overlap in the spatial domain due

to the shared source of information.

Fig. 6.5 shows the extent of overlap between training and testing data on the

Indian Pines dataset. In the figure, the white dots show the locations of training

samples, and the surrounding white squares cover a 3× 3 region used for spectral-

spatial feature extraction. The testing samples, however, may just lie in the square

and has its own surrounding regions. This brings about a shared region between

features extracted from the training and testing data such that they interact with

each other and lose the mutual independence. It is also evident that a larger filter

leads to more overlap areas. An example is shown in Fig. 6.6 in which a 3× 3 and
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Figure 6.5: Overlap between training and testing data on Indian Pines dataset under
5% sampling rate.

(a) (b)

Figure 6.6: The regions for feature extraction from a training sample (O) and a testing
sample (+) overlap with each other, as represented in gray color. The proportion
of overlap is 2

3 and 4
5 for (a) 3 × 3 sliding window and (b) 5 × 5 sliding window,

respectively.

5 × 5 window will result in 2
3 and 4

5 of overlap for adjacent training and testing

samples, respectively.

Such overlap leads to using of the testing data for training purpose and gives

significant advantages to the spectral-spatial feature extraction approaches. This vi-

olates the basic principle of supervised learning that training and testing data shall

not interact with each other. Depending on how feature is extracted, benefit of test-

ing data may be explicit, for example when the spectral-spatial feature is extracted

by concatenating the spectral responses of pixels in a neighborhood, or implicit, for

example, by extracting texture features based on spatial frequency analysis such as
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discrete wavelet transform.

6.4.1 Experiment with a mean filter based spectral-spatial method

In order to estimate how the overlap impacts the accuracy of spectral-spatial method

with random sampling strategy, an experiment was carried out on the Indian Pines

dataset. In this experiment, a linear SVM classifier was used to facilitate further

comparison. The features were constructed by applying a mean filter to calculate the

mean of the spectral responses in a neighborhood of the hyperspectral images, which

was mathematically formulated as follows:

f (x, y) =
1

MN

x+ M
2

∑
i=x−M

2

y+ N
2

∑
j=y− N

2

S(i, j) (6.1)

where M and N are the width and height of neighborhood surrounding (x, y). In

the experiment, we set M and N both from 1 up to 27 with an interval of 2. S(i, j)

represents the spectral response at location (i, j) and f (x, y) is the feature extracted on

location (x, y) which contains both spectral and spatial information. This process can

be considered as one of the simplest approaches to extract spectral-spatial features.

When the size of the neighborhood is 1× 1, this reduces to extracting spectral

features only. Larger size of window results in more overlap. The calculated rate of

testing samples covered by the neighborhood of training samples is shown in Fig. 6.7.

When 5% training data are sampled, 30.9% testing samples are covered by the 3× 3

regions used to extract training features. When random sampling rate increases to

25%, the extent of overlap becomes 86.4%. The rise of sampling rate leads to rapid

increase of overlap. Furthermore, when the size of filter grows, the overlap rate also

increases rapidly. Eventually, when the overlap rate reaches 100%, all testing samples

are used in the training process.

The experiment was repeated ten times. In each time, the indices of the training

and testing pixels were randomly generated. Features were generated using different
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Figure 6.7: Overlap of training and testing data on the Indian Pines with different
size filters.

settings of filter size and sampling rate. Under each setting, the same training, and

testing samples were used for fair comparison. The overall classification accuracies

are shown in Fig. 6.8. A significant increase of the classification accuracy can be

observed when spatial information is added to the spectral information. When the

size of neighborhood increases, more testing data contribute to the training step,

therefore the classification accuracy increases. It is also interesting to see that after

the neighborhood increases to a specific size, the accuracy stops growing and tends

to be stable. This is probably because that when the neighborhood becomes too large,

unlabeled data or samples from other classes are involved in the feature extraction,

which neutralizes the benefits of overlap.

6.4.2 Non-overlap measurement

Other than overlap, the increase of classification accuracy also owes to the better dis-

criminative capability of spectral-spatial features. With larger filter size, the feature

includes more spatial information. To demonstrate how the spatial neighborhood

influences the effectiveness of spectral-spatial feature, we performed another experi-

ment on those testing samples not overlapped with the training data.

Following the same setting as the previous experiment, we removed the testing
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Figure 6.8: Classification accuracies on the Indian Pines using a simple mean filter
with different filter sizes.

Table 6.2: Classification accuracies on all testing samples and non-overlapped testing
samples.

Filter Size 1 3 5 7 9 11

All samples (5%) 72.1 86.1 90.2 91.4 92.1 92.3

Non-overlap (5%) 72.1 82.9 83.2 79.1 71.6 68.0

All samples (10%) 77.4 90.4 94.5 95.9 96.1 96.4

Non-overlap (10%) 77.4 86.2 84.8 77.9 65.5 NaN

All samples (25%) 82.4 94.6 97.5 98.3 98.5 98.7

Non-overlap (25%) 82.4 87.9 80.6 NaN NaN NaN

samples that were covered by the training set and only test on the remaining sam-

ples. Table 6.2 shows the comparison of classification accuracy on all testing samples

and non-overlap testing samples. The results show that when testing on non-overlap

testing samples, the accuracy is improved when the neighborhood information is ini-

tially introduced by the 3× 3 mean filter. However, when a larger size filter is used,

the accuracy of non-overlap testing samples does not increase and even decrease 2.

The decrease could be caused by the fact that the non-overlap testing samples are

2In Table 6.2, the null values are due to the absence of non-overlapped testing samples.
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easily influenced by the samples from other classes in the neighborhood. In contrast,

the classification accuracy with overlapped testing samples has remarkable improve-

ment when a larger filter size is used.

Based on the above analysis, under the random sampling strategy, some filter-

based spectral-spatial feature extraction methods would make the training and test-

ing samples overlap and then interact with each other. Subsequently, in the training

process, information from testing samples are included to train the classifier, which

in return is used to classify the testing samples in the testing step. Although this

kind of methods improves the classification results, they are not desired because

they violate the basic assumption of supervised learning and their generalization is

questionable. So far we have only analyzed a special case of spectral-spatial method-

s, it would be interesting to extend the analysis to a broader scope. Next, we try to

discuss the data dependence and its impact on classification results by computational

learning theory.

6.5 Data Dependence and Classification Accuracy

Computational learning theory aims to analyze computational complexity, feasibility

of learning, and performance bound [122]. A widely known computational learning

framework is the probably approximately correct (PAC) learning which estimates the

sample complexity based on the required generalization error, probability of infer-

ence and complexity of a space of functions. Another classic theory is the Vapnik-

Chervonenkis theory (VC theory). One of its functions is to bound the generalization

ability of learning processes which is usually represented as the testing error R(h).

Before introducing the computational learning theory, some basic learning con-

cepts shall be firstly introduced in the scope of i.i.d. data. In computational learning,

instead of considering classification accuracy, a more general term, generalization er-

ror bound, is usually derived to describe the ability of learning algorithms to predict

unseen data. For a binary classification problem, given a hypothesis h ∈ H where H
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are all hypotheses, a target hypothesis c, and a sample set S = (x1, x2, ..., xm) follow-

ing a distribution D, the empirical error (training error) R̂(h) and the generalization

error (testing error) R(h) can be defined as:

R̂(h) =
1
m

m

∑
i=1

l(h(xi), c(xi)) (6.2)

R(h) = E
x∈D

l(h(x), c(x)) (6.3)

where l is the error function and E is the expectation in statistics. R(h) describes the

expectation of error considering the whole distribution D.

Despite that the empirical error R̂(h) can be calculated once the training data

S, its label c(xi) and the hypothesis h are known, the generalization error cannot

be estimated directly. In practice, simply decreasing R̂(h) by building a complex

classification model may not always minimize R(h) because it may lead to over-

fitting. In order to bound R(h), more factors have to be considered. Based on PAC

learning, the generalization bound can be calculated as:

R(h) ≤ R̂(h) +
1
m
(log|H|+ log

1
δ
) (6.4)

which means that given training data of size m and hypothesis complexity |H|, the

inequality of generalization holds with probability no less than 1− δ. This definition

conforms to our understanding of learning that more training data leads to better

learning outcome. Based on the inequality, the generalization bound can be tightened

by increasing the training sample size m or by decreasing the probability 1− δ which

is equivalent to the inference confidence. The complexity of hypothesis is determined

by the learning models.

When the hypothesis sets are infinite, the above bound is uninformative. In or-

der to impose generalization bound for infinite cases, the Redemacher complexity is

introduced to measure the hypothesis complexity [123]. Specifically, it measures the
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variety of a set of functions by estimating the degree to which a hypothesis can fit

random noise. The Rademacher complexity based generalization bound on i.i.d. data

samples is defined as:

R(h) ≤ R̂(h) + R̂s(H) + 3

√
log 2

δ

2m
(6.5)

where R̂s(H) is the empirical Rademacher complexity. 1 − δ is the probability or

confidence and m is the training sample size. R̂s(H) can be estimated by growth

function or VC-dimension [122].

Even though these models provide generalization bounds for different learning

algorithms, they are all based on the i.i.d. assumption. For non-i.i.d. data, the gen-

eralization bound has not been fully studied due to the lack of statistical model for

dependent data. However, i.i.d. does not always hold in practice. In general, the sam-

ples in a hyperspectral image are not i.i.d., as the samples are spatially overlapping

to each other in the image. The data dependence will inevitably happen no matter

how carefully the sampling strategy is designed.

In recent years, researchers begin to develop new learning theories on this topic.

Among all kinds of non-i.i.d. data, some data types possess the property of asymptot-

ic independence, which is weaker than independence but stronger than dependence,

for instances, time series signal [124]. In order to define this kind of data, mixing

condition is used to define explicitly the dependence of the future signal on the past

signal based on decay. A commonly used model in non-i.i.d. scenario is the stationary

β-mixing model [125]. Suppose events A and B are generated from a time sequence

αt∈(−∞,+∞) with an interval k, the definition of β-mixing coefficient is

β(k) = sup
m

E
B∈αm

−∞

 sup
A∈α+∞

m+k

|Pr(A|B)− Pr(A)|

 (6.6)

This equation defines the dependence coefficient as the supremum of the difference

between the conditional probability Pr(A|B) and probability Pr(A) when choosing
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arbitrary moment m which separates event A and B. The sequence α is β-mixing if

β(k) → 0 when k → +∞. It implies that the dependence coefficient β(k) decreases

with the increase of interval k.

Several learning models have already been derived on stationary β-mixing data,

such as VC-dimension bound[125], PAC learning [126] and Rademacher complex-

ity [127]. In this work, the Rademacher complexity based generalization bound is

employed since it associates the generalization bounds with β-mixing coefficient. It

uses a technique to transferring the original dependent data to independent blocks.

Let 2µ be the number of blocks and each block contains k consecutive points, then the

size of sample m = 2µk. The original bound in Equation 6.5 is extended to β-mixing

data as follows:

R(h) ≤ R̂(h) + R̂s(H) + 3M

√√√√ log 2
δ−4(µ−1)β(k)

2µ
(6.7)

where M is the bound of a set of hypothesis H.

Compared to the i.i.d. case, this bound is not only related to the training error

R̂(h), empirical Rademacher complexity R̂s(H), and probability δ, but also relies on

the β-mixing coefficient β(k) which implies the degree of dependence among data.

Considering the impact of β-mixing coefficient to the bound, this equation can be

further simplified as:

R(h) ≤ f (β(k)) + C (6.8)

where f (β(k)) is a monotonically decreasing function. As a result, the generalization

bound is tightened when the β(k) increases, i.e. the dependence among data is

enhanced.

Applying learning theory to hyperspectral image classification is challenging due

to the complex statistical characteristic of hyperspectral images. To our knowledge,

similar work is very rare. In the following experiments, we show that hyperspectral

images share the same properties of β-mixing data.
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Spectral feature extracted at image pixels often have strong dependence to their

surrounding regions [65]. However, it is still questionable whether such dependence

decreases with the increasing distance between the central pixel and its neighboring

pixels. In addition, since a hyperspectral image is a three-dimensional data, how

the dependence is related to the spatial direction is still unknown. To check how

the dependence varies with the distance, we performed a simple statistical analysis

on the Indian Pines dataset. Here, the dependence between two pixels X and Y is

approximated by the linear correlation coefficient of their spectral responses:

ρX,Y =
cov(X, Y)

σXσY
(6.9)

where cov and σ represent the covariance and standard deviation, respectively. A

random location was firstly selected on this image, then the correlation coefficient

ρ was calculated between the pixel and its neighborhood pixels with different dis-

tances. We have calculated the result on a 9× 9 patch. As expected, it does not show

clear pattern at a single random pixel. Then we took into account the pixels centered

at all locations and calculated the mean of correlation coefficients in all patches based

on the following:

c(xi, yi) =
1

M× N ∑
x̂∈M,ŷ∈N

ρ(S(x̂, ŷ), S(xi, yi)) (6.10)

where (xi, yi) is the neighbourhood pixels of the central pixel (x̂, ŷ) in the patch. For

a 9× 9 patch, xi = x̂− 4, x̂− 3, ..., x̂ + 4 and yi = ŷ− 4, ŷ− 3, ..., ŷ + 4. M and N are

the width and height of the whole image. S(x, y) represents the spectral response at

location (x, y). The statistical result is shown in Fig. 6.9. In the center of the patch,

the intensity is one due to self-correlation. It clearly shows that with the increasing

interval, the correlation coefficient gradually drops in all directions. This is consistent

with the characteristic of β-mixing.

Now we can safely assume that hyperspectral images are β-mixing, and explore
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Figure 6.9: The statistics on the correlation coefficients between a central pixel and
its 9× 9 neighbourhood pixels of an image from the Indian Pines dataset.

the relationship between the generalization bound with data dependence. Based on

Equation 6.8, the bound is inversely related to β-mixing. As a consequence, the clas-

sification accuracy can be increased by enhancing the dependence between training

and testing data. Recall that in the experiment with a mean filter based spectral-

spatial method (Fig. 6.8), the accuracy increases with larger filters. It would be inter-

esting to measure the pixel correlation to see how the mean filter influences the data

dependence. Similarly, Equation 6.1 was used to calculate the mean spectral respons-

es in a sliding window and the sizes of the windows were set to 1× 1, 3× 3, 5× 5,

7× 7, 9× 9, 11× 11, respectively. Then the statistics on the correlation coefficients

on a 9× 9 patch was calculated from the filtered images based on Equation 6.9 and

Equation 6.10. Note when the 1× 1 was used, this corresponds to using the original

image without filtering. The results are shown in Fig. 6.10 in which we only draw

the correlation coefficients along X dimension. The results with different filters are

represented by distinctive curves. The bottom curve with 1× 1 filter can be seen as

the projected illustration along X dimension from Fig. 6.9. From this new figure, two

trends can be observed. Firstly, all curve drops continuously when the distance in-

creases, which means that the processed data agree with the properties of β-mixing.

Secondly, at the same distance, the larger the filter is, the stronger the dependence
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Figure 6.10: Pixel correlations along X dimension in an image from the Indian Pines
dataset after a mean filter with different sizes was applied.

between the central pixel and its adjacent pixels becomes. Therefore, the overlap en-

hances the data dependence which tightens the error bound of the final classification

results.

The theories presented above have explained why mean filter improves the clas-

sification accuracy, and can be extended to other spectral-spatial operations that in-

crease the data dependence. It should be noted that the above analysis is built on

the assumption of random sampling for performance evaluation. Under such ex-

perimental setting, the improvement of classification accuracy comes from not only

incorporating spatial information into a classifier but also enhancing the dependence

between training and testing data. The former is the main purpose of algorithm

performance evaluation and the later should be avoided.

6.6 A Controlled Random Sampling Strategy

Following the discussion in previous sections that random sampling from the same

image is not suitable for evaluation the spectral-spatial methods, it is necessary to

develop a new sampling strategy to separate the training and testing sets without

overlap. It would be perfect if we could perform training and testing on two dif-
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Algorithm 3 Controlled Random Sampling Strategy

Require: Hyperspectral Image I and sampling rate s
for each class c in I do

Selects all unconnected partitions P in the class c
for each partition p in P do

Count the number of samples np in the partition
Calculate the number of training samples nt in the partition by nt = np × s
Randomly select a seed point q in the partition
Applying the region-growing algorithm to extend q to a region r whose size
is equal to nt

end for
Combine these regions r to form training samples Rc

end for
Combine the training samples Rc and their corresponding class labels to get the
whole training set R

ferent images. Unfortunately, this is still infeasible in most cases due to the limited

availability of benchmark datasets and high cost of ground truth data collection.

Therefore, without changing much the current experimental setting, the goal is to

significantly reduce the extent of data overlap and make the evaluation fair enough.

Based on our analysis, the main problem of random sampling is that it makes the

training and testing samples spatially adjacent to each other, leading to their overlap

in the subsequent spatial operations. On the other hand, as a classical method, it

has advantages such as simplicity, reproducibility, and statistical significance. As a

result, the new sampling strategy should satisfy the following requirements. Firstly,

it shall avoid selecting samples homogeneously over the whole image so that the

overlap between training and testing set can be minimized. Secondly, those select-

ed training samples should also be representative in the spectral domain, meaning

that it shall adequately cover the spectral data variation in different classes. There

is a paradox between these two properties, as the spatial distribution and the spec-

tral distribution are coupling with each other. The first property tends to make the

training samples clustered so that it generates less overlap between the training and

testing data. However, the second property prefers training samples being spatially

distributed as random sampling does and covering the spectral variation in different
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(a) Random sampling (b) Random sampling after
Gaussian filtering

(c) Controlled random sam-
pling

(d) Controlled random sam-
pling after Gaussian filter

Figure 6.11: Overlap between the training and testing data under different sampling
strategies before (first column) and after (second column) a Gaussian filter is applied.

regions of the image. Therefore, a good trade-off has to be achieved by the new

sampling strategy. Thirdly, because there is no prior knowledge, we do not know

which samples are more important than the others. Therefore the new method shall

possess the property of randomness.

Here we propose a controlled random sampling strategy to achieve a compromise

of the above considerations. Similar to random sampling, a pre-defined proportion

of samples in each class is to be randomly selected as the training samples and the

rest data serve as the testing samples. Those training samples shall be concentrat-

ed locally and dispersed globally. We borrow the idea of region growing to create

region-shape training samples [128]. On the ground truth map, the seed points are

randomly selected from different partitions of classes to make the training samples
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disperse globally and randomly. The partition referred here is a group of connect-

ed pixels with the same labels. For each class, there are usually several partitions

distributed on the map, corresponding to the land cover of the same category at dif-

ferent locations. Then controlled random sampling proceeds with three steps. Firstly,

it selects the unconnected partitions for the each class and counts the samples in each

partition. This step is to find the spatial distribution of each class and make sure that

the selected training samples in the next step cover the spectral variance at the most

extent. Secondly, for each partition, the training samples are generated by extending

region from the seed pixel. In terms of region growing, it expands in all directions

and takes account of 8-connected neighborhood pixels. All the adjacent pixels of seed

pixels are examined and if they are within the same class, they work as the new seed

points. This process is repeated until the sum selected points reaches a pre-defined

number which is proportional to the number of pixels in the corresponding parti-

tion. This guarantees that the total number of training samples meet the pre-defined

proportion of the whole data population. Thirdly, after the above steps are applied

to all classes, those samples in the grown regions with their labels are chosen as the

training samples and the rest of pixels work as the testing samples. In case when

there are more partitions than the required training samples, partitions are again

randomly sampled. A summary of this strategy is given in Algorithm 3.

In Fig. 6.11, we demonstrate different degrees of overlap between training and

testing samples under random sampling and controlled random sampling strategies,

after a Gaussian filter is applied. In the left column of the figure, the training and

testing data are represented by colored dots and white regions in each partition.

Applying the Gaussian filter creates the gray regions in the right column of the

figure, representing the overlap between the training and testing data. It can be

noticed that all the training samples are impacted by the testing data under random

sampling. On the contrary, for controlled random sampling, only training samples

at the edges of the training regions are influenced by the testing data. This figure
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Figure 6.12: Controlled random sampling strategy on the Indian Pines (top row) and
Pavia University (bottom row) datasets. From left to right: the ground truth map,

training set with 5%, 10%, and 25% sampling rates, respectively.

clearly shows that the overlap from controlled random sampling is significantly less

than that from the traditional random sampling.

To further illustrate how the controlled random sampling works with real dataset-

s, examples on Indian Pines and Pavia University are given in Fig. 6.12 with 5%, 10%,

and 25% sampling rates. Compared to the random sampling strategy in Fig. 6.3, it

can be observed that the spatial structure of each class can no longer be inferred from

the training data as random sampling does. In the meantime, the training samples

are still distributed across the whole image and a wide range of spectral variances

are covered. Though this approach cannot completely eliminate overlap between the

training and testing data, the influence of testing data in the training stage can be

greatly reduced to limited pixels at the boundaries of each training region. The ex-

perimental setting with the proposed sampling method can help us more accurately

and objectively evaluate the performance of spectral-spatial methods.
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6.7 Experiments

To prove the usability and advantage of the proposed controlled random sampling

against random sampling, we have developed a series of experiments to test these

two strategies when they are used to evaluate spectral-spatial operations in different

stages of image classification. In the preprocessing step, we adopted a mean filter

and a Gaussian filter as examples of smoothing and denoising operations. Then,

we performed experiments with raw spectral feature to examine the effectiveness of

the proposed sampling method when evaluating the spectral responses without s-

patial processing. Furthermore, two spectral-spatial feature extraction methods, i.e.

3D discrete wavelet and morphological profiles, were compared using two sampling

methods. Finally, we compared the performance of two sampling strategies at vary-

ing sampling rates and discussed the limitation of the proposed method. In order

to make the experiments more convincing, we adopted two widely used supervised

classifiers, support vector machine (SVM) and random forest (RF) [71] to validate our

results. The SVM was implemented using the LIBSVM package [68], and the RF was

implemented using the well-known Weka 3 data mining toolbox [129]. We present

results on five benchmark datasets, i.e., Botswana, Indian Pines (Indian), Kennedy

Space Center (KSC), Pavia University (PaviaU), and Salinas scene (Salinas).

6.7.1 Evaluation of spectral-spatial preprocessing method

The spectral-spatial preprocessing step contributes to classification by improving the

quality of hyperspectral images, reducing random noises, and enhancing specific fea-

tures. By varying the parameters of mean filter and Gaussian filter, their influence to

the classification accuracy under two sampling strategies can be analyzed. We under-

took experiments on both Indian Pines and Pavia University datasets with SVM and

RF, respectively. The results with mean filter are shown in Fig. 6.13. When traditional

random sampling is used, the accuracy on the Indian Pines dataset increases with

larger filter size when SVM and RF are adopted (Fig. 6.13(a) and (b)). For the Pavia



§6.7 Experiments 125

(a) Indian Pines & SVM (b) Indian Pines & RF (c) PaviaU & SVM (d) PaviaU & RF

(e) Indian Pines & SVM (f) Indian Pines & RF (g) PaviaU & SVM (h) PaviaU & RF

Figure 6.13: Classification accuracies vary with the size of mean filter on the Indian
Pines and Pavia University (PaviaU) datasets under random sampling (first row) and

controlled random sampling (second row) strategies.

University dataset (Fig. 6.13(c) and (d)), the accuracies also increase with larger filter

sizes but decrease when the size reaches a specific value, which is slightly different

from the results on the Indian Pines image. The reason may be that Pavia University

has higher spatial resolution and interacts with filters in more complex way than

the low spatial resolution Indian Pines data. The results confirm that using a mean

filter with relative large size can increase the classification accuracy, up to 92.4% on

Indian Pines and 98.0% on Pavia University. Essentially, it is mainly because larger

filters lead to more overlap between the training and testing data. In contrast, when

adopting the controlled random sampling strategy, the classification accuracy first-

ly improves marginally, but then dramatically drops with larger size filters. This is

consistent with our expectation in evaluating the influence of spectral-spatial oper-

ations rather than the data dependence. Therefore, the proposed sampling method

successfully avoids the problem of random sampling.

We then performed an experiment with Gaussian filter under the same settings

to compare two sampling strategies. Among different denoising and smoothing ap-
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proaches, Gaussian filter is a basic but effective tool to reduce the random noise in

hyperspectral images. It works as a low-pass filter whose standard deviation controls

the shape of filter and sets the threshold to remove the corresponding high-frequency

signal. The larger the stand deviation is, the lower frequency the signal can be pre-

served and the image be more smoothed. We applied a Gaussian filter on each band

of hyperspectral images with a range of standard deviations. The size of filters varies

with the standard deviation so that the smoothing effect decays to nearly zero at the

boundaries of filtering masks. Then the smoothed image was fed into the classifier.

This experiment was repeated ten times and the mean of overall accuracy was used

as the evaluation criterion. The standard deviation ranged from 2−1 to 23 with an

interval of 0.5 on the exponential term.

We plot the classification accuracy as a function of the standard deviation in

Fig. 6.14 for random sampling and controlled sampling method, respectively. From

Fig. 6.14 (a)-(d), we can see that the accuracy continuously increases until a specif-

ic point when Gaussian filter with larger standard deviation is used with random

sampling strategy. This is consistent with the observation on the mean filter. We can

assume that the Gaussian filter influences the data dependence to varying extents un-

der different standard deviations, such that the classification accuracy is impacted by

the filter parameter. This is also consistent with our earlier analysis that when data

dependence is increased, the classification error bound will be tightened. However,

this is not desired when evaluating a preprocessing method for image classification

as we would like to know what is the actual contribution from the operation itself.

Compared to the random sampling, the controlled random sampling presents a

different trend between the accuracy and standard deviation. The accuracy firstly

improves marginally and then becomes stable or drops. This indicates that smooth-

ing with an appropriate Gaussian operator can remove noises, and thus contribute

to the final image classification. However, when the standard deviation of Gaussian

is very large, too strong image smoothing does not help much for the discrimination
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(a) Indian Pines & SVM (b) Indian Pines & RF (c) PaviaU & SVM (d) PaviaU & RF

(e) Indian Pines & SVM (f) Indian Pines & RF (g) PaviaU & SVM (h) PaviaU & RF

Figure 6.14: Classification accuracies vary with the standard deviation of Gaussian
filter on the Indian Pines and Pavia University datasets under random sampling (first

row) and controlled random sampling (second row) strategies.

of different classes since it may mix the training data with unlabeled data at bound-

aries of image regions, thus losing its adaptability. Under the new sampling strategy,

Gaussian filter is able to improve the classification but not very significantly and the

training and testing data dependence caused by overlap is no longer the dominant

factor to the classification. Overall, these two experiments prove that the proposed

sampling strategy can neutralize the improper benefit gained from enhancement of

dependence between training and testing data.

6.7.2 Raw spectral feature

We then performed an experiment to compare two sampling strategies when raw

spectral features were used on the benchmark datasets. The objective of this exper-

iment is to examine the effectiveness and objectiveness of the proposed sampling

method compared to random sampling. As mentioned in Section 6.1, there is no is-

sue with the experimental setting of random sampling when evaluating a pixel based

spectral feature. But we still do not know whether the proposed sampling method is
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(a) Training map (b) Classification map (c) Training map (d) Classification map

(e) Training map (f) Classification map (g) Training map (h) Classification map

Figure 6.15: Training/classification maps on the Indian Pines and Pavia University
datasets under random sampling (first row) and controlled random sampling (second

row) strategies, when raw spectral features are used.

qualified in such a task.

In the experiment, only the raw spectral features were used without any spatial

processing. Other settings were the same as the previous experiment such as the

classifiers, repetition of experimental runs, etc. The overall accuracy and standard

deviation under random sampling and the controlled random sampling strategies(*)

are reported in Tables 6.3 and 6.4 for SVM and RF, respectively. Following observa-

tions can be made from the results. Firstly, higher sampling rate leads to increase of

classification accuracy on all datasets. This is the same and expected for both sam-

pling methods. Secondly, the standard deviation of the accuracy from the proposed

sampling strategy is much higher than that of the random counterpart. This is due to

the distinction of training data generated from the random seeds each time. Lastly,

there is a reduction on the classification accuracy when the proposed sampling strat-

egy is used. This is due to the fact that variations in the same class data in different

regions are less sufficiently captured as some of them may not be included in the

training samples when the proposed sampling strategy is used. The difference of
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accuracies is more evident on Indian Pines, Pavia University and Salinas datasets as

these scenes include large blocks of regions in the same class, which leads to more

benefits from spectral variation covered by random sampling strategy. For further

illustrating this phenomenon, the classification maps on the Indian Pines and Pavia

University under two sampling strategies are shown in Fig. 6.15. Compared to ran-

dom sampling, those testing samples far away from the training regions are easily

misclassified under controlled random sampling.

Despite the differences, this does not affect a fair evaluation of different algo-

rithms with the proposed sampling strategy. In this experiment, assuming that the

goal is to evaluate SVM and RF, it can be concluded from the results that SVM is

a preferred classifier since it generates higher classification accuracy. Therefore, al-

though the new sampling strategy has made the hyperspectral image classification a

more challenging problem and forces more rigorous evaluation to the feature extrac-

tion and classification approaches, it is still qualified in evaluating the algorithms in

hyperspectral image classification.

6.7.3 Spectral-spatial features

Now we turn our attention to testing the proposed sampling strategy with two

typical spectral-spatial feature extraction methods, i.e., 3D discrete wavelet transfor-

m (3D-DWT) and morphological profile. 3D-DWT is a typical example of filter-based

methods. The morphological profile is a widely adopted spatial feature extraction

method, including a number of variations for hyperspectral image classification.

6.7.3.1 3D discrete wavelet transform

The discrete wavelet transform is derived from the wavelet transform which is a

mathematical tool for signal analysis. Unlike Fourier transform, the advantage of

wavelet transform is that the transformed signal provides time-frequency represen-

tation for the non-stationary signal, meaning that we cannot only know whether a



130 On the Sampling Strategy for the Evaluation of Spectral-Spatial Methods

frequency component exists but also when it happens in a signal.

The experimental results under random sampling strategy and controlled random

sampling strategy(*) are shown in Table 6.3 and Table 6.4 for SVM and RF, respec-

tively. As expected, controlled random sampling strategy leads to lower accuracy

compared to random sampling strategy on all datasets. An interesting observation

can be obtained by comparing these results with the results on the raw spectral fea-

ture in Tables 6.3 and 6.4. On the one hand, 3D-DWT performs better than raw

spectral feature under both sampling methods. This indicates that the proposed

method confirms that 3D-DWT is able to extract more discriminative information

than raw spectral feature. On the other hand, under experimental setting with ran-

dom sampling, 3D-DWT significantly improves the accuracy on all datasets over raw

spectral feature. However, when it is tested with the proposed controlled sampling

strategy, the improvement cannot reach the same level of significance, especially on

Indian Pines, Pavia University, and Salinas datasets. It means that 3D-DWT does

not perform significantly better than the raw spectral features as expected when the

advantage of introducing information from the testing data into the training stage is

eliminated.

6.7.3.2 Morphological profile

To further analyze this issue, we undertook experiments on the mathematical mor-

phology feature. Morphological operations apply the structuring elements to the

image, making it possible to enhance or alleviate structures based on the specific

requirements from users. The basic operators include erosion and dilation which ex-

pands and shrinks the structures, respectively. Combining them results in the open-

ing (erosion-dilation) and closing (dilation-erosion) operations. These two processes

can remove specific structures and noises without destroying the original primary

structures in the image. The results of morphological processing are called mor-

phological profiles. The morphological profile based feature extraction method is
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able to explore the structures of objects based on the contrast and size of objects in

the images, therefore, it has been widely studied for hyperspectral image classifica-

tion [30, 34].

The classification results with two sampling strategies are shown in Table 6.3 and

Table 6.4. Similar to the results on 3D-DWT, although the morphological profile fea-

ture has achieved better performance than the raw spectral method when tested with

random sampling strategy, the improvement is not as significant as when controlled

random sampling is used. This is mainly because that spectral-spatial method does

not take much advantage of the overlapped information between training and testing

samples under the proposed method.

Directly comparing two completely different spectral-spatial methods may not

make much sense since different features are more suitable to extract features on

specific datasets or sensitive to specific classifiers. Here we analyze the results from

another point of view, which may explain the advantage of the proposed sampling

over random sampling. In Table 6.3, 3D-DWT achieves higher accuracy than EMP on

both Indian Pines and Pavia University datasets when random sampling is adopted.

When adopting the new sampling strategy, 3D-DWT still performs slightly better

than EMP on the Indian Pines dataset, but EMP performs significantly better than

3D-DWT on the Pavia University dataset. This is consistent with the fact that the

morphology method is capable of extracting more spatial structures than 3D-DWT on

the dataset with high spatial resolution [30]. Under the proposed sampling method,

the properties of the spectral-spatial method can be more accurately reflected and

evaluated in the experiments. This is impossible under random sampling because

the classification result is strongly misled by the overlap between training and testing

samples. Overall, the proposed sampling strategy reveals more real discriminative

ability of the spectral-spatial methods, which is the purpose of the evaluation.
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6.7.4 Relationship between traditional random sampling and the proposed

method

In previous experiments, we have used at least 5% of labeled data as training samples.

In recent years, some researchers have used very few labeled samples to construct the

training set. In such case, the potential overlap between training set and testing set

would not be significant. To show how the number of training samples influence two

sampling strategies, especially when a small number of training samples were used,

we developed an experiment to measure the performance of random sampling and

controlled sampling when 1% to 25% of labeled samples were used as the training

samples. In the experiment, if the number of samples in the training set was less than

1 for some small classes, we set the size of training set to 1. Regarding the feature

extraction, we employed the raw spectral response and a mean filter with size of

5× 5 for the spectral-spatial method, respectively. Other settings were the same as

previous experiments, such as classifier, repeating times, and so on. To measure

the differences and similarities between two sampling methods, we have calculated

both overall classification accuracy and the percentage of overlap3, and explore the

relevance of overlap and classification results under different sampling rates.

The results are drawn in Fig. 6.16 where the first and second rows represent

the results with the raw spectral response and after applying a 5 × 5 mean filter,

respectively. In Fig. 6.16 (a), it is expected that no overlap between training and

testing data exists for both two sampling methods when the pure spectral feature

is exploited. Therefore, the classification results should not be biased. Fig. 6.16 (b)

shows that with more training data available, the classification accuracy gradually

increases. The rising rates under two sampling strategies show similar trends and

there is no apparent difference in tendency. However, if considering the results with

the 5× 5 filter (spectral-spatial feature) in the second row, the overlap and accuracy

grow very differently under two sampling approaches. Firstly, when the sampling

3The percentage of overlap is defined as the percentage of the testing samples covered by the training
features against all the testing samples, as described in Section 6.4.
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(a) Overlap (b) Accuracy

(c) Overlap (d) Accuracy

Figure 6.16: Overlap of training and testing data and classification accuracy on the
Indian Pines dataset under random sampling and controlled random sampling s-
trategies, when a different percentage of labeled data were used as the training sam-
ples. The first row shows results of raw spectral responses and the second row shows

the results of a 5× 5 mean filter.

rate is quite low (1%), the overlap between training samples and testing sampling

for both methods are similar, which indicates that the proposed method is close

to random sampling in the degree of overlap and cannot fully remove the overlap.

With the sampling rate increasing, the overlap of random sampling dramatically

increases to 1 (100%) before the sampling rate reaches 25%. In contrast, the overlap

of controlled sampling increases very slowly, only reaching to 0.2 with the sampling

rate of 25%. This figure demonstrates again that the proposed method can greatly

reduce the overlap compared to the traditional random sampling, especially when

the scale of training set becomes large. In Fig. 6.16 (d), it can be observed that

the classification accuracy under random sampling increases much faster than that
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of controlled sampling when the sampling rates rise, which is quite similar to the

trend on the overlap in Fig. 6.16 (c). It reveals that under random sampling, the

classification result is much more biased due to the overlap when the number of

training samples increases. In contrast, the classification results are not much affected

under the proposed method when comparing Fig. 6.16 (d) with (b).

From this experiment, we have the following conclusions. Firstly, when the train-

ing set is very small, there is not much overlap between training and testing set when

spectral-spatial operations are involved. No matter the training set is generated by

the traditional random sampling or the proposed method, there will only be a few

testing samples involved in the training stage. Therefore, the evaluation is not much

biased. Secondly, with the scale of the training set growing, the overlap between

training and testing samples dramatically increases under the random sampling s-

trategy whereas the proposed one can suppress such increase. Then the proposed

method would be much less biased than the traditional one. Conversely, when the

size of the training set decreases, the proposed method becomes closer to the tra-

ditional sampling strategy in the degree of overlap and objectiveness. In particular,

when only one sample is used for each class, two sampling methods are equivalent

to each other.

6.8 Conclusion

This chapter presented a comprehensive study on the influence of the widely adopt-

ed sampling strategy for performance evaluation of the spectral-spatial methods in

hyperspectral image classification. We point out that random sampling has some

problems because it has ignored the overlap and spatial dependency between train-

ing and testing samples when they are selected from the same image. Based on the

non-i.i.d. characteristic of hyperspectral image data, we proved that the improve-

ment of classification accuracy by some spectral-spatial methods are partly due to

the enhancement of dependence between training and testing data, compared with
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sole spectral information based methods. This phenomenon is more obvious when a

large amount of training data are used. An alternative controlled random sampling

strategy is proposed to alleviate these problems. It has been proved that although

the proposed method cannot completely remove the overlap when the training set is

very small, it will suppress the increase of overlap when the training set grows. This

new strategy provides a better way to evaluate the effectiveness of spectral-spatial

operations and the corresponding classifiers.

Finally, it should be noted that the aim of this chapter is not to criticize the

spectral-spatial methods themselves or the exploration of spatial information. The

concern is only on the widely adopted evaluation approach, or more strictly s-

peaking, on the experimental setting. Under the experimental setting with random

sampling, the performance evaluation may be not equally fair and unbiased for all

spectral-spatial methods. This is especially the case for the practice that training and

testing are performed on the same image. This problem is ultimately due to the lack

of labeled hyperspectral data that are available for method evaluation. Therefore, a

more urgent task for the research community is to build more benchmark datasets

to facilitate future spectral-spatial hyperspectral image analysis research.
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Table 6.3: Classification accuracies (overall accuracy and standard deviation) using
raw spectral feature, 3D discrete wavelet transform (3D-DWT) and extended mor-
phological profile (EMP) with random sampling and controlled random sampling(*),

when linear SVM is adopted.

Dataset
Raw Spectral Feature 3D-DWT EMP

%5 %10 %25 %5 %10 %25 %5 %10 %25

Botswana 88.6
(1.4)

92.2
(1.1)

95.0
(0.6)

96.2
(0.7)

97.7
(0.5)

99.4
(0.3)

95.5
(2.0)

98.3
(0.6)

99.5
(0.2)

Botswana* 87.4
(1.4)

90.7
(0.5)

93.0
(0.4)

95.1
(1.4)

95.9
(1.3)

96.6
(0.8)

95.4
(1.2)

96.6
(0.7)

97.6
(0.5)

Indian 72.5
(0.7)

77.1
(0.8)

82.4
(0.4)

88.1
(0.8)

93.7
(0.7)

97.9
(0.3)

83.0
(1.1)

88.2
(0.7)

92.4
(0.4)

Indian* 63.8
(2.2)

68.2
(1.7)

75.0
(1.6)

65.2
(3.0)

69.9
(3.0)

79.1
(1.7)

64.8
(2.8)

69.2
(2.7)

77.2
(2.8)

KSC 76.1
(0.9)

80.4
(0.9)

86.3
(0.7)

87.7
(1.8)

91.8
(0.6)

96.4
(0.5)

76.9
(1.0)

83.3
(0.8)

89.1
(0.5)

KSC* 73.8
(2.1)

78.5
(1.1)

83.8
(0.7)

81.6
(2.2)

83.7
(2.6)

87.9
(1.1)

72.3
(3.6)

78.3
(2.7)

84.5
(1.5)

PaviaU 89.9
(0.2)

90.7
(0.3)

91.3
(0.2)

97.8
(0.1)

98.6
(0.1)

99.3
(0.1)

97.0
(0.2)

97.6
(0.1)

98.1
(0.1)

PaviaU* 80.9
(3.9)

82.7
(4.0)

84.5
(4.3)

84.8
(3.2)

86.4
(3.4)

89.2
(3.6)

87.4
(3.1)

89.5
(1.7)

91.7
(1.9)

Salinas 92.4
(0.1)

92.8
(0.1)

93.1
(0.1)

96.4
(0.1)

97.3
(0.1)

98.3
(0.1)

94.5
(0.3)

95.0
(0.2)

95.3
(0.1)

Salinas* 81.8
(2.7)

81.6
(3.8)

83.0
(3.3)

80.9
(3.0)

82.2
(3.6)

83.4
(3.4)

83.5
(1.4)

85.0
(2.4)

84.8
(2.4)
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Table 6.4: Classification accuracies (overall accuracy and standard deviation) using
raw spectral feature, 3D discrete wavelet transform (3D-DWT) and extended mor-
phological profile (EMP) with random sampling and controlled random sampling(*),

when RF is adopted.

Dataset
Raw Spectral Feature 3D-DWT EMP

%5 %10 %25 %5 %10 %25 %5 %10 %25

Botswana 82.4
(1.6)

85.4
(0.8)

88.7
(0.5)

90.5
(1.8)

94.3
(1.1)

97.7
(0.5)

90.4
(1.6)

94.2
(1.0)

97.3
(0.9)

Botswana* 80.5
(1.6)

82.8
(2.0)

85.9
(1.4)

88.3
(1.5)

90.7
(1.4)

93.5
(1.1)

88.4
(1.6)

91.6
(1.2)

94.6
(1.1)

Indian 70.5
(0.9)

75.6
(0.9)

81.4
(0.5)

75.1
(1.4)

81.6
(0.8)

89.7
(0.5)

81.1
(1.5)

88.0
(0.9)

93.7
(0.6)

Indian* 56.7
(1.5)

61.3
(2.5)

66.7
(2.9)

57.4
(2.1)

61.4
(2.1)

67.5
(1.6)

64.4
(1.5)

69.6
(2.7)

76.2
(3.0)

KSC 82.9
(0.6)

86.6
(0.8)

90.1
(0.3)

82.2
(1.3)

88.7
(0.7)

92.9
(0.6)

87.1
(1.0)

91.8
(1.1)

95.5
(0.5)

KSC* 77.1
(2.4)

79.8
(1.7)

84.5
(1.7)

74.8
(2.2)

79.1
(2.1)

84.6
(1.6)

80.6
(2.8)

84.4
(1.5)

89.8
(1.8)

PaviaU 87.3
(0.4)

89.3
(0.2)

91.4
(0.1)

92.4
(0.3)

94.1
(0.2)

96.1
(0.1)

95.5
(0.2)

97.1
(0.2)

98.5
(0.1)

PaviaU* 71.2
(5.0)

73.6
(4.3)

81.4
(2.1)

75.8
(3.6)

79.0
(3.2)

83.4
(2.2)

78.2
(5.2)

80.9
(4.5)

88.2
(2.3)

Salinas 90.3
(0.1)

91.5
(0.2)

93.0
(0.1)

93.0
(0.3)

94.2
(0.2)

95.7
(0.1)

94.9
(0.3)

96.4
(0.2)

97.7
(0.2)

Salinas* 79.0
(2.6)

80.9
(3.9)

84.1
(2.6)

77.6
(2.9)

80.6
(2.6)

83.8
(1.8)

82.0
(1.6)

84.4
(2.8)

86.6
(2.6)



138 On the Sampling Strategy for the Evaluation of Spectral-Spatial Methods



Chapter 7

Conclusion

7.1 Summary

With the development of advanced imaging instruments, hyperspectral imaging pro-

vides an alternative way to analyze and tackle traditional problems in remote sensing

and computer vision. To employ abundant spectral and spatial information from hy-

perspectral images, it is necessary to develop a series of methods to extract highly

comprehensive and discriminative representation of interested objects, thus facili-

tating basic pattern recognition tasks, such as object detection and recognition, and

image classification.

Existing methods from remote sensing and computer vision focus on either grayscale

based spatial feature or pixel wise spectral feature. Although research has been done

on fusing the spatial and spectral information, there is high demand on developing

novel, effective, and efficient spectral-spatial feature extraction methods for various

applications from industry and society.

This thesis introduces three novel spectral-spatial feature extraction methods for

hyperspectral image classification. Each method focuses on a fundamental topic in

computer vision or remote sensing. These methods are derived from traditional two-

dimensional approaches and then extended to hyperspectral images. It is worthwhile

to point out that the spatial or spectral information to be extracted varies depend-

ing on different tasks or objectives. Spectral saliency extends salient object detection

to spectral domain, making the saliency detection beyond human vision. 3D local

derivative pattern extracts the spectral-spatial textures and improves the recognition
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rate for hyperspectral image recognition. Tensor morphological profile provides a

new method based on mathematical morphology for remote sensing image classifi-

cation. Apart from feature extraction methods, in the end, we propose the controlled

random sampling strategy, with which the performance of different spectral-spatial

feature extraction methods can be fairly evaluated. The significance of the proposed

feature extraction methods, as well as the sampling strategy, are summarized as fol-

lows.

Chapter 3 addresses the problem of salient object detection with hyperspectral

images. As far as we know, it is the first attempt to incorporate spectral respons-

es into saliency detection. The color bands in the classic Itti’s model are replaced

with the spectral responses by a variety of methods. We further incorporated spatial

distribution of spectral responses into the saliency model, which has successfully de-

tected the salient regions in close-range hyperspectral images. Though this method

is still within the framework of Itti’s human vision inspired model, it has proved the

feasibility of using hyperspectral imaging for saliency detection.

Chapter 4 explores novel spectral-spatial feature for face recognition with hy-

perspectral imaging. We developed a three-dimensional local derivative pattern to

characterize hyperspectral images and encode the spectral response in a similar way

with the spatial pattern. Then each hyperspectral face is represented as a histogram

of the extracted spatial and spectral binary patterns. The problem of this method

is that the encoding in spectral dimension is very sensitive to noises, and it only

contains the turning points without covering the full information embedded in the

spectral curves. Although applying a Gabor filter before the feature extraction can

partially solve the problem, there is space to further improve this method.

Chapter 5 introduces an innovative spectral-spatial feature extraction method

based on tensor modeling and mathematical morphology. The proposed tensor mor-

phological profile extracts not only spatial structures but also spectral information.

However, this method generates a high-dimensional feature, weakening its effective-
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ness in hyperspectral image classification due to the curse of dimension. A promis-

ing solution is to use the tensor decomposition to reduce the feature dimension and

remove those correlated features. Despite this drawback, this framework is quite

encouraging since a variety of morphology operations can be used for hyperspectral

directly, such as the morphological attribute profile.

At last, Chapter 6 points out that the traditional random sampling approach is

not suitable to evaluate the spectral-spatial classifier in remote sensing hyperspectral

image classification because the overlap between training and testing samples may

bias the classification accuracy in the evaluation. Thus the actual advantages of the

spectral-spatial operations cannot be fairly assessed. With the proposed controlled

random sampling, newly developed methods can be evaluated properly. This work

will be quite beneficial to the research community and promote the evolution of

spectral-spatial feature extraction methods for hyperspectral image classification.

7.2 Future work

In this thesis, the proposed feature extraction methods are hand-crafted features

without learning procedure, thus limiting them to specific applications. This is a

result of missing large-scale hyperspectral image datasets. To our knowledge, ex-

isting close-range datasets only consist of general indoor or outdoor scenes whose

scale is not big enough to support large-scale image classification or machine learn-

ing. Building a hyperspectral image dataset usually takes significantly longer time

than conventional image dataset collection. The hyperspectral images have to be

captured one by one with hyperspectral instruments by the researcher, rather than

crawling from the internet. Furthermore, due to its working principle, capturing a

hyperspectral image requires stricter environments in order to obtain high quality

images.

Faced with this challenge and opportunity, we have already embarked on build

large-scale hyperspectral image datasets for various computer vision applications,
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including strawberry quality analysis, object detection, and video analysis. Taking

strawberry quality analysis as an example, it is a collaborating research project with a

local strawberry farm in Queensland, Australia, as part of a Linkage Project support-

ed by the Australian Research Council. The goal is to improve the quality of packed

strawberry sold to supermarkets by building a grading system, which automatically

rates the strawberry with consideration of ripeness, size, bruise, etc. Among these

defects, bruise detection is quite difficult from RGB or grayscale images as the fresh

bruise is invisible in the visible spectrum. We are in the process of building a dataset

containing both good and bruised strawberries using both hyperspectral cameras

and chromatic cameras. We expect that building these datasets will greatly benefit

the research community in computer vision and pattern recognition.

Furthermore, salient object detection via hyperspectral imaging is of great po-

tential in many applications. Current saliency detection methods are mainly built

via mimicking the human vision system so as to detect outstanding structures, tex-

tures or colors. In the natural environment, animals and insects tend to camouflage

themselves, making them difficult to be found by the visual system. However, when

considering their spectral responses, these targets can be treated as the salient object

and detected based on their spectral differences with the neighboring environment.

We will continue to build hyperspectral saliency datasets, and explore new methods

and applications of this research.

Last but not least, object tracking in open environments is of increasing interest

and it is also a challenging task in computer vision. A problem in the task comes from

the fact that some objects may be easily mixed with complex background scenes in

both shape and color. For example, a pedestrian dressed in green clothes may not be

easily detected from trees. By developing spectral-spatial methods for hyperspectral

image based tracking, high discriminative ability can be achieved for tracking sys-

tems to distinguish targets from background. This may also handle partial occlusion

problems by matching spectral signatures of objects, thus alleviating its dependence
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on spatial features.

Overall, there are tremendous opportunities for researchers to explore hyperspec-

tral imaging with typical computer vision tasks. Spectral-spatial feature extraction

will provide essential tools to make these work successful and benefit research, in-

dustry, and society.
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